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Bit Error Rate Analysis
Analyze BER performance of communications systems

Description
The Bit Error Rate Analysis app calculates the bit error rate (BER) as a function of the energy per
bit to noise power spectral density ratio (Eb/N0). Using this app, you can:

• Generate BER data for a communications system and analyze performance using:

• Monte Carlo simulations of MATLAB® functions and Simulink® models.
• Theoretical closed-form expressions for selected types of communications systems.
• Run systems contained in MATLAB simulation functions or Simulink models. After you create a

function or model that simulates the system, the Bit Error Rate Analysis app iterates over
your choice of Eb/N0 values and collects the results.

• Plot one or more BER data sets on a single set of axes. You can graphically compare simulation
data with theoretical results or simulation data from a series of communications system models.

• Fit a curve to a set of simulation data.
• Plot confidence levels of simulation data.
• Send BER data to the MATLAB workspace or to a file for further processing.

For more information, see “Analyze Performance with Bit Error Rate Analysis App”.
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Open the Bit Error Rate Analysis App
• MATLAB Toolstrip: On the Apps tab, under Signal Processing and Communications, click the

app icon.
• MATLAB command prompt: Enter bertool.

Examples

Compute BER Using Theoretical Tab

Generate a theoretical estimate of BER performance for a 16-QAM link in AWGN.

Open the Bit Error Rate Analysis app.

bertool
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On the Theoretical tab, set these parameters to the specified values: Eb/N0 range to 0:10,
Modulation type to QAM, and Modulation order to 16.

Plot the BER curve by clicking Plot.
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Compute BER Using Monte Carlo Tab and MATLAB Function Simulation

Simulate the BER by using a custom MATLAB function. By default, the app uses the viterbisim.m
simulation.

Open the Bit Error Rate Analysis app.

bertool

On the Monte Carlo tab, set the Eb/N0 range parameter to 1:.5:6. Run the simulation and plot the
estimated BER values by clicking Run.

On the Theoretical tab, set Eb/N0 range to 1:6 and set Modulation order to 4. Enable
convolutional coding by selecting Convolutional. Click Plot to add the theoretical upper bound of
the BER curve to the plot.
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Prepare MATLAB Function for Use in Bit Error Rate Analysis App

Add code to the simulation function template given in the “Template for Simulation Function” topic to
run in the Monte Carlo tab of the Bit Error Rate Analysis.

Prepare Function

Copy the template from the “Template for Simulation Function” topic into a new MATLAB file in the
MATLAB Editor. Save the file in a folder on your MATLAB path, using the file name
bertool_simfcn.

Place lines of code that initialize parameters or create objects used in the simulation in the template
section marked Set up initial parameters. This code maps simulation variables to the template
input arguments. For example, snr maps to EbNo.

% Set up initial parameters.
siglen = 1000; % Number of bits in each trial
M = 2;         % DBPSK is binary
snr = EbNo;    % Because of binary modulation
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% Create an ErrorRate calculator System object to compare 
% decoded symbols to the original transmitted symbols.
errorCalc = comm.ErrorRate;

Place the code for the core simulation tasks in the template section marked Proceed with
simulation. This code includes the core simulation tasks, after all setup work has been performed.

    msg = randi([0,M-1],siglen,1); % Generate message sequence
    txsig = dpskmod(msg,M);        % Modulate
    hChan.SignalPower = ...        % Calculate and assign signal power
        (txsig'*txsig)/length(txsig); 
    rxsig = awgn(txsig,snr,'measured'); % Add noise
    decodmsg = dpskdemod(rxsig,M);      % Demodulate
    berVec = errorCalc(msg,decodmsg);   % Calculate BER
    totErr = totErr + berVec(2);
    numBits = numBits + berVec(3);

After you insert these two code sections into the template, the bertool_simfcn function is
compatible with the Bit Error Rate Analysis app. The resulting code resembles this code segment.
function [ber,numBits] = bertool_simfcn(EbNo,maxNumErrs,maxNumBits,varargin)
%
%   See also BERTOOL and VITERBISIM.

% Copyright 2020 The MathWorks, Inc.

% Initialize variables related to exit criteria.
totErr = 0;  % Number of errors observed
numBits = 0; % Number of bits processed

% --- Set up the simulation parameters. ---
% --- INSERT YOUR CODE HERE.
% Set up initial parameters.
siglen = 1000; % Number of bits in each trial
M = 2;         % DBPSK is binary.
snr = EbNo;    % Because of binary modulation
% Create an ErrorRate calculator System object to compare
% decoded symbols to the original transmitted symbols.
errorCalc = comm.ErrorRate;

% Simulate until the number of errors exceeds maxNumErrs
% or the number of bits processed exceeds maxNumBits.
while((totErr < maxNumErrs) && (numBits < maxNumBits))

    % Check if the user clicked the Stop button of BERTool.
    if isBERToolSimulationStopped(varargin{:})
      break
    end
  
    % --- Proceed with the simulation.
    % --- Update totErr and numBits.
    % --- INSERT YOUR CODE HERE.
    msg = randi([0,M-1],siglen,1); % Generate message sequence
    txsig = dpskmod(msg,M);        % Modulate
    hChan.SignalPower = ...        % Calculate and assign signal power
        (txsig'*txsig)/length(txsig); 
    rxsig = awgn(txsig,snr,'measured'); % Add noise
    decodmsg = dpskdemod(rxsig,M);      % Demodulate
    berVec = errorCalc(msg,decodmsg);   % Calculate BER
    totErr = totErr + berVec(2);
    numBits = numBits + berVec(3);
end % End of loop

% Compute the BER.
ber = totErr/numBits;

The function has inputs to specify the app and scalar quantities for EbNo, maxNumErrs, and
maxNumBits that are provided by the app. The Bit Error Rate Analysis app is an input because the
function monitors and responds to the stop command in the app. The bertool_simfcn function
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excludes code related to plotting, curve fitting, and confidence intervals because the Bit Error Rate
Analysis app enables you to do similar tasks interactively without writing code.

Use Prepared Function

Run bertool_simfcn in the Bit Error Rate Analysis app.

Open the Bit Error Rate Analysis app, and then select the Monte Carlo tab.

Set these parameters to the specified values: Eb/N0 range to 0:10, Simulation environment to
MATLAB, Function name to bertool_simfcn, Number of errors to 5, and Number of bits to
1e8.

Click Run.

The Bit Error Rate Analysis app computes the results and then plots them. In this case, the results
do not appear to fall along a smooth curve because the simulation required only five errors for each
value in EbNo.
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Fit a curve to the series of points in the BER Figure window, by selecting the Fit parameter in the
data viewer.

The Bit Error Rate Analysis app plots the fitted curve, as shown in this figure.

 Bit Error Rate Analysis
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Compute Error Rate Simulation Sweeps Using Bit Error Rate Analysis App

Use the Bit Error Rate Analysis app to compute the BER as a function of Eb/N0. The app analyzes
performance with either Monte Carlo simulations of MATLAB® functions and Simulink® models or
theoretical closed-form expressions for selected types of communications systems. The code in the
mpsksim.m function provides an M-PSK simulation that you can run from the Monte Carlo tab of the
app.

Open the Bit Error Rate Analysis app from the Apps tab or by running the bertool function in the
MATLAB command window.

1 Apps
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On the Monte Carlo tab, set the Eb/N0 range parameter to 1:1:5 and the Function name
parameter to mpsksim.

 Bit Error Rate Analysis
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Open the mpsksim function for editing, set M=2, and save the changed file.

Run the mpsksim.m function as configured by clicking Run on the Monte Carlo tab in the app.

After the app simulates the set of Eb/N0 points, update the name of the BER data set results by
selecting simulation0 in the BER Data Set field and typing M=2 to rename the set of results. The
legend on the BER figure updates the label to M=2.
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Update the value for M in the mpsksim function, repeating this process for M = 4, 8, and 16. For
example, these figures of the Bit Error Rate Analysis app and BER Figure window show results for
varying M values.

 Bit Error Rate Analysis
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Parallel SNR Sweep Using Bit Error Rate Analysis App

The default configuration for the Monte Carlo processing of the Bit Error Rate Analysis app
automatically uses parallel pool processing to process individual Eb/N0 points when you have the
Parallel Computing Toolbox™ software but for the processing of your simulation code:

• Any parfor function loops in your simulation code execute as standard for loops.
• Any parfeval (Parallel Computing Toolbox) function calls in your simulation code execute

serially.
• Any spmd (Parallel Computing Toolbox) statement calls in your simulation code execute serially.

Copyright 2020 The MathWorks, Inc.
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Prepare Simulink Model for Use with Bit Error Rate Analysis App

Use a Simulink simulation model to run in the Monte Carlo tab of the Bit Error Rate Analysis app.
Compare the BER performance of the Simulink simulation results with theoretical BER results.

Prepare Model

Open the model by entering doc_bpsk at the MATLAB command prompt.

doc_bpsk

Initialize parameters in the MATLAB workspace to avoid using undefined variables as block
parameters.

EbNo = 0;
maxNumErrs = 100;
maxNumBits = 1e8;

Ensure that the Bit Error Rate Analysis app uses the correct amount of noise each time it runs the
simulation, by opening the dialog box for the AWGN Channel block and verifying that the Es/No
parameter is set to EbNo.

Note For BPSK modulation, Es/N0 is equivalent to Eb/N0.

Ensure that the Bit Error Rate Analysis app uses the correct stopping criteria for each iteration by:

• Opening the dialog box for the Error Rate Calculation block and verifying that Target number of
errors is set to maxNumErrs and that Maximum number of symbols is set to maxNumBits.

• Verifying that the simulation stop time is set to Inf.

Enable the Bit Error Rate Analysis app to access the BER results that the Error Rate Calculation
block computes, by ensuring that the BER variable name parameter in the app matches the
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Variable name parameter set in the To Workspace block that connects to the output of the Error
Rate Calculation block.

Tip Select the To Workspace block from the DSP System Toolbox™ / Sinks sublibrary. For more
information, see “To Workspace Block Configuration for Communications System Simulations”.

Use Prepared Model

Run the doc_bpsk model in the Bit Error Rate Analysis app.

Open the Bit Error Rate Analysis app, and then select the Monte Carlo tab.

Set these parameters to the specified values: Eb/N0 range to 0:9, Simulation environment to
Simulink, Function name to doc_bpsk, Number of errors to 100, and Number of bits to 1e8.

Click Run.

The Bit Error Rate Analysis app computes the results and then plots them.
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Compare these simulation results with the theoretical results, by clicking the Theoretical tab in the
Bit Error Rate Analysis app and setting Eb/N0 range to 0:9.

Click Plot.

 Bit Error Rate Analysis
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The Bit Error Rate Analysis app plots the theoretical curve in the BER Figure window along with
the earlier simulation results.

Parameters
Theoretical

Eb/N0 range — Range of Eb/N0 values
0:18 (default) | scalar | vector

Range of Eb/N0 values over which the BER is evaluated, specified as a scalar or vector. Units are in
dB.
Example: 5:10 specifies the evaluation of Eb/N0 values over the range [5, 10] at 1 dB increments.

Channel type — Type of channel over which BER is evaluated
AWGN (default) | Rayleigh | Rician

Type of channel over which the BER is evaluated, specified as AWGN, Rayleigh, or Rician. The
Rayleigh and Rician options correspond to flat fading channels.

Modulation type — Modulation type of communications link
PSK (default) | DPSK | OQPSK | PAM | QAM | FSK | MSK | CPFSK

Modulation type of the communications link, specified as PSK, DPSK, OQPSK, PAM, QAM, FSK, MSK, or
CPFSK.
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Modulation order — Modulation order of communications link
2 (default) | 4 | 8 | 16 | 32 | 64

Modulation order of the communications link, specified as 2, 4, 8, 16, 32, or 64.

Differential encoding — Differential encoding of input data
off (default) | on

Select this parameter to enable differential encoding of the input data.

Correlation coefficient — Correlation coefficient
0 (default) | real scalar in the range [-1, 1]

Correlation coefficient, specified as a real scalar in the range [-1, 1].
Dependencies

To enable this parameter, set Modulation type to FSK.

Modulation index — Modulation index
0.5 (default) | positive real scalar

Modulation index, specified as a positive real scalar.
Dependencies

To enable this parameter, set Modulation type to CPFSK.

Demodulation type — Coherent demodulation of input data
on (default) | off

• Select this parameter to enable coherent demodulation of the input data.
• Clear this parameter to enable noncoherent demodulation of the input data.

Dependencies

To enable this parameter, set Modulation type to FSK or MSK.

Channel coding — Channel coding type used when estimating theoretical BER
None (default) | Convolutional | Block

Channel coding type used when estimating the theoretical BER, specified as None, Convolutional,
or Block.

Synchronization — Synchronization error
Perfect synchronization (default) | Normalized timing error | RMS phase noise level

Synchronization error in the demodulation process, specified as Perfect synchronization,
Normalized timing error, or RMS phase noise (rad).

• When you set Synchronization to Perfect synchronization no synchronization errors are
encountered in the demodulation process.

• When you set Synchronization to Normalized timing error, you can set the normalized timing
error as a scalar in the range [0, 0.5].

• When you set Synchronization to RMS phase noise (rad), you can set the RMS phase noise
level as a nonnegative scalar. Units are in radians
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Dependencies

To enable this parameter, set Modulation type to PSK, Modulation order to 2, and Channel
coding to None.

Decision method — Decoding decision method
Hard (default) | Soft

Decoding decision method used to decode the received data, specified as Hard or Soft.

Dependencies

To enable this parameter, set Channel coding to Convolutional or set Channel coding to Block
and set Coding type to General.

Trellis — Convolutional code trellis
poly2trellis(7,[171 133]) (default) | structure

Convolutional code trellis, specified as a structure variable. You can generate this structure by using
the poly2trellis function.

Dependencies

To enable this parameter, set Channel coding to Convolutional.

Coding type — Block coding type
General (default) | Hamming | Golay | Reed-Solomon

Block coding type used in the BER evaluation, specified as General, Hamming, Golay, or Reed-
Solomon.

Dependencies

To enable this parameter, set Channel coding to Block.

N — Codeword length
positive integer

Codeword length, specified as a positive integer.

Dependencies

To enable this parameter, set Channel coding to Block and set Coding type to General.

K — Message length
positive integer

Message length, specified as a positive integer such that K is less than N.

Dependencies

To enable this parameter, set Channel coding to Block and set Coding type to General.

dmin — Minimum distance of (N,K) block code
positive integer

Minimum distance of the (N,K) block code, specified as a positive integer.
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Dependencies

To enable this parameter, set Channel coding to Block and set Coding type to General.

Monte Carlo

Eb/N0 range — Range of Eb/N0 values
1:0.5:5 (default) | scalar | vector

Range of Eb/N0 values over which the BER is evaluated, specified as a scalar or vector. Units are in
dB.
Example: 4:2:10 specifies evaluation of Eb/N0 over the range [4, 10] at 2 dB increments.

Simulation environment — Simulation environment
MATLAB (default) | Simulink

Simulation environment, specified as MATLAB or Simulink.

Function name — Name of MATLAB function
viterbisim (default)

Name of the MATLAB function for the app to run for the Monte Carlo simulation.
Dependencies

To enable this parameter, set Simulation environment to MATLAB.

Model name — Name of Simulink model
commgraycode (default)

Name of the Simulink model for the app to run for the Monte Carlo simulation.
Dependencies

To enable this parameter, set Simulation environment to Simulink.

BER variable name — Name of variable containing BER simulation data
grayBER (default)

Name of the variable containing the BER simulation data. To output the BER simulation data to the
MATLAB workspace, you can assign this variable name as the Variable name parameter value in a
To Workspace block.

Tip Select the To Workspace block from the DSP System Toolbox / Sinks sublibrary. For more
information, see “To Workspace Block Configuration for Communications System Simulations”.

Dependencies

To enable this parameter, set the Simulation environment to Simulink.

Number of errors — Number of errors to be measured before simulation stops
100 (default) | positive integer

Number of errors to be measured before the simulation stops, specified as a positive integer.
Typically, to produce an accurate BER estimate,100 measured errors are enough.
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Number of bits — Number of bits to be processed before simulation stops
1e8 (default) | positive integer

Number of bits to be processed before the simulation stops, specified as a positive integer. This
parameter is used to prevent the simulation from running too long.

Note The Monte Carlo simulation stops when either the number of errors or number of bits
threshold is reached.

Tips
• You can stop the simulation by clicking Stop on the Monte Carlo Simulation dialog box.

Version History
Introduced before R2006a

Semianalytic tab in the Bit Error Rate Analysis has been removed
Behavior changed in R2020b

The Semianalytic tab and functionality in the Bit Error Rate Analysis app has been removed. To
generate semianalytic BER results, you can still use the semianalytic function.

For example, this code shows you how to use the semianalytic function to programmatically
generate semianalytic BER results for a BPSK-modulated signal.
data = [0 1 1 0 0 1 1 1 1 0 1 1 0 0 0 0].';
bpskmod = comm.BPSKModulator
txSig = rectpulse(bpskmod(data),16); 
rxSig = rectpulse(bpskmod(data),16); % Before receive filter 
modType = ‘psk’; 
modOrder = 2; 
sps = 16; % samples per symbol
num = ones(16,1) / 16; % Filter numerator 
den = 1 % Filter denominator 
EbNo = 0:18; % dB 
BER = semianalytic(txSig,rxSig,modType,modOrder,sps,num,den,EbNo); 
semilogy(EbNo,BER)

See Also
Functions
berawgn | bercoding | berfading | berfit | bersync

Topics
“Analyze Performance with Bit Error Rate Analysis App”
“Bit Error Rate Analysis Techniques”

1 Apps

1-22



“Analytical Expressions Used in BER Analysis”
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Eye Diagram Analyzer
(Removed) Visualize and measure effects of impairments

Note eyescope has been removed. Use eyediagram instead.

Description
The Eye Diagram Analyzer app displays and measures the effects of various impairments. Using
this app, you can:

• Visualize eye diagrams.
• Measure these quantities:

• Horizontal and vertical eye openings
• Random, deterministic, total, RMS, and peak-to-peak jitter
• Rise and fall times
• Signal-to-noise ratio

• Import and compare measurement results for eye diagrams of multiple signals.

Open the Eye Diagram Analyzer App
• MATLAB Toolstrip: On the Apps tab, under Signal Processing and Communications, click the

app icon.
• MATLAB command prompt: Enter eyescope.

Programmatic Use
eyescope calls an empty scope.

eyescope(obj) calls the eye scope and displays object obj.

Version History
Introduced in R2008b

eyescope has been removed
Errors starting in R2020a

Eye Diagram Analyzer has been removed. Use eyediagram instead.

See Also
eyediagram

1 Apps

1-24



Topics
“Eye Diagram Analysis”
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Wireless Waveform Generator
Create, impair, visualize, and export modulated waveforms

Description
The Wireless Waveform Generator app enables you to create, impair, visualize, and export
modulated waveforms.

Using the app, you can:

• Generate custom OFDM, QAM, and PSK modulated waveforms.
• Generate sine wave test waveforms.
• Generate 5G NR uplink and downlink carrier waveforms. This feature requires “5G Toolbox”. For

more information, see the 5G Waveform Generator app reference page.
• Generate LTE modulated waveforms. This feature requires the “LTE Toolbox”. For more

information, see the LTE Waveform Generator app reference page.
• Generate WLAN (802.11™) modulated waveforms. This feature requires the “WLAN Toolbox”. For

more information, see the WLAN Waveform Generator app reference page.
• Generate Bluetooth modulated waveforms. This feature requires the “Bluetooth Toolbox”.
• Generate radar waveforms. This feature requires “Phased Array System Toolbox”.
• Generate ZigBee® and UWB (IEEE® 802.15.4z) modulated waveforms. This feature requires the

Communications Toolbox Library for ZigBee and UWB add-on.
• Export the waveform to your workspace or to a .mat or a .bb file.
• Export waveform generation parameters to a runnable MATLAB script or a Simulink block.

• Use the exported script to generate your waveform without the app from the command line.
• Use the exported block as a waveform source in a Simulink model. For more information, see

Waveform From Wireless Waveform Generator App.
• Visualize the waveform in constellation diagram, spectrum analyzer, OFDM grid, and time scope

plots.
• Distort the waveform by adding RF impairments, such as AWGN, phase offset, frequency offset,

DC offset, IQ imbalance, and memoryless cubic nonlinearity.
• Generate a waveform that you can transmit using a connected radio or lab test instrument.

• To transmit a waveform by using an SDR, connect one of the supported SDRs (ADALM-Pluto,
USRP™, USRP embedded series, and Xilinx® Zynq-based radios) to your computer and have
the associated add-on installed. For more information, see “Transmit Using SDR”.

• To transmit a waveform by using lab test instrument, connect one of the instruments supported
by the rfsiggen function to your computer. For more information, see “Quick-Control RF
Signal Generator Requirements” (Instrument Control Toolbox). This feature requires
“Instrument Control Toolbox”.

• To transmit your waveforms over the air at full radio device rates, use the Wireless Testbench™
software and connect a supported radio to your computer. For a list of radios that support full
device rates, see “Supported Radio Devices” (Wireless Testbench). This feature requires
“Wireless Testbench”. For an example, see “Transmit App-Generated Wireless Waveform Using
Radio Transmitters” on page 1-49.
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For more information, see “Create Waveforms Using Wireless Waveform Generator App”.

Open the Wireless Waveform Generator App
MATLAB Toolstrip: On the Apps tab, under Signal Processing and Communications, click the app

icon. 

MATLAB Command Prompt: Enter wirelessWaveformGenerator.

Examples

App-Based OFDM Waveform Generation

Open the Wireless Waveform Generator app and select  from the Waveform Type
tab to configure an OFDM waveform. Click Generate to generate the default waveform. The
displayed waveform is an OFDM waveform with QPSK-modulated symbols.

 Wireless Waveform Generator
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Click Insert DC null and increase the Guard band subcarriers to [20;19]. Click Generate again.
The plotted waveform changes to reflect the updated configuration.
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App-Based Impaired 16-QAM Waveform Generation

Open the Wireless Waveform Generator app and select  from the Waveform Type
tab to generate a QAM waveform. Update the default waveform settings to specify a phase imbalance
of 11.25 degrees (pi/16 radians) and an amplitude imbalance of 1.5 dB. Click Generate to generate
the waveform.

Select the Filtering parameter and apply root raised cosine filtering. Click Generate again to
generate a waveform using the current configuration. The plotted waveform changes to reflect the
updated configuration.
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App-Based 5G NR Waveform Generation

This example shows how you can generate 5G NR waveforms. For more information, see the 5G
Waveform Generator app reference page.

Open 5G Waveform Generator App

On the Apps tab of the MATLAB toolstrip, under Signal Processing and Communications, click
the 5G Waveform Generator app icon. This app opens the Wireless Waveform Generator app
configured for 5G waveform generation. This feature requires “5G Toolbox”.

Generate 5G NR Waveform

This image shows the visualization results for 5G downlink waveform generation using default
parameters.
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App-Based LTE Waveform Generation

This example shows how you can generate LTE waveforms. For more information, see the LTE
Waveform Generator app reference page.

Open LTE Waveform Generator App

On the Apps tab of the MATLAB toolstrip, under Signal Processing and Communications, click
the LTE Waveform Generator app icon. This app opens the Wireless Waveform Generator app
configured for LTE waveform generation. This feature requires the “LTE Toolbox”.

Generate LTE Waveform

This image shows the visualization results for LTE downlink waveform generation using default
parameters.
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App-Based Bluetooth LE Waveform Generation

This example shows how you can generate Bluetooth® waveforms. This app opens the Wireless
Waveform Generator app configured for Bluetooth waveform generation. This feature requires the
“Bluetooth Toolbox”.

On the Apps tab of the MATLAB toolstrip, under Signal Processing and Communications, click
the Wireless Waveform Generator app icon. This app opens the Wireless Waveform Generator
app. In the Waveform Type section, click Bluetooth Low Energy. Click Generate to generate the
Bluetooth low energy (LE) waveform.

This image shows the visualization results for Bluetooth LE downlink waveform generation using
default parameters.
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App-Based WLAN Waveform Generation

This example shows how you can generate WLAN waveforms. For more information, see the WLAN
Waveform Generator app reference page.

Open WLAN Waveform Generator App

On the Apps tab of the MATLAB toolstrip, under Signal Processing and Communications, click
the WLAN Waveform Generator app icon. This app opens the Wireless Waveform Generator app
configured for WLAN waveform generation. This feature requires the “WLAN Toolbox”.

Generate WLAN Waveform

This image shows the visualization results for WLAN downlink waveform generation using default
parameters.
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App-Based Linear FM Radar Waveform Generation

This example shows how you can generate radar waveforms found in the Phased Array System
Toolbox™. For descriptions of radar waveforms, see the Pulse Waveform Analyzer app reference
page.

To start, open the Wireless Waveform Generator app and select  from the Waveform
Type tab. Use the default waveform settings and click Generate to generate a single waveform.
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The app shows one linear FM pulse and the spectrum of the pulse.

Next change the number of pulses in the waveform by setting the Number of pulses to 5 and then
select Generate again. There are now five pulses displayed but the spectrum stays the nearly same.
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App-Based 802.15.4 Waveform Generation

Open the Wireless Waveform Generator app and select  from the Waveform Type tab
to generate a UWB waveform. Use the default waveform settings. Click Generate to generate the
waveform.

Select  from the Waveform Type tab to generate an 802.15.4 OQPSK waveform, as
used for ZigBee. Use the default waveform settings. Click Generate to generate the waveform.
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Generate Wireless Waveform in Simulink Using App-Generated Block

This example shows how to configure and use the block that is generated using the Export to
Simulink capability that is available in the Wireless Waveform Generator app.

Introduction

The Wireless Waveform Generator app is an interactive tool for creating, impairing, visualizing,
and exporting waveforms. You can export the waveform to your workspace or to a .mat or .bb file.
You can also export the waveform generation parameters to a runnable MATLAB® script or a
Simulink® block. You can use the exported Simulink block to reproduce your waveform in Simulink.
This example shows how to use the Export to Simulink capability of the app and how to configure
the exported block to generate waveforms in Simulink.

Although this example focuses on exporting an OFDM waveform, the same process applies for all of
the supported waveform types.

Export Wireless Waveform Configuration to Simulink

Open the Wireless Waveform Generator app by clicking the app icon on the Apps tab, under
Signal Processing and Communications. Alternatively, enter wirelessWaveformGenerator at
the MATLAB command prompt.

In the Waveform Type section, select an OFDM waveform by clicking OFDM. In the left-most pane
of the app, adjust any configuration parameters for the selected waveform. Then export the
configuration by clicking Export in the app toolstrip and selecting Export to Simulink.
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The Export to Simulink option creates a Simulink block, which outputs the selected waveform when
you run the Simulink model. The block is exported to a new model if no open models exist.

modelName = 'WWGExport2SimulinkBlock';
open_system(modelName);

The Form output after final data value by block parameter specifies the output after all of the
specified signal samples are generated. The value options for this parameter are Cyclic
repetition and Setting to zero. The Cyclic repetition option repeats the signal from the
beginning after it reaches the last sample in the signal. The Setting to zero option generates
zero-valued outputs for the duration of the simulation after generating the last frame of the signal.
The Waveform sample rate (Fs) and Waveform length block parameters are derived from the
waveform configuration that is available in the Code tab of the Mask Editor dialog box. For further
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information about the block parameters, see Waveform From Wireless Waveform Generator App. This
figure shows the parameters of the exported block.

close_system(modelName);

Connect a Spectrum Analyzer block to the exported block.

modelName = 'WWGExport2SimulinkModel';
open_system(modelName);

Simulate the model to visualize the waveform using the current configuration.

sim(modelName);

 Wireless Waveform Generator

1-39



The Spectrum Analyzer block inherits the Waveform sample rate (Fs) parameter, which is 64 MHz.

close_system(modelName);

Modify Wireless Waveform Configuration

When you run the Simulink model, the exported block outputs the waveform generated in the Code
tab of the Mask Editor dialog box for the block. The MATLAB code that initializes the waveform in
this tab corresponds to the configuration that you selected in the Wireless Waveform Generator
app before exporting the block. To modify the configuration of the waveform, choose one of these
options:

• Open the Wireless Waveform Generator app, select the configuration of your choice, and export
a new block. This option provides interaction with an app interface instead of MATLAB code,
parameter range validation during the parameterization process, and visualization of the
waveform before running the Simulink model.

• Update the configuration parameters that are available in the Code tab of the Mask Editor dialog
box of the exported block. This option requires modifying the MATLAB code available in this tab so
that the parameter range validation occurs only when you apply the changes. This option does not
provide visualization of the waveform before running the Simulink model. Modifying the waveform
parameters using this option is not recommended if you are not familiar with the MATLAB code
that generates the selected waveform.
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You can update the configuration in the Code tab of the Mask Editor. To open the Mask Editor, click
the exported block and press Ctrl+M.

Use the MATLAB code that is available in the Code tab to update the parameters of your choice. For
example, set the subcarrier spacing, scs, to 1,500,000 Hz.
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Click OK to apply the changes and close the Mask Editor dialog box. Simulate the model to visualize
the updated waveform.

modelName = 'WWGExport2SimulinkModelSCSModified';
sim(modelName);
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The Spectrum Analyzer block now shows a sample rate of 96 MHz, which is 1.5 times the previous
sample rate, as expected.

Share Wireless Waveform Configuration with Other Blocks in the Model

To access read-only block parameters and waveform configuration parameters, use the UserData
common block property, which is a structure with these fields.

• WaveformConfig: Waveform configuration
• WaveformLength: Waveform length
• Fs: Waveform sample rate

You can access the user data of the exported block by using the get_param function.

get_param([gcs '/OFDM Waveform Generator'],'UserData')

ans = 

  struct with fields:

    WaveformConfig: [1x1 comm.OFDMModulator]
    WaveformLength: 8000
                Fs: 96000000
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Store the structure available in the user data in a base workspace variable by using the InitFcn in
the callback. The InitFcn callback is executed during a model update and simulation. To use this
callback, click the MODELING tab, then click the Model Settings dropdown, and click the Model
Properties option. In the Callbacks pane, select the InitFcn callback. Assign the user data to a
new base workspace variable (for example, cfg).

The parameters that are available in the user data of the exported block are updated every time you
apply configuration changes in the Code tab.

To demodulate the OFDM waveform, add an OFDM Demodulator block to the model. Connect an
AWGN Channel block between the OFDM Waveform Generator and OFDM Demodulator blocks to add
white Gaussian noise to the input signal. Also add a Constellation Diagram block to plot the
demodulated symbols.

modelName = 'WWGExport2SimulinkModelWithDemod';
open_system(modelName);

The parameters that are required to configure the OFDM Demodulator block must match the
parameters that are used to configure the exported block, (otherwise, demodulation fails). To access
the configuration parameters of the exported block, use the variable cfg. This figure shows the
parameters of the OFDM Demodulator block.
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Because the OFDM Demodulator block requires the entire OFDM waveform for demodulation, set the
Samples per frame parameter in the exported block to cfg.WaveformLength. Simulate the model.

sim(modelName);
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After demodulating the OFDM waveform by using the OFDM Demodulator block, the Constellation
Diagram block displays the resulting QAM symbols.

Generate Multicarrier Waveforms

For multicarrier generation, the sampling rates for all of the waveforms must be the same. To shift
the waveforms to a carrier offset and aggregate them, you can use the Multiband Combiner block.

modelName = 'WWGExport2SimulinkMulticarrier';
open_system(modelName);
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To shift the waveforms in frequency, you might have to increase the sampling rates. The Multiband
Combiner block provides the option to oversample the input waveforms before shifting and combining
them. This figure shows the parameters of the Multiband Combiner block.
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Simulate the model to visualize the waveforms that are centered at -80, 20, and 100 MHz.

sim(modelName);
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Transmit App-Generated Wireless Waveform Using Radio Transmitters

This example shows how to use the NI™ USRP™ N310, USRP N320, USRP N321, and USRP X310
radio transmitters available in the Wireless Waveform Generator app to transmit an app-generated
waveform over the air (requires Wireless Testbench™). These radio transmitters enable you to
transmit up to 2 GB of contiguous data over the air at full radio device rate.

Introduction

The Wireless Waveform Generator app is an interactive tool for creating, impairing, visualizing, and
transmitting waveforms. Using the USRP N310, USRP N320, USRP N321, and USRP X310 radio
transmitters available in the app, you can transmit your generated waveform repeatedly over the air.
You can also export the waveform generation and transmission parameters to a runnable MATLAB®
script. This example shows how to configure these radio transmitters.

Although this example shows how to transmit an OFDM waveform, the same process applies for all
waveform types that you can generate with the app.
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Set Up for Radio Transmission

To use the radio transmitters in the app, you need to install the Wireless Testbench Support Package
for NI USRP Radios add-on and set up your radio outside the app. For more information, see
“Connect and Set Up NI USRP Radios” (Wireless Testbench).

Generate Waveform for Transmission

Open the Wireless Waveform Generator app by clicking the app icon on the Apps tab, under
Signal Processing and Communications. Alternatively, enter wirelessWaveformGenerator at
the MATLAB command prompt.

In the Waveform Type section, select an OFDM waveform by clicking OFDM. In the leftmost pane of
the app, adjust any configuration parameters for the selected waveform. Then generate the
configuration by clicking Generate in the app toolstrip.

Configure Radio Transmitter

Select the Transmitter tab from the app toolstrip. In the transmitter gallery, select the USRP N310,
USRP N320, USRP N321, or USRP X310 radio transmitter.

In the leftmost pane of the app, select the name of a radio setup configuration that you saved using
the Radio Setup wizard. For more information, see “Connect and Set Up NI USRP Radios” (Wireless
Testbench).
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Set the center frequency, gain, and antennas configuration parameters. The app automatically sets
the waveform sample rate based on the waveform that you generated earlier. The radio transmitter
uses onboard data buffering to ensure contiguous data transmission at up to the full hardware sample
rate. If necessary, to achieve the specified sample rate, the radio uses a Farrow rate converter. Use
this list as a reference when setting the sample rate:

• USRP N310 — 120,945 Hz to 76.8 MHz, or one of: 122.88 MHz, 125 MHz, or 153.6 MHz
• USRP N320 — 196,851 Hz to 125 MHz, or one of: 200 MHz, 245.76 MHz or 250 MHz
• USRP N321 — 196,851 Hz to 125 MHz, or one of: 200 MHz, 245.76 MHz or 250 MHz
• USRP X310 — 181,418 Hz to 100 MHz, or one of: 184.32 MHz or 200 MHz

Transmit Waveform

To transmit the waveform continuously, click Transmit. To end the continuous transmission, click
Stop transmission. To export the waveform generation and transmission parameters to a runnable
MATLAB script, click Export MATLAB script.

Version History
Introduced in R2018b
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See Also
Apps
Bit Error Rate Analysis

Functions
rfsiggen

Blocks
Waveform From Wireless Waveform Generator App

Topics
“Create Waveforms Using Wireless Waveform Generator App”
“Quick-Control RF Signal Generator Requirements” (Instrument Control Toolbox)
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algdeintrlv
Restore ordering of symbols using algebraically derived permutation table

Syntax
deintrlvd = algdeintrlv(data,num,'takeshita-costello',k,h)
deintrlvd = algdeintrlv(data,num,'welch-costas',alph)

Description
deintrlvd = algdeintrlv(data,num,'takeshita-costello',k,h) restores the original
ordering of the elements in data using a permutation table that is algebraically derived using the
Takeshita-Costello method. num is the number of elements in data if data is a vector, or the number
of rows of data if data is a matrix with multiple columns. In the Takeshita-Costello method, num
must be a power of 2. The multiplicative factor, k, must be an odd integer less than num, and the
cyclic shift, h, must be a nonnegative integer less than num. If data is a matrix with multiple rows
and columns, the function processes the columns independently.

deintrlvd = algdeintrlv(data,num,'welch-costas',alph) uses the Welch-Costas method.
In the Welch-Costas method, num+1 must be a prime number. alph is an integer between 1 and num
that represents a primitive element of the finite field GF(num+1).

To use this function as an inverse of the algintrlv function, use the same inputs in both functions,
except for the data input. In that case, the two functions are inverses in the sense that applying
algintrlv followed by algdeintrlv leaves data unchanged.

Examples

Interleave and Deinterleave Symbols

This example uses the Takeshita-Costello method of algintrlv and algdeintrlv.

Generate random data symbols to interleave. The number of rows of input data, num, must be a
power of two.

num = 16; 
ncols = 3; 
data = rand(num,ncols)

data = 16×3

    0.8147    0.4218    0.2769
    0.9058    0.9157    0.0462
    0.1270    0.7922    0.0971
    0.9134    0.9595    0.8235
    0.6324    0.6557    0.6948
    0.0975    0.0357    0.3171
    0.2785    0.8491    0.9502
    0.5469    0.9340    0.0344
    0.9575    0.6787    0.4387
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    0.9649    0.7577    0.3816
      ⋮

Interleave the symbols using the Takeshita-Costello method. Set the multiplicative factor, k, to an odd
integer less than num, and the cyclic shift, h, to a nonnegative integer less than num.

k = 3;
h = 4;
intdata = algintrlv(data,num,'takeshita-costello',k,h)

intdata = 16×3

    0.9572    0.6555    0.1869
    0.2785    0.8491    0.9502
    0.1576    0.7431    0.7655
    0.0975    0.0357    0.3171
    0.8147    0.4218    0.2769
    0.1270    0.7922    0.0971
    0.9058    0.9157    0.0462
    0.9575    0.6787    0.4387
    0.5469    0.9340    0.0344
    0.1419    0.0318    0.6463
      ⋮

Deinterleave the symbols to obtain the original order.

deintdata = algdeintrlv(intdata,num,'takeshita-costello',k,h)

deintdata = 16×3

    0.8147    0.4218    0.2769
    0.9058    0.9157    0.0462
    0.1270    0.7922    0.0971
    0.9134    0.9595    0.8235
    0.6324    0.6557    0.6948
    0.0975    0.0357    0.3171
    0.2785    0.8491    0.9502
    0.5469    0.9340    0.0344
    0.9575    0.6787    0.4387
    0.9649    0.7577    0.3816
      ⋮

Version History
Introduced before R2006a

References

[1] Heegard, Chris, and Stephen B. Wicker, Turbo Coding, Boston, Kluwer Academic Publishers,
1999.
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[2] Takeshita, O. Y., and D. J. Costello, Jr., “New Classes Of Algebraic Interleavers for Turbo-Codes,”
Proc. 1998 IEEE International Symposium on Information Theory, Boston, Aug. 16–21, 1998.
p. 419.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
algintrlv

Topics
“Interleaving”
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algintrlv
Reorder symbols using algebraically derived permutation table

Syntax
intrlvd = algintrlv(data,num,'takeshita-costello',k,h)
intrlvd = algintrlv(data,num,'welch-costas',alph)

Description
intrlvd = algintrlv(data,num,'takeshita-costello',k,h) rearranges the elements in
data using a permutation table that is algebraically derived using the Takeshita-Costello method.
num is the number of elements in data if data is a vector, or the number of rows of data if data is a
matrix with multiple columns. In the Takeshita-Costello method, num must be a power of 2. The
multiplicative factor, k, must be an odd integer less than num, and the cyclic shift, h, must be a
nonnegative integer less than num. If data is a matrix with multiple rows and columns, the function
processes the columns independently.

intrlvd = algintrlv(data,num,'welch-costas',alph) uses the Welch-Costas method. In
the Welch-Costas method, num+1 must be a prime number. alph is an integer between 1 and num
that represents a primitive element of the finite field GF(num+1). This means that every nonzero
element of GF(num+1) can be expressed as alph raised to some integer power.

Examples

Reorder Symbols Using Algebraically Derived Permutation Table

This example illustrates how to use the Welch-Costas method of algebraic interleaving.

Define num such that num+1 is prime. Create data to interleave.

num = 10; 
ncols = 3; % Number of columns of data to interleave
data = randi([0 num-1],num,ncols); % Random data to interleave

Find primitive polynomials of the finite field GF(num+1). The gfprimfd function represents each
primitive polynomial as a row containing the coefficients in order of ascending powers.

pr = gfprimfd(1,'all',num+1)

pr = 4×2

     3     1
     4     1
     5     1
     9     1

Notice from the output that pr has two columns and that the second column consists solely of 1s. In
other words, each primitive polynomial is a monic degree-one polynomial. This is because num+1 is
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prime. As a result, to find the primitive element that is a root of each primitive polynomial, find a root
of the polynomial by subtracting the first column of pr from num+1 .

primel = (num+1)-pr(:,1) % Primitive elements of GF(num+1)

primel = 4×1

     8
     7
     6
     2

Now define alph as one of the elements of primel and use algintrlv to interleave.

alph = primel(1); 
intrlvd = algintrlv(data,num,'Welch-Costas',alph);

Algorithms
• A Takeshita-Costello interleaver uses a length-num cycle vector whose nth element is

mod(k*(n-1)*n/2, num) for integers n between 1 and num. The function creates a permutation
vector by listing, for each element of the cycle vector in ascending order, one plus the element's
successor. The interleaver's actual permutation table is the result of shifting the elements of the
permutation vector left by h. (The function performs all computations on numbers and indices
modulo num.)

• A Welch-Costas interleaver uses a permutation that maps an integer K to mod(AK,num+1)-1.

Version History
Introduced before R2006a

References

[1] Heegard, Chris, and Stephen B. Wicker, Turbo Coding, Boston, Kluwer Academic Publishers,
1999.

[2] Takeshita, O. Y., and D. J. Costello, Jr., “New Classes Of Algebraic Interleavers for Turbo-Codes,”
Proc. 1998 IEEE International Symposium on Information Theory, Boston, Aug. 16–21, 1998.
p. 419.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
algdeintrlv

2 Functions

2-6



Topics
“Interleaving”
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amdemod
Amplitude demodulation

Syntax
z = amdemod(y,Fc,Fs)
z = amdemod(y,Fc,Fs,ini_phase)
z = amdemod(y,Fc,Fs,ini_phase,carramp)
z = amdemod(y,Fc,Fs,ini_phase,carramp,num,den)

Description
z = amdemod(y,Fc,Fs) returns a demodulated signal z, given the input amplitude modulated (AM)
signal y, where the carrier signal has frequency Fc. The carrier signal and y have sampling frequency
Fs. The modulated signal y has zero initial phase and zero carrier amplitude, resulting from a
suppressed-carrier modulation.

Note The value of Fs must satisfy Fs ≥ 2Fc.

z = amdemod(y,Fc,Fs,ini_phase) specifies the initial phase of the modulated signal in radians.

z = amdemod(y,Fc,Fs,ini_phase,carramp) demodulates a signal created through transmitted-
carrier modulation instead of suppressed-carrier modulation, where carramp is the carrier amplitude
of the modulated signal.

z = amdemod(y,Fc,Fs,ini_phase,carramp,num,den) specifies the numerator and
denominator of the lowpass Butterworth filter used in the demodulation. The numerator and
denominator are generated by [num,den] = butter(n,Fc*2/Fs), where n is the order of the
lowpass filter.

Examples

Demodulate AM Signal

Set the carrier frequency to 10 kHz and sampling frequency to 80 kHz. Generate a time vector having
a duration of 0.01 s.

fc = 10e3;
fs = 80e3;
t = (0:1/fs:0.01)';

Create a two-tone sinusoidal signal with frequencies 300 and 600 Hz.

s = sin(2*pi*300*t)+2*sin(2*pi*600*t);

Create a lowpass filter.

[num,den] = butter(10,fc*2/fs);
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Amplitude modulate the signal s.

y = ammod(s,fc,fs);

Demodulate the received signal.

z = amdemod(y,fc,fs,0,0,num,den);

Plot the original and demodulated signals.

plot(t,s,'c',t,z,'b--')
legend('Original Signal','Demodulated Signal')
xlabel('Time (s)')
ylabel('Amplitude')

The demodulated signal is nearly identical to the original signal.

Input Arguments
y — Amplitude modulated input signal
scalar | vector | matrix | 3-D array

Amplitude modulated input signal, specified as a scalar, vector, matrix, or 3-D array. Each element of
y must be real.
Data Types: double | single
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Fc — Carrier signal frequency
positive scalar

Carrier signal frequency in hertz (Hz), specified as a positive scalar.
Data Types: double

Fs — Sampling frequency
positive scalar

Sampling frequency of the carrier signal and input message signal in hertz (Hz), specified as a
positive scalar. To avoid aliasing, the value of Fs must satisfy Fs > 2(Fc + BW), where BW is the
bandwidth of the original modulated signal.
Data Types: double

ini_phase — Initial phase
scalar

Initial phase of the modulated signal in radians, specified as a scalar.
Data Types: double

carramp — Carrier amplitude
scalar

Carrier amplitude of the modulated signal, specified as a scalar.
Data Types: double

num — Lowpass Butterworth filter numerator
scalar

Lowpass Butterworth filter numerator, specified as a scalar.
Data Types: double

den — Lowpass Butterworth filter denominator
scalar

Lowpass Butterworth filter denominator, specified as a scalar.
Data Types: double

Output Arguments
z — Amplitude demodulated output signal
scalar | vector | matrix | 3-D array

Amplitude demodulated output signal, returned as a scalar, vector, matrix, or 3-D array.

Version History
Introduced before R2006a
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See Also
ammod | ssbdemod | fmdemod | pmdemod

Topics
“Analog Passband Modulation”
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ammod
Amplitude modulation

Syntax
y = ammod(x,Fc,Fs)
y = ammod(x,Fc,Fs,ini_phase)
y = ammod(x,Fc,Fs,ini_phase,carramp)

Description
y = ammod(x,Fc,Fs) returns an amplitude modulated (AM) signal y, given the input message
signal x, where the carrier signal has frequency Fc. The carrier signal and x have a sampling
frequency Fs. The modulated signal has zero initial phase and zero carrier amplitude, so the result is
suppressed-carrier modulation.

Note The value of Fs must satisfy Fs ≥ 2Fc.

y = ammod(x,Fc,Fs,ini_phase) specifies the initial phase in the modulated signal y in radians.

y = ammod(x,Fc,Fs,ini_phase,carramp) performs transmitted-carrier modulation instead of
suppressed-carrier modulation where carramp is the carrier amplitude of the modulated signal.

Examples

Compare Double-Sideband and Single-Sideband Amplitude Modulation

Set the sample rate to 100 Hz. Create a time vector 100 seconds long.

fs = 100;
t = (0:1/fs:100)';

Set the carrier frequency to 10 Hz. Generate a sinusoidal signal.

fc = 10; 
x = sin(2*pi*t);

Modulate x using single- and double-sideband AM.

ydouble = ammod(x,fc,fs);
ysingle = ssbmod(x,fc,fs);

Create a spectrum analyzer object to plot the spectrum of the double-sideband signal.

sadsb = spectrumAnalyzer( ...
    SampleRate=fs, ...
    PlotAsTwoSidedSpectrum=false, ...
    YLimits=[-60 30]);
sadsb(ydouble)
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Create a separate spectrum analyzer object to plot the single-sideband spectrum. A separate
spectrum analyzer object is used to isolate each spectrum analyzer's signal buffers for the two
signals.

sassb = spectrumAnalyzer( ...
    SampleRate=fs, ...
    PlotAsTwoSidedSpectrum=false, ...
    YLimits=[-60 30]);
sassb(ysingle)
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Input Arguments
x — Input message signal
scalar | vector | matrix | 3-D array

Input message signal, specified as a scalar, vector, matrix, or a 3-D array. Each element of x must be
real.
Data Types: single | double

Fc — Carrier signal frequency
positive real scalar

Carrier signal frequency in hertz (Hz), specified as a positive real scalar.
Data Types: single | double

Fs — Sampling frequency
positive real scalar

Sampling frequency of carrier signal and input message signal in hertz (Hz), specified as a positive
real scalar. To avoid aliasing, the value of Fs must satisfy Fs > 2(Fc + BW), where BW is the bandwidth
of x.
Data Types: single | double
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ini_phase — Initial phase
real scalar

Initial phase of the modulated signal in radians, specified as a real scalar.
Data Types: single | double

carramp — Carrier amplitude
real scalar

Carrier amplitude of the modulated signal, specified as a real scalar.
Data Types: single | double

Output Arguments
y — Amplitude modulated output signal
scalar | vector | matrix | 3-D array

Amplitude modulated signal, returned as a scalar, vector, matrix, or 3-D array.

Version History
Introduced before R2006a

See Also
amdemod | ssbmod | fmmod | pmmod

Topics
“Analog Passband Modulation”
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apskdemod
Amplitude phase shift keying (APSK) demodulation

Syntax
z = apskdemod(y,M,radii)
z = apskdemod(y,M,radii,phaseoffset)
z = apskdemod( ___ ,Name,Value)

Description
z = apskdemod(y,M,radii) performs APSK demodulation of the input signal y, based on the
specified number of constellation points per PSK ring, M, and the radius of each PSK ring, radii. For
a description of APSK demodulation, see “APSK Hard Demodulation” on page 2-23 and “APSK Soft
Demodulation” on page 2-24.

Note apskdemod specifically applies to multiple ring PSK constellations. For a single ring PSK
constellation, use pskdemod.

z = apskdemod(y,M,radii,phaseoffset) specifies an initial phase offset for each PSK ring of
the APSK modulated signal.

z = apskdemod( ___ ,Name,Value) specifies options using one or more name-value pair
arguments using any of the previous syntaxes. For example, 'OutputDataType','double'
specifies the desired output data type as double. Specify name-value pair arguments after all other
input arguments.

Examples

Demodulate 16-APSK Signal

Demodulate a 16-APSK signal that has an unequal number of constellation points on each circle. Plot
the received constellation.

Define vectors for modulation order and PSK ring radii. Generate random 16-ary data symbols.

M = [4 12];
radii = [1 2];
modOrder = sum(M);

x = randi([0 modOrder-1],1000,1);

Apply APSK modulation to the data.

txSig = apskmod(x,M,radii);

Pass the modulated signal through a noisy channel.
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snr = 20; % dB
rxSig = awgn(txSig,snr,'measured');

Plot the transmitted (reference) signal points and the noisy received signal points.

plot(rxSig,'b*')
hold on
grid
plot(txSig,'r+')
xlim([-3 3])
ylim([-3 3])
xlabel('In-Phase')
ylabel('Quadrature')
legend('Received constellation','Reference constellation')

Demodulate the received signal and compare to the input data.

z = apskdemod(rxSig,M,radii);
isequal(x,z)

ans = logical
   1
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Demodulate 64-APSK Custom Symbol Mapped Signal

Demodulate a 64-APSK signal with custom symbol mapping. Compute hard decision bit output and
verify that the input matches the output.

Define vectors for modulation order and PSK ring radii. Generate 100 symbols of random bit input.

M = [8 12 16 28]; % 4-PSK circles
modOrder = sum(M);
radii = [0.5 1 1.3 2];
x = randi([0 1],100*log2(modOrder),1);

Create a custom symbol mapping vector of binary mapping.

cmap = 0:63; 

Modulate the data and plot the constellation.

y = apskmod(x,M,radii,'SymbolMapping',cmap,'inputType','bit', ...
    'PlotConstellation',true);

Demodulate the received signal.

z = apskdemod(y,M,radii,'SymbolMapping',cmap,'OutputType','bit');

Verify that the demodulated signal is equal to the original data.

isequal(x,z)
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ans = logical
   1

Soft Bit Demodulate 32-APSK Signal

Demodulate a 32-APSK signal and calculate soft bits.

Define vectors for modulation order and PSK ring radii. Generate 10000 symbols of random bit data.

M = [16 16];
modOrder = sum(M);
radii = [0.6 1.2];
numSym = 10000;
x = randi([0 1], numSym*log2(modOrder),1);

Generate a reference constellation. Create a constellation diagram object.

refAPSK = apskmod(0:modOrder-1,M,radii);
constDiagAPSK = comm.ConstellationDiagram('ReferenceConstellation',refAPSK, ...
  'Title','Received Symbols','XLimits',[-2 2],'YLimits',[-2 2]);

Modulate the data.

txSig = apskmod(x,M,radii,'InputType','bit');
sigPow = var(txSig);

Pass the signal through a noisy channel.

snr = 15;
rxSig = awgn(txSig,snr,sigPow,'linear');

Plot the reference and received constellation symbols.

constDiagAPSK(rxSig)
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Demodulate the signal and compute soft bits.

z = apskdemod(rxSig,M,radii,'OutputType','approxllr', ...
    'NoiseVariance',sigPow/snr);

Input Arguments
y — APSK modulated signal
scalar | vector | matrix

APSK modulated signal, specified as a complex scalar, vector, or matrix. Each column is treated as an
independent channel.
Data Types: double | single
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Complex Number Support: Yes

M — Constellation points per PSK ring
vector

Constellation points per PSK ring, specified as a vector with more than one element. Vector elements
indicate the number of constellation points in each PSK ring. The first element corresponds to the
innermost circle, and so on, until the last element, that corresponds to the outermost circle. Element
values must be multiples of four and sum(M) must be a power of two. The modulation order is the
total number of points in the signal constellation and equals the sum of the vector elements, sum(M).
Example: [4 12 16] specifies a three PSK ring constellation with a modulation order of sum(M) =
32.
Data Types: double

radii — PSK ring radii
vector

PSK ring radii, specified as a vector with the same length as M. The first element corresponds to the
innermost circle, and so on, until the last element, that corresponds to the outermost circle. The
elements must be positive and arranged in increasing order.
Example: [0.5 1 2] defines constellation PSK ring radii. The inner ring has a radius of 0.5, the
second ring has a radius of 1.0, and the outer ring has a radius of 2.0.
Data Types: double

phaseoffset — PSK ring phase offsets
[pi/M(1) pi/M(2) … pi/M(end)] (default) | scalar | vector

Phase offset of each PSK ring in radians, specified as a scalar or vector with the same length as M.
The first element corresponds to the innermost circle, and so on, until the last element, that
corresponds to the outermost circle. The phaseoffset can be a scalar only if all the elements of M
are the same value.
Example: [pi/4 pi/12 pi/16] defines three constellation PSK ring phase offsets. The inner ring
has a phase offset of pi/4, the second ring has a phase offset of pi/12, and the outer ring has a phase
offset of pi/16.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: y = apskdemod(x,M,radii,'OutputType','bit','OutputDataType','single');

SymbolMapping — Symbol mapping
'gray' | 'contourwise-gray' | integer vector

Symbol mapping, specified as the comma-separated pair consisting of SymbolMapping and one of
the following:
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• 'contourwise-gray' — Uses Gray mapping along the contour in phase dimension.
• 'gray' — Uses Gray mapping along the contour in both the amplitude and phase dimensions. For

Gray symbol mapping, all the values for M must be equal and all the values for phaseoffset must
be equal. For a description of the Gray mapping used, see [2].

• integer vector — Use custom symbol mapping. Vector must consist of sum(M) unique elements
with values from 0 to (sum(M)-1). The first element corresponds to the constellation point in the
first quadrant of the innermost circle, with subsequent elements positioned counterclockwise
around the PSK rings.

The default symbol mapping depends on M and phaseOffset. When all the elements of M and
phaseOffset are equal, the default is 'gray'. For all other cases, the default is 'contourwise-
gray'.
Data Types: double | char | string

OutputType — Output type
'integer' (default) | 'bit' | 'llr' | 'approxllr'

Output type, specified as the comma-separated pair consisting of 'OutputType' and 'integer',
'bit', 'llr', or 'approxllr'. For a description of the returned output, see z.
Data Types: char | string

OutputDataType — Output data type
'double' (default) | ...

Output data type, specified as the comma-separated pair consisting of OutputDataType and one of
the indicated data types. Acceptable values for OutputDataType depend on the OutputType value.

OutputType Value Acceptable OutputDataType Values
'integer' 'double', 'single', 'int8', 'int16', 'int32', 'uint8', 'uint16',

or 'uint32'
'bit' 'double', 'single', 'int8', 'int16', 'int32', 'uint8', 'uint16',

'uint32', or 'logical'

Dependencies

This name-value pair argument applies only when OutputType is set to 'integer' or 'bit'.
Data Types: char | string

NoiseVariance — Noise variance
1 (default) | positive scalar | vector of positive values

Noise variance, specified as the comma-separated pair consisting of NoiseVariance and a positive
scalar or vector of positive values.

• When specified as a scalar, the same noise variance value is used on all input elements.
• When specified as a vector, the vector length must be equal to the number of columns in the input

signal.

When the noise variance or signal power result in computations involving extreme positive or
negative magnitudes, see “APSK Soft Demodulation” on page 2-24 for algorithm selection
considerations.
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Dependencies

This name-value pair argument applies only when OutputType is set to 'llr' or 'approxllr'.
Data Types: double

PlotConstellation — Option to plot constellation
false (default) | true

Option to plot constellation, specified as the comma-separated pair consisting of
'PlotConstellation' and a logical scalar. To plot the constellation, set PlotConstellation to
true.
Data Types: logical

Output Arguments
z — Demodulated signal
scalar | vector | matrix

Demodulated signal, returned as a scalar, vector, or matrix. The dimensions of z depend on the
specified OutputType value.

OutputType
Value

Return Value of apskdemod Dimensions of z

'integer' Demodulated integer values
from 0 to (sum(M) – 1)

z has the same dimensions as input y.

'bit' Demodulated bits The number of rows in z is log2(sum(M)) times the
number of rows in y. Each demodulated symbol is
mapped to a group of log2(sum(M)) elements in a
column, where the first element represents the
MSB and the last element represents the LSB.

'llr' Log-likelihood ratio value for
each bit

'approxllr' Approximate log-likelihood ratio
value for each bit

More About
APSK Hard Demodulation

The hard demodulation algorithm applies amplitude phase decoding as described in [1].
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APSK Soft Demodulation

For soft demodulation, two soft-decision log-likelihood ratio (LLR) algorithms are available: exact LLR
and approximate LLR. The exact LLR algorithm is more accurate but has slower execution speed than
the approximate LLR algorithm. For further description of these algorithms, see the “Hard- vs. Soft-
Decision Demodulation” topic.

Note The exact LLR algorithm computes exponentials using finite precision arithmetic. For
computations involving very large positive or negative magnitudes, the exact LLR algorithm yields:

• Inf or -Inf if the noise variance is a very large value
• NaN if the noise variance and signal power are both very small values

The approximate LLR algorithm does not compute exponentials. You can avoid Inf, -Inf, and NaN
results by using the approximate LLR algorithm.

Version History
Introduced in R2018a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
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Objects
comm.GeneralQAMDemodulator | comm.PSKDemodulator

Topics
“Hard- vs. Soft-Decision Demodulation”
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apskmod
Amplitude phase shift keying (APSK) modulation

Syntax
y = apskmod(x,M,radii)
y = apskmod(x,M,radii,phaseoffset)
y = apskmod( ___ ,Name,Value)

Description
y = apskmod(x,M,radii) performs APSK modulation on the input data, x, based on the specified
number of constellation points per PSK ring, M, and the radius of each PSK ring, radii. For a
description of APSK modulation, see “Algorithms” on page 2-34.

Note apskmod specifically applies to multiple ring PSK constellations. For a single ring PSK
constellation, use pskmod.

y = apskmod(x,M,radii,phaseoffset) specifies an initial phase offset for each PSK ring of the
APSK modulated signal.

y = apskmod( ___ ,Name,Value) specifies options using one or more name-value pair arguments
using any of the previous syntaxes. For example, 'OutputDataType','double' specifies the
desired output data type as double. Specify name-value pair arguments after all other input
arguments.

Examples

Apply APSK Modulation

Modulate data using APSK with an unequal number of constellation points on each circle.

Define vectors for modulation order and PSK ring radii. Generate data for constellation points.

M = [4 8 20];
radii = [0.3 0.7 1.2];
modOrder = sum(M);
x = 0:modOrder-1;

Apply APSK modulation to the data.

y = apskmod(x,M,radii);

Plot the resulting constellation using a scatter plot.

scatterplot(y)
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Apply APSK Modulation with Phase Offset

Modulate a random data sequence using APSK with zero phase offset for the inner circle and pi/6
phase offset for the outer circle.

Define vectors for modulation order, PSK ring radii, and PSK ring phase offset. Generate random
data.

M = [8 8];
modOrder = sum(M);
radii = [0.5 1];
phOff = [0 pi/6];

x = randi([0 modOrder-1],100,1);

Apply APSK modulation to the data.

y = apskmod(x,M,radii,phOff);

Plot the resulting constellation using a scatter plot and observe the phase offset between the
constellation circles.

scatterplot(y)
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Apply APSK Modulation Modifying Symbol Ordering

Plot APSK constellations for Gray-coded and custom-coded symbol mappings.

Define vectors for modulation order and PSK ring radii. Generate bit data for constellation points.

M = [8 8];
modOrder = sum(M);
radii = [0.5 1.5];
x = 0:modOrder-1;

The apskmod function assumes the single channel binary input is left-MSB aligned and specified
column-wise. Use the int2bit function to express the integer input symbols as a single column
binary vector.

xBit = int2bit(x,log2(modOrder));

Apply APSK modulation to the data using the default phase offset. Since element values for M are
equal and element values for phase offset are equal, the symbol mapping defaults to 'gray'. Plot the
constellation using binary input to highlight the Gray-coded nature of the constellation mapping.

y = apskmod(xBit,M,radii,PlotConstellation=true,InputType='bit');
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Create a custom-coded symbol mapping vector. This custom mapping happens to be another Gray-
coded mapping.

cmap = [0;1;9;8;12;13;5;4;2;3;11;10;14;15;7;6];

Apply APSK modulation with a custom-coded symbol mapping. Plot the constellation using binary
input to highlight that the custom mapping defines different Gray-coded symbol mapping.

z = apskmod(xBit,M,radii, ...
    SymbolMapping=cmap, ...
    PlotConstellation=true, ...
    InputType='bit');
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Apply APSK Modulation to Input Bits

Modulate a random bit sequence using APSK and output data type single. Pass the signal through a
noisy channel and display the constellation diagram.

Define vectors for modulation order and PSK ring radii. Generate random binary data.

M = [8 12 20 24];
radii = [0.8 1.2 2 2.5];
bitsPerSym = log2(sum(M));

x = randi([0 1],2000*bitsPerSym,1);

Apply APSK modulation to the data and use a name-value pair to output as data type single.

y = apskmod(x,M,radii,'InputType','bit','OutputDataType','single');

Pass through an AWGN channel with a 25 dB SNR.

yrec = awgn(y,25,'measured');

Plot the received constellation as a scatter plot.

scatterplot(yrec)
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Input Arguments
x — Input signal
scalar | vector | matrix

Input signal, specified as a scalar, vector, or matrix. The elements of x must be binary values or
integers in the range [0, (sum(M)-1)].

Note To process the input signal as binary elements, set the 'InputType' name-value pair to 'bit'.
For binary inputs, the number of rows must be an integer multiple of log2(sum(M)). Groups of
log2(sum(M)) bits in a column are mapped onto a symbol, with the first bit representing the MSB and
the last bit representing the LSB.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | logical

M — Constellation points per PSK ring
vector

Constellation points per PSK ring, specified as a vector with more than one element. Each vector
element indicates the number of constellation points in its corresponding PSK ring. The first element
corresponds to the innermost circle, and so on, until the last element, which corresponds to the
outermost circle. Element values must be multiples of four and sum(M) must be a power of two. The

 apskmod

2-31



modulation order is the total number of points in the signal constellation and equals the sum of the
vector elements, sum(M).
Example: [4 12 16] specifies a three PSK ring constellation with a modulation order of sum(M) =
32.
Data Types: double

radii — Radius per PSK ring
vector

Radius per PSK ring, specified as a vector with the same length as M. The first element corresponds to
the innermost circle, and so on, until the last element, which corresponds to the outermost circle. The
elements must be positive and arranged in increasing order.
Example: [0.5 1 2] defines radii for three constellation PSK rings. The inner ring has a radius of
0.5, the second ring has a radius of 1.0, and the outer ring has a radius of 2.0.
Data Types: double

phaseoffset — Phase offset per PSK ring
[pi/M(1) pi/M(2) … pi/M(end)] (default) | scalar | vector

Phase offset per PSK ring in radians, specified as a scalar or vector with the same length as M. The
first element corresponds to the innermost circle, and so on, until the last element, which
corresponds to the outermost circle. The phaseoffset can be a scalar only if all the elements of M
are the same value.
Example: [pi/4 pi/12 pi/16] defines three constellation PSK ring phase offsets. The inner ring
has a phase offset of pi/4, the second ring has a phase offset of pi/12, and the outer ring has a phase
offset of pi/16.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: y = apskmod(x,M,radii,'InputType','bit','OutputDataType','single');

SymbolMapping — Symbol mapping
'gray' | 'contourwise-gray' | integer vector

Symbol mapping, specified as the comma-separated pair consisting of 'SymbolMapping' and one of
the following:

• 'contourwise-gray' — Uses Gray mapping along the contour in the phase dimension for each
PSK ring.

• 'gray' — Uses Gray mapping along the contour in both the amplitude and phase dimensions. For
Gray symbol mapping, all the values for M must be equal and all the values for phaseoffset must
be equal. For a description of the Gray mapping used, see [2].

• integer vector — Use custom symbol mapping. Vector must consist of sum(M) unique elements
with values in the range [0, (sum(M)-1]. The first element corresponds to the constellation point
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in the first quadrant of the innermost circle, with subsequent elements positioned
counterclockwise around the PSK rings.

The default symbol mapping depends on M and phaseOffset. When all the elements of M are equal
and all the elements of phaseOffset are equal, the default is 'gray'. For all other cases, the
default is 'contourwise-gray'.
Data Types: double | char | string

InputType — Input type
'integer' (default) | 'bit'

Input type, specified as the comma-separated pair consisting of 'InputType' and either of these
options:

• 'integer' –– The input signal must consist of integers in the range [0, (sum(M) – 1)].
• 'bit' –– The input signal must contain binary values, and the number of rows must be an integer

multiple of log2(sum(M)). Binary input signals are assumed to be left-MSB aligned and specified
column-wise. Groups of log2(sum(M)) bits in a column are mapped onto a symbol, with the first bit
representing the MSB and the last bit representing the LSB.

Data Types: char | string

OutputDataType — Output data type
'double' (default) | 'single'

Output data type, specified as the comma-separated pair consisting of 'OutputDataType' and
either 'double' or 'single'.
Data Types: char | string

PlotConstellation — Plot reference constellation
false (default) | true

Plot reference constellation, specified as the comma-separated pair consisting of
'PlotConstellation' and a logical scalar. To plot the reference constellation, set
PlotConstellation to true.
Data Types: logical

Output Arguments
y — APSK modulated signal
scalar | vector | matrix

APSK modulated signal, returned as a complex scalar, vector, or matrix. The dimensions of y depend
on the specified 'InputType' value.

InputType Dimensions of y
'integer' y has the same dimensions as input x.
'bit' The number of rows in y equals the number of rows in x divided by

log2(sum(M)).
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Algorithms
The function implements a pure APSK constellation.

A pure M-APSK constellation is composed of NC concentric rings or contours, each with uniformly
spaced PSK points. The M-APSK constellation set is

χ =

R1exp j 2π
M1

i + ϕ1 , i = 0, …, M1− 1,

R2exp j 2π
M2

i + ϕ2 , i = 0, …, M2− 1,

⋮ ⋮

RNCexp j 2π
MNC

i + ϕNc , i = 0, …, MNC− 1,

where:

• The modulation order is equal to the sum of all Ml for l = 1, 2, ... , NC.
• NC is the number of concentric rings. NC ≥ 2.
• Ml is the number of constellation points in the lth ring.
• Rl is the radius of the lth ring.
• ϕl is the phase offset of the lth ring.
• j = −1

Version History
Introduced in R2018a

References
[1] Corazza, Giovanni E. Digital Satellite Communications. New York: Springer Science Business

Media, LLC, 2007.

[2] Liu, Z., Q. Xie, K. Peng, and Z. Yang. "APSK Constellation with Gray Mapping." IEEE
Communications Letters. Vol. 15, Number 12, December 2011, pp. 1271–1273.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
apskdemod | dvbsapskmod | mil188qammod | pskmod | qammod

Objects
comm.GeneralQAMModulator | comm.PSKModulator

2 Functions

2-34



arithdeco
Decode binary code by arithmetic decoding

Syntax
dseq = arithdeco(code,counts,len)

Description
dseq = arithdeco(code,counts,len) decodes the binary arithmetic code in code to recover
the corresponding sequence of len symbols. The input countsspecifies the statistics of the source by
listing the number of times each symbol of the source alphabet occurs in a test data set. code must
be an output of the arithenco function.

Examples

Decode Sequence Using Arithmetic Code

Using a source with a two-symbol alphabet, produce a test data set in which 99% of the symbols are
1s. Encode 1000 symbols from this source to produce a code vector with less than 1000 elements.
The actual number of elements in the encoded sequence varies depending on the particular random
sequence.

Specify for symbol 1 from the source alphabet to occur 99 times in the test data set.

counts = [99 1];

Generate a random sequence of length 1000.

len = 1000;
seq = randsrc(1,len,[1 2; .99 .01]);

Encode the random sequence. Then, decode the encoded sequence.

code = arithenco(seq,counts);
dseq = arithdeco(code,counts,length(seq));

Verify that the decoded sequence matches the original random sequence.

isequal(seq,dseq)

ans = logical
   1

Input Arguments
code — Binary arithmetic code
nonnegative binary row vector
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Binary arithmetic code, specified as a nonnegative binary row vector. This value must be a binary
arithmetic code produced by the arithenco function.
Data Types: double

counts — Statistics of symbols
positive numeric vector

Statistics of symbols, specified as a positive numeric vector. This input specifies the number of times
each symbol of the source alphabet occurs in a test data set.
Data Types: double

len — Length of sequence
positive scalar

Length of the sequence to decode, specified as a positive scalar.
Data Types: double

Output Arguments
dseq — Decoded arithmetic code
positive numeric row vector

Decoded arithmetic code with a sequence of len source symbols, specified as a positive numeric row
vector.

Algorithms
The arithdeco function uses the algorithm described in [1] .

Version History
Introduced before R2006a

References
[1] Sayood, Khalid. Introduction to Data Compression. 2nd ed. San Francisco: Morgan Kaufmann

Publishers, 2000.

See Also
Functions
arithenco

Topics
“Arithmetic Coding”
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arithenco
Encode sequence of symbols by arithmetic encoding

Syntax
code = arithenco(seq,counts)

Description
code = arithenco(seq,counts) generates the binary arithmetic code corresponding to the
sequence of symbols specified in seq. The input counts specifies the statistics of the source by
listing the number of times each symbol of the source alphabet occurs in a test data set.

Examples

Encode Data Sequence with Arithmetic Code

Using a source with a two-symbol alphabet, produce a test data set in which 99% of the symbols are
1s. Encode 1000 symbols from this source to produce a code vector with less than 1000 elements.
The actual number of elements in the encoded sequence varies depending on the particular random
sequence.

Specify for symbol 1 from the source alphabet to occur 99 times in the test data set.

counts = [99 1]

counts = 1×2

    99     1

Generate a random sequence of length 1000.

len = 1000;
seq = randsrc(1,len,[1 2; .99 .01]);

Encode the random sequence and display the encoded length.

code = arithenco(seq,counts);
s = size(code)

s = 1×2

     1    57

Input Arguments
seq — Sequence of symbols
positive numeric row vector
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Sequence of symbols, specified as a positive numeric row vector. This input specifies the random
sequence for the function to encode.
Data Types: double

counts — Statistics of symbols
positive numeric row vector

Statistics of symbols, specified as a positive numeric row vector. This input specifies the number of
times each symbol of the source alphabet occurs in a test data set.
Data Types: double

Output Arguments
code — Generated binary arithmetic code
nonnegative binary row vector

Generated binary arithmetic code corresponding to the sequence of source symbols, returned as a
nonnegative binary row vector.

Algorithms
The arithenco function uses the algorithm described in [1].

Version History
Introduced before R2006a

References
[1] Sayood, Khalid. Introduction to Data Compression. 2nd ed. San Francisco: Morgan Kaufmann

Publishers, 2000.

See Also
Functions
arithdeco

Topics
“Arithmetic Coding”
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awgn
Add white Gaussian noise to signal

Syntax
y = awgn(x,snr)
y = awgn(x,snr,signalpower)

y = awgn(x,snr,signalpower,randobject)
y = awgn(x,snr,signalpower,seed)
y = awgn( ___ ,powertype)

[y,var] = awgn( ___ )

Description
y = awgn(x,snr) adds white Gaussian noise to the vector signal x. This syntax assumes that the
power of x is 0 dBW. For more information about additive white Gaussian noise, see “What is AWGN?”
on page 2-45

y = awgn(x,snr,signalpower) accepts an input signal power value in dBW. To measure the
power of x before adding noise, specify signalpower as 'measured'. The 'measured' option does
not generate the requested average SNR for repeated awgn function calls in a loop if the input signal
power varies over time due to fading and the coherence time of the channel is larger than the input
duration.

y = awgn(x,snr,signalpower,randobject) additionally accepts a random number stream
object to generate normal random noise samples. For information about producing repeatable noise
samples, see “Tips” on page 2-45.

y = awgn(x,snr,signalpower,seed) specifies a seed value for initializing the normal random
number generator that is used to add white Gaussian noise to the input signal.

y = awgn( ___ ,powertype) specifies the signal and noise power type as 'dB' or 'linear' in
addition to the input arguments in any of the previous syntaxes. For information on the relationships
between SNR and other measures of the relative power of the noise, such as Es/N0, and Eb/N0, see
“AWGN Channel Noise Level”.

[y,var] = awgn( ___ ) also returns the total noise variance used to produce random noise
samples.

Examples

Add AWGN to Sawtooth Signal

Create a sawtooth wave.

t = (0:0.1:60)';
x = sawtooth(t);
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Add white Gaussian noise and plot the results.

y = awgn(x,10,'measured');
plot(t,[x y])
legend('Original Signal','Signal with AWGN')

Estimate Symbol Rate for General QAM Modulation in AWGN Channel

Transmit and receive data using a nonrectangular 16-ary constellation in the presence of Gaussian
noise. Show the scatter plot of the noisy constellation and estimate the symbol error rate (SER) for
two different SNRs.

Create a 16-QAM constellation based on the V.29 standard for telephone-line modems.

c = [-5 -5i 5 5i -3 -3-3i -3i 3-3i 3 3+3i 3i -3+3i -1 -1i 1 1i];
sigpower = pow2db(mean(abs(c).^2));
M = length(c);

Generate random symbols.

data = randi([0 M-1],2000,1);

Modulate the data by using the genqammod function. General QAM modulation is necessary because
the custom constellation is not rectangular.
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modData = genqammod(data,c);

Pass the signal through an AWGN channel with a 20 dB SNR.

rxSig = awgn(modData,20,sigpower);

Display a scatter plot of the received signal and the reference constellation c.

h = scatterplot(rxSig);
hold on
scatterplot(c,[],[],'r*',h)
grid
hold off

Demodulate the received signal by using the genqamdemod function. Determine the number of
symbol errors and the SER.

demodData = genqamdemod(rxSig,c);
[numErrors,ser] = symerr(data,demodData)

numErrors = 1

ser = 5.0000e-04

Repeat the transmission and demodulation process with an AWGN channel with a 10 dB SNR.
Determine the SER for the reduced SNR. As expected, the performance degrades when the SNR is
decreased.
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rxSig = awgn(modData,10,sigpower);
demodData = genqamdemod(rxSig,c);
[numErrors,ser] = symerr(data,demodData)

numErrors = 461

ser = 0.2305

Repeatable AWGN Simulation

Generate random data symbols and the 4-PSK modulated signal.

M = 4;
k = log2(M);
snr = 3;
data = randi([0 M-1],2000,1);
x = pskmod(data,M);

Set the random number generator seed.

seed = 12345;

Generate repeatable random noise using the rng function before calling the awgn function.

rng(seed);
y = awgn(x,snr);

Compute the bit errors.

dataHat = pskdemod(y,M);
numErr1 = biterr(data,dataHat,k)

numErr1 = 321

Reset the random number generator seed.

rng(seed);

Demodulate the PSK signal and compute the bit errors.

y = awgn(x,snr);
dataHat = pskdemod(y,M);
numErr2 = biterr(data,dataHat,k)

numErr2 = 321

Compare numErr1 to numErr2. The errors are equal even after you reset the random number
generator seed.

isequal(numErr1, numErr2)

ans = logical
   1
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Repeatable AWGN with RandStream

Generate white Gaussian noise addition results using a RandStream object and the reset object
function.

Specify the power of X as 0 dBW, add noise to produce an SNR of 10 dB, and use a local random
stream.

S = RandStream('mt19937ar','Seed',5489);
sigin = sqrt(2)*sin(0:pi/8:6*pi);
sigout1 = awgn(sigin,10,0,S);

Add white Gaussian noise to sigin. Use isequal to compare sigout1 to sigout2. The outputs are
not equal when you do not reset the random stream.

sigout2 = awgn(sigin,10,0,S);
isequal(sigout1,sigout2)

ans = logical
   0

Reset the random stream object, returning the object to its state prior to adding AWGN to sigout1.
Add AWGN to sigin and compare sigout1 to sigout3. The outputs are equal when you reset the
random stream.

reset(S);
sigout3 = awgn(sigin,10,0,S);
isequal(sigout1,sigout3)

ans = logical
   1

Input Arguments
x — Input signal
scalar | vector | array

Input signal, specified as a scalar, vector, or array. The power of the input signal is assumed to be 0
dBW.
Data Types: double
Complex Number Support: Yes

snr — Signal-to-noise ratio
scalar

Signal-to-noise ratio in dB, specified as a scalar. The function applies the same snr value to each
channel. The columns of the input signal represent the different channels of a multichannel signal.
Data Types: double

signalpower — Signal power
scalar | 'measured'

Signal power in dBW, specified as a scalar or 'measured'.
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• Scalar — The value is used as the signal level of in to determine the appropriate noise level based
on the value of snr.

• 'measured' — The signal level of in is computed to determine the appropriate noise level based
on the value of snr.

If the input signal is a multichannel signal, the function calculates the signalpower value across all
channels as a single value. It then uses the value to calculate the noise level for all the channels.
Data Types: double

randobject — Random number stream object
RandStream object

Random number stream object, specified as a RandStream object. The state of the random stream
object determines the sequence of numbers produced by the randn function. Configure the random
stream object using the reset (RandStream) function and its properties.

For information about producing repeatable noise samples, see “Tips” on page 2-45.

seed — Random number generator seed
scalar

Random number generator seed value, specified as a scalar.
Data Types: double

powertype — Signal power unit
'dB' (default) | 'linear'

Signal power unit, specified as 'dB' or 'linear'.

• When powertype is 'dB', snr is measured in dB and signalpower is measured in dBW.
• When powertype is 'linear', the snr is measured as a ratio and signalpower is measured in

watts assuming a reference load of 1 ohms.

To set the powertype argument, you must also set snr and signalpower.

Output Arguments
y — Output signal
scalar | vector | array

Output signal, returned as a scalar, vector, or array. The returned output signal is the input signal
with added white Gaussian noise.

var — Noise variance
scalar

Total noise variance, returned as a positive scalar. The function uses the noise variance to generate
random noise samples.

2 Functions

2-44



More About
What is AWGN?

Additive white Gaussian noise (AWGN) is a simple noise model that represents electron motion in the
RF front end of a receiver. As the name implies, the noise gets added to the signal. The noise is called
“white” because it is spectrally flat across the entire sampling bandwidth. Analogously, the color
white contains equal spectral power levels at all frequencies of the visible light spectrum. The noise is
Gaussian because its amplitude can be modeled with a normal probability distribution.

The AWGN channel is often used to model a satellite communications channel, since that channel
typically does not suffer from common terrestrial impairments like fading, multipath, and
interference. An AGWN channel serves as a good starting point for the analysis of terrestrial wireless
links because it establishes a best-case bound on the bit error rate performance of a terrestrial link.

Tips
• For information on the relationships between SNR and other measures of the relative power of the

noise, such as Es/N0, and Eb/N0, see “AWGN Channel Noise Level”.
• To generate repeatable white Gaussian noise samples, do one of the following:

• Use rng(seed) before calling the awgn function to generate repeatable random noise.
• Provide a static seed value as an input to awgn.
• Use the reset (RandStream) function on the randobject before passing it as an input to

awgn.
• Provide randobject in a known state as an input to awgn. For more information, see

RandStream.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Code generation supported, except for syntaxes that include a RandStream object.

See Also
Functions
convertSNR | wgn | randn | bsc | RandStream

Objects
comm.AWGNChannel
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Topics
“AWGN Channel Noise Level”
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bchdec
BCH decoder

Syntax
decoded = bchdec(code,N,K)
decoded = bchdec(code,N,K,paritypos)
[decoded,cnumerr] = bchdec( ___ )
[decoded,cnumerr,ccode] = bchdec( ___ )

Description
decoded = bchdec(code,N,K) attempts to decode the received signal in code using an (N,K)
BCH decoder with the narrow-sense generator polynomial. Parity symbols are at the end and the
leftmost symbol is the most significant symbol.

In the decoded Galois field array, each row represents the attempt at decoding the corresponding
row in code.

decoded = bchdec(code,N,K,paritypos) specifies in paritypos whether the parity symbols in
code were appended or prepended to the message in the coding operation.

[decoded,cnumerr] = bchdec( ___ ) returns a column vector, cnumerr, where each element is
the number of corrected errors in the corresponding row of code. You can return cnumerr with
either of the preceding syntaxes.

[decoded,cnumerr,ccode] = bchdec( ___ ) returns ccode, the corrected version of code.

Examples

Results of Error Correction

BCH-decode an input that has more errors per codeword than the error correcting capability of the
BCH decoder. Decode a BCH coded message with two errors per codeword using a single-error
correcting BCH decoder. View the effects of the error mismatch on the output codeword.

Check the number of errors per codeword a [63,57] BCH decoder is capable of correcting.

n = 63; 
k = 57;
t = bchnumerr(n,k)

t = 1

The [63,57] BCH decoder is capable of correcting one error per codeword.

Create a random stream and use it to generate a GF array. Encode the message.
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s = RandStream('swb2712','Seed',9973);
msg = gf(randi(s,[0 1],1,k));
code = bchenc(msg,n,k);

Add two errors per codeword and decode the errored code.

cnumerr2 = zeros(nchoosek(n,2),1);
nErrs = zeros(nchoosek(n,2),1);
cnumerrIdx = 1;
for idx1 = 1 : n-1
    %sprintf('idx1 for 2 errors = %d', idx1)
    for idx2 = idx1+1 : n
        errors = zeros(1,n);
        errors(idx1) = 1;
        errors(idx2) = 1;
        erroredCode = code + gf(errors);
        [decoded2, cnumerr2(cnumerrIdx)] ...
          = bchdec(erroredCode,n,k);

Encode the decoded message. Check that the re-encoded message differs from the errored message
in only one bit.

        if cnumerr2(cnumerrIdx) == 1
            code2 = bchenc(decoded2,n,k);
            nErrs(cnumerrIdx) = biterr(double(erroredCode.x), ...
              double(code2.x));
        end        
        cnumerrIdx = cnumerrIdx + 1;    
    end
end

Plot the computed number of errors, based on the difference between the doubly-errored code and
the re-encoded version of the initial decoding.

plot(nErrs)
title('Number of Actual Errors')
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All inputs with two errors were decoded to a codeword that differs in exactly one bit from the re-
encoded version.

Decode Received BCH Codeword in Noisy Channel

Set the BCH parameters for a Galois array of GF(2).

M = 4;
n = 2^M-1;   % Codeword length
k = 5;       % Message length
nwords = 10; % Number of words to encode

Create a message.

msgTx = gf(randi([0 1],nwords,k));

Find the error-correction capability.

t = bchnumerr(n,k)

t = 3

Encode the message.

enc = bchenc(msgTx,n,k);
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Corrupt up to t bits in each codeword.

noisycode = enc + randerr(nwords,n,1:t);

Decode the noisy code.

msgRx = bchdec(noisycode,n,k);

Validate that the message was properly decoded.

isequal(msgTx,msgRx)

ans = logical
   1

Increase the number of possible errors, and generate another noisy codeword.

t2 = t + 1;
noisycode2 = enc + randerr(nwords,n,1:t2);

Decode the new received codeword.

[msgRx2,numerr] = bchdec(noisycode2,n,k);

Determine if the message was properly decoded by examining the number of corrected errors,
numerr. Entries of -1 correspond to decoding failures, which occur when the codeword has more
errors than can be corrected for the specified [n,k] pair.

numerr

numerr = 10×1

     1
     2
    -1
     2
     3
     1
    -1
     4
     2
     3

Two of the ten transmitted codewords were not correctly received.

Input Arguments
code — Encoded message
Galois field array

Encoded message, specified as a Galois field array of symbols over GF(2). Each N-element row of
code represents a corrupted systematic codeword.

For more information, see “Creating a Galois field array”.
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N — Codeword length
integer

Codeword length, specified as an integer of the form N = 2M–1, where M is an integer from 3 to 16.
See “Tips” on page 2-52 for information about valid N values, valid (N,K) pairs, and error correcting
capabilities for a given BCH code.
Example: 15 for M=4

K — Message length
integer

Message length, specified as an integer. N and K must produce a narrow-sense BCH code.
Example: 5 specifies a Galois field array with five elements.

paritypos — Parity position
'end' (default) | 'beginning'

Parity position, specified as 'end' or 'beginning'. Parity symbols are at the end or beginning of
each word in the output Galois field array. If paritypos is 'beginning', then a decoding failure
causes bchdec to remove N-K symbols from the beginning rather than the end of the row.

Output Arguments
decoded — Decoded message
Galois field array of symbols over GF(2)

Decoded message, returned as a Galois field array of symbols over GF(2). Each row represents the
attempt at decoding the corresponding row in code. A decoding failure occurs if bchdec detects
more than T errors in a row of code, where T is the number of errors per codeword that the decoder
is capable of correcting. When a decoding failure occurs, bchdec forms the corresponding row of
decoded by removing N-K symbols from the end of the row of code. For more information, see “Error
Correcting Capability” on page 2-51.

cnumerr — Number of corrected errors
column vector

Number of corrected errors in the corresponding row of code, returned as a column vector. A value
of –1 in cnumerr indicates a decoding failure in that row in code.

ccode — Corrected version of code
Galois field array

Corrected version of code, returned as a Galois field array. ccode has the same format as the input
code. If a decoding failure occurs in a certain row of code, the corresponding row in ccode contains
that row unchanged.

More About
Error Correcting Capability

BCH decoders correct up to a specified number of errors per codeword based on the (N,K) pair used
to BCH encode that message. The error correcting capability, T, of a given (N,K) pair is returned by
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bchnumerr. See “Tips” on page 2-52 for information about valid N values, valid (N,K) pairs, and
error correcting capabilities for a given BCH code.

If the coded message contains more errors per codeword than the decoder is capable of correcting,
the decoder is unlikely to decode to the correct codeword. For example, when a single-error-
correcting BCH decoder (T=1) is given an input with two errors per codeword, it decodes it to a valid
codeword but not the correct codeword. When a double-error-correcting BCH decoder (T=2) is given
an input with three errors per codeword, the decoder sometimes decodes to an invalid codeword. The
cnumerr and ccode output provide feedback to analyze the correctness of the decoded message.

Tips
• To generate the list of valid (N,K) pairs along with the corresponding values of the error-correction

capability, run bchnumerr(N).
• Valid values for N = 2M–1, where M is an integer from 3 through 16. The maximum allowable value

of N is 65,535.

Algorithms
bchdec uses the Berlekamp-Massey decoding algorithm. For information about this algorithm, see
the works listed in “References” on page 2-52.

Version History
Introduced before R2006a

References
[1] Wicker, Stephen B. Error Control Systems for Digital Communication and Storage. Upper Saddle

River, NJ: Prentice Hall, 1995.

[2] Berlekamp, Elwyn R. Algebraic Coding Theory. New York: McGraw-Hill, 1968.

See Also
Functions
bchenc | bchgenpoly | bchnumerr

Objects
comm.BCHDecoder

Topics
“Block Codes”
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bchenc
BCH encoder

Syntax
code = bchenc(msg,N,K)
code = bchenc(msg,N,K,paritypos)

Description
code = bchenc(msg,N,K) encodes the input message using an (N,K) BCH encoder that uses a
narrow-sense generator polynomial. For a description of Bose–Chaudhuri–Hocquenghem (BCH)
coding, see [1].

code = bchenc(msg,N,K,paritypos) appends or prepends the parity symbols to the encoded
input message to form the output.

Examples

Decode Received BCH Codeword in Noisy Channel

Set the BCH parameters for a Galois array of GF(2).

M = 4;
n = 2^M-1;   % Codeword length
k = 5;       % Message length
nwords = 10; % Number of words to encode

Create a message.

msgTx = gf(randi([0 1],nwords,k));

Find the error-correction capability.

t = bchnumerr(n,k)

t = 3

Encode the message.

enc = bchenc(msgTx,n,k);

Corrupt up to t bits in each codeword.

noisycode = enc + randerr(nwords,n,1:t);

Decode the noisy code.

msgRx = bchdec(noisycode,n,k);

Validate that the message was properly decoded.
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isequal(msgTx,msgRx)

ans = logical
   1

Increase the number of possible errors, and generate another noisy codeword.

t2 = t + 1;
noisycode2 = enc + randerr(nwords,n,1:t2);

Decode the new received codeword.

[msgRx2,numerr] = bchdec(noisycode2,n,k);

Determine if the message was properly decoded by examining the number of corrected errors,
numerr. Entries of -1 correspond to decoding failures, which occur when the codeword has more
errors than can be corrected for the specified [n,k] pair.

numerr

numerr = 10×1

     1
     2
    -1
     2
     3
     1
    -1
     4
     2
     3

Two of the ten transmitted codewords were not correctly received.

Input Arguments
msg — Message to encode
Galois field array of symbols over GF(2)

Message to encode, specified as a Galois field array of symbols over GF(2). Each K-element row of
msg represents a message word, where the leftmost symbol is the most significant symbol.

For more information, see “Creating a Galois field array”.
Example: msgTx = gf(randi([0 1],10,5)), where msgTx is a 10-by-5 gf array.

N — Codeword length
integer

Codeword length, specified as an integer of the form N = 2M–1, where M is an integer from 3 through
16. For more information, see “Tips” on page 2-55.
Example: 15 for M=4

2 Functions

2-54



K — Message length
integer

Message length, specified as an integer. N and K must produce a narrow-sense BCH code.
Example: 5 specifies a Galois array with five elements

paritypos — Parity position
'end' (default) | 'beginning'

Parity position, specified as 'end' or 'beginning'. Parity symbols are at the end or beginning of
each word in the output Galois array.

Output Arguments
code — Encoded message
Galois field array

Encoded message, returned as a Galois field array. Parity symbols are at the end or beginning of each
word in the output Galois array. To specify the position of the parity symbols, use the paritypos
argument.

Tips
• To generate the list of valid (N,K) pairs along with the corresponding values of the error-correction

capability, run bchnumerr(N).
• Valid values for N = 2M–1, where M is an integer from 3 through 16. The maximum allowable value

of N is 65,535.

Version History
Introduced before R2006a

References
[1] Clark, George C., Jr., and J. Bibb Cain. Error-Correction Coding for Digital Communications, New

York: Plenum Press, 1981.

See Also
Functions
bchdec | bchgenpoly | bchnumerr | gf

Objects
comm.BCHEncoder

Topics
“Block Codes”
“Galois Field Computations”
“How Integers Correspond to Galois Field Elements”
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bchgenpoly
Generator polynomial of BCH code

Syntax
genpoly = bchgenpoly(n,k)
genpoly = bchgenpoly(n,k,prim_poly)
genpoly = bchgenpoly(n,k,prim_poly,outputFormat)
[genpoly,t] = bchgenpoly(...)

Description
genpoly = bchgenpoly(n,k) returns the narrow-sense generator polynomial of a BCH code with
codeword length n and message length k. The codeword length n must have the form 2m-1 for some
integer m between 3 and 16. The output genpoly is a Galois row vector that represents the
coefficients of the generator polynomial in order of descending powers. The narrow-sense generator
polynomial is LCM[m_1(x), m_2(x), ..., m_2t(x)], where:

• LCM represents the least common multiple,
• m_i(x) represents the minimum polynomial corresponding to αi, α is a root of the default primitive

polynomial for the field GF(n+1),
• and t represents the error-correcting capability of the code.

Note Although the bchgenpoly function performs intermediate computations in GF(n+1), the final
polynomial has binary coefficients. The output from bchgenpoly is a Galois vector in GF(2) rather
than in GF(n+1).

genpoly = bchgenpoly(n,k,prim_poly) is the same as the syntax above, except that
prim_poly specifies the primitive polynomial for GF(n+1) that has Alpha as a root. prim_poly is
either a polynomial character vector or an integer whose binary representation indicates the
coefficients of the primitive polynomial in order of descending powers. To use the default primitive
polynomial for GF(n+1), set prim_poly to [].

genpoly = bchgenpoly(n,k,prim_poly,outputFormat) is the same as the previous syntax,
except that outputFormat specifies output data type. The value of outputFormat can be ‘gf' or
'double' corresponding to Galois field and double data types respectively. The default value of
outputFormat is 'gf'.

[genpoly,t] = bchgenpoly(...) returns t, the error-correction capability of the code.

Examples

Create a BCH Generator Polynomial

Create two BCH generator polynomials based on different primitive polynomials.

Set the codeword and message lengths, n and k.
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n = 15;
k = 11;

Create the generator polynomial and return the error correction capability, t.

[genpoly,t] = bchgenpoly(15,11)

 
genpoly = GF(2) array. 
 
Array elements = 
 
   1   0   0   1   1

t = 1

Create a generator polynomial for a (15,11) BCH code using a different primitive polynomial
expressed as a character vector. Note that genpoly2 differs from genpoly, which uses the default
primitive.

genpoly2 = bchgenpoly(15,11,'D^4 + D^3 + 1')

 
genpoly2 = GF(2) array. 
 
Array elements = 
 
   1   1   0   0   1

Limitations
The maximum allowable value of n is 65535.

Version History
Introduced before R2006a

References

[1] Peterson, W. Wesley, and E. J. Weldon, Jr., Error-Correcting Codes, 2nd ed., Cambridge, MA, MIT
Press, 1972.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

All inputs must be constants. Expressions or variables are allowed if their values do not change.

See Also
bchenc | bchdec | bchnumerr
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Topics
“Block Codes”
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bchnumerr
Number of correctable errors for BCH code

Syntax
T = bchnumerr(N)
T = bchnumerr(N, K)

Description
T = bchnumerr(N) returns all the possible combinations of message length, K, and number of
correctable errors, T, for a BCH code of codeword length, N.

T = bchnumerr(N, K) returns the number of correctable errors, T, for an (N, K) BCH code.

Examples

Determine Message Length Combinations for BCH Code

Calculate the possible message length combinations for a BCH code word length of 15.

T = bchnumerr(15)

T = 3×3

    15    11     1
    15     7     2
    15     5     3

Compute the Correctable Errors for BCH Code

Calculate the number of correctable errors for BCH code 15,11

T = bchnumerr(15,11)

T = 1

Input Arguments
N — Codeword length
integer scalar

Codeword length, specified as an integer scalar. N must have the form 2m-1 for some integer, m,
between 3 and 16.
Example: 15
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Data Types: double

K — Message length
integer scalar

Message length, specified as an integer scalar. N and K must produce a narrow-sense BCH code.
Example: 11
Data Types: double

Output Arguments
T — Number of correctable errors
scalar or matrix

Number of correctable errors, returned as a scalar or matrix value.

bchnumerr(N) returns a matrix with three columns. The first column lists N, the second column lists
K, and the third column lists T.

bchnumerr(N,K) returns a scalar, which represents the number of correctable errors for the BCH
code.

Version History
Introduced before R2006a

See Also
bchdec | bchenc

Topics
“Block Codes”
“BCH Codes”
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berawgn
BER and SER for uncoded data over AWGN channels

Syntax
ber = berawgn(EbNo,modtype,M)

ber = berawgn(EbNo,'psk',M,dataenc)
ber = berawgn(EbNo,'oqpsk',dataenc)

ber = berawgn(EbNo,'fsk',M,coherence)
ber = berawgn(EbNo,'fsk',M,coherence,rho)

ber = berawgn(EbNo,'msk',precoding)
ber = berawgn(EbNo,'msk',precoding,coherence)

ber = berawgn(EbNo,'cpfsk',M,modindex,kmin)

[ber,ser] = berawgn( ___ )

Description
The berawgn function returns the bit error rate (BER) and symbol error rate (SER) in an additive
white Gaussian noise (AWGN) channel for uncoded data using various modulation schemes. The first
input argument, EbNo, is the ratio of bit energy to noise power spectral density in dB (Eb/N0). Values
in the output ber and ser vectors correspond to the theoretical error rate at the specified Eb/N0
levels for a Gray-coded signal constellation. For more information, see “Analytical Expressions Used
in berawgn Function and Bit Error Rate Analysis App”.

ber = berawgn(EbNo,modtype,M) returns the BER of uncoded data over an AWGN channel at the
specified Eb/N0 levels for the modulation type and modulation order specified by modtype and M,
respectively.

ber = berawgn(EbNo,'psk',M,dataenc) specifies the data encoding type as differential or
nondifferential for PSK modulation.

ber = berawgn(EbNo,'oqpsk',dataenc) specifies the data encoding type as differential or
nondifferential for OQPSK modulation.

ber = berawgn(EbNo,'fsk',M,coherence) specifies the receiver technique as coherent or
noncoherent for FSK modulation.

ber = berawgn(EbNo,'fsk',M,coherence,rho) additionally specifies the complex correlation
coefficient of the FSK-modulated signal.

ber = berawgn(EbNo,'msk',precoding) specifies whether precoding is applied for MSK
modulation.

ber = berawgn(EbNo,'msk',precoding,coherence) additionally specifies the receiver
technique as coherent or noncoherent for MSK modulation.
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ber = berawgn(EbNo,'cpfsk',M,modindex,kmin) specifies the modulation index, modindex,
and the number of paths having the minimum distance, kmin, for CPFSK modulation.

[ber,ser] = berawgn( ___ ) returns the BER and symbol error rate (SER) using any input
argument combination from previous syntaxes.

Examples

Return Theoretical BER Data for AWGN Channels

Return theoretical bit error rate data for several modulation schemes in an AWGN channel.

Create a vector of Eb/N0 values and specify the modulation order.

EbNo = (0:10)';
M = 4; % Modulation order

Return theoretical BER data for QPSK modulation.

berQ = berawgn(EbNo,'psk',M,'nondiff');

Return equivalent data for DPSK and FSK modulations.

berD = berawgn(EbNo,'dpsk',M);
berF = berawgn(EbNo,'fsk',M,'coherent');

Plot the results.

semilogy(EbNo,[berQ berD berF])
xlabel('Eb/No (dB)')
ylabel('BER')
legend('QPSK','DPSK','FSK')
title("Theoretical Bit Error Rate")
grid
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Input Arguments
EbNo — Energy per bit to noise power spectral density ratio
scalar | vector

Energy per bit to noise power spectral density ratio in dB, specified as a scalar or vector.
Data Types: single | double

modtype — Modulation type
'psk' | 'oqpsk' | 'dpsk' | ...

Modulation type, specified as one of these options.

modtype Value Modulation Scheme Dependencies
'psk' Phase shift keying (PSK) When you set the input

dataenc to 'diff',
modulation order M must be 2 or
4.

'oqpsk' Offset quadrature phase shift
keying (OQPSK)

None

'dpsk' Differential phase shift keying
(DPSK)

None
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modtype Value Modulation Scheme Dependencies
'pam' Pulse amplitude modulation

(PAM)
None

'qam' Quadrature amplitude
modulation (QAM)

The modulation order M must be
at least 4.

• When k = log2M is odd, the
symbols lie in a rectangular
constellation of size M = I ×

J, whereI = 2
k− 1

2  and

J = 2
k + 1

2 .
• When k is even, the symbols

lie in a square constellation

of size2
k
2 × 2

k
2

'fsk' Frequency-shift keying (FSK) When you set the input
coherence to
'noncoherent', modulation
order M must be in the range [2,
64].

'msk' Minimum-shift keying (MSK) None
'cpfsk' Continuous-phase frequency-

shift keying (CPFSK)
None

Data Types: char | string

M — Modulation order
2k

Modulation order, specified as an integer equal to 2k, where k is a positive integer.
Example: 4 or 2^2
Data Types: single | double

dataenc — Data encoding type
'diff' | 'nondiff'

Data encoding type, specified as one of these values.

• 'diff' — For differential data encoding
• 'nondiff' — For nondifferential data encoding

Dependencies

To enable this argument, set the modtype argument to 'psk' or 'oqpsk'.
Data Types: char | string

coherence — Coherent detection type
'conherent' | 'noncoherent'
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Coherent detection type, specified as one of these values.

• 'conherent' — For coherent detection
• 'noncoherent' — For noncoherent detection

Dependencies

To enable this argument, set the modtype argument to 'fsk' or 'msk'.
Data Types: char | string

rho — Complex correlation coefficient
complex scalar

Complex correlation coefficient, specified as a complex scalar. For more information about the
complex correlation coefficient and how to compute it for nonorthogonal binary frequency-shift
keying (BFSK) modulation, see “Nonorthogonal 2-FSK with Coherent Detection”.
Dependencies

To enable this argument, set the modtype argument to 'fsk' and the M argument to 2.
Data Types: single | double
Complex Number Support: Yes

precoding — Enable precoding
'off' | 'on'

Enable precoding, specified as one of these values.

• 'off' — For conventional MSK
• 'on' — For precoded MSK

Dependencies

To enable this argument, set the modtype argument to 'msk'.
Data Types: char | string

modindex — Modulation index
positive integer

Modulation index, specified as a positive integer.
Dependencies

To enable this argument, set the modtype argument to 'cpfsk'.
Data Types: single | double

kmin — Number of paths having minimum distance
positive integer

Number of paths having the minimum distance, specified as a positive integer. If the number of paths
is unknown, specify a value of 1.
Dependencies

To enable this argument, set the modtype argument to 'cpfsk'.
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Data Types: single | double

Output Arguments
ber — Bit error rate
scalar | vector

Bit error rate (BER) for uncoded data over an AWGN channel, returned as a scalar or vector. The BER
is computed for each Eb/N0 setting specified by input EbNo according to the modulation type specified
by input modtype and related dependencies.
Data Types: double

ser — Symbol error rate
scalar | vector

Symbol error rate (SER) for uncoded data over an AWGN channel, returned as a scalar or vector. The
SER is computed for each Eb/N0 setting specified by input EbNo according to the modulation type
specified by input modtype and related dependencies.
Data Types: double

Limitations
The numerical accuracy of the output returned by this function is limited by approximations related
to the numerical implementation of the expressions to roughly two significant digits.

Alternatives
You can configure the Theoretical tab in the Bit Error Rate Analysis app to compute theoretical
BER values instead of using the berawgn function.

Version History
Introduced before R2006a

References
[1] Anderson, John B., Tor Aulin, and Carl-Erik Sundberg. Digital Phase Modulation. New York:

Plenum Press, 1986.

[2] Cho, K., and D. Yoon. "On the General BER Expression of One- and Two-Dimensional Amplitude
Modulations." IEEE Trans. Commun. 50, no. 7, (2002): 1074-1080.

[3] Lee, P. J. "Computation of the Bit Error Rate of Coherent M-ary PSK with Gray Code Bit Mapping."
IEEE Trans. Commun. COM-34, no. 5, (1986): 488-491.

[4] Proakis, John G. Digital Communications. 5th ed. New York: McGraw Hill, 2007.
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bercoding
BER for coded AWGN channels

Syntax
ber = bercoding(EbNo,'conv',decision,coderate,dspec)

ber = bercoding(EbNo,'block',decision,N,K,dmin)
ber = bercoding(EbNo,'Golay','hard',24)

ber = bercoding(EbNo,'Hamming','hard',N)
ber = bercoding(EbNo,'RS','hard',N,K)
ber = bercoding(EbNo,coding, ___ ,modulation)

Description
The bercoding function returns an upper bound or approximation of the bit error rate (BER) for
coherent BPSK or QPSK modulation over an additive white Gaussian noise (AWGN) channel for a
specified coding type, decoding decision, code rate, and distance spectrum of the code. The results
for binary PSK and quadrature PSK modulation are the same. This function computes only modulation
order 2 or 4 for M-ary PSK modulation. For more information, see “Analytical Expressions Used in
bercoding Function and Bit Error Rate Analysis App”.

ber = bercoding(EbNo,'conv',decision,coderate,dspec) returns an upper bound or
approximation of the BER for the convolutionally coded signal with the specified decoding decision,
code rate, and distance spectrum of the code.

ber = bercoding(EbNo,'block',decision,N,K,dmin) returns the upper bound of the BER for
an [N,K] binary block code for the specified decoding decision type and minimum distance of the code.

ber = bercoding(EbNo,'Golay','hard',24) returns the upper bound of the BER for an the
extended (24, 12) Golay code using hard-decision decoding and coherent BPSK modulation. In
accordance with [3], the Golay coding upper bound assumes only the correction of 3-error patterns.
Even though correcting approximately 19% of 4-error patterns is theoretically possible in practice,
most decoders do not have this capability.

ber = bercoding(EbNo,'Hamming','hard',N) returns an approximation of the BER for a
Hamming code using hard-decision decoding and coherent BPSK modulation.

ber = bercoding(EbNo,'RS','hard',N,K) returns an approximation of the BER for an (N,K)
Reed-Solomon code using hard-decision decoding and coherent BPSK modulation.

ber = bercoding(EbNo,coding, ___ ,modulation) specifies a modulation type in addition to
any of the previous input argument combinations. This syntax returns an approximation of the BER
for coded AWGN channels.

Examples
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Find Upper Bound of Theoretical BER for Block Code

Find the upper bound of the theoretical BER for a (23,12) block code.

Set the codeword length, message length, minimum distance, and Eb/N0 range in dB.

n = 23;             % Codeword length
k = 12;             % Message length
dmin = 7;           % Minimum distance
EbNo = 1:10;        % Eb/No range (dB)

Estimate the BER.

berBlk = bercoding(EbNo,'block','hard',n,k,dmin);

Plot the estimated BER.

berfit(EbNo,berBlk)
ylabel('Bit Error Probability')
title('BER Upper Bound vs. Eb/No with Best Curve Fit')

Estimate Coded BER Performance for 16-QAM in AWGN

Estimate the BER performance in an AWGN channel for a 16-QAM signal when encoded with a
(15,11) Reed-Solomon code using hard-decision decoding.
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Set the input Eb/No range and find the uncoded BER for 16-QAM.

ebno = (2:12)';
uncodedBER = berawgn(ebno,'qam',16);

Estimate the coded BER for a 16-QAM signal with a (15,11) Reed-Solomon code using hard-decision
decoding.

codedBER = bercoding(ebno,'RS','hard',15,11,'qam',16);

Plot the estimated BER curves.

semilogy(ebno,[uncodedBER codedBER])
grid
title('Compare Uncoded and R-S Coded 16-QAM Transmission')
legend('Uncoded BER','Coded BER')
xlabel('Eb/No (dB)')
ylabel('BER')

Input Arguments
EbNo — Energy per bit to noise power spectral density ratio
scalar | vector

Energy per bit to noise power spectral density ratio in dB, specified as a scalar or vector.
Data Types: single | double
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coding — Source coding type
'conv' | 'block' | 'Hamming' | 'Golay' | 'RS'

Source coding type, specified as one of these options.

• 'conv' — The returned BER is an upper bound of the BER for binary convolutional codes with
coherent BPSK or QPSK modulation.

• 'block' — The returned BER is an upper bound of the BER for (N, K) linear binary block codes
with coherent BPSK or QPSK modulation.

• 'Hamming' — The returned BER is an approximation of the BER for a Hamming code using hard-
decision decoding and coherent BPSK or QPSK modulation.

• 'Golay' — The returned BER is an upper bound of the BER for an extended (24,12) Golay code
using hard-decision decoding and coherent BPSK or QPSK modulation. In accordance with [3], the
Golay coding upper bound assumes the correction of 3-error patterns only. Even though correcting
approximately 19% of 4-error patterns is theoretically possible, in practice, most decoders do not
have this capability.

• 'RS' — The returned BER is an approximation of the BER for an (N,K) Reed-Solomon code using
hard-decision decoding and coherent BPSK modulation.

Data Types: char | string

decision — Decoding decision type
'hard' | 'soft'

Decoding decision type, specified as one of these options.

• 'hard' — Use this option for hard-decision decoding.
• 'soft' — Use this option for unquantized soft-decision decoding. This option applies only when

coding is set to 'conv' or 'block'.

Data Types: char | string

coderate — Code rate of convolutional code
positive scalar

Code rate of the convolutional code, specified as a positive scalar.
Dependencies

To enable this argument, set the coding argument to 'conv'.
Data Types: double | single

dspec — Distance spectrum of code
structure

Distance spectrum of the code, specified as structure containing these fields. To find distance spectra
for sample codes, use the distspec function or see [5] and [3].

dfree — Minimum free distance of code
positive scalar

Minimum free distance of the code, specified as a positive scalar.
Data Types: double | single
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weight — Weight spectrum of code
positive scalar

Weight spectrum of the code, specified as a positive scalar.
Data Types: double | single

Dependencies

To enable this argument, set the coding argument to 'conv'.
Data Types: struct

N — Codeword length
integer

Codeword length, specified as an integer of the form 2M–1, where M is an integer in the range [3, 16].
For more information, see “N-K Pairs for Source Coding” on page 2-73.
Example: 15 or 2^4-1

Dependencies

To enable this argument, set the coding argument to 'block', 'Hamming', 'Golay', or 'RS'.

K — Message length
positive integer

Message length, specified as a positive integer. For more information, see “N-K Pairs for Source
Coding” on page 2-73.
Example: 5 specifies a Galois field array with five elements.

Dependencies

To enable this argument, set the coding argument to 'block' or 'RS'.

dmin — Minimum distance of code
positive scalar

Minimum distance of the code, specified as a positive scalar smaller than or equal to (N - K + 1).

.

Dependencies

To enable this argument, set the coding argument to 'block'.
Data Types: double | single

modulation — Modulation type
'psk' (default) | 'oqpsk' | 'dpsk' | 'pam' | 'qam' | 'fsk' | 'msk'

Modulation decision type, specified as 'psk', 'oqpsk', 'dpsk', 'pam', 'qam', 'fsk', or 'msk'.
The default modulation scheme is PSK modulation with a modulation order of 2 (specifically,
nondifferential BPSK modulation).
Data Types: char | string
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Output Arguments
ber — BER
scalar | vector

BER upper bound or approximation, returned as a scalar or vector. If the EbNo input is a vector, ber
is a vector of the same size, and its elements correspond to the elements of the Eb/N0 vector.

Limitations
In general, the numerical accuracy for the output BER is limited to approximately two significant
digits. The numerical accuracy output by this function is limited by these restrictions.

• Approximations in the analysis leading to the closed-form expressions used by the function
• Approximations related to the numerical implementation of the expressions

More About
N-K Pairs for Source Coding

For block codes the codeword length (N) and message length (K) pairs must comply with these
guidelines.

• N and K must produce a narrow-sense BCH code.
• To generate the list of valid (N,K) pairs and their corresponding values of error-correction

capability, run the command bchnumerr(N).
• Valid values for N have the form 2M–1, where M is an integer in the range [3, 16]. The value of N

cannot exceed 65,535.

For Hamming codes, K is computed directly from N.

For Reed-Solomon codes, N and K must differ by an even integer. Valid values for N have the form 2M–
1, where M is an integer in the range [3, 16]. The value of N cannot exceed 65,535.

Alternatives
You can configure the Theoretical tab in the Bit Error Rate Analysis app to compute theoretical
BER values instead of using the bercoding function.

Version History
Introduced before R2006a

References
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10.1109/4234.803468.
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berconfint
Error probability estimate and confidence interval of Monte Carlo simulation

Syntax
[errprobest,interval] = berconfint(nerrs,ntrials)
[errprobest,interval] = berconfint(nerrs,ntrials,level)

Description
[errprobest,interval] = berconfint(nerrs,ntrials) returns the error probability
estimate and 95% confidence interval for a Monte Carlo simulation of ntrials trials with nerrs
errors.

[errprobest,interval] = berconfint(nerrs,ntrials,level) specifies the confidence
level.

Examples

Compute BER Confidence Interval for Simulation Results

Compute the confidence interval for the simulation of a communication system that has 100 bit errors
in 106 trials. The bit error rate (BER) for that simulation is 10−4.

Compute the 90% confidence interval for the BER of the system. The output shows that, with 90%
confidence level, the BER for the system is between 0.0000841 and 0.0001181.

nerrs = 100;    % Number of bit errors in simulation
ntrials = 10^6; % Number of trials in simulation
level = 0.90;   % Confidence level
[ber,interval] = berconfint(nerrs,ntrials,level)

ber = 1.0000e-04

interval = 1×2
10-3 ×

    0.0841    0.1181

For an example that uses the output of the berconfint function to plot error bars on a BER plot, see
“Use Curve Fitting on Error Rate Plot”.

Input Arguments
nerrs — Number of errors
scalar

Number of errors from Monte Carlo simulation results, specified as a scalar.
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Data Types: single | double

ntrials — Number of trials
scalar

Number of trials from Monte Carlo simulation results, specified as a scalar.
Data Types: single | double

level — Confidence level
scalar in the range [0, 1]

Confidence level for a Monte Carlo simulation, specified as a scalar in the range [0, 1].
Data Types: single | double

Output Arguments
errprobest — Error probability estimate
scalar

Error probability estimate for a Monte Carlo simulation, returned as a scalar.

• If the errors and trials are measured in bits, the error probability is the bit error rate (BER).
• If the errors and trials are measured in symbols, the error probability is the symbol error rate

(SER).

interval — Confidence interval
two-element column vector

Confidence interval for a Monte Carlo simulation, returned as a two-element column vector that lists
the endpoints of the confidence interval for the confidence level specified by the input level.

Version History
Introduced before R2006a

References
[1] Jeruchim, Michel C., Philip Balaban, and K. Sam Shanmugan. Simulation of Communication

Systems. Second Edition. New York: Kluwer Academic/Plenum, 2000.
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berfading
BER and SER for uncoded data over Rayleigh and Rician fading channels

Syntax
ber = berfading(EbNo,modtype,M,divorder)

ber = berfading(EbNo,'psk',M,divorder)
ber = berfading(EbNo,'depsk',2,divorder)

ber = berfading(EbNo,'oqpsk',divorder)
ber = berfading(EbNo,'dpsk',divorder)

ber = berfading(EbNo,'fsk',M,divorder,coherence)
ber = berfading(EbNo,'fsk',2,divorder,coherence,rho)
ber = berfading( ___ ,K)

ber = berfading(EbNo,'psk',2,1,K,phaserr)

[ber,ser] = berfading( ___ )

Description
The berfading function returns the bit error rate (BER) and symbol error rate (SER) over a
Rayleigh or Rician fading channel for uncoded data using a specified modulation scheme. The first
input argument, EbNo, is the energy per bit to noise power spectral density ratio (Eb/N0) in dB. Values
in the ber and ser output vectors correspond to the theoretical error rates at the specified Eb/N0
levels for a Gray-coded signal constellation. For more information, see “Analytical Expressions Used
in berfading Function and Bit Error Rate Analysis App”.

ber = berfading(EbNo,modtype,M,divorder) returns the BER for PAM or QAM data over an
uncoded Rayleigh fading channel with coherent demodulation at the specified Eb/N0 levels for the
modulation type, modulation order, and diversity order (specified by modtype, M, and divorder,
respectively).

ber = berfading(EbNo,'psk',M,divorder) returns the BER for coherently detected PSK data
over an uncoded Rayleigh fading channel.

ber = berfading(EbNo,'depsk',2,divorder) specifies coherently detected PSK data with
differential data encoding over an uncoded Rayleigh fading channel. In this case, the modulation
order is 2.

ber = berfading(EbNo,'oqpsk',divorder) specifies coherently detected OQPSK data over an
uncoded Rayleigh fading channel.

ber = berfading(EbNo,'dpsk',divorder) specifies DPSK data over an uncoded Rayleigh
fading channel. For DPSK modulation, the resulting BER assumes slow fading (such that any two
consecutive symbols are affected by the same fading coefficient).

ber = berfading(EbNo,'fsk',M,divorder,coherence) returns the BER for orthogonal FSK
data over an uncoded Rayleigh fading channel. coherence specifies the coherent detection type.
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ber = berfading(EbNo,'fsk',2,divorder,coherence,rho) specifies binary nonorthogonal
FSK data over an uncoded Rayleigh fading channel. rho specifies the complex correlation coefficient.
The modulation order is 2. For the definition of the complex correlation coefficient and how to
compute it for nonorthogonal BFSK modulation, see “Nonorthogonal 2-FSK with Coherent Detection”.

ber = berfading( ___ ,K) returns the BER over an uncoded Rician fading channel using any input
argument combination from previous syntaxes. K is the ratio of specular to diffuse energy in linear
scale. If you use the modulation type 'fsk', rho is required and must be specified before K.

ber = berfading(EbNo,'psk',2,1,K,phaserr) returns the BER of BPSK data over an uncoded
Rician fading channel. phaserr specifies the imperfect phase synchronization, which is the standard
deviation of the reference carrier phase error.

[ber,ser] = berfading( ___ ) returns the BER and SER using any input argument combination
from previous syntaxes.

Examples

Estimate BER Performance of 16-QAM in Rayleigh Fading Channel

Generate a vector of Eb/N0 values to evaluate.

EbNo = 8:2:20;

Initialize a BER results vector.

ber = zeros(length(EbNo),20);

Generate BER versus Eb/N0 curves for 16-QAM in a Rayleigh fading channel. Vary the diversity order
from 1 to 20.

for L = 1:20 
    ber(:,L) = berfading(EbNo,'qam',16,L);
end

Plot the results.

semilogy(EbNo,ber,'b')
text(18.5, 0.02, sprintf('L=%d',1))
text(18.5, 1e-11, sprintf('L=%d',20))
title('QAM over Rayleigh Fading Channel with Diversity Order 1 to 20')
xlabel('E_b/N_0 (dB)')
ylabel('BER')
grid on
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Input Arguments
EbNo — Energy per bit to noise power spectral density ratio
scalar | vector

Energy per bit to noise power spectral density ratio in dB, specified as a scalar or vector.

For cases where diversity is used, the Eb/N0 on each diversity branch is EbNo/divorder.
Data Types: single | double

modtype — Modulation type
'pam' | 'qam' | 'psk' | 'oqpsk' | 'dpsk' | 'fsk' | ...

Modulation type, specified as one of these options.

modtype Value Modulation Scheme Dependencies
'pam' Pulse amplitude modulation

(PAM)
None
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modtype Value Modulation Scheme Dependencies
'qam' Quadrature amplitude

modulation (QAM)
The modulation order M must be
at least 4.

• When k = log2M is odd, the
symbols lie in a rectangular
constellation of size M = I ×

J, where I = 2
k− 1

2  and

J = 2
k + 1

2 .
• When k is even, the symbols

lie in a square constellation

of size 2
k
2 × 2

k
2 .

'psk' Phase shift keying (PSK) None
'oqpsk' Offset quadrature phase shift

keying (OQPSK)
None

'dpsk' Differential phase shift keying
(DPSK)

None

'fsk' Frequency-shift keying (FSK) When you set the input
coherence to
'noncoherent', modulation
order M must be in the range [2,
64].

Data Types: char | string

M — Modulation order
2k

Modulation order, specified as an integer equal to 2k, where k is a positive integer.
Example: 4 or 2^2
Data Types: single | double

divorder — Diversity order
0 | nonnegative integer

Diversity order, specified as a nonnegative integer that represents the number of diversity branches.

When you specify a divorder value greater than 0, the error rate is computed using diversity. For
cases where diversity is used, the Eb/N0 on each diversity branch is EbNo/divorder.
Data Types: single | double

coherence — Coherent detection type
'coherent' | 'noncoherent'

Coherent detection type, specified as one of these options.

• 'coherent' — For coherent detection
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• 'noncoherent' — For noncoherent detection

Dependencies

To enable this argument, set the modtype argument to 'fsk'.
Data Types: char | string

rho — Complex correlation coefficient
complex scalar

Complex correlation coefficient, specified as a complex scalar. For more information about the
complex correlation coefficient and how to compute it for nonorthogonal binary FSK (BFSK)
modulation, see “Nonorthogonal 2-FSK with Coherent Detection”.

Dependencies

To enable this argument, set the modtype argument to 'fsk' and the M argument to 2.
Data Types: single | double
Complex Number Support: Yes

K — Ratio of specular to diffuse energy
nonnegative scalar

Ratio of specular to diffuse energy in linear scale, specified as a nonnegative scalar.
Data Types: single | double

phaserr — Standard deviation of reference carrier phase error
nonnegative scalar

Standard deviation of the reference carrier phase error in radians, specified as a nonnegative scalar.
Data Types: single | double

Output Arguments
ber — BER
scalar | vector

BER for uncoded data over a Rayleigh or Rician channel, returned as a scalar or vector. The BER is
computed for each Eb/N0 setting specified by input EbNo according to the modulation type specified
by input modtype and related dependencies.
Data Types: double

ser — SER
scalar | vector

SER for uncoded data over a Rayleigh or Rician channel, returned as a scalar or vector. The SER is
computed for each Eb/N0 setting specified by input EbNo according to the modulation type specified
by input modtype and related dependencies.
Data Types: double
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Limitations
The numerical accuracy of the output returned by this function is limited by approximations related
to the numerical implementation of the expressions to roughly two significant digits.

Alternatives
You can configure the Theoretical tab in the Bit Error Rate Analysis app to compute theoretical
BER values instead of using the berfading function.

Version History
Introduced before R2006a
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“Nonorthogonal 2-FSK with Coherent Detection”
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berfit
Fit curve to nonsmooth empirical BER data

Syntax
fitber = berfit(empEbNo,empber)

fitber = berfit(empEbNo,empber,fitEbNo)
fitber = berfit(empEbNo,empber,fitEbNo,options)
fitber = berfit(empEbNo,empber,fitEbNo,options,fittype)

[fitber,fitprops] = berfit( ___ )
berfit( ___ )

berfit(empEbNo,empber,fitEbNo,options,'all')

Description
fitber = berfit(empEbNo,empber) fits a curve to the empirical BER data, empber, and returns
a vector of fitted BER points. The values in empber and fitber correspond to the empirical energy
per bit to noise power spectral density ratio (Eb/N0) values given by empEbNo. For a general
description of unconstrained nonlinear optimization, see [1].

Note The berfit function is intended for curve fitting or interpolation (not extrapolation).
Extrapolating BER data beyond an order of magnitude below the smallest empirical BER value is
inherently unreliable.

fitber = berfit(empEbNo,empber,fitEbNo) specifies a vector of Eb/N0 values to use when
fitting a curve to the empirical BER data in empber that correspond to the empirical Eb/N0 values in
empEbNo.

fitber = berfit(empEbNo,empber,fitEbNo,options) specifies a structure to override the
default options used for optimization.

fitber = berfit(empEbNo,empber,fitEbNo,options,fittype) specifies the closed-form
function used to fit the empirical data. If you do not want to override the default options for
optimization, specify options as [ ].

[fitber,fitprops] = berfit( ___ ) returns the fitprops structure with fields that describe
the properties of the curve fit. Use any input argument combination from previous syntaxes.

berfit( ___ ) plots the empirical and fitted BER data.

berfit(empEbNo,empber,fitEbNo,options,'all') plots the empirical and fitted BER data
from all possible settings of fittype that are valid. If you do not want to override the default options
for optimization, specify options as [ ].

Note To be valid a fit must conform to these criteria, otherwise it is rejected.

2 Functions

2-84



• real-valued
• monotonically decreasing
• greater than or equal to 0 and less than or equal to 1

Examples

Fit Curve to BER Points

This example shows the use of the berfit function using hard-coded or theoretical BER points for
simplicity. For an example that uses empirical BER data from a simulation, see “Use Curve Fitting on
Error Rate Plot”.

Best Fit for Set of Sample Data

Define a range of Eb/N0 values and BER points. Use this data as inputs for the berfit function.

EbN0 = 0:13;
berdata = [.2 .15 .13 .12 .08 .09 .08 .07 .06 .04 .03 .02 .01 .004];
berfit(EbN0,berdata); 

Plot Best Fit

The curve connects the points created by evaluating the fit expression at the specified Eb/N0 values.
To make the curve look smoother, provide an input vector of Eb/N0 values for curve fitting in
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ascending order. This vector provides more points for plotting the curve and does not change the fit
expression.

fitEbNo = 0:0.2:13;
berfit(EbN0,berdata,fitEbNo)

Fit for BER Curve with Error Floor

Run the berfit function using the 'all' option on empirical BER results for a simulation of BPSK
data transmitted over a channel with a null (ch = [0.5 0.47]) and recovered by using a linear
MMSE equalizer at the receiver for the Eb/N0 range [-10, 15]. Comparing the results of curve fitting
methods

• 'doubleExp+const' fit type does not provide a valid fit
• 'exp' fit type does not work well for this data
• 'exp+const' and 'polyRatio' fit types closely match the simulated data

EbN0 = -10:3:15;
empBER = [0.3361 0.3076 0.2470 0.1878 0.1212 0.0845 0.0650 0.0540 0.0474];
figure;
berfit(EbN0,empBER,[],[],'all');
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Use of options Input Structure and fitprops Output Structure

The 'notify' value for the display level causes the function to produce output when one of the
attempted fits does not converge. The exitState field of the output structure indicates which fit
type converges.

Generate theoretical BER results for 8-PSK data with a diversity order of 2 transmitted over a
Rayleigh fading channel for the Eb/N0 range [3, 10] dB.

M = 8; EbN0 = 3:10;
berdata = berfading(EbN0,'psk',M,2); % Compute the theoretical BER
noisydata = berdata.*[.93 .92 1 .59 .08 .15 .01 .01];

Create the options structure by using the optimset function to configure display and notification
of fit type results. Run exponential and polynomial ratio fit types.

options = optimset('display','notify');
disp('*** Trying exponential fit.') % Poor fit

*** Trying exponential fit.

[fitber1,fitprops1] = berfit(EbN0,noisydata,EbN0,...
   options,'exp')

 
Exiting: Maximum number of function evaluations has been exceeded
         - increase MaxFunEvals option.
         Current function value: 2.749919 
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fitber1 = 1×8

    0.1247    0.0727    0.0376    0.0168    0.0064    0.0020    0.0005    0.0001

fitprops1 = struct with fields:
       fitType: 'exp'
        coeffs: [4x1 double]
      sumSqErr: 2.7499
     exitState: 'The maximum number of function evaluations has been exceeded'
     funcCount: 10001
    iterations: 6193

disp('*** Trying polynomial ratio fit.') % Good fit

*** Trying polynomial ratio fit.

[fitber2,fitprops2] = berfit(EbN0,noisydata,EbN0,...
   options,'polyRatio')

fitber2 = 1×8

    0.1701    0.0874    0.0407    0.0169    0.0060    0.0016    0.0003    0.0001

fitprops2 = struct with fields:
       fitType: 'polyRatio'
        coeffs: [6x1 double]
      sumSqErr: 2.3880
     exitState: 'The curve fit converged to a solution'
     funcCount: 554
    iterations: 331

Input Arguments
empEbNo — Empirical Eb/N0 values
vector

Empirical Eb/N0 values in dB, specified as a vector with at least four elements. The element values in
the vector must be in ascending order.
Data Types: single | double

empber — Empirical BER data
vector

Empirical BER data, specified as a vector with the same number of elements as input empEbNo. The
values in empber correspond to the Eb/N0 values given by empEbNo.
Data Types: single | double

fitEbNo — Eb/N0 values for curve fitting
vector

Eb/N0 values in dB for curve fitting, specified as a vector with element values in ascending order. The
length of fitEbNo must equal or exceed that of input empEbNo.
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Data Types: single | double

options — Override default options used for optimization
[ ] | structure

Override default options used for optimization, specified as a structure. The fields specified in the
options structure are used by the fminsearch function. You can create the options structure by
using the optimset function. This table describes the fields that are most relevant when using the
berfit function. To use default options, you can specify this input as [ ].

Field Description
options.Display Level of display.

• 'off' (default) –- displays no output
• 'iter' –- displays output at each iteration
• 'final' –- displays only the final output
• 'notify' –- displays output only if the

function does not converge
options.MaxFunEvals The maximum number of function evaluations

before optimization ceases. The default is 104.
options.MaxIter The maximum number of iterations before

optimization ceases. The default is 104.
options.TolFun The termination tolerance for the closed-form

function used to generate the fit. The default is
10-4.

options.TolX The termination tolerance for the coefficient
values of the closed-form function used to
generate the fit. The default is 10-4.

Data Types: struct

fittype — Closed-form function used to fit empirical data
'exp' | 'exp+const' | 'polyRatio' | 'doubleExp+const'

Closed-form function used to fit the empirical data, specified as 'exp', 'exp+const',
'polyRatio', or 'doubleExp+const'. For more information, see “Algorithms” on page 2-90.
Data Types: char | string

Output Arguments
fitber — Fitted BER points
vector

Fitted BER points, returned as a vector. The BER is computed for each Eb/N0 setting specified by the
input empEbNo vector.
Data Types: double

fitprops — Fit properties
structure
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Fit properties, returned as a structure with these fields to describe the properties of the curve fit.

Field Description
fitprops.fitType The closed-form function type used to generate

the fit. Valid values include: 'exp', 'exp
+const', 'polyRatio', or 'doubleExp
+const'.

fitprops.coeffs The coefficients used to generate the fit. If the
function cannot find a valid fit,
fitprops.coeffs is an empty vector.

fitprops.sumSqErr The sum squared error between the log of the
fitted BER points and the log of the empirical
BER points.

fitprops.exitState The exit condition of berfit. Valid values
include:

• 'The curve fit converged to a
solution.'

• 'The maximum number of function
evaluations was exceeded.'

• 'No desirable fit was found.'
fitprops.funcCount The number of function evaluations used in

minimizing the sum squared error function.
fitprops.iterations The number of iterations taken in minimizing the

sum squared error function. This value is not
necessarily equal to the number of function
evaluations.

Data Types: struct

Algorithms
The berfit function fits the BER data using unconstrained nonlinear optimization via the
fminsearch function. This table lists the closed-form functions that berfit considers based on the
value of the fittype input argument. These functions were empirically found to provide close fits in
a wide variety of situations, including exponentially decaying BERs, linearly varying BERs, and BER
curves with error rate floors. In the functional expressions, x is a linear Eb/N0 value (not a dB value),
and f(x) is the estimated BER.

fittype Value Functional Expression
'exp'

f (x) = a1exp
− x− a2

a3

a4

'exp+const'
f (x) = a1exp

−(x− a2)a3

a4
+ a5
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fittype Value Functional Expression
'polyRatio'

f (x) = a1x2 + a2x + a3
x3 + a4x2 + a5x + a6

'doubleExp+const'
a1exp

− x− a2
a3

a4

+ a5exp
− x− a6

a7

a8
+ a9

The sum squared error function that fminsearch attempts to minimize is

F = ∑ [log(empirical BER) − log(fitted BER)]2

The fitted BER points are the values in the output fitber, and the sum is over the Eb/N0 points given
in the input empEbNo. To avoid high-BER regions dominating the objective function, the sum squared
equation uses the log of the BER values rather than the BER values themselves.

Version History
Introduced before R2006a

References
[1] Chapra, Steven C., and Raymond P. Canale. Numerical Methods for Engineers. Fourth Edition.

New York, McGraw-Hill, 2002.

See Also
Apps
Bit Error Rate Analysis

Functions
fminsearch | optimset
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bersync
BER for imperfect synchronization

Syntax
ber = bersync(EbNo,timerr,'timing')
ber = bersync(EbNo,phaserr,'carrier')

Description
The bersync function returns the bit error rate (BER) for uncoded coherent BPSK over an additive
white Gaussian noise (AWGN) channel for imperfect synchronization. For more information, see
“Analytical Expressions Used in bersync Function and Bit Error Rate Analysis App”.

ber = bersync(EbNo,timerr,'timing') returns the BER from uncoded coherent binary phase
shift keying (BPSK) modulation over an additive white Gaussian noise (AWGN) channel at the
specified Eb/N0 with imperfect timing specified by timerr. The normalized timing error is assumed to
have a Gaussian distribution.

ber = bersync(EbNo,phaserr,'carrier') returns the bit error rate (BER) from uncoded BPSK
modulation over an AWGN channel at the specified Eb/N0 with a noisy phase reference specified by
phaserr. The phase error is assumed to have a Gaussian distribution. phaserr is the standard
deviation of the phase error of the reference carrier phase.

Examples

Calculate BER for Imperfect Synchronization

Compute the BER for coherent BPSK modulation over an AWGN channel with imperfect timing. Vary
the ratio of bit energy to noise power spectral density (Eb/N0) and the standard deviation of the
timing error. When timerr assumes the final value of 0, the bersync function produces the same
result as berawgn(EbNo,'psk',2).

EbNo = [4 8 12];
timerr = [0.2 0.07 0];
ber = zeros(length(timerr),length(EbNo));
for ii = 1:length(timerr)
    ber(ii,:) = bersync(EbNo,timerr(ii),'timerr');
end

Display the result using scientific notation.

format short e; ber

ber = 3×3

   5.2073e-02   2.0536e-02   1.1160e-02
   1.8948e-02   7.9757e-04   4.9008e-06
   1.2501e-02   1.9091e-04   9.0060e-09
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Switch back to default notation format.

format;

Input Arguments
EbNo — Ratio of bit energy to noise power spectral density
scalar | vector

Ratio of bit energy to noise power spectral density ( Eb/N0) in dB, specified as a scalar or vector.
Data Types: single | double

timerr — Standard deviation of timing error
scalar in the range [0, 0.5]

Standard deviation of the timing error, specified as a scalar in the range [0, 0.5]. Provide the timing
error normalized to the symbol interval. The normalized timing error is assumed to have a Gaussian
distribution.
Data Types: double | single

phaserr — Standard deviation of phase error
scalar

Standard deviation of the phase error for the reference carrier phase in radians, specified as a scalar.
The phase error is assumed to have a Gaussian distribution.
Data Types: double | single

Output Arguments
ber — BER
scalar | vector

BER for uncoded coherent BPSK modulation over an AWGN channel returned as a scalar or vector
with

• imperfect timing if you specified the timerr input
• a noisy phase reference if you specified the phaserr input

The BER is computed for each Eb/N0 setting specified by the input argument EbNo.

If EbNo is a vector, the output ber is a vector of the same size as input EbNo and its elements
correspond to the different elements of the EbNo vector.
Data Types: double

Limitations
In general, the numerical accuracy for the output BER is limited to approximately two significant
digits. The numerical accuracy output by this function is limited by:

• Approximations in the analysis leading to the closed-form expressions used by the function
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• Approximations related to the numerical implementation of the expressions

Inherent limitations in numerical precision force the function to assume perfect synchronization if the
value of timerr or phaserr is less than the positive distance from the absolute value of the error
value to the next larger in magnitude floating point number as determined by the eps function. This
table indicates how the function behaves under these conditions.

Condition Behavior of bersync Function
timerr < eps bersync(EbNo,timerr,'timing') is equivalent to

berawgn(EbNo,'psk',2) with a timing error less than
eps.

phaserr < eps bersync(EbNo,phaserr,'carrier') is equivalent to
berawgn(EbNo,'psk',2) with a phase error less than
eps.

Algorithms
This function uses formulas from [3].

When the last input is 'timing', the function computes

1
4πσ∫−∞

∞
exp( − ξ2

2σ2 )∫2R(1 − 2 ξ )
∞

exp( − x2

2 )dxdξ + 1
2 2π∫2R

∞
exp( − x2

2 )dx

σ is the timerr input, and R is the value of the EbNo input converted from dB to a linear scale.

When the last input is 'carrier', the function computes

1
πσ∫0 ∞exp( − ϕ2

2σ2 )∫2Rcosϕ
∞

exp( − y2

2 )dydϕ

σ is the phaserr input, and R is the value of the EbNo input converted from dB to a linear scale.

Alternatives
You can configure the Theoretical tab in the Bit Error Rate Analysis app to compute theoretical
BER values instead of using the bersync function.

Version History
Introduced before R2006a

References
[1] Jeruchim, Michel C., Philip Balaban, and K. Sam Shanmugan. Simulation of Communication

Systems. Second edition. Boston, MA: Springer US, 2000.

[2] Sklar, Bernard. Digital Communications: Fundamentals and Applications. 2nd ed. Upper Saddle
River, N.J: Prentice-Hall PTR, 2001.

[3] Stiffler, J. J. Theory of Synchronous Communications. Englewood Cliffs, NJ.: Prentice-Hall, 1971.
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See Also
Apps
Bit Error Rate Analysis

Functions
berawgn | bercoding | berfading

Topics
“Analytical Expressions Used in bersync Function and Bit Error Rate Analysis App”
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bi2de
(Not recommended) Convert Binary to Base-P

Note  is not recommended. Instead, use the bit2int function. For more information, see
“Compatibility Considerations”.

Syntax
d = bi2de(b)
d = bi2de(b,flg)
d = bi2de(b,p)
d = bi2de(b,p,flg)

Description
d = bi2de(b) converts a binary row vector b to a decimal integer.

d = bi2de(b,flg) converts a binary row vector to a decimal integer, where flg determines the
position of the most significant digit.

d = bi2de(b,p) converts a base-p row vector b to a decimal integer.

d = bi2de(b,p,flg) converts a base-p row vector to a decimal integer, where flg determines the
position of the most significant digit.

Examples

Convert Binary to Base-10

This example shows how to convert binary numbers to decimal integers. It highlights the difference
between right- and left- most significant digit positioning.

b1 = [0 1 0 1 1];
b2 = [1 1 1 0];

Convert the two binary arrays to decimal by using the bi2de function. Assign the most significant
digit is the leftmost element. The output of converting b1 corresponds to
0(24) + 1(23) + 0(22) + 1(21) + 1(20) = 11, and b2 corresponds to 1(23) + 1(22) + 1(21) + 0(20) = 14.

d1 = bi2de(b1,'left-msb')

d1 = 11

d2 = bi2de(b2,'left-msb')

d2 = 14

Assign the most significant digit is the rightmost element. The output of converting b1 corresponds to
0(20) + 1(21) + 0(22) + 1(23) + 1(24) = 26, and b2 corresponds to 1(20) + 1(21) + 1(22) + 0(23) = 7.
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d1 = bi2de(b1,'right-msb')

d1 = 26

d2 = bi2de(b2,'right-msb')

d2 = 7

Input Arguments
b — Binary input
row vector | matrix

Binary input, specified as a row vector or matrix of positive integer or logical values.

Note b must represent an integer less than or equal to 252.

Data Types: double | single | logical | integer | fi

flg — MSB flag
'right-msb' (default) | 'left-msb'

MSB flag, specified as 'right-msb' or 'left-msb'.

• 'right-msb' –– Indicates the right (or last) column of the binary input, b, as the most significant
bit (or highest-order digit).

• 'left-msb' –– Indicates the left (or first) column of the binary input, b, as the most significant
bit (or highest-order digit).

Data Types: char | string

p — Base
2 (default) | positive integer scalar

Base of the input b, specified as an integer greater than or equal to 2.
Data Types: double | single

Output Arguments
d — Decimal output
nonnegative integer | vector

Decimal output, returned as an nonnegative integer or row vector. If b is a matrix, each row
represents a base-p number. In this case, the output d is a column vector in which each element is the
decimal representation of the corresponding row of b.

If the input data type is

• An integer data type and the value of d can be contained in the same integer data type as the
input, the output data type uses the same data type as the input. Otherwise, the output data type
is chosen to be big enough to contain the decimal output.
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• double or logical data type, the output data type is double.
• single data type, the output data type is single.

Version History
Introduced before R2006a

bi2de is not recommended. Use bit2int instead.
Not recommended starting in R2021b

Use bit2int instead of bi2de. If converting numbers from a nonbase-2 representation to decimal,
use base2dec.

The code in this table shows binary-to-decimal conversion for various inputs using the recommended
function.

Discouraged Feature Recommended Replacement
% Default (left MSB)
n = randi([1 100]); % Number of integers
bpi = 3;            % Bits per integer
x = randi([0,1],n*bpi,1);
y = bi2de(reshape(x,bpi,[])','left-msb')

% Default (left MSB)
n = randi([1 100]); % Number of integers
bpi = 3;            % Bits per integer
x = randi([0,1],n*bpi,1);
y = bit2int(x,bpi)

% Default row vector (or matrix) input
x = [0 1 1];
bi2de(x)

% Default row vector (or matrix) input
x = [0 1 1];
bit2int(x',length(x),0)'

% Right MSB, logical input
n = randi([1 100]); % Number of integers
bpi = 5;            % Bits per integer
x = logical(randi([0,1],n*bpi,1));
y = bi2de(reshape(x,bpi,[])','right-msb')

% Right MSB, logical input
n = randi([1 100]); % Number of integers
bpi = 5;            % Bits per integer
x = logical(randi([0,1],n*bpi,1));
y = bit2int(x,bpi,false)

% Right MSB, signed input, single input
n = randi([1 100]); % Number of integers
bpi = 8;            % Bits per integer
x = randi([0,1],n*bpi,1,'single');
y = bi2de(reshape(x,bpi,[])','right-msb');
N = 2^bpi;
y = y - (y>=N/2)*N

% Right MSB, signed input, single input
n = randi([1 100]); % Number of integers
bpi = 8;            % Bits per integer
x = randi([0,1],n*bpi,1,'single');
y = bit2int(x,bpi,false);
N = 2^bpi;
y = y - (y>=N/2)*N

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
bit2int | int2bit
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bin2gray
(To be removed) Convert positive integers into corresponding Gray-encoded integers

Note  will be removed in a future release. Instead, use the appropriate modulation object or function
to remap constellation points. For more information, see “Compatibility Considerations”.

Syntax
y = bin2gray(x,modulation,M)
[y,map] = bin2gray(x,modulation,M)

Description
y = bin2gray(x,modulation,M) generates a Gray-encoded vector or matrix output y with the
same dimensions as its input parameter x. x can be a scalar, vector, matrix, or 3-D array.
modulation is the modulation type and must be 'qam', 'pam', 'fsk', 'dpsk', or 'psk'. M is the
modulation order and must be an integer power of 2.

Note If you are converting binary-coded data to Gray-coded data and modulating the result
immediately afterwards, you should use the appropriate modulation object or function with the
'Gray' option, instead of bin2gray.

[y,map] = bin2gray(x,modulation,M) generates a Gray-encoded output y with its respective
Gray-encoded constellation map, map.

You can use map output to label a Gray-encoded constellation. The map output gives the Gray-
encoded labels for the corresponding modulation.

Examples

Binary to Gray Symbol Mapping

This example shows how to use the bin2gray and gray2bin functions to map integer inputs from a
natural binary order symbol mapping to a Gray-coded signal constellation and vice versa, assuming
16-QAM modulation. In addition, a visual representation of the difference between Gray-coded and
binary-coded symbol mappings is shown.

Create a complete vector of 16-QAM integers. Convert the input vector from a natural binary order to
a Gray-encoded vector using bin2gray. Convert Gray to Binary Convert the Gray-encoded symbols,
y, back to a binary ordering using gray2bin. Verify that the original data, x, and the final output
vector, z, are identical.

M = 16;
x = (0:M-1);
[y,mapy] = bin2gray(x,'qam',M);
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z = gray2bin(y,'qam',M);
isequal(x,z)

ans = logical
   1

Show symbol mappings. To create a constellation plot showing the different symbol mappings, use the
qammod function to find the complex symbol values. Plot the constellation symbols and label them
using the Gray (y) and binary (z) output vectors. The binary representation of the Gray-coded
symbols is shown in black and the binary representation of the naturally ordered symbols is shown in
red. Set the axes scaling so that all points are displayed.

sym = qammod(x,M);
scatterplot(sym,1,0,'b*');
for k = 1:16 
    text(real(sym(k))-0.3,imag(sym(k))+0.3,... 
        dec2base(mapy(k),2,4)); 
    text(real(sym(k))-0.3,imag(sym(k))-0.3,... 
        dec2base(z(k),2,4),'Color',[1 0 0]);
end
axis([-4 4 -4 4])

Input Arguments
x — Binary-encoded data
vector | matrix
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Input binary-encoded data, specified as a vector or matrix.
Data Types: double

modulation — Modulation type
'qam' | 'pam' | 'fsk' | 'dpsk' | 'psk'

Modulation type, specified as, 'qam', 'pam', 'fsk', 'dpsk', or 'psk'

M — Modulation order
scalar

Modulation order, specified as an integer power of 2.
Data Types: double

Output Arguments
y — Gray-encoded data
vector | matrix

Gray-encoded data with the same size and dimensions input x.

map — Map of labels
vector

Map output to label a Gray-encoded constellation, specified as a vector with a length the size of the
modulation order, M. The map gives the Gray-encoded labels for the corresponding modulation.

Version History
Introduced before R2006a

bin2gray will be removed
Warns starting in R2021b

The bin2gray function will be removed in a future release. Instead, use the appropriate modulation
object or function to remap constellation points. This table shows the remapping based on modulation
type.

When you use the workflow that is discouraged, the bin2gray and gray2bin functions convert a
binary representation to a natural binary or Gray encoding. After the conversion, you must specify
'bin' for the symbol order when you call the modulation and demodulation functions.

When you use the workflow that is recommended, for any given of modulation scheme, you provide
decimal values when you call the modulation and demodulation functions. When you call the
modulation and demodulation functions, specify the symbol order as 'bin' for natural binary
encoding or 'gray' for Gray encoding.

If your workflow uses bin2gray or gray2bin with any of the modulations schemes in this table,
follow the appropriate example.
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Modulation Discouraged Usage Recommended Replacement
QAM (qammod and qamdemod) x = randi([0 63],1,100);

y = bin2gray(x,'qam',64);
z = qammod(y,64,'bin');

x = 2*(randn(100,1)+1j*randn(100,1));
y = qamdemod(x,64,'bin');
z = gray2bin(y,'qam',64);

x = randi([0 63],1,100);
z = qammod(x,64,'gray');

x = 2*(randn(100,1)+1j*randn(100,1));
z = qamdemod(x,64,'gray')

PAM (pammod and pamdemod) x = randi([0 63],1,100);
y = gray2bin(x,'pam',64);
z = pammod(y,64,pi/4,'bin');

x = 2*(randn(100,1)+1j*randn(100,1));
y = pamdemod(x,64,pi/4,'bin');
z = bin2gray(y,'pam',64);

x = randi([0 63],1,100);
z = pammod(x,64,pi/4,'gray');

x = 2*(randn(100,1)+1j*randn(100,1));
z = pamdemod(x,64,pi/4,'gray')

FSK (fskmod and fskdemod) x = randi([0 63],1,100);
y = gray2bin(x,'fsk',64);
z = fskmod(y,64,1,256,256,'cont','bin')

x = 2*(randn(512,1)+1j*randn(512,1));
y = fskdemod(x,64,1,256,256,'bin');
z = bin2gray(y,'fsk',64)

x = randi([0 63],1,100);
z = fskmod(x,64,1,256,256,'cont','gray')

x = 2*(randn(512,1)+1j*randn(512,1));
z = fskdemod(x,64,1,256,256,'gray');

DPSK (dpskmod and dpskdemod) x = randi([0 63],1,100);
y = gray2bin(x,'dpsk',64);
z = dpskmod(y,64,pi/4,'bin');

x = 2*(randn(100,1)+1j*randn(100,1));
y = dpskdemod(x,64,pi/4,'bin');
z = bin2gray(y,'dpsk',64);

x = randi([0 63],1,100);
z = dpskmod(x,64,pi/4,'gray');

x = 2*(randn(100,1)+1j*randn(100,1));
z = dpskdemod(x,64,pi/4,'gray');

PSK (pskmod and pskdemod) x = randi([0 63],1,100);
y = gray2bin(x,'psk',64);
z = pskmod(y,64,0,'bin');

x = 2*(randn(100,1)+1j*randn(100,1));
y = pskdemod(x,64,0,'bin');
z = bin2gray(y,'psk',64);

x = randi([0 63],1,100);
z = pskmod(x,64,0,'gray');

x = 2*(randn(100,1)+1j*randn(100,1));
z = pskdemod(x,64,0,'gray');

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
dpskmod | fskmod | pammod | pskmod | qammod

Topics
Gray Encoding a Modulated Signal
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bit2int
Convert bits to integers

Syntax
Y = bit2int(X,n)
Y = bit2int(X,n,msbfirst)

Description
Y = bit2int(X,n) converts n column-wise bit elements in X to integer values, with the first bit as
the most significant bit (MSB).

Y = bit2int(X,n,msbfirst) indicates whether the first bit in each set of n column-wise bits from
X is the MSB or the least significant bit (LSB).

Examples

Convert Vector of Bits to Integers

Specify a column vector of bits.

X = [1 0 1 0 1 0 1 0]';

Specify for four column-wise bit elements of the input vector to be converted to integer values. Then,
convert the bits to integers.

n = 4;
Y = bit2int(X,n)

Y = 2×1

    10
    10

Convert Matrix of Bits to Integers

Specify a matrix of bits.

X = int8([1 1 0; 0 1 1]')

X = 3x2 int8 matrix

   1   0
   1   1
   0   1
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Specify that the first bit in each set of three column-wise bit elements is the LSB. Then, convert the
bits to integers.

n = 3;
msbfirst = false;
Y = bit2int(X,n,msbfirst)

Y = 1x2 int8 row vector

   3   6

Convert Array of Bits to Integers

Specify an array of bits.

X = randi([0,1],8,2,2,'uint8') 

X = 8x2x2 uint8 array
X(:,:,1) =

   1   1
   1   1
   0   0
   1   1
   1   1
   0   0
   0   1
   1   0

X(:,:,2) =

   0   1
   1   1
   1   1
   1   0
   1   1
   0   0
   1   1
   1   0

Specify that the first bit in each set of four column-wise bit elements is the MSB. Then, convert the
bits to integers.

n = 4;
msbfirst = true;
Y = bit2int(X,n,msbfirst)

Y = 2x2x2 uint8 array
Y(:,:,1) =

   13   13
    9   10
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Y(:,:,2) =

    7   14
   11   10

Input Arguments
X — Bits
column vector | matrix | 3-D array

Bits, specified as a column vector, matrix, or 3-D array of numeric or logical 0s and 1s.
Example: [1 0 1 0 1 0 1 0]' specifies an input column vector of size 8-by-1.

Note The number of rows in X must be a multiple of input n.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

n — Number of bits to be converted
positive integer

Number of bits to be converted to integers, specified as a positive integer.
Data Types: double

msbfirst — Specification of MSB first
true or 1 | false or 0

Specification of MSB first, specified as a numeric or logical 1 (true) or 0 (false).

• true –– For each set of n column-wise bits in X, the first bit is the MSB.
• false –– For each set of n column-wise bits in X, the first bit is the LSB.

Data Types: logical

Output Arguments
Y — Integer representation of input bits
scalar | column vector | matrix | 3-D array

Integer representation of input bits, returned as a scalar, column vector, matrix, or 3-D array. The
function returns the integer-equivalent value for each set of n column-wise bits in X. Output Y has
same dimensions as input X except that the number of rows in Y is n times less than the number of
rows in X.

The data type of Y depends on the data type of X.

• If X is of data type double or logical, then Y is of data type double.
• If X is of data type single, then Y is of data type single.
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• If X is an integer data type and the value of Y can be contained in the same integer data type, then
Y is of the same data type and signedness as X. If the value of Y cannot be contained in the same
integer data type as X, then the function sets the data type of Y to an integer data type that is big
enough to contain its value.

Version History
Introduced in R2021b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• For code generation, when input X is an integer data type, the input n must be compile-time
constant. For example, use coder.Constant(n).

See Also
Functions
int2bit | base2dec

Blocks
Bit to Integer Converter
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biterr
Number of bit errors and bit error rate (BER)

Syntax
[number,ratio] = biterr(x,y)
[number,ratio] = biterr(x,y,k)
[number,ratio] = biterr(x,y,k,flag)
[number,ratio,individual] = biterr( ___ )

Description
[number,ratio] = biterr(x,y) compares the unsigned binary representation of elements in x
to those in y. The function returns number, the number of bits that differ in the comparison, and
ratio, the ratio of number to the total number of bits. The function determines the order in which it
compares x and y based on their sizes. For more information, see the Algorithms on page 2-111
section.

[number,ratio] = biterr(x,y,k) also specifies k, the maximum number of bits for each
element in x and y. If the unsigned binary representation of any element in x or y is more than k
digits, the function errors.

[number,ratio] = biterr(x,y,k,flag) specifies a flag to override default settings for how
the function compares the elements and computes the outputs. For more information, see the
Algorithms on page 2-112 section.

[number,ratio,individual] = biterr( ___ ) returns the binary comparison result of x and y
as matrix individual. You can specify any of the input argument combination from the previous
syntaxes.

Examples

Bit Error Rate Computation

Create two binary matrices.

x = [0 0; 0 0; 0 0; 0 0]

x = 4×2

     0     0
     0     0
     0     0
     0     0

y = [0 0; 0 0; 0 0; 1 1]

y = 4×2
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     0     0
     0     0
     0     0
     1     1

Determine the number of bit errors.

numerrs = biterr(x,y)

numerrs = 2

Compute the number of column-wise errors.

numerrs = biterr(x,y,[],'column-wise')

numerrs = 1×2

     1     1

Compute the number of row-wise errors.

numerrs = biterr(x,y,[],'row-wise')

numerrs = 4×1

     0
     0
     0
     2

Compute the number of overall errors. Behavior is the same as the default behavior.

numerrs = biterr(x,y,[],'overall')

numerrs = 2

Estimate Bit Error Rate for 64-QAM in AWGN

Demodulate a noisy 64-QAM signal and estimate the bit error rate (BER) for a range of Eb/No values.
Compare the BER estimate to theoretical values.

Set the simulation parameters.

M = 64;                 % Modulation order
k = log2(M);            % Bits per symbol
EbNoVec = (5:15)';      % Eb/No values (dB)
numSymPerFrame = 100;   % Number of QAM symbols per frame

Initialize the results vector.

berEst = zeros(size(EbNoVec));

The main processing loop executes these steps.
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• Generate binary data and convert to 64-ary symbols.
• QAM-modulate the data symbols.
• Pass the modulated signal through an AWGN channel.
• Demodulate the received signal.
• Convert the demodulated symbols into binary data.
• Calculate the number of bit errors.

The while loop continues to process data until either 200 errors are encountered or 1e7 bits are
transmitted.

for n = 1:length(EbNoVec)
    % Convert Eb/No to SNR
    snrdB = EbNoVec(n) + 10*log10(k);
    % Reset the error and bit counters
    numErrs = 0;
    numBits = 0;
    
    while numErrs < 200 && numBits < 1e7
        % Generate binary data and convert to symbols
        dataIn = randi([0 1],numSymPerFrame,k);
        dataSym = bi2de(dataIn);
        
        % QAM modulate using 'Gray' symbol mapping
        txSig = qammod(dataSym,M);
        
        % Pass through AWGN channel
        rxSig = awgn(txSig,snrdB,'measured');
        
        % Demodulate the noisy signal
        rxSym = qamdemod(rxSig,M);
        % Convert received symbols to bits
        dataOut = de2bi(rxSym,k);
        
        % Calculate the number of bit errors
        nErrors = biterr(dataIn,dataOut);
        
        % Increment the error and bit counters
        numErrs = numErrs + nErrors;
        numBits = numBits + numSymPerFrame*k;
    end
    
    % Estimate the BER
    berEst(n) = numErrs/numBits;
end

Determine the theoretical BER curve by using the berawgn function.

berTheory = berawgn(EbNoVec,'qam',M);

Plot the estimated and theoretical BER data. The estimated BER data points are well aligned with the
theoretical curve.

semilogy(EbNoVec,berEst,'*')
hold on
semilogy(EbNoVec,berTheory)
grid
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legend('Estimated BER','Theoretical BER')
xlabel('Eb/No (dB)')
ylabel('Bit Error Rate')

Input Arguments
x,y — Inputs to be compared (as separate arguments)
vector | matrix

Inputs to be compared, specified as separate arguments, as a vector or matrix of nonnegative integer
elements. The function converts each element of x and y to its unsigned binary representation for
comparison.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

k — Maximum number of bits for input elements
positive integer

Maximum number of bits for input elements of x and y, specified as a positive integer. If the number
of bits required for binary representation of any element in x or y is greater than k, the function
errors.

If you do not set k, the function sets it as the number of bits in the binary representation of the
largest element in x and y.
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Data Types: single | double

flag — Flag to override default settings
'overall' | 'row-wise' | 'column-wise'

Flag to override default settings of the function, specified as 'overall', 'row-wise', or 'column-
wise'. Flag specifies how the function compares elements in inputs x,y and computes the output.
For more information, see the Algorithms on page 2-112 section.
Data Types: string | char

Output Arguments
number — Number of bit errors
nonnegative integer | integer vector

Number of bit errors, returned as a nonnegative integer or integer vector.
Data Types: single | double

ratio — Bit error rate
scalar

Bit error rate, returned as a scalar. ratio is the number of bit errors, number, to the total number of
bits used in the binary representation. The total number of bits is k times the number of entries in the
smaller of the inputs x,y.

individual — Results of each individual binary comparison
matrix

Results of each individual binary comparison, returned as a matrix whose dimensions are those of the
larger of inputs x and y. Each element specifies the number of bits by which the elements in the pair
differ. For more information, see the Algorithms on page 2-112 section.
Data Types: single | double

Algorithms
Comparing Inputs Based on Sizes

The function uses the sizes of x and y to determine the order in which it compares their elements.

• If inputs are matrices of the same dimensions, then the function compares the inputs element by
element. number is a nonnegative integer in this case. For example, see case (a) in the figure.

• If one input is a matrix and the other input is a column vector, then the function compares each
column of the matrix element by element with the column vector. The number of rows in the
matrix must be equal to the length of the column vector. In other words, if the matrix has
dimensions m-by-n, then the column vector must have dimensions m-by-1. For example, see case
(b) in the figure.

• If one input is a matrix and the other input is a row vector, then the function compares each row of
the matrix element by element with the row vector. The number of columns in the matrix must be
equal to the length of the row vector. In other words, if the matrix has dimensions m-by-n, then the
row vector must have dimensions 1-by-n. For example, see case (c) in the figure.
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Comparing Inputs Based on Flag

This table describes how the output is computed based on the different values of flag. x is
considered as a matrix in this table and the size of y is varied.

Size of y flag Value Type of
Comparison

number Value Total Number of
Bits

Matrix 'overall' (default) Element by element Total number of
bit errors

k times the
number of
elements in y

'row-wise' mth row of x to mth
row of y

Column vector
whose elements
represent the
bit errors in
each row

k times the
number of
elements in y

'column-wise' mth column of x to
mth column of y

Row vector
whose elements
represent the
bit errors in
each column

k times the
number of
elements in y

Row vector 'overall' y to each row of x Total number of
bit errors

k times the
number of
elements of x

'row-wise'(default) y to each row of x Column vector
whose elements
represent the
bit errors in
each row of x

k times the size of
y

Column vector 'overall' y to each column of
x

Total number of
bit errors

k times the
number of
elements of x

'column-wise'
(default)

y to each column of
x

Row vector
whose elements
represent bit
errors in each
column of x

k times the size of
y
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Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
alignsignals | finddelay | symerr
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bsc
Binary symmetric channel

Syntax
ndata = bsc(data,probability)
ndata = bsc(data,probability,streamhandle)
ndata = bsc(data,probability,seed)
[ndata,err] = bsc( ___ )

Description
ndata = bsc(data,probability) passes the binary input signal data through a binary
symmetric channel having the specified error probability. The channel introduces a bit error and
processes each element of the input data independently. data must be an array of binary numbers
or a Galois array in GF(2). probability must be a scalar from 0 to 1.

ndata = bsc(data,probability,streamhandle) accepts a random stream handle to generate
uniform noise samples by using rand. Providing a random stream handle or using the reset
(RandStream) function on the default random stream object enables you to generate repeatable
noise samples. For more information, see RandStream.

ndata = bsc(data,probability,seed) accepts a seed value, for initializing the uniform random
number generator, rand. If you want to generate repeatable noise samples, then either reset the
random stream input before calling bsc or use the same seed input.

[ndata,err] = bsc( ___ ) returns an array containing the channel errors, using any of the
preceding syntaxes.

Examples
Add Bit Errors to Bit Stream

Using the bsc function, introduce bit errors in the bits in a random matrix with probability 0.15.

z = randi([0 1],100,100); % Random matrix
nz = bsc(z,.15); % Binary symmetric channel
[numerrs, pcterrs] = biterr(z,nz) % Number and percentage of errors

numerrs = 1509

pcterrs = 0.1509

The output below is typical. For relatively small sets of data, the percentage of bit errors is not
exactly 15% in most trials. If the size of the matrix z is large, the bit error percentage will be closer
to the exact probability you specify.
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Check for Errors After Decoding

Using the bsc function, introduce bit errors in the bits in a random matrix with probability 0.01. Use
Viterbi decoder to decode message data.

Define trellis for Viterbi decoder. Generate and encode message data.

trel = poly2trellis([4 3],[4 5 17;7 4 2]);
msg = ones(10000,1);

Create objects for convolutional encoder, Viterbi decoder, and error rate calculator.

hEnc = comm.ConvolutionalEncoder(trel);
hVitDec = comm.ViterbiDecoder(trel, 'InputFormat','hard', 'TracebackDepth',...
    2, 'TerminationMethod', 'Truncated');
hErrorCalc = comm.ErrorRate;

Encode the message data. Introduce bit errors. Display the total number of errors.

code = hEnc(msg);
[ncode,err] = bsc(code,.01);
numchanerrs = sum(sum(err))

numchanerrs = 158

Decode the data and check the number of errors after decoding.

dcode = hVitDec(ncode);
berVec = hErrorCalc(msg, dcode);
ber = berVec(1)

ber = 0.0049

numsyserrs = berVec(2)

numsyserrs = 49

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Code generation supported, except for syntaxes that include a RandStream object.

See Also
Functions
rand | awgn | gf | RandStream
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Topics
“Design a Rate 2/3 Feedforward Encoder Using Simulink”
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cdma2000ForwardReferenceChannels
Define cdma2000 forward reference channel

Syntax
cfg = cdma2000ForwardReferenceChannels(wv)
cfg = cdma2000ForwardReferenceChannels(wv,numchips)
cfg = cdma2000ForwardReferenceChannels(BSTM-RC,numchips,P,M)
cfg = cdma2000ForwardReferenceChannels(traffic,numchips,F-SCH-SPEC)

Description
cfg = cdma2000ForwardReferenceChannels(wv) returns a structure, cfg, that defines the
cdma2000® forward link parameters given the input waveform identifier, wv. To generate a forward
link reference channel waveform, pass this structure to the cdma2000ForwardWaveformGenerator
function.

For all syntaxes, cdma2000ForwardReferenceChannels creates a configuration structure that is
compliant with the cdma2000 physical layer specification [1].

cfg = cdma2000ForwardReferenceChannels(wv,numchips) specifies the number of chips to
generate.

cfg = cdma2000ForwardReferenceChannels(BSTM-RC,numchips,P,M) returns the data
structure for the BSTM-RC waveform identifiers, given the total traffic channel power, P, and the
number of traffic channels, M. For more information on base station testing, see Table 6.5.2-1 of [2].

cfg = cdma2000ForwardReferenceChannels(traffic,numchips,F-SCH-SPEC) returns the
data structure for the specified traffic channel, traffic, and the forward supplemental channel (F-
SCH) and frame length combination, F-SCH-SPEC. If omitted, F-SCH-SPEC has a default value of the
lowest F-SCH data rate allowable for a 20 ms frame length, given the radio configuration specified by
traffic.

Examples

Generate Waveform for RC2 Forward Traffic Channels

Create a parameter structure, config, for all forward traffic channels (F-FCH and F-SCCH) that are
supported by radio configuration 2.

config = cdma2000ForwardReferenceChannels('ALL-RC2')

config = struct with fields:
          SpreadingRate: 'SR1'
              Diversity: 'NTD'
                    QOF: 'QOF1'
               PNOffset: 0
          LongCodeState: 0
     PowerNormalization: 'Off'
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      OversamplingRatio: 4
             FilterType: 'cdma2000Long'
                InvertQ: 'Off'
       EnableModulation: 'Off'
    ModulationFrequency: 0
               NumChips: 1000
                  FPICH: [1x1 struct]
                 FAPICH: [1x1 struct]
                FTDPICH: [1x1 struct]
               FATDPICH: [1x1 struct]
                   FPCH: [1x1 struct]
                  FSYNC: [1x1 struct]
                  FBCCH: [1x1 struct]
                  FCACH: [1x1 struct]
                  FCCCH: [1x1 struct]
                 FCPCCH: [1x1 struct]
                  FQPCH: [1x1 struct]
                   FFCH: [1x1 struct]
                  FOCNS: [1x1 struct]
                  FSCCH: [1x1 struct]

Examine the fields for the Forward Fundamental Channel (F-FCH). The data rate is 14,400 bps and
the frame length is 20 ms.

config.FFCH

ans = struct with fields:
                Enable: 'On'
                 Power: 0
    RadioConfiguration: 'RC2'
              DataRate: 14400
           FrameLength: 20
          LongCodeMask: 0
          EnableCoding: 'On'
            DataSource: {'PN9'  [1]}
             WalshCode: 7
             EnableQOF: 'Off'
    PowerControlEnable: 'Off'

Generate the complex waveform using the corresponding waveform generator function.

waveform = cdma2000ForwardWaveformGenerator(config);

A waveform composed of the channels specified by each substructure of config is generated by
cdma2000ForwardWaveformGenerator.

Generate CDMA200 Waveform Containing Sync Channel Message

Create a reference channel, specify the sync channel message as the data source, add the
SyncMessage structure to the FSYNC substructure. Generate the waveform using this reference
channel configuration.

Create a reference channel for testing a base station using radio configuration 3.
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config = cdma2000ForwardReferenceChannels('BSTM-RC3');

Adjust the Forward Sync Channel (F-SYNC) settings. Set a relative channel power of 0.0 dB and
specify the sync channel message as the data source.

config.FSYNC.Power = 0.0;
config.FSYNC.DataSource = 'SyncMessage';

Define the sync channel message structure (for P_REV = 6 (IS-2000-0)) and add it to the
config.FSYNC substructure. Display the FSYNC structure.

sm = struct();
sm.P_REV = 6;                          % Protocol revision field
sm.MIN_P_REV = 6;                      % Minimum protocol revision field
sm.SID = hex2dec('14B');               % System identifier field
sm.NID = 1;                            % Network identification field
sm.PILOT_PN = 0;                       % Pilot PN offset field
sm.LC_STATE = hex2dec('20000000000');  % Long code state field
sm.SYS_TIME = hex2dec('36AE0924C');    % System time field
sm.LP_SEC = 0;                         % Leap second field
sm.LTM_OFF = 0;                        % Local time offset field
sm.DAYLT = 0;                          % Daylight saving time indicator field
sm.PRAT = 0;                           % Paging channel data rate field
sm.CDMA_FREQ = hex2dec('2F6');         % CDMA frequency field
sm.EXT_CDMA_FREQ = hex2dec('2F6');     % Extended CDMA frequency field

config.FSYNC.SyncMessage = sm;

config.FSYNC

ans = struct with fields:
          Enable: 'On'
           Power: 0
    EnableCoding: 'On'
      DataSource: 'SyncMessage'
     SyncMessage: [1x1 struct]

Generate the forward link waveform.

waveform = cdma2000ForwardWaveformGenerator(config);

Generate F-CCCH Waveform

Create a structure for a 2000-chip forward common control channel (F-CCCH). Specify a 38,400 bps
data rate, a 5 ms frame length, and an accompanying broadcast control channel (F-BCCH) with a
9600 bps data rate.

config   = cdma2000ForwardReferenceChannels('CONTROL-38400-5-9600',2000)

config = struct with fields:
          SpreadingRate: 'SR1'
              Diversity: 'NTD'
                    QOF: 'QOF1'
               PNOffset: 0
          LongCodeState: 0
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     PowerNormalization: 'Off'
      OversamplingRatio: 4
             FilterType: 'cdma2000Long'
                InvertQ: 'Off'
       EnableModulation: 'Off'
    ModulationFrequency: 0
               NumChips: 2000
                  FPICH: [1x1 struct]
                   FPCH: [1x1 struct]
                  FCCCH: [1x1 struct]
                  FBCCH: [1x1 struct]

Verify that the F-CCCH and F-BCCH data rates are 38,400 bps and 9600 bps, respectively.

config.FCCCH.DataRate

ans = 38400

config.FBCCH.DataRate

ans = 9600

Generate the forward link waveform.

waveform = cdma2000ForwardWaveformGenerator(config);

Generate Waveform for Base Station Testing

Create a reference channel for testing a base station using radio configuration 3. Specify the number
of chips, the total power allocated to the individual channels, and the number of traffic channels. The
FFCH substructure is a structure array whose dimensions are set by the number of traffic channels.

config = cdma2000ForwardReferenceChannels('BSTM-RC3',1000,-3,4)

config = struct with fields:
          SpreadingRate: 'SR1'
              Diversity: 'NTD'
                    QOF: 'QOF1'
               PNOffset: 0
          LongCodeState: 0
     PowerNormalization: 'Off'
      OversamplingRatio: 4
             FilterType: 'cdma2000Long'
                InvertQ: 'Off'
       EnableModulation: 'Off'
    ModulationFrequency: 0
               NumChips: 1000
                  FPICH: [1x1 struct]
                  FSYNC: [1x1 struct]
                   FPCH: [1x1 struct]
                   FFCH: [1x4 struct]

Verify that the length of the FFCH substructure corresponds to the number of specified traffic
channels, 4.
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length(config.FFCH)

ans = 4

Generate the forward link waveform.

waveform = cdma2000ForwardWaveformGenerator(config);

Generate F-SCH Waveform

Create a traffic channel using radio configuration 7 composed of a 614,400 bps forward supplemental
channel (F-SCH) having a 20 ms frame length. Set the number of chips to 5000.

config = cdma2000ForwardReferenceChannels('TRAFFIC-RC7-4800', ...
    5000,'F-SCH-614400-20')

config = struct with fields:
          SpreadingRate: 'SR3'
              Diversity: 'NTD'
                    QOF: 'QOF1'
               PNOffset: 0
          LongCodeState: 0
     PowerNormalization: 'Off'
      OversamplingRatio: 4
             FilterType: 'cdma2000Long'
                InvertQ: 'Off'
       EnableModulation: 'Off'
    ModulationFrequency: 0
               NumChips: 5000
                  FPICH: [1x1 struct]
                   FFCH: [1x1 struct]
                   FSCH: [1x1 struct]

This channel uses spreading rate 3, 'SR3', which has a 3.75 MHz bandwidth.

Generate the forward link waveform.

waveform = cdma2000ForwardWaveformGenerator(config);

Input Arguments
wv — Waveform identification
character vector

Waveform identification of the reference channel, specified as a character vector. The input typically
identifies the channel type, radio configuration, data rate, and frame length. To specify wv, connect
the substrings with hyphens, for example, 'CONTROL-19200-10-4800'.
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Parameter
Field

Values Description
Substring 1 Substring 2 Substring 3 Substring 4

wv 'FPICH-ONLY'    Generates a
waveform
containing a
pilot channel
only.

'CONTROL' 9600 20 4800 | 9600 |
19200

Character
vector
representing
the forward
common control
channel (F-
CCCH) data
rate in bps, the
frame length in
ms, and the
forward
broadcast
control channel
(F-BCCH) data
rate in bps.
Specify
'CONTROL-960
0-20-9600' to
create a
structure
variable, wv,
with a 9600 bps
F-CCCH data
rate, a 20 ms
frame length,
and a 9600 bps
F-BCCH data
rate.

19200 10 | 20
38400 5 | 10 | 20

'TRAFFIC' RC1 1200 | 2400 |
4800 | 9600

N/A Character
vector
representing
the radio
configuration
and the forward
fundamental
channel (F-
FCH) data rate
in bps. Specify
'TRAFFIC-
RC9-14400' to
create a
channel with
radio

RC2 | RC5 | RC8
| RC9

1800 | 3600 |
7200 | 14400
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Parameter
Field

Values Description
Substring 1 Substring 2 Substring 3 Substring 4

RC3 | RC4 | RC6
| RC7

1500 | 2700 |
4800 | 9600

configuration 9
having a 14400
bps F-FCH data
rate.

'BSTM' RC1 | RC2 | RC3
| RC4 | RC5 |
RC6 | RC7 | RC8
| RC9

N/A N/A Models for
testing the base
station
transmitter.
Specify 'BSTM-
RC1' to create
a structure for
base station
testing with
radio
configuration 1.

'ALL' RC1 | RC2 | RC3
| RC4 | RC5 |
RC6 | RC7 | RC8
| RC9

N/A N/A Returns all
channels that
are supported
for the specified
radio
configuration.
Specify 'ALL-
RC4' to create
a structure
containing all
traffic channels
for radio
configuration 4.

Example: 'CONTROL-9600-20-9600'
Example: 'TRAFFIC-RC9-7200'
Example: 'ALL-RC5'
Data Types: char

numchips — Number of chips
1000 (default) | positive integer scalar

Number of chips, specified as a positive integer.
Example: 1024
Data Types: double

BSTM-RC — BSTM reference channel type
'BSTM-RC1' | 'BSTM-RC2' | 'BSTM-RC3' | 'BSTM-RC4' | 'BSTM-RC5' | 'BSTM-RC6' | 'BSTM-
RC7' | 'BSTM-RC8' | 'BSTM-RC9'

BSTM reference channel type, specified as a character vector. For more information, see Table 6.5.2-1
of [2].
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Example: 'BSTM-RC8'
Data Types: char

P — Power budget allocated to traffic channels
0 (default) | real scalar

Power budget allocated to all traffic channels, specified in decibels as a real scalar.
Example: 5
Data Types: double

M — Number of traffic channels
6 (default) | positive integer scalar

Number of traffic channels, specified as a positive integer.
Example: 8
Data Types: double

traffic — Traffic configuration
character vector

Traffic channel configuration, specified as a character vector. The table shows the supported traffic
channel configurations.

Radio
Configuration

Traffic Channel Configuration

1 'TRAFFIC-
RC1-1200'

'TRAFFIC-
RC1-2400'

'TRAFFIC-
RC1-4800'

'TRAFFIC-
RC1-9600'

2 'TRAFFIC-
RC2-1800'

'TRAFFIC-
RC2-3600'

'TRAFFIC-
RC2-7200'

'TRAFFIC-
RC2-14400'

3 'TRAFFIC-
RC3-1500'

'TRAFFIC-
RC3-2700'

'TRAFFIC-
RC3-4800'

'TRAFFIC-
RC3-9600'

4 'TRAFFIC-
RC4-1500'

'TRAFFIC-
RC4-2700'

'TRAFFIC-
RC4-4800'

'TRAFFIC-
RC4-9600'

5 'TRAFFIC-
RC5-1800'

'TRAFFIC-
RC5-3600'

'TRAFFIC-
RC5-7200'

'TRAFFIC-
RC5-14400'

6 'TRAFFIC-
RC6-1500'

'TRAFFIC-
RC6-2700'

'TRAFFIC-
RC6-4800'

'TRAFFIC-
RC6-9600'

7 'TRAFFIC-
RC7-1500'

'TRAFFIC-
RC7-2700'

'TRAFFIC-
RC7-4800'

'TRAFFIC-
RC7-9600'

8 'TRAFFIC-
RC8-1800'

'TRAFFIC-
RC8-3600'

'TRAFFIC-
RC8-7200'

'TRAFFIC-
RC8-14400'

9 'TRAFFIC-
RC9-1800'

'TRAFFIC-
RC9-3600'

'TRAFFIC-
RC9-7200'

'TRAFFIC-
RC9-14400'

Example: 'TRAFFIC-RC6-4800' is a traffic channel that uses radio configuration 6 with a 4800 bps
data rate.
Data Types: char
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F-SCH-SPEC — Forward supplemental channel data rate and frame length
character vector

Forward supplemental channel data rate and frame length, specified as a character vector. The
supported data rate and frame length combinations are summarized in the table.

Radio Configuration Frame Length
20 ms 40 ms 80 ms

3 | 4 | 6 | 7 'F-SCH-1500-20' |
'F-SCH-2700-20' |
'F-SCH-4800-20' |
'F-SCH-9600-20' |
'F-SCH-19200-20' |
'F-SCH-38400-20' |
'F-SCH-76800-20' |
'F-SCH-153600-20'

'F-SCH-1350-40' |
'F-SCH-2400-40' |
'F-SCH-4800-40' |
'F-SCH-9600-40' |
'F-SCH-19200-40' |
'F-SCH-38400-40' |
'F-SCH-76800-40'

'F-SCH-1200-80' |
'F-SCH-2400-80' |
'F-SCH-4800-80' |
'F-SCH-9600-80' |
'F-SCH-19200-80' |
'F-SCH-38400-80'

4 | 6 | 7 'F-SCH-307200-20' 'F-SCH-153600-40' 'F-SCH-76800-80'
7 'F-SCH-614400-20' 'F-SCH-307200-40' 'F-SCH-153600-80'
5 | 8 | 9 'F-SCH-1800-20' |

'F-SCH-3600-20' |
'F-SCH-7200-20' |
'F-SCH-14400-20' |
'F-SCH-28800-20' |
'F-SCH-57600-20' |
'F-SCH-115200-20' |
'F-SCH-230400-20'

'F-SCH-1800-40' |
'F-SCH-3600-40' |
'F-SCH-7200-40' |
'F-SCH-14400-40' |
'F-SCH-28800-40' |
'F-SCH-57600-40' |
'F-SCH-115200-40'

'F-SCH-1800-80' |
'F-SCH-3600-80' |
'F-SCH-7200-80' |
'F-SCH-14400-80' |
'F-SCH-28800-80' |
'F-SCH-57600-80'

8 | 9 'F-SCH-460800-20' 'F-SCH-230400-40' 'F-SCH-115200-80'
9 'F-SCH-1036800-20' 'F-SCH-518400-40' 'F-SCH-259200-80'

For more data rate information for the cdma2000 forward links, see tables 3.1.3.1.3-2 and 3.1.3.1.3-4
of [1].
Example: 'F-SCH-460800-20' is a supplemental channel with a 460,800 bps data rate and a 20 ms
frame length.
Data Types: char

Output Arguments
cfg — Configuration of the parameters and channels used by the waveform generator
structure

Configuration of the parameters and channels used by the waveform generator. The configuration
structure is defined in these tables.
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Top-Level Parameters and Substructures

Parameter Field Values Description
SpreadingRate 'SR1' | 'SR3' Spreading rate of the waveform. SR1

corresponds to a 1.2288 Mcps carrier. SR3
corresponds to a 3.6864 Mcps carrier.

SR3 supports direct sequence spreading only.
Diversity 'NTD' | 'OTD' | 'STS' Transmit diversity type (applicable only for SR1),

where NTD is no transmit diversity, OTD is
orthogonal transmit diversity, and STS is space
time spreading

QOF 'QOF1' | 'QOF2' | 'QOF3' Quasi-orthogonal function type
PNOffset Nonnegative scalar integer PN offset of the base station
LongCodeState Positive scalar integer Initial long code state
PowerNormalization 'Off' | 'NormalizeTo0dB' |

'NoiseFillTo0dB'
Power normalization of the waveform

NumChips Positive scalar integer Number of chips in the waveform
FilterType 'cdma2000Long' |

'cdma2000Short' | 'Off' |
'Custom'

Type of output filtering

CustomFilterCoeffici
ents

Real vector Custom filter coefficients, used only when the
FilterType field is set to 'Custom'

OversamplingRatio Positive scalar integer Oversampling ratio at output
InvertQ 'Off' | 'On' Negate the quadrature output
EnableModulation 'Off' | 'On' Enable carrier modulation
ModulationFrequency Nonnegative scalar integer Carrier modulation frequency (applies when

EnableModulation is 'On')
FPICH Structure See FPICH Substructure. Optional.
FAPICH Structure See FAPICH Substructure. Optional.
FTDPICH Structure See FTDPICH Substructure. Optional.
FATDPICH Structure See FATDPICH Substructure. Optional.
FSYNC Structure See FSYNC Substructure. Optional.
FPCH Structure See FPCH Substructure. Optional.
FCCCH Structure See FCCCH Substructure. Optional.
FCACH Structure See FCACH Substructure. Optional.
FQPCH Structure See FQPCH Substructure. Optional.
FCPCCH Structure See FCPCCH Substructure. Optional.
FBCCH Structure See FBCCH Substructure. Optional.
FFCH Structure See FFCH Substructure. Optional.
FDCCH Structure See FDCCH Substructure. Optional.
FSCCH Structure See FSCCH Substructure. Optional.

2 Functions

2-126



Parameter Field Values Description
FSCH Structure See FSCH Substructure. Optional.
FOCNS Structure See FOCNS Substructure. Optional.

FPICH Substructure

Include the FPICH substructure in the cfg structure to configure the forward pilot channel (F-PICH).
The FPICH substructure contains these fields.

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)

FAPICH Substructure

Include the FAPICH substructure in the cfg structure to configure the forward auxiliary pilot channel
(F-APICH). The FAPICH substructure contains these fields.

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)
WalshLength 64 | 128 | 256 | 512 Walsh code length
WalshCode Nonnegative integer scalar,

such that 0 ≤ WalshCode ≤
WalshLength – 1

Walsh code number

LongCodeMask Positive scalar integer Long code identifier

FTDPICH Substructure

Include the FTDPICH substructure in the cfg structure to configure the forward transmit diversity
pilot Channel (F-TDPICH). The FTDPICH substructure contains these fields.

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)

FATDPICH

Include the FATDPICH substructure in the cfg structure to configure the forward auxiliary transmit
diversity pilot channel (F-ATDPICH). The FATDPICH substructure contains these fields.

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)
WalshLength 64 | 128 | 256, 512 Walsh code length
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Parameter Field Values Description
WalshCode Nonnegative integer scalar,

such that 0 ≤ WalshCode ≤
WalshLength – 1

Walsh code number

LongCodeMask Positive scalar integer Long code identifier

FSYNC Substructure

Include the FSYNC substructure in the cfg structure to configure the forward sync channel (F-SYNC).
The FSYNC substructure contains these fields.

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)
EnableCoding 'On' | 'Off' Enable or disable channel coding
DataSource Cell array: {'PN Type', RN

Seed}, binary vector, or
'SyncMessage'.

Standard PN types are
'PN9', 'PN15', 'PN23',
'PN9-ITU', and 'PN11'.

Data source. Specify a standard PN sequence
with a random number seed, a binary vector,
or a 'SyncMessage' character vector.

SyncMessage Structure See SyncMessage Substructure. Optional.

SyncMessage Substructure

If the DataSource field of the FSYNC substructure is set to 'SyncMessage', add the SyncMessage
substructure to the cfg.FSYNC substructure to configure the sync channel message. The
SyncMessage substructure contains these fields.

Parameter Field Typical Value Description
P_REV 6 Protocol revision
MIN_P_REV 6 Minimum protocol revision
SID hex2dec('14B') System identifier
NID 1 Network identification
PILOT_PN 0 Pilot PN offset
LC_STATE hex2dec('20000000000') Long code state
SYS_TIME hex2dec('36AE0924C') System time
LP_SEC 0 Leap second
LTM_OFF 0 Local time offset
DAYLT 0 Daylight saving time indicator
PRAT 0 Paging channel data rate
CDMA_FREQ hex2dec('2F6') CDMA frequency
EXT_CDMA_FREQ hex2dec('2F6') Extended CDMA frequency
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FPCH Substructure

Include the FPCH substructure in the cfg substructure to configure the forward paging channel (F-
PCH). The FPCH substructure contains these fields.

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)
DataRate 4800 | 9600 Data rate (bps)
LongCodeMask Positive scalar integer Long code identifier
WalshCode Nonnegative integer scalar,

such that 0 ≤ WalshCode ≤
7

Walsh code number

EnableCoding 'On' | 'Off' Enable or disable channel coding
DataSource Cell array: {'PN Type', RN

Seed}, binary vector, or a
paging message character
vector.

Standard PN types are
'PN9', 'PN15', 'PN23',
'PN9-ITU', and 'PN11'.

Paging message options
include 'PagingMessage1',
'PagingMessage2', and
'PagingMessage3'.

Data source. Specify a standard PN sequence
with a random number seed, a binary vector,
or one of three paging messages. For a
description of paging message contents see
footnote 1.

1 When the DataSource enumeration specifies one of the paging message options, simulated
paging message data is used as input to the F-PCH physical channel:

• 'PagingMessage1' — Streams a 7680 bit sequence (800 ms at fullrate) of paging message
contents onto the channel that includes the General Page Message, the CDMA Channel List
Message, the Extended System Parameter Message, the Extended Neighbor List Message,
the System Parameter Message, and the Access Parameter Message. The paging message
repeats these messages in a nonsequential pattern.

• 'PagingMessage2' — Streams a 2304 bit sequence (240 ms at fullrate) of paging message
contents onto the channel that includes a truncated version of the full 'PagingMessage1'
content.

• 'PagingMessage3' — Streams an 864 bit sequence (90 ms at fullrate) of paging message
contents onto the channel that includes the Neighbor List Message, the CDMA Channel List
Message, the General Page Message, the System Parameter Message, and the Access
Parameter Message. The paging message repeats these messages in a sequential pattern.

For more information on the F-PCH contents, refer to 3GPP2 C.S0004, Table 3.1.2.3.1.1.2–1.

FCCCH Substructure

Include the FCCCH substructure in the cfg structure to configure the forward common control
channel (F-CCCH). The FCCCH substructure contains these fields.
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Parameter Field Values Description
Enable 'On'| 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)
DataRate 9600 | 19200 | 38400 Data rate (bps)
FrameLength 5 | 10 | 20 Frame length (ms)
CodingType 'conv' | 'turbo' Type of error correction coding
WalshCode Nonnegative integer scalar

such that 0 ≤ WalshCode ≤
255

Walsh code number

LongCodeMask Positive scalar integer Long code identifier
EnableCoding 'On' | 'Off' Enable or disable channel coding
DataSource Cell array: {'PN Type', RN

Seed} or binary vector.

Standard PN sequence
options are 'PN9', 'PN15',
'PN23', 'PN9-ITU', and
'PN11'.

Data source. Specify a standard PN sequence
with a random number seed or a custom
vector.

FCACH Substructure

Include the FCACH substructure in the cfg structure to configure the forward common assignment
channel (F-CACH). The FCACH substructure contains these fields.

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)
CodingType 'conv' | 'turbo' Type of error correction coding
WalshCode Nonnegative integer scalar

such that 0 ≤ WalshCode ≤
255

Walsh code number

LongCodeMask Positive scalar integer Long code identifier
EnableCoding 'On' | 'Off' Enable or disable channel coding
DataSource Cell array: {'PN Type', RN

Seed} or binary vector.

Standard PN sequence
options are 'PN9', 'PN15',
'PN23', 'PN9-ITU', and
'PN11'.

Data source. Specify a standard PN sequence
with a random number seed or a custom
vector.

FQPCH Substructure

Include the FQPCH substructure in the cfg structure to configure the forward quick paging channel
(F-QPCH). The FQPCH substructure contains these fields.
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Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)
DataRate 2400 | 4800 Data rate (bps)
WalshCode Nonnegative integer scalar

such that 0 ≤ WalshCode ≤
255

Walsh code number

LongCodeMask Positive scalar integer Long code identifier
EnableCoding 'On' | 'Off' Enable or disable channel coding
DataSource Cell array: {'PN Type', RN

Seed} or binary vector.

Standard PN sequence
options are 'PN9', 'PN15',
'PN23', 'PN9-ITU', and
'PN11'.

Data source. Specify a standard PN sequence
with a random number seed or a custom
vector.

FCPCCH Substructure

Include the FCPCCH substructure in the cfg structure to configure the forward common power
control channel (F-CPCCH). The FCPCCH substructure contains these fields.

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)
WalshCode Nonnegative integer scalar

such that 0 ≤ WalshCode ≤
63

Walsh code number

LongCodeMask Positive scalar integer Long code identifier
EnableCoding 'On' | 'Off' Enable or disable channel coding
DataSource Cell array: {'PN Type', RN

Seed} or binary vector.

Standard PN sequence
options are 'PN9', 'PN15',
'PN23', 'PN9-ITU', and
'PN11'.

Data source. Specify a standard PN sequence
with a random number seed or a custom
vector.

FBCCH Substructure

Include the FBCCH substructure in the cfg structure to configure the forward broadcast control
channel (F-BCCH). The FBCCH substructure contains these fields.

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)
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Parameter Field Values Description
DataRate 4800 | 9600 | 19200 Data rate (bps)
CodingType 'conv' | 'turbo' Type of error correction coding
WalshCode Nonnegative integer scalar

such that 0 ≤ WalshCode ≤
127

Walsh code number

LongCodeMask Positive scalar integer Long code identifier
EnableCoding 'On' | 'Off' Enable or disable channel coding
DataSource Cell array: {'PN Type', RN

Seed} or binary vector.

Standard PN sequence
options are 'PN9', 'PN15',
'PN23', 'PN9-ITU', and
'PN11'.

Data source. Specify a standard PN sequence
with a random number seed or a custom
vector.

FFCH Substructure

Include the FFCH substructure in the cfg structure to configure the forward fundamental traffic
channel (F-FCH). The FFCH substructure contains these fields.

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)
RadioConfiguratio
n

'RC1' through 'RC9' Radio configuration channel

DataRate 1200 | 1500 | 1800 | 2400 |
2700 | 3600 | 4800 | 7200 |
9600 | 14400

Data rate (bps)

FrameLength 5 | 10 | 20 Frame length (ms)
WalshCode Nonnegative integer scalar

such that 0 ≤ WalshCode ≤
255

Walsh code number

LongCodeMask Positive scalar integer Long code identifier
EnableQOF 'On' | 'Off' Enable QOF spreading
EnableCoding 'On' | 'Off' Enable or disable channel coding
DataSource Cell array: {'PN Type', RN

Seed} or binary vector.

Standard PN sequence
options are 'PN9', 'PN15',
'PN23', 'PN9-ITU', and
'PN11'.

Data source. Specify a standard PN sequence
with a random number seed or a custom
vector.

PowerControlEnabl
e

'On' | 'Off' Enable or disable power control subchannel
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Parameter Field Values Description
PowerControlPower Real scalar Power control subchannel power (relative to

F-FCH)
PowerControlDataS
ource

Cell array: {'PN Type', RN
Seed} or binary vector.

Standard PN sequence
options are 'PN9', 'PN15',
'PN23', 'PN9-ITU', and
'PN11'.

Power control subchannel data source

FDCCH Substructure

Include the FDCCH substructure in the cfg structure to configure the forward dedicated control
channel (F-DCCH). The FDCCH substructure contains these fields.

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)
RadioConfiguratio
n

'RC3' through 'RC9' Radio configuration channel

DataRate 9600 | 14400 Data rate (bps)
FrameLength 5 | 20 Frame length (ms)
WalshCode Nonnegative integer scalar

such that 0 ≤ WalshCode ≤
255

Walsh code number

LongCodeMask Positive scalar integer Long code identifier
EnableQOF 'On' | 'Off' Enable QOF spreading
EnableCoding 'On' | 'Off' Enable or disable channel coding
DataSource Cell array: {'PN Type', RN

Seed} or binary vector.

Standard PN sequence
options are 'PN9', 'PN15',
'PN23', 'PN9-ITU', and
'PN11'.

Data source. Specify a standard PN sequence
with a random number seed or a custom
vector.

FSCCH Substructure

Include the FSCCH substructure in the cfg structure to configure the forward supplemental code
channel (F-SCCH). The FSCCH substructure contains these fields.

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)
RadioConfiguratio
n

'RC1' | 'RC2' Radio configuration channel
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Parameter Field Values Description
WalshCode Nonnegative integer scalar

such that 0 ≤ WalshCode ≤
255

Walsh code number

LongCodeMask Positive scalar integer Long code identifier
EnableCoding 'On' | 'Off' Enable or disable channel coding
DataSource Cell array: {'PN Type', RN

Seed} or binary vector.

Standard PN sequence
options are 'PN9', 'PN15',
'PN23', 'PN9-ITU', and
'PN11'.

Data source. Specify a standard PN sequence
with a random number seed or a custom
vector.

FSCH Substructure

Include the FSCH substructure in the cfg structure to configure the forward supplemental channel
(F-SCH). The FSCH substructure contains these fields.

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)
RadioConfiguratio
n

'RC3' | 'RC4' | 'RC5' |
'RC6' | 'RC7' | 'RC8' |
'RC9'

Radio configuration channel

DataRate 1200 | 1350 | 1500 | 1800 |
2400 | 2700 | 3600 | 4800 |
7200 | 9600 | 14400 | 19200
| 28800 | 38400 | 57600 |
76800 | 115200 | 153600 |
230400 | 307200

Data rate (bps)

FrameLength 20 | 40 | 80 Frame length (ms)
CodingType 'Conv' | 'Turbo' Channel coding type, convolutional or turbo
WalshCode Nonnegative integer scalar

such that 0 ≤ WalshCode ≤
255

Walsh code number

LongCodeMask Positive scalar integer Long code identifier
EnableQOF 'On' | 'Off' Enable QOF spreading
EnableCoding 'On' | 'Off' Enable or disable channel coding
DataSource Cell array: {'PN Type', RN

Seed} or binary vector.

Standard PN sequence
options are 'PN9', 'PN15',
'PN23', 'PN9-ITU', and
'PN11'.

Data source. Specify a standard PN sequence
with a random number seed or a custom
vector.
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FOCNS Substructure

Include the FOCNS substructure in the cfg structure to configure orthogonal channel noise source
information. The FOCNS substructure contains these fields.

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)
WalshLength 64 | 128 | 256 Walsh code length
WalshCode Nonnegative integer scalar

such that 0 ≤ WalshCode ≤
WalshLength – 1

Walsh code number

Version History
Introduced in R2015b
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cdma2000ForwardWaveformGenerator
Generate cdma2000 forward link waveform

Syntax
[waveform1,waveform2] = cdma2000ForwardWaveformGenerator(cfg)

Description
[waveform1,waveform2] = cdma2000ForwardWaveformGenerator(cfg) returns the
cdma2000 forward link baseband primary waveform, waveform1, and the forward link diversity
waveform, waveform2, as defined by the parameter definition structure, cfg.

The top-level parameters and lower-level substructures of cfg specify the waveform and channel
properties the function uses to generate a cdma2000 waveform. You can generate cfg by using the
cdma2000ForwardReferenceChannels function. The top-level parameters of cfg are
SpreadingRate, Diversity, QOF, PNOffset, LongCodeState, PowerNormalization,
CustomFilterCoefficients, OversamplingRatio, FilterType, InvertQ,
EnableModulation, ModulationFrequency, and NumChips. To enable specific channels, add
their associated substructures, for example, the forward paging channel, FPCH.

Note The tables herein list the allowable values for the top-level parameters and substructure fields.
However, not all combinations of spreading rate, radio configuration, frame length, and data rate are
supported. To ensure that the input argument is valid, use the
cdma2000ForwardReferenceChannels function. If you input the structure fields manually, consult
[1] to ensure that the input parameter combinations are permitted.

Examples

Generate Waveform for RC2 Forward Traffic Channels

Create a parameter structure, config, for all forward traffic channels (F-FCH and F-SCCH) that are
supported by radio configuration 2.

config = cdma2000ForwardReferenceChannels('ALL-RC2')

config = struct with fields:
          SpreadingRate: 'SR1'
              Diversity: 'NTD'
                    QOF: 'QOF1'
               PNOffset: 0
          LongCodeState: 0
     PowerNormalization: 'Off'
      OversamplingRatio: 4
             FilterType: 'cdma2000Long'
                InvertQ: 'Off'
       EnableModulation: 'Off'
    ModulationFrequency: 0
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               NumChips: 1000
                  FPICH: [1x1 struct]
                 FAPICH: [1x1 struct]
                FTDPICH: [1x1 struct]
               FATDPICH: [1x1 struct]
                   FPCH: [1x1 struct]
                  FSYNC: [1x1 struct]
                  FBCCH: [1x1 struct]
                  FCACH: [1x1 struct]
                  FCCCH: [1x1 struct]
                 FCPCCH: [1x1 struct]
                  FQPCH: [1x1 struct]
                   FFCH: [1x1 struct]
                  FOCNS: [1x1 struct]
                  FSCCH: [1x1 struct]

Examine the fields for the Forward Fundamental Channel (F-FCH). The data rate is 14,400 bps and
the frame length is 20 ms.

config.FFCH

ans = struct with fields:
                Enable: 'On'
                 Power: 0
    RadioConfiguration: 'RC2'
              DataRate: 14400
           FrameLength: 20
          LongCodeMask: 0
          EnableCoding: 'On'
            DataSource: {'PN9'  [1]}
             WalshCode: 7
             EnableQOF: 'Off'
    PowerControlEnable: 'Off'

Generate the complex waveform using the corresponding waveform generator function.

waveform = cdma2000ForwardWaveformGenerator(config);

A waveform composed of the channels specified by each substructure of config is generated by
cdma2000ForwardWaveformGenerator.

Generate Forward Traffic Channel for RC4

Configure a cdma2000 forward link supporting a 307.2 kbps forward supplemental channel (F-SCH)
using radio configuration 4.

config = cdma2000ForwardReferenceChannels( ...
    "TRAFFIC-RC4-4800", ...
    20000, ...
    "F-SCH-307200-20")

config = struct with fields:
          SpreadingRate: 'SR1'
              Diversity: 'NTD'
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                    QOF: 'QOF1'
               PNOffset: 0
          LongCodeState: 0
     PowerNormalization: 'Off'
      OversamplingRatio: 4
             FilterType: 'cdma2000Long'
                InvertQ: 'Off'
       EnableModulation: 'Off'
    ModulationFrequency: 0
               NumChips: 20000
                  FPICH: [1x1 struct]
                   FFCH: [1x1 struct]
                   FSCH: [1x1 struct]

Generate the waveform and plot its spectrum. The sample rate is equal to the product of the chip rate
and the oversampling ratio. RC4 uses spreading rate 1, which is equivalent to a 1.2288 Mcps chip
rate.

wv = cdma2000ForwardWaveformGenerator(config);
fs = 1.2288e6 * config.OversamplingRatio;

Change the filter type to "cdma2000Short".

config.FilterType = "cdma2000Short";
wvShortFilt = cdma2000ForwardWaveformGenerator(config);

Use the spectrumAnalyzer object with Method="welch" to plot the spectrum for both waveforms.
The 'cdma2000Short' filter does not provide as much out-of-band attenuation as does the
'cdma2000Long' filter.

sa = spectrumAnalyzer( ...
    SampleRate=fs, ...
    Method="welch", ...
    ChannelNames=["cdma2000Long","cdma2000Short"]);
sa(wv,wvShortFilt)
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Generate cdma2000 Waveform with Two Forward Supplemental Channels

Create a parameter structure that specifies a forward traffic channel. Use it to generate a forward
channel waveform.

Create a parameter structure specifying a traffic channel consisting of a 4800 bps fundamental
channel, 5000 chips, and a 614.4 kbps supplemental channel (F-SCH) having a 20 ms frame duration.

cfg = cdma2000ForwardReferenceChannels('TRAFFIC-RC7-4800', ...
    5000,'F-SCH-614400-20');

Based on the first F-SCH, create a second F-SCH.

cfg(2).FSCH = cfg.FSCH;

Set the data rate of the second F-SCH to 38.4 kbps. Set the frame duration to 40 ms.

cfg(2).FSCH.DataRate = 38400;
cfg(2).FSCH.FrameLength = 40;
cfg.FSCH

ans = struct with fields:
                Enable: 'On'
                 Power: 0
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    RadioConfiguration: 'RC7'
              DataRate: 614400
           FrameLength: 20
          LongCodeMask: 0
          EnableCoding: 'On'
            DataSource: {'PN9'  [1]}
             WalshCode: 2
             EnableQOF: 'Off'
            CodingType: 'conv'

ans = struct with fields:
                Enable: 'On'
                 Power: 0
    RadioConfiguration: 'RC7'
              DataRate: 38400
           FrameLength: 40
          LongCodeMask: 0
          EnableCoding: 'On'
            DataSource: {'PN9'  [1]}
             WalshCode: 2
             EnableQOF: 'Off'
            CodingType: 'conv'

Set the Walsh code of the second F-SCH so that it is not identical to the Walsh code of the first F-SCH.

cfg(2).FSCH.WalshCode = 3;

Generate the forward link waveform.

wv = cdma2000ForwardWaveformGenerator(cfg);

Input Arguments
cfg — Configuration of the parameters and channels used by the waveform generator
structure

Configuration of the parameters and channels used by the waveform generator. The configuration
structure is defined in these tables.

Top-Level Parameters and Substructures

Parameter Field Values Description
SpreadingRate 'SR1' | 'SR3' Spreading rate of the waveform. SR1

corresponds to a 1.2288 Mcps carrier. SR3
corresponds to a 3.6864 Mcps carrier.

SR3 supports direct sequence spreading only.
Diversity 'NTD' | 'OTD' | 'STS' Transmit diversity type (applicable only for SR1),

where NTD is no transmit diversity, OTD is
orthogonal transmit diversity, and STS is space
time spreading

QOF 'QOF1' | 'QOF2' | 'QOF3' Quasi-orthogonal function type
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Parameter Field Values Description
PNOffset Nonnegative scalar integer PN offset of the base station
LongCodeState Positive scalar integer Initial long code state
PowerNormalization 'Off' | 'NormalizeTo0dB' |

'NoiseFillTo0dB'
Power normalization of the waveform

NumChips Positive scalar integer Number of chips in the waveform
FilterType 'cdma2000Long' |

'cdma2000Short' | 'Off' |
'Custom'

Type of output filtering

CustomFilterCoeffici
ents

Real vector Custom filter coefficients, used only when the
FilterType field is set to 'Custom'

OversamplingRatio Positive scalar integer Oversampling ratio at output
InvertQ 'Off' | 'On' Negate the quadrature output
EnableModulation 'Off' | 'On' Enable carrier modulation
ModulationFrequency Nonnegative scalar integer Carrier modulation frequency (applies when

EnableModulation is 'On')
FPICH Structure See FPICH Substructure. Optional.
FAPICH Structure See FAPICH Substructure. Optional.
FTDPICH Structure See FTDPICH Substructure. Optional.
FATDPICH Structure See FATDPICH Substructure. Optional.
FSYNC Structure See FSYNC Substructure. Optional.
FPCH Structure See FPCH Substructure. Optional.
FCCCH Structure See FCCCH Substructure. Optional.
FCACH Structure See FCACH Substructure. Optional.
FQPCH Structure See FQPCH Substructure. Optional.
FCPCCH Structure See FCPCCH Substructure. Optional.
FBCCH Structure See FBCCH Substructure. Optional.
FFCH Structure See FFCH Substructure. Optional.
FDCCH Structure See FDCCH Substructure. Optional.
FSCCH Structure See FSCCH Substructure. Optional.
FSCH Structure See FSCH Substructure. Optional.
FOCNS Structure See FOCNS Substructure. Optional.

FPICH Substructure

Include the FPICH substructure in the cfg structure to configure the forward pilot channel (F-PICH).
The FPICH substructure contains these fields.

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)
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FAPICH Substructure

Include the FAPICH substructure in the cfg structure to configure the forward auxiliary pilot channel
(F-APICH). The FAPICH substructure contains these fields.

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)
WalshLength 64 | 128 | 256 | 512 Walsh code length
WalshCode Nonnegative integer scalar,

such that 0 ≤ WalshCode ≤
WalshLength – 1

Walsh code number

LongCodeMask Positive scalar integer Long code identifier

FTDPICH Substructure

Include the FTDPICH substructure in the cfg structure to configure the forward transmit diversity
pilot Channel (F-TDPICH). The FTDPICH substructure contains these fields.

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)

FATDPICH

Include the FATDPICH substructure in the cfg structure to configure the forward auxiliary transmit
diversity pilot channel (F-ATDPICH). The FATDPICH substructure contains these fields.

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)
WalshLength 64 | 128 | 256, 512 Walsh code length
WalshCode Nonnegative integer scalar,

such that 0 ≤ WalshCode ≤
WalshLength – 1

Walsh code number

LongCodeMask Positive scalar integer Long code identifier

FSYNC Substructure

Include the FSYNC substructure in the cfg structure to configure the forward sync channel (F-SYNC).
The FSYNC substructure contains these fields.

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)
EnableCoding 'On' | 'Off' Enable or disable channel coding
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Parameter Field Values Description
DataSource Cell array: {'PN Type', RN

Seed}, binary vector, or
'SyncMessage'.

Standard PN types are
'PN9', 'PN15', 'PN23',
'PN9-ITU', and 'PN11'.

Data source. Specify a standard PN sequence
with a random number seed, a binary vector,
or a 'SyncMessage' character vector.

SyncMessage Structure See SyncMessage Substructure. Optional.

SyncMessage Substructure

If the DataSource field of the FSYNC substructure is set to 'SyncMessage', add the SyncMessage
substructure to the cfg.FSYNC substructure to configure the sync channel message. The
SyncMessage substructure contains these fields.

Parameter Field Typical Value Description
P_REV 6 Protocol revision
MIN_P_REV 6 Minimum protocol revision
SID hex2dec('14B') System identifier
NID 1 Network identification
PILOT_PN 0 Pilot PN offset
LC_STATE hex2dec('20000000000') Long code state
SYS_TIME hex2dec('36AE0924C') System time
LP_SEC 0 Leap second
LTM_OFF 0 Local time offset
DAYLT 0 Daylight saving time indicator
PRAT 0 Paging channel data rate
CDMA_FREQ hex2dec('2F6') CDMA frequency
EXT_CDMA_FREQ hex2dec('2F6') Extended CDMA frequency

FPCH Substructure

Include the FPCH substructure in the cfg substructure to configure the forward paging channel (F-
PCH). The FPCH substructure contains these fields.

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)
DataRate 4800 | 9600 Data rate (bps)
LongCodeMask Positive scalar integer Long code identifier
WalshCode Nonnegative integer scalar,

such that 0 ≤ WalshCode ≤
7

Walsh code number
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Parameter Field Values Description
EnableCoding 'On' | 'Off' Enable or disable channel coding
DataSource Cell array: {'PN Type', RN

Seed}, binary vector, or a
paging message character
vector.

Standard PN types are
'PN9', 'PN15', 'PN23',
'PN9-ITU', and 'PN11'.

Paging message options
include 'PagingMessage1',
'PagingMessage2', and
'PagingMessage3'.

Data source. Specify a standard PN sequence
with a random number seed, a binary vector,
or one of three paging messages. For a
description of paging message contents see
footnote 1.

1 When the DataSource enumeration specifies one of the paging message options, simulated
paging message data is used as input to the F-PCH physical channel:

• 'PagingMessage1' — Streams a 7680 bit sequence (800 ms at fullrate) of paging message
contents onto the channel that includes the General Page Message, the CDMA Channel List
Message, the Extended System Parameter Message, the Extended Neighbor List Message,
the System Parameter Message, and the Access Parameter Message. The paging message
repeats these messages in a nonsequential pattern.

• 'PagingMessage2' — Streams a 2304 bit sequence (240 ms at fullrate) of paging message
contents onto the channel that includes a truncated version of the full 'PagingMessage1'
content.

• 'PagingMessage3' — Streams an 864 bit sequence (90 ms at fullrate) of paging message
contents onto the channel that includes the Neighbor List Message, the CDMA Channel List
Message, the General Page Message, the System Parameter Message, and the Access
Parameter Message. The paging message repeats these messages in a sequential pattern.

For more information on the F-PCH contents, refer to 3GPP2 C.S0004, Table 3.1.2.3.1.1.2–1.

FCCCH Substructure

Include the FCCCH substructure in the cfg structure to configure the forward common control
channel (F-CCCH). The FCCCH substructure contains these fields.

Parameter Field Values Description
Enable 'On'| 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)
DataRate 9600 | 19200 | 38400 Data rate (bps)
FrameLength 5 | 10 | 20 Frame length (ms)
CodingType 'conv' | 'turbo' Type of error correction coding
WalshCode Nonnegative integer scalar

such that 0 ≤ WalshCode ≤
255

Walsh code number

LongCodeMask Positive scalar integer Long code identifier
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Parameter Field Values Description
EnableCoding 'On' | 'Off' Enable or disable channel coding
DataSource Cell array: {'PN Type', RN

Seed} or binary vector.

Standard PN sequence
options are 'PN9', 'PN15',
'PN23', 'PN9-ITU', and
'PN11'.

Data source. Specify a standard PN sequence
with a random number seed or a custom
vector.

FCACH Substructure

Include the FCACH substructure in the cfg structure to configure the forward common assignment
channel (F-CACH). The FCACH substructure contains these fields.

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)
CodingType 'conv' | 'turbo' Type of error correction coding
WalshCode Nonnegative integer scalar

such that 0 ≤ WalshCode ≤
255

Walsh code number

LongCodeMask Positive scalar integer Long code identifier
EnableCoding 'On' | 'Off' Enable or disable channel coding
DataSource Cell array: {'PN Type', RN

Seed} or binary vector.

Standard PN sequence
options are 'PN9', 'PN15',
'PN23', 'PN9-ITU', and
'PN11'.

Data source. Specify a standard PN sequence
with a random number seed or a custom
vector.

FQPCH Substructure

Include the FQPCH substructure in the cfg structure to configure the forward quick paging channel
(F-QPCH). The FQPCH substructure contains these fields.

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)
DataRate 2400 | 4800 Data rate (bps)
WalshCode Nonnegative integer scalar

such that 0 ≤ WalshCode ≤
255

Walsh code number

LongCodeMask Positive scalar integer Long code identifier
EnableCoding 'On' | 'Off' Enable or disable channel coding
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Parameter Field Values Description
DataSource Cell array: {'PN Type', RN

Seed} or binary vector.

Standard PN sequence
options are 'PN9', 'PN15',
'PN23', 'PN9-ITU', and
'PN11'.

Data source. Specify a standard PN sequence
with a random number seed or a custom
vector.

FCPCCH Substructure

Include the FCPCCH substructure in the cfg structure to configure the forward common power
control channel (F-CPCCH). The FCPCCH substructure contains these fields.

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)
WalshCode Nonnegative integer scalar

such that 0 ≤ WalshCode ≤
63

Walsh code number

LongCodeMask Positive scalar integer Long code identifier
EnableCoding 'On' | 'Off' Enable or disable channel coding
DataSource Cell array: {'PN Type', RN

Seed} or binary vector.

Standard PN sequence
options are 'PN9', 'PN15',
'PN23', 'PN9-ITU', and
'PN11'.

Data source. Specify a standard PN sequence
with a random number seed or a custom
vector.

FBCCH Substructure

Include the FBCCH substructure in the cfg structure to configure the forward broadcast control
channel (F-BCCH). The FBCCH substructure contains these fields.

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)
DataRate 4800 | 9600 | 19200 Data rate (bps)
CodingType 'conv' | 'turbo' Type of error correction coding
WalshCode Nonnegative integer scalar

such that 0 ≤ WalshCode ≤
127

Walsh code number

LongCodeMask Positive scalar integer Long code identifier
EnableCoding 'On' | 'Off' Enable or disable channel coding
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Parameter Field Values Description
DataSource Cell array: {'PN Type', RN

Seed} or binary vector.

Standard PN sequence
options are 'PN9', 'PN15',
'PN23', 'PN9-ITU', and
'PN11'.

Data source. Specify a standard PN sequence
with a random number seed or a custom
vector.

FFCH Substructure

Include the FFCH substructure in the cfg structure to configure the forward fundamental traffic
channel (F-FCH). The FFCH substructure contains these fields.

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)
RadioConfiguratio
n

'RC1' through 'RC9' Radio configuration channel

DataRate 1200 | 1500 | 1800 | 2400 |
2700 | 3600 | 4800 | 7200 |
9600 | 14400

Data rate (bps)

FrameLength 5 | 10 | 20 Frame length (ms)
WalshCode Nonnegative integer scalar

such that 0 ≤ WalshCode ≤
255

Walsh code number

LongCodeMask Positive scalar integer Long code identifier
EnableQOF 'On' | 'Off' Enable QOF spreading
EnableCoding 'On' | 'Off' Enable or disable channel coding
DataSource Cell array: {'PN Type', RN

Seed} or binary vector.

Standard PN sequence
options are 'PN9', 'PN15',
'PN23', 'PN9-ITU', and
'PN11'.

Data source. Specify a standard PN sequence
with a random number seed or a custom
vector.

PowerControlEnabl
e

'On' | 'Off' Enable or disable power control subchannel

PowerControlPower Real scalar Power control subchannel power (relative to
F-FCH)

PowerControlDataS
ource

Cell array: {'PN Type', RN
Seed} or binary vector.

Standard PN sequence
options are 'PN9', 'PN15',
'PN23', 'PN9-ITU', and
'PN11'.

Power control subchannel data source
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FDCCH Substructure

Include the FDCCH substructure in the cfg structure to configure the forward dedicated control
channel (F-DCCH). The FDCCH substructure contains these fields.

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)
RadioConfiguratio
n

'RC3' through 'RC9' Radio configuration channel

DataRate 9600 | 14400 Data rate (bps)
FrameLength 5 | 20 Frame length (ms)
WalshCode Nonnegative integer scalar

such that 0 ≤ WalshCode ≤
255

Walsh code number

LongCodeMask Positive scalar integer Long code identifier
EnableQOF 'On' | 'Off' Enable QOF spreading
EnableCoding 'On' | 'Off' Enable or disable channel coding
DataSource Cell array: {'PN Type', RN

Seed} or binary vector.

Standard PN sequence
options are 'PN9', 'PN15',
'PN23', 'PN9-ITU', and
'PN11'.

Data source. Specify a standard PN sequence
with a random number seed or a custom
vector.

FSCCH Substructure

Include the FSCCH substructure in the cfg structure to configure the forward supplemental code
channel (F-SCCH). The FSCCH substructure contains these fields.

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)
RadioConfiguratio
n

'RC1' | 'RC2' Radio configuration channel

WalshCode Nonnegative integer scalar
such that 0 ≤ WalshCode ≤
255

Walsh code number

LongCodeMask Positive scalar integer Long code identifier
EnableCoding 'On' | 'Off' Enable or disable channel coding
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Parameter Field Values Description
DataSource Cell array: {'PN Type', RN

Seed} or binary vector.

Standard PN sequence
options are 'PN9', 'PN15',
'PN23', 'PN9-ITU', and
'PN11'.

Data source. Specify a standard PN sequence
with a random number seed or a custom
vector.

FSCH Substructure

Include the FSCH substructure in the cfg structure to configure the forward supplemental channel
(F-SCH). The FSCH substructure contains these fields.

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)
RadioConfiguratio
n

'RC3' | 'RC4' | 'RC5' |
'RC6' | 'RC7' | 'RC8' |
'RC9'

Radio configuration channel

DataRate 1200 | 1350 | 1500 | 1800 |
2400 | 2700 | 3600 | 4800 |
7200 | 9600 | 14400 | 19200
| 28800 | 38400 | 57600 |
76800 | 115200 | 153600 |
230400 | 307200

Data rate (bps)

FrameLength 20 | 40 | 80 Frame length (ms)
CodingType 'Conv' | 'Turbo' Channel coding type, convolutional or turbo
WalshCode Nonnegative integer scalar

such that 0 ≤ WalshCode ≤
255

Walsh code number

LongCodeMask Positive scalar integer Long code identifier
EnableQOF 'On' | 'Off' Enable QOF spreading
EnableCoding 'On' | 'Off' Enable or disable channel coding
DataSource Cell array: {'PN Type', RN

Seed} or binary vector.

Standard PN sequence
options are 'PN9', 'PN15',
'PN23', 'PN9-ITU', and
'PN11'.

Data source. Specify a standard PN sequence
with a random number seed or a custom
vector.

FOCNS Substructure

Include the FOCNS substructure in the cfg structure to configure orthogonal channel noise source
information. The FOCNS substructure contains these fields.
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Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)
WalshLength 64 | 128 | 256 Walsh code length
WalshCode Nonnegative integer scalar

such that 0 ≤ WalshCode ≤
WalshLength – 1

Walsh code number

Output Arguments
waveform1 — Modulated baseband waveform comprising the primary physical channels
complex vector array

Modulated baseband waveform comprising the primary cdma2000 physical channels, returned as a
complex vector array.

waveform2 — Modulated baseband waveform comprising the diversity physical channels
complex vector array

Modulated baseband waveform comprising the diversity cdma2000 physical channels, returned as a
complex vector array.

Version History
Introduced in R2015b

References
[1] 3GPP2 C.S0002–F v2.0. “Physical Layer Standard for cdma2000 Spread Spectrum Systems.” 3rd

Generation Partnership Project 2.

[2] 3GPP2 C.S0004–F v1.0. “Signaling Link Access Control (LAC) Standard for cdma2000 Spread
Spectrum Systems.” 3rd Generation Partnership Project 2.

See Also
cdma2000ForwardReferenceChannels | cdma2000ReverseWaveformGenerator
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cdma2000ReverseReferenceChannels
Define cdma2000 reverse reference channel

Syntax
cfg = cdma2000ReverseReferenceChannels(wv)
cfg = cdma2000ReverseReferenceChannels(wv,numchips)
cfg = cdma2000ReverseReferenceChannels(traffic,numchips,R-SCH-SPEC)

Description
cfg = cdma2000ReverseReferenceChannels(wv) returns a structure, cfg, that defines the
cdma2000 reverse link parameters given the input waveform identifier, wv. Pass the structure to the
cdma2000ReverseWaveformGenerator function to generate a reverse link reference channel
waveform.

For all syntaxes, cdma2000ReverseReferenceChannels creates a configuration structure that is
compliant with the physical layer specification for cdma2000 systems described in [1].

cfg = cdma2000ReverseReferenceChannels(wv,numchips) specifies the number of chips to
generate.

cfg = cdma2000ReverseReferenceChannels(traffic,numchips,R-SCH-SPEC) returns cfg
for the specified traffic channel, traffic, and the reverse supplemental channel (R-SCH) and frame
length combination, R-SCH-SPEC.

Examples

Generate Reverse Common Control Channel Waveform

Generate the structure corresponding to the reverse common control channel (R-CCCH) having a
19,200 bps data rate and 10 ms frames.

config = cdma2000ReverseReferenceChannels('R-CCCH-19200-10');

Verify that the R-CCCH substructure is configured for the correct data rate and frame duration.

config.RCCCH

ans = struct with fields:
          Enable: 'On'
           Power: 0
    LongCodeMask: 0
    EnableCoding: 'On'
      DataSource: {'PN9'  [1]}
        DataRate: 19200
     FrameLength: 10
       WalshCode: 1
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Generate the reverse channel waveform using the corresponding waveform generator function,
cdma2000ReverseWaveformGenerator.

wv = cdma2000ReverseWaveformGenerator(config);

Generate Reverse Channels for RC1 and RC6

Create a configuration structure to generate all possible channels associated with radio configuration
1 in which the number of chips is specified as 2500.

config = cdma2000ReverseReferenceChannels('ALL-RC1',2500)

config = struct with fields:
     RadioConfiguration: 'RC1'
     PowerNormalization: 'Off'
      OversamplingRatio: 4
             FilterType: 'cdma2000Long'
                InvertQ: 'Off'
       EnableModulation: 'Off'
    ModulationFrequency: 0
               NumChips: 2500
                   RFCH: [1x1 struct]
                   RACH: [1x1 struct]
                  RSCCH: [1x1 struct]

The structure contains substructures corresponding to the R-FCH, R-ACH, and R-SCCH channels.

Call the function again using radio configuration 6.

config = cdma2000ReverseReferenceChannels('ALL-RC6',2500)

config = struct with fields:
     RadioConfiguration: 'RC6'
     PowerNormalization: 'Off'
      OversamplingRatio: 4
             FilterType: 'cdma2000Long'
                InvertQ: 'Off'
       EnableModulation: 'Off'
    ModulationFrequency: 0
               NumChips: 2500
                   RFCH: [1x1 struct]
                  RPICH: [1x1 struct]
                  REACH: [1x1 struct]
                  RCCCH: [1x1 struct]
                  RDCCH: [1x1 struct]
                  RSCH1: [1x1 struct]
                  RSCH2: [1x1 struct]

The channels supported by RC6 differ from those supported by RC1. They include R-FCH, R-PICH, R-
EACH, R-CCCH, R-DCCH, R-SCH1, and R-SCH2.

Create the waveform corresponding to the set of RC6 channels.

wv = cdma2000ReverseWaveformGenerator(config);
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Generate Reverse Supplemental Channel

Create a configuration structure using radio configuration 3 with a reverse fundamental channel (R-
FCH). Specify a 2700 bps data rate and a reverse supplemental channel (R-SCH) having a 76,800 bps
data rate and an 80 ms frame length.

config = cdma2000ReverseReferenceChannels('TRAFFIC-RC3-2700',2000, ...
    'R-SCH-76800-80');

Verify that the R-FCH data rate is 2700 bps and the first R-SCH data rate is 76,800 bps with an 80 ms
frame length.

config.RFCH.DataRate

ans = 2700

config.RSCH1.DataRate

ans = 76800

config.RSCH1.FrameLength

ans = 80

Generate the corresponding waveform.

wv = cdma2000ReverseWaveformGenerator(config);

Input Arguments
wv — Waveform identification
character vector

Waveform identification of the reference channel, specified as a character vector. The input typically
identifies the channel type, radio configuration, data rate, and frame length. To specify wv, connect
the substrings with hyphens, for example, 'TRAFFIC-RC2-3600'.

Parameter Field Values Description
Substring 1 Substring 2 Substring 3

wv 'R-PICH-ONLY'   Generates a
waveform
containing a pilot
channel only.

'R-CCCH' 9600 20 Character vector
representing the
Reverse Common
Control Channel
(R-CCCH) data
rate in bps and the
frame length in

19200 10 | 20
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Parameter Field Values Description
Substring 1 Substring 2 Substring 3

38400 5 | 10 | 20 ms. Specify 'R-
CCCH-9600-20'
to create a
structure variable,
wv, with a 9600
bps R-CCCH data
rate and a 20 ms
frame length.

'TRAFFIC' RC1 1200 | 2400 |
4800 | 9600

Character vector
representing the
radio configuration
and the Reverse
Fundamental
Channel (R-FCH)
data rate in bps.
Specify
'TRAFFIC-
RC6-14400',
corresponds to
radio configuration
6 with a 14400 bps
R-FCH data rate.

RC2 | RC4 | RC6 1800 | 3600 |
7200 | 14400

RC3 | RC5 | RC6 1500 | 2700 |
4800 | 9600

'R-EACH' 9600 20 Reverse Enhanced
Access Channel
waveforms. Specify
'R-
EACH-38400-5'
to create a
structure
corresponding to
an R-EACH
channel with a
38400 bps data
rate and a 5 ms
frame length.

19200 10 | 20
38400 5 | 10 | 20

'R-PICH-R-FCH'   Specify tests for
the mobile
transmitter in
accordance with
[2].
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Parameter Field Values Description
Substring 1 Substring 2 Substring 3
'ALL' RC1 | RC2 | RC3 |

RC4 | RC5 | RC6
N/A Returns all

channels that are
supported for the
specified radio
configuration.
Specify 'ALL-
RC4' to create a
structure
containing all
traffic channels for
radio configuration
4.

Example: 'R-CCCH-9600-20' is a R-CCH channel having a 9600 bps data rate and a 20 ms frame
length.
Example: 'R-EACH-38400-5' is a R-EACH channel having a 38,400 bps data rate and a 5 ms frame
length.
Data Types: char

numchips — Number of chips
1000 (default) | positive integer scalar

Number of chips, specified as a positive integer.
Example: 2048
Data Types: double

traffic — Traffic configuration
character vector

Traffic channel configuration, specified as a character vector. The table shows the valid
configurations.

Radio
Configuration

Traffic Channel Configuration

1 'TRAFFIC-
RC1-1200'

'TRAFFIC-
RC1-2400'

'TRAFFIC-
RC1-4800'

'TRAFFIC-
RC1-9600'

2 'TRAFFIC-
RC2-1800'

'TRAFFIC-
RC2-3600'

'TRAFFIC-
RC2-7200'

'TRAFFIC-
RC2-14400'

3 'TRAFFIC-
RC3-1500'

'TRAFFIC-
RC3-2700'

'TRAFFIC-
RC3-4800'

'TRAFFIC-
RC3-9600'

4 'TRAFFIC-
RC4-1800'

'TRAFFIC-
RC4-3600'

'TRAFFIC-
RC4-7200'

'TRAFFIC-
RC4-14400'

5 'TRAFFIC-
RC5-1500'

'TRAFFIC-
RC5-2700'

'TRAFFIC-
RC5-4800'

'TRAFFIC-
RC5-9600'
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Radio
Configuration

Traffic Channel Configuration

6 'TRAFFIC-
RC6-1800'

'TRAFFIC-
RC6-3600'

'TRAFFIC-
RC6-7200'

'TRAFFIC-
RC6-14400'

Example: 'TRAFFIC-RC4-1800' is a traffic channel using radio configuration 4 and having an R-
FCH with an 1800 bps data rate .
Data Types: char

R-SCH-SPEC — Reverse Supplemental Channel data rate and frame length
character vector

Specify the R-SCH data rate and frame length as a character vector. If omitted, R-SCH-SPEC defaults
to the lowest R-SCH data rate allowable for a 20 ms frame length given the radio configuration
specified by traffic. The table summarizes the supported data rate and frame length combinations.

Radio Configuration Frame Length
20 ms 40 ms 80 ms

3 | 5 'R-SCH-1500-20' |
'R-SCH-2700-20' |
'R-SCH-4800-20' |
'R-SCH-9600-20' |
'R-SCH-19200-20' |
'R-SCH-38400-20' |
'R-SCH-76800-20' |
'R-SCH-153600-20' |
'R-SCH-307200-20'

'R-SCH-1350-40' |
'R-SCH-2400-40' |
'R-SCH-4800-40' |
'R-SCH-9600-40' |
'R-SCH-19200-40' |
'R-SCH-38400-40' |
'R-SCH-76800-40'|
'R-SCH-153600-40'

'R-SCH-1350-80' |
'R-SCH-2400-80' |
'R-SCH-4800-80' |
'R-SCH-9600-80' |
'R-SCH-19200-80' |
'R-SCH-38400-80' |
'R-SCH-76800-80'

5 'R-SCH-614400-20' 'R-SCH-307200-40' 'R-SCH-153600-80'
4 | 6 'R-SCH-1800-20' |

'R-SCH-3600-20' |
'R-SCH-7200-20' |
'R-SCH-14400-20' |
'R-SCH-28800-20' |
'R-SCH-57600-20' |
'R-SCH-115200-20' |
'R-SCH-230400-20'

'R-SCH-1800-40' |
'R-SCH-3600-40' |
'R-SCH-7200-40' |
'R-SCH-14400-40' |
'R-SCH-28800-40' |
'R-SCH-57600-40' |
'R-SCH-115200-40'

'R-SCH-1800-80' |
'R-SCH-3600-80' |
'R-SCH-7200-80' |
'R-SCH-14400-80' |
'R-SCH-28800-80' |
'R-SCH-57600-80'

6 'R-SCH-460800-20' |
'R-SCH-1036800-20'

'R-SCH-230400-40' |
'R-SCH-518400-40'

'R-SCH-115200-80' |
'R-SCH-259200-80'

Additional data rate information for the cdma2000 reverse links is given in Tables 2.1.3.1.3-1 and
2.1.3.1.3-2 of [1].
Example: 'R-SCH-153600-20' is an R-SCH having a 153,600 bps data rate and a 20 ms frame
length.
Data Types: char

Output Arguments
cfg — Configuration of the parameters and channels used by the waveform generator
structure
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Configuration of the parameters and channels used by the waveform generator. The configuration
structure is defined in these tables.

Top-Level Parameters and Substructures

Parameter Field Values Description
RadioConfiguration 'RC1' | 'RC2' | 'RC3' | 'RC4'

| 'RC5' | 'RC6'
Radio configuration of the reverse channel. The
spreading rate of the waveform is derived from
the radio configuration. Spreading rate 1, SR1,
corresponds to a 1.2288 Mcps carrier and is
associated with RC1 through RC4. Spreading
rate 3, SR3, corresponds to a 3.6864 Mcps
carrier and is associated with RC5 and RC6.

PowerNormalization 'Off' | 'NormalizeTo0dB' Power normalization of the waveform
NumChips Positive scalar integer Number of chips in the waveform
OversamplingRatio Positive scalar integer Oversampling ratio at output
FilterType 'cdma2000Long' |

'cdma2000Short' | 'Off' |
'Custom'

Type of output filtering

CustomFilterCoeffici
ents

Real vector Custom filter coefficients used only when the
FilterType field is set to 'Custom'

InvertQ 'Off' | 'On' Negate the quadrature output
EnableModulation 'Off' | 'On' Enable carrier modulation
ModulationFrequency Nonnegative scalar integer Carrier modulation frequency (applies when

EnableModulation is 'On')
RPICH Structure See RPICH Substructure. Optional.
RACH Structure See RACH Substructure. Optional.
REACH Structure See REACH Substructure. Optional.
RCCCH Structure See RCCCH Substructure. Optional.
RDCCH Structure See RDCCH Substructure. Optional.
RFCH Structure See RFCH Substructure. Optional.
RSCCH Structure See RSCCH Substructure. Optional.
RSCH1 Structure See RSCH1 Substructure. Optional.
RSCH2 Structure See RSCH2 Substructure. Optional.

RPICH Substructure

Include the RPICH substructure in the cfg structure to configure the Reverse Pilot Channel (R-
PICH). The RPICH substructure contains the following fields.

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)
LongCodeMask 42-bit binary number Long code identifier
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Parameter Field Values Description
PowerControlEnabl
e

'On' | 'Off' Enable or disable power control subchannel

PowerControlPower Real scalar Power control subchannel power (relative to
R-PICH)

PowerControlDataS
ource

Cell array, {'PN Type', RN
Seed} or binary vector.

Standard PN sequence
options are 'PN9', 'PN15',
'PN23', 'PN9-ITU', and
'PN11'.

Power control subchannel data source

RACH Substructure

Include the RACH substructure in the cfg structure to configure the Reverse Access Channel (R-
ACH). The RACH substructure contains the following fields.

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)
LongCodeMask 42-bit binary number Long code identifier
EnableCoding 'On' | 'Off' Enable or disable channel coding
DataSource Cell array: {'PN Type', RN

Seed} or a binary vector.

Standard PN types are
'PN9', 'PN15', 'PN23',
'PN9-ITU', and 'PN11'.

Data source. Specify a standard PN sequence
with a random number seed or a binary
vector.

REACH Substructure

Include the REACH substructure in the cfg structure to configure the Reverse Enhanced Access
Channel (R-EACH). The REACH substructure contains the following fields.

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)
DataRate 9600 | 19200 | 38400 Data rate (bps)
FrameLength 5 | 10 | 20 Frame length (ms)
WalshCode Nonnegative integer scalar

such that 0 ≤ WalshCode ≤
7

Walsh code number

LongCodeMask 42-bit binary number Long code identifier
EnableCoding 'On' | 'Off' Enable or disable channel coding
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Parameter Field Values Description
DataSource Cell array: {'PN Type', RN

Seed} or a binary vector.

Standard PN types are
'PN9', 'PN15', 'PN23',
'PN9-ITU', and 'PN11'.

Data source. Specify a standard PN sequence
with a random number seed or a binary
vector.

RCCCH Substructure

Include the RCCCH substructure in the cfg structure to configure the Reverse Common Control
Channel (R-CCCH). The RCCCH substructure contains the following fields.

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)
DataRate 9600 | 19200 | 38400 Data rate (bps)
FrameLength 5 | 10 | 20 Frame length (ms)
CodingType 'conv' | 'turbo' Type of error control coding
WalshCode Nonnegative integer scalar

such that 0 ≤ WalshCode ≤
7

Walsh code number

LongCodeMask 42-bit binary number Long code identifier
EnableCoding 'On' | 'Off' Enable or disable channel coding
DataSource Cell array: {'PN Type', RN

Seed} or binary vector.

Standard PN sequence
options are 'PN9', 'PN15',
'PN23', 'PN9-ITU', and
'PN11'.

Data source. Specify a standard PN sequence
with a random number seed or a custom
vector.

RDCCH Substructure

Include the RDCCH substructure in the cfg structure to configure the Reverse Dedicated Control
Channel (R-DCCH). The RDCCH substructure contains the following fields.

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)
FrameLength 5 | 20 Frame length (ms)
WalshCode Nonnegative integer scalar

such that 0 ≤ WalshCode ≤
15

Walsh code number

LongCodeMask 42-bit binary number Long code identifier
EnableCoding 'On' | 'Off' Enable or disable channel coding

 cdma2000ReverseReferenceChannels

2-159



Parameter Field Values Description
DataSource Cell array, {'PN Type', RN

Seed} or binary vector.

Standard PN sequence
options are 'PN9', 'PN15',
'PN23', 'PN9-ITU', and
'PN11'.

Data source. Specify a standard PN sequence
with a random number seed or a custom
vector.

RFCH Substructure

Include the RFCH substructure in the cfg structure to configure the Reverse Fundamental Traffic
Channel (R-FCH). The RFCH substructure contains the following fields.

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)
DataRate 1200 | 1500 | 1800 | 2400 |

2700 | 3600 | 4800 | 7200 |
9600 | 14400

Data rate (bps)

FrameLength 5 | 10 | 20 Frame length (ms)
WalshCode Nonnegative integer scalar

such that 0 ≤ WalshCode ≤
15

Walsh code number

LongCodeMask 42-bit binary number Long code identifier
EnableCoding 'On' | 'Off' Enable or disable channel coding
DataSource Cell array, {'PN Type', RN

Seed} or binary vector.

Standard PN sequence
options are 'PN9', 'PN15',
'PN23', 'PN9-ITU', and
'PN11'.

Data source. Specify a standard PN sequence
with a random number seed or a custom
vector.

RSCCH Substructure

Include the RSCCH substructure in the cfg structure to configure the Reverse Supplemental Code
Channel (R-SCCH). The RSCCH substructure contains the following fields.

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)
LongCodeMask 42-bit binary number Long code identifier
EnableCoding 'On' | 'Off' Enable or disable channel coding
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Parameter Field Values Description
DataSource Cell array, {'PN Type', RN

Seed} or binary vector.

Standard PN sequence
options are 'PN9', 'PN15',
'PN23', 'PN9-ITU', and
'PN11'.

Data source. Specify a standard PN sequence
with a random number seed or a custom
vector.

RSCH1 Substructure

Include the RSCH1 substructure in the cfg structure to configure the Reverse Supplemental Channel
1 (R-SCH 1). The RSCH1 substructure contains the following fields.

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)
DataRate 1200 | 1350 | 1500 | 1800 |

2400 | 2700 | 3600 | 4800 |
7200 | 9600 | 14400 | 19200
| 28800 | 38400 | 57600 |
76800 | 115200 | 153600 |
230400 | 259200 | 307200 |
460800 | 518400 | 614400 |
1036800

Data rate (bps)

FrameLength 20 | 40 | 80 Frame length (ms)
WalshLength 2 | 4 Walsh code length
WalshCode Nonnegative integer scalar

such that 0 ≤ WalshCode ≤
WalshLength – 1

Walsh code number

LongCodeMask 42-bit binary number Long code identifier
EnableCoding 'On' | 'Off' Enable or disable channel coding
DataSource Cell array, {'PN Type', RN

Seed} or binary vector.

Standard PN sequence
options are 'PN9', 'PN15',
'PN23', 'PN9-ITU', and
'PN11'.

Data source. Specify a standard PN sequence
with a random number seed or a custom
vector.

RSCH2 Substructure

Include the RSCH2 substructure in the cfg structure to configure the Reverse Supplemental Channel
2 (R-SCH 2). The RSCH2 substructure contains the following fields.

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)
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Parameter Field Values Description
DataRate 1200 | 1350 | 1500 | 1800 |

2400 | 2700 | 3600 | 4800 |
7200 | 9600 | 14400 | 19200
| 28800 | 38400 | 57600 |
76800 | 115200 | 153600 |
230400 | 259200 | 307200 |
460800 | 518400 | 614400 |
1036800

Data rate (bps)

FrameLength 20 | 40 | 80 Frame length (ms)
WalshLength 4 | 8 Walsh code length
WalshCode Nonnegative integer scalar

such that 0 ≤ WalshCode ≤
WalshLength – 1

Walsh code number

LongCodeMask 42-bit binary number Long code identifier
EnableCoding 'On' | 'Off' Enable or disable channel coding
DataSource Cell array, {'PN Type', RN

Seed} or binary vector.

Standard PN sequence
options are 'PN9', 'PN15',
'PN23', 'PN9-ITU', and
'PN11'.

Data source. Specify a standard PN sequence
with a random number seed or a custom
vector.

Data Types: struct

Version History
Introduced in R2015b

References
[1] 3GPP2 C.S0002–F v2.0. “Physical Layer Standard for cdma2000 Spread Spectrum Systems.” 3rd

Generation Partnership Project 2.

[2] 3GPP2 C.S0011–E v2.0. “Recommended Minimum Performance Standards for cdma2000 Spread
Spectrum Mobile Stations.” 3rd Generation Partnership Project 2.

See Also
cdma2000ReverseWaveformGenerator | cdma2000ForwardReferenceChannels
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cdma2000ReverseWaveformGenerator
Generate cdma2000 reverse link waveform

Syntax
waveform = cdma2000ReverseWaveformGenerator(cfg)

Description
waveform = cdma2000ReverseWaveformGenerator(cfg) returns the cdma2000 reverse link
baseband waveform, waveform as defined by the parameter configuration structure, cfg.

The top-level parameters and lower-level substructures of cfg specify the waveform and channel
properties used by the function to generate a cdma2000 waveform. You can generate the input
argument by using the cdma2000ReverseReferenceChannels function. The top-level parameters
of cfg are RadioConfiguration, LongCodeState, PowerNormalization, OversamplingRatio,
FilterType, InvertQ, EnableModulation, ModulationFrequency, and NumChips. To enable
specific channels, add their associated substructures, for example, the reverse dedicated control
channel, RDCCH.

Note The tables herein list the allowable values for the top-level parameters and substructure fields.
However, not all combinations of spreading rate, radio configuration, frame length, and data rate are
supported. To ensure that the input argument is valid, use the
cdma2000ReverseReferenceChannels function. If you input the structure fields manually, consult
[1] to ensure that the input parameter combinations are permitted.

Examples

Generate Reverse Common Control Channel Waveform

Generate the structure corresponding to the reverse common control channel (R-CCCH) having a
19,200 bps data rate and 10 ms frames.

config = cdma2000ReverseReferenceChannels('R-CCCH-19200-10');

Verify that the R-CCCH substructure is configured for the correct data rate and frame duration.

config.RCCCH

ans = struct with fields:
          Enable: 'On'
           Power: 0
    LongCodeMask: 0
    EnableCoding: 'On'
      DataSource: {'PN9'  [1]}
        DataRate: 19200
     FrameLength: 10
       WalshCode: 1
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Generate the reverse channel waveform using the corresponding waveform generator function,
cdma2000ReverseWaveformGenerator.

wv = cdma2000ReverseWaveformGenerator(config);

Generate R-SCH Channels for RC5

Create a configuration structure for a reverse channel having an R-FCH with a 4800 bps data rate
and two R-SCHs. Specify that each R-SCH have a 153,600 bps data rate using RC5.

config = cdma2000ReverseReferenceChannels( ...
    "TRAFFIC-RC5-4800", ...
    5000, ...
    "R-SCH-153600-40");

Determine the sample rate. Because RC5 corresponds to SR3, the chip rate is 3.6864 Mcps. Multiply
by the oversampling ratio to obtain the sample rate.

fs = 3.6864e6*config.OversamplingRatio;

Generate the reverse link waveform.

wv = cdma2000ReverseWaveformGenerator(config);

Plot the spectrum of the resultant waveform.

sa = spectrumAnalyzer(SampleRate=fs);
sa(wv)
release(sa)
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Generate cdma2000 Waveform with Two Reverse Supplemental Channels

Create a parameter structure specifying a reverse traffic channel containing a pair of supplemental
channels and generate the corresponding waveform.

Create a parameter structure specifying a traffic channel consisting of a 14,400 bps fundamental
channel, 2000 chips, and a 57,600 bps supplemental channel (R-SCH) pair having a 40 ms frame
duration.

cfg = cdma2000ReverseReferenceChannels( ...
    "TRAFFIC-RC4-14400", ...
    2000, ...
    "F-SCH-57600-40");

Create a second R-SCH pair by copying the R-SCH fields from the existing pair.

cfg(2).RSCH1 = cfg.RSCH1;
cfg(2).RSCH2 = cfg.RSCH2;

Set the data rate of the second R-SCH pair to 28,800 bps.

cfg(2).RSCH1.DataRate = 28800;
cfg(2).RSCH2.DataRate = 28800;

 cdma2000ReverseWaveformGenerator

2-165



Set the Walsh codes of the second pair so that they differ from the first pair.

cfg(2).RSCH1.WalshCode = 4;
cfg(2).RSCH2.WalshCode = 5;

Verify that the data rates are set correctly and that no two supplemental channels share the same
Walsh code.

cfg.RSCH1

ans = struct with fields:
          Enable: 'On'
           Power: 0
    LongCodeMask: 0
    EnableCoding: 'On'
      DataSource: {'PN9'  [1]}
        DataRate: 57600
     FrameLength: 40
     WalshLength: 2
       WalshCode: 0

ans = struct with fields:
          Enable: 'On'
           Power: 0
    LongCodeMask: 0
    EnableCoding: 'On'
      DataSource: {'PN9'  [1]}
        DataRate: 28800
     FrameLength: 40
     WalshLength: 2
       WalshCode: 4

cfg.RSCH2

ans = struct with fields:
          Enable: 'On'
           Power: 0
    LongCodeMask: 0
    EnableCoding: 'On'
      DataSource: {'PN9'  [1]}
        DataRate: 57600
     FrameLength: 40
     WalshLength: 2
       WalshCode: 1

ans = struct with fields:
          Enable: 'On'
           Power: 0
    LongCodeMask: 0
    EnableCoding: 'On'
      DataSource: {'PN9'  [1]}
        DataRate: 28800
     FrameLength: 40
     WalshLength: 2
       WalshCode: 5
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Generate the reverse link waveform.

wv = cdma2000ReverseWaveformGenerator(cfg);

Input Arguments
cfg — Configuration of the parameters and channels used by the waveform generator
structure

Configuration of the parameters and channels used by the waveform generator. The configuration
structure is defined in these tables.

Top-Level Parameters and Substructures

Parameter Field Values Description
RadioConfiguration 'RC1' | 'RC2' | 'RC3' | 'RC4'

| 'RC5' | 'RC6'
Radio configuration of the reverse channel. The
spreading rate of the waveform is derived from
the radio configuration. Spreading rate 1, SR1,
corresponds to a 1.2288 Mcps carrier and is
associated with RC1 through RC4. Spreading
rate 3, SR3, corresponds to a 3.6864 Mcps
carrier and is associated with RC5 and RC6.

PowerNormalization 'Off' | 'NormalizeTo0dB' Power normalization of the waveform
NumChips Positive scalar integer Number of chips in the waveform
OversamplingRatio Positive scalar integer Oversampling ratio at output
FilterType 'cdma2000Long' |

'cdma2000Short' | 'Off' |
'Custom'

Type of output filtering

CustomFilterCoeffici
ents

Real vector Custom filter coefficients used only when the
FilterType field is set to 'Custom'

InvertQ 'Off' | 'On' Negate the quadrature output
EnableModulation 'Off' | 'On' Enable carrier modulation
ModulationFrequency Nonnegative scalar integer Carrier modulation frequency (applies when

EnableModulation is 'On')
RPICH Structure See RPICH Substructure. Optional.
RACH Structure See RACH Substructure. Optional.
REACH Structure See REACH Substructure. Optional.
RCCCH Structure See RCCCH Substructure. Optional.
RDCCH Structure See RDCCH Substructure. Optional.
RFCH Structure See RFCH Substructure. Optional.
RSCCH Structure See RSCCH Substructure. Optional.
RSCH1 Structure See RSCH1 Substructure. Optional.
RSCH2 Structure See RSCH2 Substructure. Optional.
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RPICH Substructure

Include the RPICH substructure in the cfg structure to configure the Reverse Pilot Channel (R-
PICH). The RPICH substructure contains the following fields.

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)
LongCodeMask 42-bit binary number Long code identifier
PowerControlEnabl
e

'On' | 'Off' Enable or disable power control subchannel

PowerControlPower Real scalar Power control subchannel power (relative to
R-PICH)

PowerControlDataS
ource

Cell array, {'PN Type', RN
Seed} or binary vector.

Standard PN sequence
options are 'PN9', 'PN15',
'PN23', 'PN9-ITU', and
'PN11'.

Power control subchannel data source

RACH Substructure

Include the RACH substructure in the cfg structure to configure the Reverse Access Channel (R-
ACH). The RACH substructure contains the following fields.

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)
LongCodeMask 42-bit binary number Long code identifier
EnableCoding 'On' | 'Off' Enable or disable channel coding
DataSource Cell array: {'PN Type', RN

Seed} or a binary vector.

Standard PN types are
'PN9', 'PN15', 'PN23',
'PN9-ITU', and 'PN11'.

Data source. Specify a standard PN sequence
with a random number seed or a binary
vector.

REACH Substructure

Include the REACH substructure in the cfg structure to configure the Reverse Enhanced Access
Channel (R-EACH). The REACH substructure contains the following fields.

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)
DataRate 9600 | 19200 | 38400 Data rate (bps)

2 Functions

2-168



Parameter Field Values Description
FrameLength 5 | 10 | 20 Frame length (ms)
WalshCode Nonnegative integer scalar

such that 0 ≤ WalshCode ≤
7

Walsh code number

LongCodeMask 42-bit binary number Long code identifier
EnableCoding 'On' | 'Off' Enable or disable channel coding
DataSource Cell array: {'PN Type', RN

Seed} or a binary vector.

Standard PN types are
'PN9', 'PN15', 'PN23',
'PN9-ITU', and 'PN11'.

Data source. Specify a standard PN sequence
with a random number seed or a binary
vector.

RCCCH Substructure

Include the RCCCH substructure in the cfg structure to configure the Reverse Common Control
Channel (R-CCCH). The RCCCH substructure contains the following fields.

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)
DataRate 9600 | 19200 | 38400 Data rate (bps)
FrameLength 5 | 10 | 20 Frame length (ms)
CodingType 'conv' | 'turbo' Type of error control coding
WalshCode Nonnegative integer scalar

such that 0 ≤ WalshCode ≤
7

Walsh code number

LongCodeMask 42-bit binary number Long code identifier
EnableCoding 'On' | 'Off' Enable or disable channel coding
DataSource Cell array: {'PN Type', RN

Seed} or binary vector.

Standard PN sequence
options are 'PN9', 'PN15',
'PN23', 'PN9-ITU', and
'PN11'.

Data source. Specify a standard PN sequence
with a random number seed or a custom
vector.

RDCCH Substructure

Include the RDCCH substructure in the cfg structure to configure the Reverse Dedicated Control
Channel (R-DCCH). The RDCCH substructure contains the following fields.

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)
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Parameter Field Values Description
FrameLength 5 | 20 Frame length (ms)
WalshCode Nonnegative integer scalar

such that 0 ≤ WalshCode ≤
15

Walsh code number

LongCodeMask 42-bit binary number Long code identifier
EnableCoding 'On' | 'Off' Enable or disable channel coding
DataSource Cell array, {'PN Type', RN

Seed} or binary vector.

Standard PN sequence
options are 'PN9', 'PN15',
'PN23', 'PN9-ITU', and
'PN11'.

Data source. Specify a standard PN sequence
with a random number seed or a custom
vector.

RFCH Substructure

Include the RFCH substructure in the cfg structure to configure the Reverse Fundamental Traffic
Channel (R-FCH). The RFCH substructure contains the following fields.

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)
DataRate 1200 | 1500 | 1800 | 2400 |

2700 | 3600 | 4800 | 7200 |
9600 | 14400

Data rate (bps)

FrameLength 5 | 10 | 20 Frame length (ms)
WalshCode Nonnegative integer scalar

such that 0 ≤ WalshCode ≤
15

Walsh code number

LongCodeMask 42-bit binary number Long code identifier
EnableCoding 'On' | 'Off' Enable or disable channel coding
DataSource Cell array, {'PN Type', RN

Seed} or binary vector.

Standard PN sequence
options are 'PN9', 'PN15',
'PN23', 'PN9-ITU', and
'PN11'.

Data source. Specify a standard PN sequence
with a random number seed or a custom
vector.

RSCCH Substructure

Include the RSCCH substructure in the cfg structure to configure the Reverse Supplemental Code
Channel (R-SCCH). The RSCCH substructure contains the following fields.

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
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Parameter Field Values Description
Power Real scalar Relative channel power (dB)
LongCodeMask 42-bit binary number Long code identifier
EnableCoding 'On' | 'Off' Enable or disable channel coding
DataSource Cell array, {'PN Type', RN

Seed} or binary vector.

Standard PN sequence
options are 'PN9', 'PN15',
'PN23', 'PN9-ITU', and
'PN11'.

Data source. Specify a standard PN sequence
with a random number seed or a custom
vector.

RSCH1 Substructure

Include the RSCH1 substructure in the cfg structure to configure the Reverse Supplemental Channel
1 (R-SCH 1). The RSCH1 substructure contains the following fields.

Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)
DataRate 1200 | 1350 | 1500 | 1800 |

2400 | 2700 | 3600 | 4800 |
7200 | 9600 | 14400 | 19200
| 28800 | 38400 | 57600 |
76800 | 115200 | 153600 |
230400 | 259200 | 307200 |
460800 | 518400 | 614400 |
1036800

Data rate (bps)

FrameLength 20 | 40 | 80 Frame length (ms)
WalshLength 2 | 4 Walsh code length
WalshCode Nonnegative integer scalar

such that 0 ≤ WalshCode ≤
WalshLength – 1

Walsh code number

LongCodeMask 42-bit binary number Long code identifier
EnableCoding 'On' | 'Off' Enable or disable channel coding
DataSource Cell array, {'PN Type', RN

Seed} or binary vector.

Standard PN sequence
options are 'PN9', 'PN15',
'PN23', 'PN9-ITU', and
'PN11'.

Data source. Specify a standard PN sequence
with a random number seed or a custom
vector.

RSCH2 Substructure

Include the RSCH2 substructure in the cfg structure to configure the Reverse Supplemental Channel
2 (R-SCH 2). The RSCH2 substructure contains the following fields.
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Parameter Field Values Description
Enable 'On' | 'Off' Enable or disable the channel
Power Real scalar Relative channel power (dB)
DataRate 1200 | 1350 | 1500 | 1800 |

2400 | 2700 | 3600 | 4800 |
7200 | 9600 | 14400 | 19200
| 28800 | 38400 | 57600 |
76800 | 115200 | 153600 |
230400 | 259200 | 307200 |
460800 | 518400 | 614400 |
1036800

Data rate (bps)

FrameLength 20 | 40 | 80 Frame length (ms)
WalshLength 4 | 8 Walsh code length
WalshCode Nonnegative integer scalar

such that 0 ≤ WalshCode ≤
WalshLength – 1

Walsh code number

LongCodeMask 42-bit binary number Long code identifier
EnableCoding 'On' | 'Off' Enable or disable channel coding
DataSource Cell array, {'PN Type', RN

Seed} or binary vector.

Standard PN sequence
options are 'PN9', 'PN15',
'PN23', 'PN9-ITU', and
'PN11'.

Data source. Specify a standard PN sequence
with a random number seed or a custom
vector.

Output Arguments
waveform — Modulated baseband waveform comprising the physical channels
complex vector array

Modulated baseband waveform comprising the cdma2000 physical channels, returned as a complex
vector array.

Version History
Introduced in R2015b

References
[1] 3GPP2 C.S0002–F v2.0. “Physical Layer Standard for cdma2000 Spread Spectrum Systems.” 3rd

Generation Partnership Project 2.

See Also
cdma2000ReverseReferenceChannels | cdma2000ForwardWaveformGenerator
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comm_links
Library link information for Communications Toolbox blocks

Syntax
comm_links
comm_links(sys)
comm_links(sys,color)

Description
comm_links returns a structure with two elements. Each element contains a cell array of strings
containing names of library blocks in the current system. The blocks are grouped into two categories:
obsolete and current. Blocks at all levels of the model are analyzed.

comm_links(sys) works as above on the named system sys, instead of the current system.

comm_links(sys,color) additionally colors all obsolete blocks according to the specified color.
color is one of the following strings: 'blue', 'green', 'red', 'cyan', 'magenta', 'yellow', or 'black'.

Obsolete blocks are blocks that are no longer supported. They might or might not work properly.

Current blocks are supported and represent the latest block functionality.

Version History
Introduced before R2006a

See Also
liblinks
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commlib
Open main Communications Toolbox block library

Syntax
commlib

Description
commlib opens the latest version of the Communications Toolbox block library.

Version History
Introduced before R2006a

See Also
dsplib
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commscope
(To be removed) Package of communications scope classes

Note commscope.eyediagram will be removed in a future release. Use
comm.ConstellationDiagram and eyediagram instead.

Syntax
h = commscope.<type>(...)

Description
h = commscope.<type>(...) returns a communications scope object h of type type.

Type help commscope to get a complete list of available types.

Each type of communications scope object is equipped with functions for simulation and
visualization. Type help commscope.<type> to get the complete help on a specific communications
scope object, for example help commscope.eyediagram.

Version History
Introduced in R2007b

commscope will be removed
Warns starting in R2017b

commscope.eyediagram will be removed in a future release. Use comm.ConstellationDiagram
and eyediagram instead.

See Also
Objects
comm.ConstellationDiagram

Functions
eyediagram | scatterplot
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commsrc.combinedjitter
Construct combined jitter generator object

Syntax
combJitt = commsrc.combinedjitter
combJitt = commsrc.combinedjitter(Name,Value)

Description
combJitt = commsrc.combinedjitter constructs a default combined jitter generator object,
combJitt, with all jitter components disabled.

Use the object to generate jitter samples that include any combination of random, periodic, and Dirac
components.

combJitt = commsrc.combinedjitter(Name,Value) creates a combined jitter generator object
with the specified property Name set to the specified Value. You can specify additional name-value
pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties
A combined jitter generator object includes these properties. You can edit all properties, except those
explicitly noted.

Property Description
Type Type of object, Combined Jitter Generator. This

property is not writable.
SamplingFrequency Sampling frequency of the input signal in hertz. Default

value 1e4.
RandomJitter Variable to enable the random jitter generator. Specify as

either 'off' (default) or 'on'.
RandomStd Standard deviation of the random jitter generator in

seconds. Applies when RandomJitter is 'on'. Default
value 1e-4.

PeriodicJitter Variable to enable the periodic jitter generator. Specify as
either 'off' (default) or 'on'.

PeriodicNumber Number of sinusoidal components. The PeriodicNumber
must be a finite positive scalar integer. Applies when
PeriodicJitter is 'on'. Default value 1.

PeriodicAmplitude Amplitude of each sinusoidal component of the periodic
jitter in seconds. Applies when PeriodicJitter is 'on'.
Default value 5e-4.
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Property Description
PeriodicFrequencyHz Frequency of each sinusoidal component of the periodic

jitter measured in Hz. Applies when PeriodicJitter is
'on'. Default value is 200.

PeriodicPhase Phase of each sinusoidal component of the periodic jitter in
radians. Applies when PeriodicJitter is 'on'. Default
value 0.

DiracJitter Variable to enable the Dirac jitter generator. Specify as
either 'off' (default) or 'on'.

DiracNumber Number of Dirac components. The DiracNumber must be a
finite positive scalar integer. Applies when DiracJitter is
'on'. Default value 2.

DiracDelta Time delay of each Dirac component in seconds. Applies
when DiracJitter is 'on'. Default value [-5.e-4 5.e-4].

DiracProbability Probability of each Dirac component represented as a
vector of length DiracNumber. The sum of the probabilities
must equal one. Applies when DiracJitter is 'on'.
Default value [0.5 0.5].

Object Functions
A combined jitter generator object has three object functions, as described in this section.

generate

This object function generates jitter samples based on the jitter generator object. It has one input
argument, which is the number of samples in a frame. Its output is a single-column vector of length N.
You can call this object function using this syntax:

x = generate(combJitt,N)

where combJitt is the generator object, N is the number of output samples, and x is a real single-
column vector.

reset

This object function resets the internal states of the combined jitter generator. You can call this object
function using this syntax:

reset(combJitt)

where combJitt is the generator object.

disp

Display the properties of the combined generator object, combJitt. You can call this object function
using this syntax:

disp(combJitt)

where combJitt is the generator object.
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Examples

Generate Combined Random and Periodic Jitter

Generate 500 jitter samples composed of random and periodic components.

Create a commsrc.combinedjitter object configured to apply a combination of random and
periodic jitter components. Use name-value pairs to enable RandomJitter and PeriodicJitter,
and to assign jitter settings. Set the standard deviation of the random jitter to 2e-4 seconds, the
periodic jitter amplitude to 5e-4 seconds, and the periodic jitter frequency to 2 Hz.

numSamples = 500;
combJitt = commsrc.combinedjitter(...
    'RandomJitter','on', ...
    'RandomStd',2e-4, ...
    'PeriodicJitter','on', ...
    'PeriodicAmplitude',5e-4, ...
    'PeriodicFrequencyHz',200)

combJitt = 
                   Type: 'Combined Jitter Generator'
      SamplingFrequency: 10000
           RandomJitter: 'on'
              RandomStd: 2.0000e-04
         PeriodicJitter: 'on'
         PeriodicNumber: 1
      PeriodicAmplitude: 5.0000e-04
    PeriodicFrequencyHz: 200
          PeriodicPhase: 0
            DiracJitter: 'off'

Use the generate method to create the combined jitter samples.

y = generate(combJitt,numSamples);
x = [0:numSamples-1];

Plot the jitter samples. You can see the Gaussian and periodic nature of the combined jitter.

plot(x/combJitt.SamplingFrequency,y)
xlabel('Time (seconds)')
ylabel('Jitter (seconds)')
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Display commsrc.combinedjitter Object Settings

Create a commsrc.combinedjitter object. Display the default object property values.

combJitt = commsrc.combinedjitter;
disp(combJitt)

                 Type: 'Combined Jitter Generator'
    SamplingFrequency: 10000
         RandomJitter: 'off'
       PeriodicJitter: 'off'
          DiracJitter: 'off'

Create a commsrc.combinedjitter object with random, periodic, and Dirac jitters enabled. Display
the object property values.

combJitt = commsrc.combinedjitter('RandomJitter','on', ...
    'PeriodicJitter','on','DiracJitter','on');
disp(combJitt)

                   Type: 'Combined Jitter Generator'
      SamplingFrequency: 10000
           RandomJitter: 'on'
              RandomStd: 1.0000e-04
         PeriodicJitter: 'on'
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         PeriodicNumber: 1
      PeriodicAmplitude: 5.0000e-04
    PeriodicFrequencyHz: 200
          PeriodicPhase: 0
            DiracJitter: 'on'
            DiracNumber: 2
             DiracDelta: [-5.0000e-04 5.0000e-04]
       DiracProbability: [0.5000 0.5000]

Generate Non-Return-to-Zero Pattern Signal

Generate a binary non-return-to-zero (NRZ) signal utilizing the pattern generator object. View the
NRZ signal with and without jitter applied to the signal.

Initialize system parameters.

Fs = 10000; % Sample rate
Rs = 50; % Symbol rate
sps = Fs/Rs; % Number of samples per symbol
Trise = 1/(5*Rs); % Rise time of the NRZ signal
Tfall = 1/(5*Rs); % Fall time of the NRZ signal
frameLen = 100; % Number of symbols in a frame
spt = 200; % Number of samples per trace on eye diagram

Create a pattern generator object with no jitter component assigned.

src = commsrc.pattern('SamplingFrequency',Fs, ...
'SamplesPerSymbol',sps,'RiseTime',Trise,'FallTime',Tfall)

src = 
                 Type: 'Pattern Generator'
    SamplingFrequency: 10000
     SamplesPerSymbol: 200
           SymbolRate: 50
            PulseType: 'NRZ'
         OutputLevels: [-1 1]
             RiseTime: 0.0040
             FallTime: 0.0040
          DataPattern: 'PRBS7'
               Jitter: [1x1 commsrc.combinedjitter]

src.Jitter

ans = 
                 Type: 'Combined Jitter Generator'
    SamplingFrequency: 10000
         RandomJitter: 'off'
       PeriodicJitter: 'off'
          DiracJitter: 'off'

Generate an NRZ signal and view the eye diagram of the signal.

message = generate(src,frameLen);
eyediagram(message,spt)
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Add inter-symbol-interference (ISI) to an NRZ signal. ISI is modeled by two equal amplitude Dirac
functions. Create a combined jitter object with Dirac jitter and assign it to the pattern generator
object.

jitterSrc = commsrc.combinedjitter('DiracJitter','on', ...
    'DiracDelta',0.05/Rs*[-1 1]);
src.Jitter = jitterSrc

src = 
                 Type: 'Pattern Generator'
    SamplingFrequency: 10000
     SamplesPerSymbol: 200
           SymbolRate: 50
            PulseType: 'NRZ'
         OutputLevels: [-1 1]
             RiseTime: 0.0040
             FallTime: 0.0040
          DataPattern: 'PRBS7'
               Jitter: [1x1 commsrc.combinedjitter]

Generate an NRZ signal that has jitter added to it and view the eye diagram of the signal.

reset(src);
message = generate(src,frameLen);
eyediagram(message,spt)
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Version History
Introduced in R2015a

See Also
Functions
commsrc.pattern | eyediagram

Topics
“Eye Diagram Analysis”
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commsrc.pattern
Construct pattern generator object

Syntax
h = commsrc.pattern
h = commsrc.pattern(Name,Value)

Description
h = commsrc.pattern constructs a pattern generator object, h.

The pattern generator object produces modulated data patterns. The object can be used to inject
jitter into modulated signals.

h = commsrc.pattern(Name,Value) creates a pattern generator object with the specified
property Name set to the specified Value. You can specify additional name-value pair arguments in
any order as (Name1,Value1,...,NameN,ValueN).

Properties
A pattern generator object includes these properties. You can edit all properties, except those
explicitly noted.

Property Description
Type Type of pattern generator object ('Pattern

Generator'). This property is not writable.
SamplingFrequency Sampling frequency of the input signal in hertz.
SymbolRate The symbol rate of the input signal. This property depends

upon the SamplingFequency and SamplesPerSymbol
properties. This property is not writable.

SamplesPerSymbol The number of samples representing a symbol.
SamplesPerSymbol must be an integer. This property
affects SymbolRate.

PulseType The type of pulse the object generates. Pulse types
available: return-to-zero ('RZ') and non-return-to-zero
('NRZ'). The initial condition for an 'NRZ' pulse is 0.

OutputLevels Amplitude levels that correspond to the symbol indices. For
an 'NRZ' pulse, specify as a 1-by-2 vector. The first element
of the 1-by-2 vector corresponds to the 0th symbol (data bit
value 0). The second element corresponds to the 1st symbol
(data bit value 1). For an 'RZ' pulse, specify as a scalar
and the value corresponds to the data bit value 1.
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Property Description
DutyCycle The duty cycle of the pulse the object generates. Displays

calculated duty cycle based on pulse parameters. This
property is not writable.

RiseTime Specifies 10% to 90% rise time of the pulse in seconds.
PulseDuration Pulse duration in seconds defined by IEEE STD 181

standard. See the Return-to-Zero (RZ) Signal Conversion:
Ideal Pulse to STD–181 figure in the “Object Functions” on
page 2-184. Applies when PulseType is 'RZ'.

FallTime Fall time of the pulse in seconds, specified as a percentage
from 10 to 90.

DataPattern The bit sequence the object uses, specified as 'PRBS5',
'PRBS6', …, 'PRBS15', 'PRBS23', 'PRBS31', and'User
Defined'.

UserDataPattern User-defined bit pattern consisting of a vector of ones and
zeroes. Applies when DataPattern is 'User Defined'.

Jitter Jitter characteristics, specified as a
commsrc.combinedjitter object. Use this property to
configure Random, Periodic and Dual Dirac Jitter.

Object Functions
A pattern generator object has five object functions, as described in this section.

generate

This object function outputs a frame worth of modulated and interpolated symbols. It has one input
argument, which is the number of symbols in a frame. Its output is a column vector. You can call the
object function using this syntax:

x = generate(h, N)

where h is the handle to the object, N is the number of output symbols, and x is a column vector
whose length is N multiplied by h.SamplesPerSymbol.

reset

This object function resets the pattern generator to its default state. The property values do not reset
unless they relate to the state of the object. This object function has no input arguments.

idealtostd181

This object function converts the ideal pulse specifications to IEEE STD-181 specifications. The ideal
0% to 100% span rise time (tr) and fall time (tf) are converted to 10% to 90% spans with a 50%
pulse width duration (pw). Call the idealtostd181 object function using this syntax:

h = idealtostd181(tr,tf,pw)

The object function sets the appropriate properties. The IEEE STD-181 Return-to-Zero (RZ) signal
parameters are shown in this figure.
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std181toideal

The std181toideal object function converts the IEEE STD-181 pulse specifications, stored in the
pattern generator, to ideal pulse specifications. The function converts the rise and fall times from
10% – 90% span to 0% – 100% span, and converts the 50% pulse duration to pulse width. Call the
std181toideal object function using this syntax:

[tr tf pw] = std181toideal(h)

where h is the pattern generator object handle, tr is the ideal 0% – 100% rise time, tf is the ideal
0% – 100% fall time, and pw is the ideal pulse width. The ideal pulse non-return-to-zero (NRZ) signal
parameters are shown in this figure.

Use the property values for IEEE STD-181 specifications.

computedcd

The computedcd object function computes the duty cycle distortion, DCD, of the pulse defined by the
pattern generator object h.
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DCD represents the ratio of the pulse on duration to the pulse off duration. For an NRZ pulse, on
duration is the duration the pulse spends above the symbol boundary level. Off duration is the
duration the pulse spends below zero. Call the computedcd object function using this syntax:

dcd = computedcd(h)

The software calculates DCD given tR, tF, Tsym. This formula assumes that the symbol boundary level
is zero.

Th = (Ah-Al) * 
tR
Al

 + (Ah-Al) * 
tF
Al

 + PW+

Tl = (Ah-Al) *
tR
Al

 + (Ah-Al) *
tF
Al

 + PW-

DCD = 
Th
Tl

Where Th is the duration of the high signal, Tl is the duration of the low signal, and DCD represents
the ratio of the duration of the high signal to the low signal.

Examples

Display commsrc.pattern Object Settings

Create a commsrc.pattern object. Display the default object property values.

h = commsrc.pattern;
disp(h)

                 Type: 'Pattern Generator'
    SamplingFrequency: 10000
     SamplesPerSymbol: 100
           SymbolRate: 100
            PulseType: 'NRZ'
         OutputLevels: [-1 1]
             RiseTime: 0
             FallTime: 0
          DataPattern: 'PRBS7'
               Jitter: [1x1 commsrc.combinedjitter]

Generate Non-Return-to-Zero Pattern Signal

Generate a binary non-return-to-zero (NRZ) signal utilizing the pattern generator object. View the
NRZ signal with and without jitter applied to the signal.

Initialize system parameters.

Fs = 10000; % Sample rate
Rs = 50; % Symbol rate
sps = Fs/Rs; % Number of samples per symbol
Trise = 1/(5*Rs); % Rise time of the NRZ signal
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Tfall = 1/(5*Rs); % Fall time of the NRZ signal
frameLen = 100; % Number of symbols in a frame
spt = 200; % Number of samples per trace on eye diagram

Create a pattern generator object with no jitter component assigned.

src = commsrc.pattern('SamplingFrequency',Fs, ...
'SamplesPerSymbol',sps,'RiseTime',Trise,'FallTime',Tfall)

src = 
                 Type: 'Pattern Generator'
    SamplingFrequency: 10000
     SamplesPerSymbol: 200
           SymbolRate: 50
            PulseType: 'NRZ'
         OutputLevels: [-1 1]
             RiseTime: 0.0040
             FallTime: 0.0040
          DataPattern: 'PRBS7'
               Jitter: [1x1 commsrc.combinedjitter]

src.Jitter

ans = 
                 Type: 'Combined Jitter Generator'
    SamplingFrequency: 10000
         RandomJitter: 'off'
       PeriodicJitter: 'off'
          DiracJitter: 'off'

Generate an NRZ signal and view the eye diagram of the signal.

message = generate(src,frameLen);
eyediagram(message,spt)
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Add inter-symbol-interference (ISI) to an NRZ signal. ISI is modeled by two equal amplitude Dirac
functions. Create a combined jitter object with Dirac jitter and assign it to the pattern generator
object.

jitterSrc = commsrc.combinedjitter('DiracJitter','on', ...
    'DiracDelta',0.05/Rs*[-1 1]);
src.Jitter = jitterSrc

src = 
                 Type: 'Pattern Generator'
    SamplingFrequency: 10000
     SamplesPerSymbol: 200
           SymbolRate: 50
            PulseType: 'NRZ'
         OutputLevels: [-1 1]
             RiseTime: 0.0040
             FallTime: 0.0040
          DataPattern: 'PRBS7'
               Jitter: [1x1 commsrc.combinedjitter]

Generate an NRZ signal that has jitter added to it and view the eye diagram of the signal.

reset(src);
message = generate(src,frameLen);
eyediagram(message,spt)
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Generate Custom Pattern Signal

Generate a custom binary pattern by using the commsrc.pattern function and the generate object
function.

Define configuration variables and construct a pattern generator object.

fs = 80e9; % Sampling frequency in Hz
sps = 16;  % Samples per symbol
N = 32;    % Number of output symbols

patternGen = commsrc.pattern( ...
    'SamplingFrequency',fs, ...
    'SamplesPerSymbol',sps, ...
    'DataPattern','User Defined');

Define a binary pattern consisting of a vector to repeat.

binPattern = [0,1,0,0,0,0,0,1];

Assign the pattern to the pattern generator object and generate the custom pattern signal. Display
the generated signal.

patternGen.UserDataPattern = binPattern;
myCustomData = generate(patternGen,N);
plot(myCustomData,'*-')
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Version History
Introduced in R2008b

References
[1] IEEE Standard for Transitions, Pulses, and Related Waveforms, STD-181-2011. Piscataway, NJ. 6

September 2011.

See Also
Functions
commsrc.combinedjitter | eyediagram

Topics
“Eye Diagram Analysis”
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commsrc.pn
(To be removed) Create PN sequence generator object

Compatibility
commsrc.pn will be removed in a future release. Instead, to generate a pseudo-noise (PN) sequence,
use the comm.PNSequence System object. For more details on the recommended workflow, see
“Compatibility Considerations” on page 2-196.

Syntax
h = commsrc.pn
h = commsrc.pn(property1,value1,...)

Description
h = commsrc.pn creates a default PN sequence generator object h, and is equivalent to the
following:

H = commsrc.pn('GenPoly',       [1 0 0 0 0 1 1], ...
              'InitialStates', [0 0 0 0 0 1],   ...
              'CurrentStates', [0 0 0 0 0 1],   ...
              'Mask',          [0 0 0 0 0 1],   ...
              'NumBitsOut',    1)

or

H = commsrc.pn('GenPoly',       [1 0 0 0 0 1 1], ...
              'InitialStates', [0 0 0 0 0 1],   ...
              'CurrentStates', [0 0 0 0 0 1],   ...
              'Shift',         0,               ...
              'NumBitsOut',    1)

h = commsrc.pn(property1,value1,...) creates a PN sequence generator object, h, with
properties you specify as property/value pairs.

Properties
A PN sequence generator has the properties shown on the following table. All properties are writable
except for the ones explicitly noted otherwise.

Property Description
GenPoly Generator polynomial vector array of bits; must

be descending order
InitialStates Vector array (with length of the generator

polynomial order) of initial shift register values
(in bits)
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Property Description
CurrentStates Vector array (with length of the generator

polynomial order) of present shift register values
(in bits)

NumBitsOut Number of bits to output at each generate
method invocation

Mask or Shift A mask vector of binary 0 and 1 values is used to
specify which shift register state bits are XORed
to produce the resulting output bit value.

Alternatively, a scalar shift value may be used to
specify an equivalent shift (either a delay or
advance) in the output sequence.

The 'GenPoly' property values specify the shift register connections. Enter these values as either a
binary vector or a vector of exponents of the nonzero terms of the generator polynomial in
descending order of powers. For the binary vector representation, the first and last elements of the
vector must be 1. For the descending-ordered polynomial representation, the last element of the
vector must be 0. For more information and examples, see the LFSR SSRG Details section of this
page.

Methods
A PN sequence generator is equipped with the following methods.

generate

Generate [NumBitsOut x 1] PN sequence generator values

reset

Set the CurrentStates values to the InitialStates values

getshift

Get the actual or equivalent Shift property value

getmask

Get the actual or equivalent Mask property value

copy

Make an independent copy of a commsrc.pn object

disp

Display PN sequence generator object properties
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Side Effects of Setting Certain Properties
Setting the GenPoly Property

Every time this property is set, it will reset the entire object. In addition to changing the polynomial
values, 'CurrentStates', 'InitialStates', and 'Mask' will be set to their default values
('NumBitsOut' will remain the same), and no warnings will be issued.

Setting the InitialStates Property

Every time this property is set, it will also set 'CurrentStates' to the new 'InitialStates'
setting.

LFSR SSRG Details
The generate method produces a pseudorandom noise (PN) sequence using a linear feedback shift
register (LFSR). The LFSR is implemented using a simple shift register generator (SSRG, or
Fibonacci) configuration, as shown below.

All r registers in the generator update their values at each time step according to the value of the
incoming arrow to the shift register. The adders perform addition modulo 2. The shift register is
described by the 'GenPoly' property (generator polynomial), which is a primitive binary polynomial
in z, grzr+gr-1zr-1+gr-2zr-2+...+g0. The coefficient gk is 1 if there is a connection from the kth register, as
labeled in the preceding diagram, to the adder. The leading term gr and the constant term g0 of the
'GenPoly' property must be 1 because the polynomial must be primitive.

You can specify the Generator polynomial parameter using either of these formats:

• A vector that lists the coefficients of the polynomial in descending order of powers. The first and
last entries must be 1. Note that the length of this vector is one more than the degree of the
generator polynomial.

• A vector containing the exponents of z for the nonzero terms of the polynomial in descending
order of powers. The last entry must be 0.
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For example, [1 0 0 0 0 0 1 0 1] and [8 2 0] represent the same polynomial, p(z) = z8 + z2 +
1.

The Initial states parameter is a vector specifying the initial values of the registers. The Initial
states parameter must satisfy these criteria:

• All elements of the Initial states vector must be binary numbers.
• The length of the Initial states vector must equal the degree of the generator polynomial.

Note At least one element of the Initial states vector must be nonzero in order for the block to
generate a nonzero sequence. That is, the initial state of at least one of the registers must be
nonzero.

For example, the following table indicates two sets of parameter values that correspond to a
generator polynomial of p(z) = z8 + z2 + 1.

Quantity Example 1 Example 2
Generator
polynomial

g1 = [1 0 0 0 0 0 1 0 1] g2 = [8 2 0]

Degree of generator
polynomial

8, which is length(g1)-1 8

Initial states [1 0 0 0 0 0 1 0] [1 0 0 0 0 0 1 0]

Output mask vector (or scalar shift value) shifts the starting point of the output sequence. With
the default setting for this parameter, the only connection is along the arrow labeled m0, which
corresponds to a shift of 0. The parameter is described in greater detail below.

You can shift the starting point of the PN sequence with Output mask vector (or scalar shift
value). You can specify the parameter in either of two ways:

• An integer representing the length of the shift
• A binary vector, called the mask vector, whose length is equal to the degree of the generator

polynomial

The difference between the block's output when you set Output mask vector (or scalar shift
value) to 0, versus a positive integer d, is shown in the following table.

T = 0 T = 1 T = 2 ... T = d T = d+1
Shift = 0 x0 x1 x2 ... xd xd+1

Shift = d xd xd+1 xd+2 ... x2d x2d+1

Alternatively, you can set Output mask vector (or scalar shift value) to a binary vector,
corresponding to a polynomial in z, mr-1zr-1 + mr-2zr-2 + ... + m1z + m0, of degree at most r-1. The mask
vector corresponding to a shift of d is the vector that represents m(z) = zd modulo g(z), where g(z) is
the generator polynomial. For example, if the degree of the generator polynomial is 4, then the mask
vector corresponding to d = 2 is [0 1 0 0], which represents the polynomial m(z) = z2. The
preceding schematic diagram shows how Output mask vector (or scalar shift value) is
implemented when you specify it as a mask vector. The default setting for Output mask vector (or
scalar shift value) is 0. You can calculate the mask vector using the Communications Toolbox
function shift2mask.
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Sequences of Maximum Length

If you want to generate a sequence of the maximum possible length for a fixed degree, r, of the
generator polynomial, you can set Generator polynomial to a value from the following table. See
Proakis, John G., Digital Communications, Third edition, New York, McGraw Hill, 1995 for more
information about the shift-register configurations that these polynomials represent.

r Generator Polynomial r Generator Polynomial
2 [2 1 0] 21 [21 19 0]
3 [3 2 0] 22 [22 21 0]
4 [4 3 0] 23 [23 18 0]
5 [5 3 0] 24 [24 23 22 17 0]
6 [6 5 0] 25 [25 22 0]
7 [7 6 0] 26 [26 25 24 20 0]
8 [8 6 5 4 0] 27 [27 26 25 22 0]
9 [9 5 0] 28 [28 25 0]
10 [10 7 0] 29 [29 27 0]
11 [11 9 0] 30 [30 29 28 7 0]
12 [12 11 8 6 0] 31 [31 28 0]
13 [13 12 10 9 0] 32 [32 31 30 10 0]
14 [14 13 8 4 0] 33 [33 20 0]
15 [15 14 0] 34 [34 15 14 1 0]
16 [16 15 13 4 0] 35 [35 2 0]
17 [17 14 0] 36 [36 11 0]
18 [18 11 0] 37 [37 12 10 2 0]
19 [19 18 17 14 0] 38 [38 6 5 1 0]
20 [20 17 0] 39 [39 8 0]
40 [40 5 4 3 0] 47 [47 14 0]
41 [41 3 0] 48 [48 28 27 1 0]
42 [42 23 22 1 0] 49 [49 9 0]
43 [43 6 4 3 0] 50 [50 4 3 2 0]
44 [44 6 5 2 0] 51 [51 6 3 1 0]
45 [45 4 3 1 0] 52 [52 3 0]
46 [46 21 10 1 0] 53 [53 6 2 1 0]

Examples
Typically commsrc.pn is used to output pseudorandom data streams.

Construct a PN object.

h = commsrc.pn('Shift',0);
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Output 10 PN bits.

set(h,'NumBitsOut',10);
generate(h)

ans = 10×1

     1
     0
     0
     0
     0
     0
     1
     0
     0
     0

Output 10 more PN bits.

generate(h)

ans = 10×1

     0
     1
     1
     0
     0
     0
     1
     0
     1
     0

Reset the object to the initial shift register state values.

reset(h);

Output 4 PN bits.

set(h,'NumBitsOut',4);
generate(h)

ans = 4×1

     1
     0
     0
     0

Version History
Introduced in R2009a
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commsrc.pn will be removed in a future release.
Warns starting in R2021b

commsrc.pn will be removed in a future release. Instead, to generate a pseudo-noise (PN) sequence,
use the comm.PNSequence System object™.

Replace instances of the commsrc.pn object with a comm.PNSequence System object. This table
shows the mapping between commsrc.pn properties and comm.PNSequence properties.

commsrc.pn Object Properties comm.PNSequence System Object Properties
GenPoly Polynomial
InitialStates InitialConditions
Mask Mask
NumBitsOut SamplesPerFrame
CurrentStates Not applicable

Set up a PN sequence generator. Define the polynomial in binary vector format or exponential vector
format.

For example, consider this PN sequence generator with a generator polynomial p(z) = z6 + z + 1.

This table shows some typical usages of commsrc.pn and how to update your code to use
comm.PNSequence instead.

 commsrc.pn
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Discouraged Usage Recommended Replacement
Define the PN sequence generator.

h1 = commsrc.pn('GenPoly',[1 0 0 0 0 1 1], ...
   'Mask',[1 1 0 1 0 1]);
h2 = commsrc.pn('GenPoly',[1 0 0 0 0 1 1], ...
   'Shift',22);
mask2shift([1 0 0 0 0 1 1],[1 1 0 1 0 1])

ans = 22

Alternatively, input GenPoly as the exponents of
z for the nonzero terms of the polynomial in
descending order of powers.

h = commsrc.pn('GenPoly',[6 1 0],
  'Mask',[1 1 0 1 0 1])

h = 
          GenPoly: [1 0 0 0 0 1 1]
    InitialStates: [0 0 0 0 0 1]
    CurrentStates: [0 0 0 0 0 1]
             Mask: [1 1 0 1 0 1]
       NumBitsOut: 1

Define the PN sequence generator.

h1 = comm.PNSequence('Polynomial',[1 0 0 0 0 1 1], ...
   'InitialConditions', ...
   [1 1 0 1 0 1]);
h2 = comm.PNSequence('Polynomial',[1 0 0 0 0 1 1], ...
   'Mask',22);
mask2shift([1 0 0 0 0 1 1],[1 1 0 1 0 1])

ans = 22

Alternatively, input the polynomial exponents of z
for the nonzero terms of the polynomial in
descending order of powers.

h = comm.PNSequence('Polynomial',[6 1 0],...
'InitialConditions',[1 1 0 1 0 1])

h = 
  comm.PNSequence with properties:

                 Polynomial: [6 1 0]
    InitialConditionsSource: 'Property'
          InitialConditions: [1 1 0 1 0 1]
                 MaskSource: 'Property'
                       Mask: 0
         VariableSizeOutput: false
            SamplesPerFrame: 1
             ResetInputPort: false
            BitPackedOutput: false
             OutputDataType: 'double'

See Also
Functions
mask2shift | shift2mask

Objects
comm.PNSequence

2 Functions

2-198



compand
Source coding mu-law or A-law compressor or expander

Syntax
out = compand(in,param,v)
out = compand(in,param,v,method)

Description
out = compand(in,param,v) performs mu-law compression on the input data sequence. The
param input specifies the mu-law compression value and must be set to a mu value for mu-law
compressor computation (a mu-law value of 255 is used in practice). v specifies the peak magnitude
of the input data sequence.

out = compand(in,param,v,method) performs mu-law or A-law compression or expansion on the
input data sequence. param specifies the mu-law compander or A-law compander value (a mu-law
value of 255 and an A-law value of 87.6 are used in practice). method specifies the type of
compressor or expander computation for the function to perform on the input data sequence.

Examples

Compress and Expand Data Sequence Using Mu-Law

Generate a data sequence.

data = 2:2:12

data = 1×6

     2     4     6     8    10    12

Compress the data sequence by using a mu-law compressor. Set the value for mu to 255. The
compressed data sequence now ranges between 8.1 and 12.

compressed = compand(data,255,max(data),'mu/compressor')

compressed = 1×6

    8.1644    9.6394   10.5084   11.1268   11.6071   12.0000

Expand the compressed data sequence by using a mu-law expander. The expanded data sequence is
nearly identical to the original data sequence.

expanded = compand(compressed,255,max(data),'mu/expander')

expanded = 1×6
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    2.0000    4.0000    6.0000    8.0000   10.0000   12.0000

Calculate the difference between the original data sequence and the expanded sequence.

diffvalue = expanded - data

diffvalue = 1×6
10-14 ×

   -0.0444    0.1776    0.0888    0.1776    0.1776   -0.3553

Compress and Expand Data Sequence Using A-Law

Generate a data sequence.

data = 1:5;

Compress the data sequence by using an A-law compressor. Set the value for A to 87.6. The
compressed data sequence now ranges between 3.5 and 5.

compressed = compand(data,87.6,max(data),'A/compressor')

compressed = 1×5

    3.5296    4.1629    4.5333    4.7961    5.0000

Expand the compressed data sequence by using an A-law expander. The expanded data sequence is
nearly identical to the original data sequence.

expanded = compand(compressed,87.6,max(data),'A/expander')

expanded = 1×5

    1.0000    2.0000    3.0000    4.0000    5.0000

Calculate the difference between the original data sequence and the expanded sequence.

diffvalue = expanded - data

diffvalue = 1×5
10-14 ×

         0         0    0.1332    0.0888    0.0888

Quantize and Compand an Exponential Signal

When transmitting signals with a high dynamic range, quantization using equal length intervals can
result in loss of precision and signal distortion. Companding is a operation that applies a logarithmic
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computation to compress the signal before quantization on the transmit side and applies an inverse
operation to expand the signal to restore it to full scale on the receive side. Companding avoids signal
distortion without the need to specify many quantization levels. Compare distortion when using 6-bit
quantization on an exponential signal with and without companding. Plot the original exponential
signal, the quantized signal and the expanded signal.

Create an exponential signal and calculate its maximum value.

sig = exp(-4:0.1:4);
V = max(sig);

Quantize the signal by using equal-length intervals. Set partition and codebook values, assuming 6-bit
quantization. Calculate the mean square distortion.

partition = 0:2^6 - 1;
codebook = 0:2^6;
[~,qsig,distortion] = quantiz(sig,partition,codebook);

Compress the signal by using the compand function configured to apply the mu-law method. Apply
quantization and expand the quantized signal. Calculate the mean square distortion of the
companded signal.

mu = 255; % mu-law parameter
csig_compressed = compand(sig,mu,V,'mu/compressor');
[~,quants] = quantiz(csig_compressed,partition,codebook);
csig_expanded = compand(quants,mu,max(quants),'mu/expander');
distortion2 = sum((csig_expanded - sig).^2)/length(sig);

Compare the mean square distortion for quantization versus combined companding and quantization.
The distortion for the companded and quantized signal is an order of magnitude lower than the
distortion of the quantized signal. Equal-length intervals are well suited to the logarithm of an
exponential signal but not well suited to an exponential signal itself.

[distortion, distortion2]

ans = 1×2

    0.5348    0.0397

Plot the original exponential signal, the quantized signal, and the expanded signal. Zoom in on axis to
highlight the quantized signal error at lower signal levels.

plot([sig' qsig' csig_expanded']);
title('Comparison Between Original, Quantized, and Expanded Signals');
xlabel('Interval');
ylabel('Apmlitude');
legend('Original','Quantized','Expanded','location','nw');
axis([0 70 0 20])

 compand

2-201



Input Arguments
in — Input data sequence
row vector

Input data sequence, specified as a row vector. This input specifies the data sequence for the function
to perform compression or expansion.
Data Types: double

param — mu or A value of compander
positive scalar | 255 | 87.6

mu or A value of the compander, specified as a positive scalar. The prevailing values used in practice
are µ = 255 and A = 87.6.
Data Types: double

method — Type of compressor or expander computation
mu/compressorr | mu/expander | A/compressor | A/expander

Type of compressor or expander computation for the function to perform on the input data sequence,
specified as one of these values.

• mu/compressor
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• mu/expander
• A/compressor
• A/expander

Data Types: char | string

v — Peak magnitude of input data sequence
positive scalar

Peak magnitude of the input data sequence, specified as a positive scalar.
Data Types: double

Output Arguments
out — Compressed or expanded signal
positive row vector

Compressed or expanded signal, returned as a positive row vector. The size of out matches that of
input argument in.

Algorithms
In certain applications, such as speech processing, using a logarithmic computation (called a
compressor) before quantizing the input data is common. The inverse operation of a compressor is
called an expander. The combination of a compressor and expander is called a compander.

For a given signal, x, the output of the (µ-law) compressor is

y = log(1 + μ x )
log(1 + μ) sgn(x) .

µ is the µ-law parameter of the compander, log is the natural logarithm, and sgn is the signum
function (sign in MATLAB).

µ-law expansion for input signal x is given by the inverse function y-1,

y−1 = sgn(y) 1
μ 1 + μ y − 1          for ‐1 ≤ y ≤ 1

For a given signal, x, the output of the (A-law) compressor is

y =

A x
1 + logAsgn(x)

(1 + log(A x ))
1 + logA sgn(x)

for 0 ≤ x ≤ 1
A

for  1
A < x ≤ 1

A is the A-law parameter of the compander, log is the natural logarithm, and sgn is the signum
function (sign in MATLAB).

A-law expansion for input signal x is given by the inverse function y-1,

y−1 = sgn(y)

y 1 + log A
A

exp y 1 + log A − 1
A

for 0 ≤ y < 1
1 + log A

for  1
1 + log A ≤ y < 1
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Version History
Introduced before R2006a

References
[1] Sklar, Bernard. Digital Communications: Fundamentals and Applications. Englewood Cliffs, NJ:

Prentice-Hall, 1988.

See Also
Functions
lloyds | quantiz | dpcmenco | dpcmdeco | huffmanenco | huffmandeco
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convdeintrlv
Restore ordering of symbols using shift registers

Syntax
deintrlved = convdeintrlv(data,nrows,slope)
[deintrlved,state] = convdeintrlv(data,nrows,slope)
[deintrlved,state] = convdeintrlv(data,nrows,slope,init_state)

Description
deintrlved = convdeintrlv(data,nrows,slope) restores the ordering of elements in data by
using a set of nrows internal shift registers. slope is the register length step. For information about
delays, see “Delays of Convolutional Interleaving and Deinterleaving” on page 2-205.

[deintrlved,state] = convdeintrlv(data,nrows,slope) returns a structure that holds the
final state of the shift registers. state.value stores any unshifted symbols. state.index is the
index of the next register to be shifted.

[deintrlved,state] = convdeintrlv(data,nrows,slope,init_state) initializes the shift
registers with the symbols contained in init_state.value and directs the first input symbol to the
shift register referenced by init_state.index. The structure init_state is typically the state
output from a previous call to this same function, and is unrelated to the corresponding interleaver.

Using an Interleaver-Deinterleaver Pair

To use this function as an inverse of the convintrlv function, use the same nrows and slope
inputs in both functions. In that case, the two functions are inverses in the sense that applying
convintrlv followed by convdeintrlv leaves data unchanged, after you take their combined delay
of nrows*(nrows-1)*slope into account. For information about delays, see “Delays of
Convolutional Interleaving and Deinterleaving” on page 2-205.

Examples
The example in “Effect of Delays on Recovery of Convolutionally Interleaved Data Using MATLAB”
uses convdeintrlv and illustrates how you can handle the delay of the interleaver/deinterleaver
pair when recovering data.

The example on the reference page for muxdeintrlv illustrates how to use the state output and
init_state input with that function; the process is analogous for this function.

More About
Delays of Convolutional Interleaving and Deinterleaving

The total delay due to a convolutional interleaver and deinterleaver pair is N × slope × (N – 1).

• N is the number of registers and equals the value of the nrows argument
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• slope is the register length step and equals the value of the slope argument

This diagram shows the structure of a general convolutional interleaver comprised of a set of shift
registers, each having a specified delay shown as D(1), D(2),..., D(N), and a commutator to switch
input and output symbols through registers. The kth shift register holds D(k) symbols, where k = 1, 2,
3, … N. The kth shift register has a delay value of ((k–1) × slope). With each new input symbol, the
commutator switches to a new register and shifts in the new symbol while shifting out the oldest
symbol in that register. When the commutator reaches the Nth register, upon the next new input, the
commutator returns to the first register.

Version History
Introduced before R2006a

References

[1] Heegard, Chris and Stephen B. Wicker. Turbo Coding. Boston: Kluwer Academic Publishers, 1999.

See Also
Functions
convintrlv | heldeintrlv | muxdeintrlv

Objects
comm.ConvolutionalDeinterleaver | comm.ConvolutionalInterleaver

Blocks
Convolutional Interleaver | Convolutional Deinterleaver

Topics
“Interleaving”
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convenc
Convolutionally encode binary message

Syntax
codedout = convenc(msg,trellis)
codedout = convenc(msg,trellis,puncpat)
codedout = convenc( ___ ,istate)
[codedout,fstate] = convenc( ___ )

Description
codedout = convenc(msg,trellis) encodes the input binary message by using a convolutional
encoder represented by a trellis structure. For details about trellis structures in MATLAB, see “Trellis
Description of a Convolutional Code”. The input message contains one or more symbols, each of
which consists of log2(trellis.numInputSymbols) bits. The coded output, codedout, contains one
or more symbols, each of which consists of log2(trellis.numOutputSymbols) bits.

codedout = convenc(msg,trellis,puncpat)specifies a puncture pattern, puncpat, to enable
higher rate encoding than unpunctured coding.

For some commonly used puncture patterns for specific rates and polynomials, see the last three
references.

codedout = convenc( ___ ,istate) enables the encoder registers to start at a state specified by
istate. Specify istate as the last input parameter preceded by any of the input argument
combinations in the previous syntaxes.

[codedout,fstate] = convenc( ___ ) also returns the final state of the encoder. When calling
convenc iteratively, fstate is typically used to set istate for subsequent calls to the convenc
function.

Examples

Create Convolutional Codes

Create convolutional codes by using a trellis structure. You can define the trellis by using the
poly2trellis function or by manually specifying the trellis structure. The example shows both
methods.

Define trellis by using poly2trellis function

Define the trellis structure to be used to configure the encoder by using the poly2trellis function.

trellis_a = poly2trellis([5 4],[23 35 0; 0 5 13])

trellis_a = struct with fields:
     numInputSymbols: 4
    numOutputSymbols: 8
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           numStates: 128
          nextStates: [128x4 double]
             outputs: [128x4 double]

Use the trellis structure to configure the convenc function. Encode five two-bit symbols for a K/N rate
2/3 convolutional code by using the convenc function.

K = log2(trellis_a.numInputSymbols) % Number of input bit streams

K = 2

N = log2(trellis_a.numOutputSymbols) % Number of output bit streams

N = 3

numReg = log2(trellis_a.numStates) % Number of coder registers

numReg = 7

numSymPerFrame = 5; % Number of symbols per frame
data = randi([0 1],K*numSymPerFrame,1);
[code_a,fstate_a] = convenc(data,trellis_a);

Verify that the encoded output is 15 bits, which is 3/2 (N/K) times the length of the input sequence,
data.

code_a'

ans = 1×15

     1     1     1     0     0     1     1     1     1     1     0     1     0     1     0

length(data)

ans = 10

length(code_a)

ans = 15

Define trellis manually

Manually define a trellis structure for a K/N rate 1/2 convolutional code.

trellis_b = struct('numInputSymbols',2,'numOutputSymbols',4, ...
'numStates',4,'nextStates',[0 2;0 2;1 3;1 3], ...
'outputs',[0 3;1 2;3 0;2 1])

trellis_b = struct with fields:
     numInputSymbols: 2
    numOutputSymbols: 4
           numStates: 4
          nextStates: [4x2 double]
             outputs: [4x2 double]

Use the trellis structure to configure the convenc function when encoding 10 one-bit symbols.

K = log2(trellis_b.numInputSymbols) % Number of input bit streams
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K = 1

N = log2(trellis_b.numOutputSymbols) % Number of output bit streams

N = 2

numReg = log2(trellis_b.numStates) % Number of coder registers

numReg = 2

numSymPerFrame = 10; % Number of symbols per frame
data = randi([0 1],K*numSymPerFrame,1);
code_b = convenc(data,trellis_b);

Verify that the encoded output is 20 bits, which is 2/1 (N/K) times the length of the input sequence,
data.

code_b'

ans = 1×20

     0     0     1     1     0     0     1     0     1     0     1     1     0     1     1     1     0     0     0     1

length(data)

ans = 10

length(code_b)

ans = 20

Adjust Convolutional Encoding Code Rate by Using Puncturing

Use puncturing to adjust the K/N code rate of the convolutional encoder from 1/2 to 3/4.

Initialize parameters for the encoding operation.

trellis = poly2trellis(7,[171 133])

trellis = struct with fields:
     numInputSymbols: 2
    numOutputSymbols: 4
           numStates: 64
          nextStates: [64x2 double]
             outputs: [64x2 double]

puncpat = [1;1;0];

Calculate the unpunctured and punctured code rates.

K = log2(trellis.numInputSymbols); % Number of input streams
N = log2(trellis.numOutputSymbols); % Number of output streams
unpunc_coderate = K/N; % Unpunctured code rate
punc_coderate = (K/N)*length(puncpat)/sum(puncpat); % Punctured code rate
fprintf('K is %d and N is %d. The unpunctured code rate is %3.2f and the punctured code rate is %3.2f.\n',K,N,unpunc_coderate,punc_coderate)

K is 1 and N is 2. The unpunctured code rate is 0.50 and the punctured code rate is 0.75.
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Convolutionally encode an all 1s three-bit message without puncturing applied to the coded output.
Then, convolutionally encode the same message with puncturing.

msg = ones(length(puncpat),1);
unpuncturedcode = convenc(msg,trellis);
puncturedcode = convenc(msg,trellis,puncpat);

Show the message, the unpunctured code, the punctured code, and the puncture pattern.

msg'

ans = 1×3

     1     1     1

unpuncturedcode'

ans = 1×6

     1     1     0     1     1     0

puncpat'

ans = 1×3

     1     1     0

puncturedcode'

ans = 1×4

     1     1     1     1

Without puncturing, the configured convolutional encoding inputs three message bits and outputs six
coded bits. Confirm the resulting code rate matches the expected code rate of 1/2.

length(msg)/length(unpuncturedcode)

ans = 0.5000

With puncturing, bits in positions 1 and 2 of the input message are transmitted, while the bit in
position 3 is removed. For every three bits of input, the punctured code generates four bits of output.
Confirm the resulting code rate matches the expected code rate of 3/4.

length(msg)/length(puncturedcode)

ans = 0.7500

Use Trellis Structure for Rate 1/2 Feedforward Convolutional Encoder

Use a trellis structure to configure the rate 1/2 feedforward convolutional code in this diagram.
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Create a trellis structure, setting the constraint length to 3 and specifying the code generator as a
vector of octal values. The diagram indicates the binary values and polynomial form, indicating the
left-most bit is the most-significant-bit (MSB). The binary vector [1 1 0] represents octal 6 and
corresponds to the upper row of binary digits in the diagram. The binary vector [1 1 1] represents
octal 7 and corresponds to the lower row of binary digits in the diagram. These binary digits indicate
connections from the outputs of the registers to the two adders in the diagram.

trellis = poly2trellis(3,[6 7])

trellis = struct with fields:
     numInputSymbols: 2
    numOutputSymbols: 4
           numStates: 4
          nextStates: [4x2 double]
             outputs: [4x2 double]

Generate random binary data. Convolutionally encode the data, by using the specified trellis
structure. Decode the coded data by using the Viterbi algorithm with the specified trellis structure,
34 for its traceback depth, truncated operation mode, and hard decisions.

data = randi([0 1],70,1);
codedData = convenc(data,trellis);
tbdepth = 34;
decodedData = vitdec(codedData,trellis,tbdepth,'trunc','hard');

Verify the decoded data has zero bit errors.

biterr(data,decodedData)

ans = 0

Use Trellis Structure for Rate 1/2 Feedback Convolutional Encoder

Create a trellis structure to represent the rate 1/2 systematic convolutional encoder with feedback
shown in this diagram.
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This encoder has 5 for its constraint length, [37 33] as its generator polynomial matrix, and 37 for its
feedback connection polynomial.

The first generator polynomial is octal 37. The second generator polynomial is octal 33. The feedback
polynomial is octal 37. The first generator polynomial matches the feedback connection polynomial
because the first output corresponds to the systematic bits.

The binary vector [1 1 1 1 1] represents octal 37 and corresponds to the upper row of binary digits in
the diagram. The binary vector [1 1 0 1 1] represents octal 33 and corresponds to the lower row of
binary digits in the diagram. These binary digits indicate connections from the outputs of the
registers to the two adders in the diagram. The initial 1 corresponds to the input bit.

Convert the polynomial to a trellis structure by using the poly2trellis function. When used with a
feedback polynomial, poly2trellis makes a feedback connection to the input of the trellis.

trellis = poly2trellis(5,[37 33],37)

trellis = struct with fields:
     numInputSymbols: 2
    numOutputSymbols: 4
           numStates: 16
          nextStates: [16x2 double]
             outputs: [16x2 double]

Generate random binary data. Convolutionally encode the data by using the specified trellis
structure. Decode the coded data by using the Viterbi algorithm with the specified trellis structure,
34 for its traceback depth, truncated operation mode, and hard decisions.

data = randi([0 1],70,1);
codedData = convenc(data,trellis);
tbdepth = 34; % Traceback depth for Viterbi decoder
decodedData = vitdec(codedData,trellis,tbdepth,'trunc','hard');

Verify the decoded data has zero bit errors.

biterr(data,decodedData)

ans = 0

Compare Full Message to Piecewise Message Convolutional Encoding

Compare the convolutional encoding of a full message to the convolutional encoding of a message in
two segments.
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This diagram shows a rate 2/3 encoder with two input streams, three output streams, and seven shift
registers.

Define the trellis structure in the diagram by using the poly2trellis function. Set the constraint
length of the upper path to 5 and the constraint length of the lower path to 4. The octal
representation of the code generator matrix corresponds to the taps from the upper and lower shift
registers.

trellis = poly2trellis([5 4],[23 35 0; 0 5 13]);

Inspect the coder configuration.

K = log2(trellis.numInputSymbols) % Number of input bit streams

K = 2

N = log2(trellis.numOutputSymbols) % Number of output bit streams

N = 3

coderate = K/N

coderate = 0.6667

numReg = log2(trellis.numStates) % Number of coder registers

numReg = 7

Define a message with five two-bit input symbols.

numSymPerFrame = 5; % Number of symbols per frame
msg = randi([0 1],K*numSymPerFrame,1);

Encode the full message by using the trellis to configure the convenc function.

[code_a,fstate_a] = convenc(msg,trellis);
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Apply piecewise message encoding by using the same trellis structure. Use the final and initial state
arguments when using the convenc function. For piecewise message encoding, message segments
must be a multiple of the number of bits in an input symbol.

Encode part of the message, recording the final state for later use.

[code_a1,fstate_a1] = convenc(msg(1:6),trellis);

Encode the rest of the message, using the final state, fstate_a1, as the initial state input argument.

[code_a2,fstate_a2] = convenc(msg(7:end),trellis,fstate_a1);

Verify that the full coded message, code_a, matches the concatenated piecewise coded message,
[code_a1; code_a2].

isequal(code_a,[code_a1; code_a2])

ans = logical
   1

Verify that the final state, fstate_a, of the encoder after the full message encoding matches the
final state, fstate_a2, of the encoder after piecewise message encoding.

isequal(fstate_a,fstate_a2)

ans = logical
   1

Input Arguments
msg — Binary message
vector of binary values

Binary message, specified as a vector of binary values. msg must contain one or more symbols. Each
symbol must consist of log2(trellis.numInputSymbols) bits.
Example: [1 1 0 1 0 0 1 1] specifies the message as a binary row vector with eight elements.
Data Types: double | logical

trellis — Trellis description
structure

Trellis description, specified as a MATLAB structure that contains the trellis description for a rate
K/N code. K represents the number of input bit streams, and N represents the number of output bit
streams.

The trellis structure contains these fields. You can either use the poly2trellis function to create
the trellis structure or create it manually. For more about this structure, see “Trellis Description of a
Convolutional Code” and the istrellis function.

numInputSymbols — Number of symbols input to encoder
2K
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Number of symbols input to the encoder, specified as an integer equal to 2K, where K is the number of
input bit streams.
Data Types: double

numOutputSymbols — Number of symbols output from encoder
2N

Number of symbols output from the encoder, specified as an integer equal to 2N, where N is the
number of output bit streams.
Data Types: double

numStates — Number of states in encoder
power of 2

Number of states in the encoder, specified as a power of 2.
Data Types: double

nextStates — Next states
matrix of integers

Next states for all combinations of current states and current inputs, specified as a matrix of integers.
The matrix size must be numStates by 2K.
Data Types: double

outputs — Outputs
matrix of octal numbers

Outputs for all combinations of current states and current inputs, specified as a matrix of octal
numbers. The matrix size must be numStates by 2K.
Data Types: double

Data Types: struct

puncpat — Puncture pattern
vector of binary values

Puncture pattern, specified as a vector of binary values. Indicate punctured bits with 0s and
unpunctured bits with 1s. The length of the puncpat vector must be an integer divisor of the input
message vector length, length(msg).
Data Types: double

istate — Initial state
integer scalar

Initial state used for the encoder registers, specified as an integer scalar in the range [0,
(trellis.numStates – 1)].
Data Types: double
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Output Arguments
codedout — Convolutionally encoded message
vector of binary values

Convolutionally encoded message, returned as a vector of binary values. This output vector has the
same data type and orientation as input msg. Each symbol in codedout consists of
log2(trellis.numOutputSymbols) bits.
Data Types: double | logical

fstate — Final state
integer scalar

Final state of the encoder registers, returned as an integer scalar. When calling convenc iteratively,
such as in a loop, fstate is typically used to set istate for subsequent calls to the convenc
function.
Data Types: double

More About
Convolutional Coding

Convolutional coding is an error-control coding that has memory. Specifically, the computations and
coded output depend on the current set of input symbols and on a number of previous input symbols
that varies depending on the trellis configuration. A convolutional encoder outputs N bits for every K
input bits. The input can have varying multiples of K bits over a simulation.

Using a MATLAB trellis structure that defines a set of generator polynomials, you can model
nonsystematic, systematic feedforward, or systematic feedback convolutional codes. For more
information and examples that demonstrate various convolutional code architectures, see the
“Convolutional Codes” topic.

To decode the convolutionally coded output, you can use:

• The vitdec function or comm.ViterbiDecoder System object — Uses the Viterbi algorithm with
hard-decision and soft-decision decoding

• The comm.APPDecoder System object — Uses an a posteriori probability decoder for the soft
output decoding of convolutional codes

Version History
Introduced before R2006a

References
[1] Clark, George C., and J. Bibb Cain. Error-Correction Coding for Digital Communications.

Applications of Communications Theory. New York: Plenum Press, 1981.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

The input arguments trellis, and puncpat must be compile-time constants. For more information,
see coder.Constant.

See Also
Functions
distspec | poly2trellis | istrellis | vitdec

Objects
comm.APPDecoder | comm.ConvolutionalEncoder | comm.TurboEncoder |
comm.ViterbiDecoder

Topics
“Convolutional Codes”
“Trellis Description of a Convolutional Code”
“Estimate BER for Hard and Soft Decision Viterbi Decoding”
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convertSNR
Convert SNR values

Syntax
y = convertSNR(x,inputmode)
y = convertSNR(x,inputmode,outputmode)
y = convertSNR(x,inputmode,Name=Value)

Description
y = convertSNR(x,inputmode) converts the input signal-to-noise ratio value x to an SNR.

y = convertSNR(x,inputmode,outputmode) converts the input signal-to-noise ratio value x to
outputmode.

y = convertSNR(x,inputmode,Name=Value) specifies additional name-value arguments.

Examples

Add Noise to 8-PSK Modulated Signal for Eb/No Value

Generate random data symbols and the 8-PSK modulated signal.

d = randi([0 7],100,1);
M = 8;                  % 8-PSK
k = log2(M);            % bits per symbol
psk = pskmod(d,M);

Add the noise equivalent of a 6 dB Eb/No value to the modulated signal. To do so, first convert the
Eb/No value to an SNR.

EbNo = 6;
SNR = convertSNR(EbNo,'ebno',BitsPerSymbol=k)

SNR = 10.7712

y = awgn(psk,SNR);

Plot the signal with and without the noise component.

figure
plot(real(psk));
hold on
plot(real(y))
legend("Perfect Signal","Noisy Signal")
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Convert Eb/No Value to SNR Value

Set the simulation parameters

M = 16;        % Modulation order
k = log2(M);   % bits per symbol
nSamp = 4;     % Number of samples

Create the raised cosine transmit and receive filters

txfilter = comm.RaisedCosineTransmitFilter('OutputSamplesPerSymbol',nSamp);
rxfilter = comm.RaisedCosineReceiveFilter('InputSamplesPerSymbol',nSamp, ...
                                          'DecimationFactor',nSamp);

Generate random data symbols and the filtered 16-QAM modulated signal.

d = randi([0 1],1000,1);
sig1 = qammod(d,M,InputType="bit");
qam = txfilter(sig1);

Convert the Eb/No value of 10 dB to an SNR value and add the noise equivalent to the filtered
modulated signal.

EbNo = 10;
SNR = convertSNR(EbNo,"ebno",BitsPerSymbol=k, ...
                 SamplesPerSymbol=nSamp,CodingRate=1/3)
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SNR = 5.2288

[sig2,var] = awgn(qam,SNR);
y = rxfilter(sig2);
outsignal = qamdemod(y,M,OutputType="llr",NoiseVariance=var);

Plot the demodulated QAM signal.

figure   
plot(outsignal,'.')
xlabel('Bit Number')
ylabel('LLR')

Input Arguments
x — Input value
numeric row vector

Input value, specified as a numeric row vector.
Data Types: double

inputmode — Input mode
"ebno" | "esno" | "snr"

Input mode, specified as "ebno", "esno", or "snr".
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• "ebno" — x is the energy per bit to noise power spectral density ratio (Eb/No).
• "esno" — x is the energy per symbol to noise power spectral density ratio (Es/No).
• "snr" — x is the SNR.

outputmode — Output mode
"ebno" | "esno" | "snr"

Output mode for y, specified as "ebno", "esno", or "snr".

• "ebno" — y is the energy per bit to noise power spectral density ratio (Eb/No).
• "esno" — y is the energy per symbol to noise power spectral density ratio (Es/No).
• "snr" — y is the SNR.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: y = convertSNR(x,inputmode,outputmode,SamplesPerSymbol=2)

samplespersymbol — Samples per symbol
1 (default) | positive integer

Samples per symbol, specified as a positive integer. The function ignores samplespersymbol value
if you set:

• inputmode to "ebno" and outputmode to "esno".
• inputmode to "esno" and outputmode to "ebno".

For more information, see “Input mode to output mode conversion” on page 2-222.
Data Types: double

bitspersymbol — Bits per symbol
1 (default) | positive integer

Bits per symbol, specified as a positive integer. The function ignores bitspersymbol value if you
set:

• inputmode to "esno" and outputmode to "snr".
• inputmode to "snr" and outputmode to "esno".

For more information, see “Input mode to output mode conversion” on page 2-222.
Data Types: double

codingrate — Coding rate
1 (default) | scalar in the range (0, 1]

Coding rate, specified as a scalar in the range (0, 1]. The function ignores codingrate value if you
set:
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• inputmode to "esno" and outputmode to "snr".
• inputmode to "snr" and outputmode to "esno".

For more information, see “Input mode to output mode conversion” on page 2-222.
Data Types: double

Output Arguments
y — Output value
row vector of numeric values

Output value, returned as a row vector of numeric values.

More About
Input mode to output mode conversion

The following table shows the parameters used in conversion based on the choice of inputmode and
outputmode. The default value for all the parameters is 1.

inputmode to outputmode Conversion Parameters used
ebno to snr, snr to ebno bitspersymbol, codingrate,

samplespersymbol
ebno to esno, esno to ebno bitspersymbol, codingrate
esno to snr, snr to esno samplespersymbol

Version History
Introduced in R2022a

See Also
awgn
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convintrlv
Permute symbols using shift registers

Syntax
intrlved = convintrlv(data,nrows,slope)
[intrlved,state] = convintrlv(data,nrows,slope)
[intrlved,state] = convintrlv(data,nrows,slope,init_state)

Description
intrlved = convintrlv(data,nrows,slope) permutes the elements in data by using a set of
nrows internal shift registers. Before the function begins to process data, it initializes all shift
registers with zeros. If data is a matrix with multiple rows and columns, the function processes the
columns independently. For information about delays, see “Delays of Convolutional Interleaving and
Deinterleaving” on page 2-224.

[intrlved,state] = convintrlv(data,nrows,slope) returns a structure that holds the final
state of the shift registers. state.value stores any unshifted symbols. state.index is the index of
the next register to be shifted.

[intrlved,state] = convintrlv(data,nrows,slope,init_state) initializes the shift
registers with the symbols contained in init_state.value and directs the first input symbol to the
shift register referenced by init_state.index. The structure init_state is typically the state
output from a previous call to this same function, and is unrelated to the corresponding deinterleaver.

Examples
The example below shows that convintrlv is a special case of the more general function
muxintrlv. Both functions yield the same numerical results.

x = randi([0 1],100,1); % Original data
nrows = 5; % Use 5 shift registers
slope = 3; % Delays are 0, 3, 6, 9, and 12.
y = convintrlv(x,nrows,slope); % Interleaving using convintrlv.
delay = [0:3:12]; % Another way to express set of delays
y1 = muxintrlv(x,delay); % Interleave using muxintrlv.
isequal(y,y1)

The output below shows that y, obtained using convintrlv, and y1, obtained using muxintrlv, are
the same.

ans =

     1

Another example using this function is in “Effect of Delays on Recovery of Convolutionally Interleaved
Data Using MATLAB”.

The example on the muxdeintrlv reference page illustrates how to use the state output and
init_state input with that function; the process is analogous for this function.
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More About
Delays of Convolutional Interleaving and Deinterleaving

The total delay due to a convolutional interleaver and deinterleaver pair is N × slope × (N – 1).

• N is the number of registers and equals the value of the nrows argument
• slope is the register length step and equals the value of the slope argument

This diagram shows the structure of a general convolutional interleaver comprised of a set of shift
registers, each having a specified delay shown as D(1), D(2),..., D(N), and a commutator to switch
input and output symbols through registers. The kth shift register holds D(k) symbols, where k = 1, 2,
3, … N. The kth shift register has a delay value of ((k–1) × slope). With each new input symbol, the
commutator switches to a new register and shifts in the new symbol while shifting out the oldest
symbol in that register. When the commutator reaches the Nth register, upon the next new input, the
commutator returns to the first register.

Version History
Introduced before R2006a

References

[1] Heegard, Chris and Stephen B. Wicker. Turbo Coding. Boston: Kluwer Academic Publishers, 1999.

See Also
Functions
convdeintrlv | muxintrlv | helintrlv

Objects
comm.ConvolutionalDeinterleaver | comm.ConvolutionalInterleaver

Blocks
Convolutional Interleaver | Convolutional Deinterleaver
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Topics
“Interleaving”
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convmtx
Convolution matrix of Galois field vector

Syntax
A = convmtx(c,n)

Description
A convolution matrix is a matrix, formed from a vector, whose inner product with another vector is
the convolution of the two vectors.

A = convmtx(c,n) returns a convolution matrix for the Galois vector c. The output A is a Galois
array that represents convolution with c in the sense that conv(c,x) equals

• A*x, if c is a column vector and x is any Galois column vector of length n. In this case, A has n
columns and m+n-1 rows.

• x*A, if c is a row vector and x is any Galois row vector of length n. In this case, A has n rows and
m+n-1 columns.

Examples
The code below illustrates the equivalence between using the conv function and multiplying by the
output of convmtx.

m = 4;
c = gf([1; 9; 3],m); % Column vector
n = 6;
x = gf(randi([0 2^m-1],n,1),m);
ck1 = isequal(conv(c,x), convmtx(c,n)*x) % True
ck2 = isequal(conv(c',x'),x'*convmtx(c',n)) % True

The output is

ck1 =

     1

ck2 =

     1

Version History
Introduced before R2006a

See Also
gf | conv
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Topics
“Signal Processing Operations in Galois Fields”
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cosets
Produce cyclotomic cosets for Galois field

Syntax
cst = cosets(m)

Description
cst = cosets(m) produces cyclotomic cosets mod 2^m-1. Each element of the cell array cst is a
Galois array that represents one cyclotomic coset.

A cyclotomic coset is a set of elements that share the same minimal polynomial. Together, the
cyclotomic cosets mod 2^m-1 form a partition of the group of nonzero elements of GF(2^m). For more
details on cyclotomic cosets, see the works listed in “References” on page 2-229.

Examples
The commands below find and display the cyclotomic cosets for GF(8). As an example of interpreting
the results, c{2} indicates that A, A2, and A2 + A share the same minimal polynomial, where A is a
primitive element for GF(8).

c = cosets(3);
c{1}'
c{2}'
c{3}'

The output is below.

ans = GF(2^3) array. Primitive polynomial = D^3+D+1 (11 decimal)
 
Array elements = 
 
     1

 
ans = GF(2^3) array. Primitive polynomial = D^3+D+1 (11 decimal)
 
Array elements = 
 
     2     4     6

 
ans = GF(2^3) array. Primitive polynomial = D^3+D+1 (11 decimal)
 
Array elements = 
 
     3     5     7
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Version History
Introduced before R2006a

References

[1] Blahut, Richard E., Theory and Practice of Error Control Codes, Reading, MA, Addison-Wesley,
1983, p. 105.

[2] Lin, Shu, and Daniel J. Costello, Jr., Error Control Coding: Fundamentals and Applications,
Englewood Cliffs, NJ, Prentice-Hall, 1983.

See Also
gf | minpol

 cosets

2-229



crc.detector
(To be removed) Construct CRC detector object

Note  will be removed in a future release. To detect errors in input data using cyclic redundancy
check (CRC), use the comm.CRCDetector System object instead. For more details on the
recommended workflow, see “Compatibility Considerations”.

Syntax
h= crc.detector(polynomial)

h= crc.detector(generatorObj)

h= crc.detector(‘Polynomial’, polynomial, ‘param1’, val1, etc.)

h= crc.detector

Description
h= crc.detector(polynomial) constructs a CRC detector object H defined by the generator
polynomial POLYNOMIAL

h= crc.detector(generatorObj) constructs a CRC detector object H defined by the parameters
found in the CRC generator object GENERATOROBJ

h= crc.detector('property1', val1, ...) constructs a CRC detector object H with
properties as specified by PROPERTY/VALUE pairs.

h= crc.detector constructs a CRC detector object H with default properties. It constructs a CRC-
CCITT detector, and is equivalent to:

h=
crc.detector('Polynomial','0x1021','InitialState','0xFFFF','ReflectInput',fal
se,'ReflectRemainder',false,'FinalXOR','0x0000')

Properties

The following table describes the properties of a CRC detector object. All properties are writable,
except Type.

Property Description
Type Specifies the object as a 'CRC Detector'.
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Property Description
Polynomial The generator polynomial that defines

connections for a linear feedback shift register.
This property can be specified as a binary vector
representing descending powers of the
polynomial. In this case, the leading '1' of the
polynomial must be included. It can also be
specified as a string, prefaced by '0x', that is a
hexadecimal representation of the descending
powers of the polynomial. In this case, the
leading '1' of the polynomial is omitted.

InitialState The initial contents of the shift register. This
property can be specified as a binary scalar, a
binary vector, or as a string, prefaced by '0x', that
is a hexadecimal representation of the binary
vector. As a binary vector, its length must be one
less than the length of the binary vector
representation of the Polynomial.

ReflectInput A Boolean quantity that specifies whether the
input data should be flipped on a bytewise basis
prior to entering the shift register.

ReflectRemainder A Boolean quantity that specifies whether the
binary output CRC checksum should be flipped
around its center after the input data is
completely through the shift register.

FinalXOR The value with which the CRC checksum is to be
XORed just prior to detecting the input data. This
property can be specified as a binary scalar, a
binary vector or as a string, prefaced by '0x', that
is a hexadecimal representation of the binary
vector. As a binary vector, its length must be one
less than the length of the binary vector
representation of the Polynomial.

A detect method is used with the object to detect errors in digital transmission.

CRC Generation Algorithm

For information pertaining to the CRC generation algorithm, see “Cyclic Redundancy Check Codes”.

Detector Method

[OUTDATA ERROR] = DETECT(H, INDATA) detects transmission errors in the encoded input
message INDATA by regenerating a CRC checksum using the CRC detector object H. The detector
then compares the regenerated checksum with the checksum appended to INDATA. The binary-
valued INDATA can be either a column vector or a matrix. If it is a matrix, each column is considered
to be a separate channel. OUTDATA is identical to the input message INDATA, except that it has the
CRC checksum stripped off. ERROR is a 1xC logical vector indicating if the encoded message INDATA
has errors, where C is the number of channels in INDATA. An ERROR value of 0 indicates no errors,
and a value of 1 indicates errors.
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Examples
Create a CRC-16 CRC generator, then use it to generate a checksum for the binary vector
represented by the ASCII sequence '123456789'. Introduce an error, then detect it using a CRC-16
CRC detector.

gen = crc.generator('Polynomial', '0x8005', 'ReflectInput', ...
true, 'ReflectRemainder', true);
det = crc.detector('Polynomial', '0x8005', 'ReflectInput', ...
true, 'ReflectRemainder', true);
% The message below is an ASCII representation
% of the digits 1-9
msg = int2bit((49:57)',8);
encoded = generate(gen, msg);
encoded(1) = ~encoded(1);                % Introduce an error
[outdata error] = detect(det, encoded);  % Detect the error
noErrors = isequal(msg, outdata)         % Should be 0
error                                    % Should be 1

This example generates the following output:

noErrors = 0 error = 1 

Version History
Introduced in R2008a

crc.detector will be removed in a future release.
Warns starting in R2020b

crc.detector will be removed in a future release. To detect errors in input data using cyclic
redundancy check (CRC), use the comm.CRCDetector System object instead.

Replace instances of crc.detector with a comm.CRCDetector System object. Note the mapping
between crc.detector properties and comm.CRCDetector properties:

crc.detector comm.CRCDetector
Polynomial Polynomial
InitialState InitialConditions
ReflectInput ReflectInputBytes
ReflectRemainder ReflectChecksums
FinalXOR FinalXOR

See the following table for examples of migrating the old workflow to the recommended workflow.

Previous Workflow Recommended Workflow
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oldO = crc.generator;
oldOdet = crc.detector

data = randi([0 1],100,1);

enc_old = generate(oldO,data);

[dec_old, err_old] = detect(oldOdet,enc_old);

oldOdet = 

                Type: CRC Detector
          Polynomial: 0x1021
        InitialState: 0xFFFF
        ReflectInput: false
    ReflectRemainder: false
            FinalXOR: 0x0000

sysO = comm.CRCGenerator('InitialConditions',1);
sysOdet = comm.CRCDetector('InitialConditions',1)

data = randi([0 1],100,1);

enc_new = sysO(data);

[dec_new, err] = sysOdet(enc_new);

sysOdet = 

  comm.CRCDetector with properties:

           Polynomial: 'z^16 + z^12 + z^5 + 1'
    InitialConditions: 1
         DirectMethod: false
    ReflectInputBytes: false
     ReflectChecksums: false
             FinalXOR: 0
    ChecksumsPerFrame: 1

oldO = crc.generator([1 1 1 1 1]);
oldOdet = crc.detector([1 1 1 1 1])

data = randi([0 1],100,1);
enc_old = generate(oldO,data);
[dec_old, err_old] = detect(oldOdet,enc_old);

oldOdet = 

                Type: CRC Detector
          Polynomial: 0xF
        InitialState: 0x0
        ReflectInput: false
    ReflectRemainder: false
            FinalXOR: 0x0

sysO = comm.CRCGenerator('Polynomial',[1 1 1 1 1]);
sysOdet = comm.CRCDetector('Polynomial',[1 1 1 1 1])

data = randi([0 1],100,1);
enc_new = sysO(data);
[dec_new, err] = sysOdet(enc_new);

sysOdet = 

  comm.CRCDetector with properties:

           Polynomial: [1 1 1 1 1]
    InitialConditions: 0
         DirectMethod: false
    ReflectInputBytes: false
     ReflectChecksums: false
             FinalXOR: 0
    ChecksumsPerFrame: 1

See Also
Functions
crc.generator

Objects
comm.CRCGenerator | comm.CRCDetector

Blocks
General CRC Generator | General CRC Syndrome Detector
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crc.generator
(To be removed) Construct CRC generator object

Note  will be removed in a future release. To generate cyclic redundancy check (CRC) code bits, use
the comm.CRCGenerator System object instead. For more details on the recommended workflow,
see “Compatibility Considerations”.

Syntax
h = crc.generator(polynomial)

h = crc.generator(detectorObj)

h = crc.generator(‘Polynomial’, polynomial, ‘param1’, val1, etc.)

h = crc.generator

Description
h = crc.generator(polynomial) constructs a CRC generator object H defined by the generator
polynomial POLYNOMIAL.

h = crc.generator(detectorObj) constructs a CRC generator object H defined by the
parameters found in the CRC detector object DETECTOROBJ.

h = crc.generator(‘property1', val1, ...) constructs a CRC generator object H with
properties as specified by the PROPERTY/VALUE pairs.

h = crc.generator constructs a CRC generator object H with default properties. It constructs a
CRC-CCITT generator, and is equivalent to: h = crc.generator('Polynomial', '0x1021', 'InitialState',
'0xFFFF', ...

'ReflectInput', false, 'ReflectRemainder', false, 'FinalXOR', '0x0000').

Properties

The following table describes the properties of a CRC generator object. All properties are writable,
except Polynomial.
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Property Description
Polynomial The generator polynomial that defines

connections for a linear feedback shift register.
This property can be specified as a binary vector
representing descending powers of the
polynomial. In this case, the leading '1' of the
polynomial must be included. It can also be
specified as a string, prefaced by '0x', that is a
hexadecimal representation of the descending
powers of the polynomial. In this case, the
leading '1' of the polynomial is omitted.

InitialState The initial contents of the shift register. This
property can be specified as a binary scalar, a
binary vector, or as a string, prefaced by '0x', that
is a hexadecimal representation of the binary
vector. As a binary vector, its length must be one
less than the length of the binary vector
representation of the Polynomial.

ReflectInput A Boolean quantity that specifies whether the
input data should be flipped on a bytewise basis
prior to entering the shift register.

ReflectRemainder A Boolean quantity that specifies whether the
binary output CRC checksum should be flipped
around its center after the input data is
completely through the shift register.

FinalXOR The value with which the CRC checksum is to be
XORed just prior to being appended to the input
data. This property can be specified as a binary
scalar, a binary vector, or as a string, prefaced by
'0x', that is a hexadecimal representation of the
binary vector. As a binary vector, its length must
be one less than the length of the binary vector
representation of the Polynomial.

CRC Generation Algorithm

For information pertaining to the CRC generation algorithm, refer to the “CRC Non-Direct Algorithm”
section of the Communications Toolbox User's Guide.

Generator Method

encoded = generate(h, msg) generates a CRC checksum for an input message using the CRC
generator object H. It appends the checksum to the end of MSG. The binary-valued MSG can be
either a column vector or a matrix. If it is a matrix, then each column is considered to be a separate
channel.

Examples
Create a CRC-16 CRC generator, then use it to generate a checksum for the binary vector
represented by the ASCII sequence '123456789'.
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gen = crc.generator('Polynomial', '0x8005', ...
'ReflectInput', true, 'ReflectRemainder', true);

The message below is an ASCII representation of the digits 1-9.

msg = int2bit((49:57)',8);
encoded = generate(gen, msg);

h = 

                Type: CRC Generator
          Polynomial: 0xF
        InitialState: 0xF
        ReflectInput: true
    ReflectRemainder: false
            FinalXOR: 0x0

Version History
Introduced in R2008a

crc.generator will be removed in a future release.
Warns starting in R2020b

crc.generator will be removed in a future release. To generate cyclic redundancy check (CRC) code,
use the comm.CRCGenerator System object instead.

Replace instances of crc.generator with a comm.CRCGenerator System object. Note the mapping
between crc.generator properties and comm.CRCGenerator properties:

crc.generator comm.CRCGenerator
Polynomial Polynomial
InitialState InitialConditions
ReflectInput ReflectInputBytes
ReflectRemainder Reflectchecksums
FinalXOR FinalXOR

See the following table for examples of migrating the old workflow to the recommended workflow.

Previous Workflow Recommended Workflow
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data = randi([0 1],100,1);
oldO = crc.generator
encOld = generate(oldO,data);

oldO = 

                Type: CRC Generator
          Polynomial: 0x1021
        InitialState: 0xFFFF
        ReflectInput: false
    ReflectRemainder: false
            FinalXOR: 0x0000

data = randi([0 1],100,1);

sysO = comm.CRCGenerator('InitialConditions',1)
encNew = sysO(data);

sysO = 

  comm.CRCGenerator with properties:

           Polynomial: 'z^16 + z^12 + z^5 + 1'
    InitialConditions: 1
         DirectMethod: false
    ReflectInputBytes: false
     ReflectChecksums: false
             FinalXOR: 0
    ChecksumsPerFrame: 1

data = randi([0 1],96,1);

oldO = crc.generator('Polynomial', '0xF', 'InitialState', '0xF',...
'ReflectInput', true, 'FinalXOR', '0x0')

encOld = generate(oldO,data);

 Type: CRC Generator
          Polynomial: 0xF
        InitialState: 0xF
        ReflectInput: true
    ReflectRemainder: false
            FinalXOR: 0x0

data = randi([0 1],96,1);

sysO = comm.CRCGenerator('Polynomial',...
'0x1F','InitialConditions', [1 1 1 1],...
'ReflectInputBytes', true, 'FinalXOR', 0)

encNew = sysO(data);

sysO = 

  comm.CRCGenerator with properties:

           Polynomial: '0x1F'
    InitialConditions: [1 1 1 1]
         DirectMethod: false
    ReflectInputBytes: true
     ReflectChecksums: false
             FinalXOR: 0
    ChecksumsPerFrame: 1

data = randi([0 1],100,5); 

oldO = crc.generator([1 1 1 1 1])
 
encOld = generate(oldO,data);

oldO = 

                Type: CRC Generator
          Polynomial: 0xF
        InitialState: 0x0
        ReflectInput: false
    ReflectRemainder: false
            FinalXOR: 0x0

data = randi([0 1],100,5); 

sysO = comm.CRCGenerator('Polynomial',[1 1 1 1 1],...
 'ChecksumsPerFrame',5)

encNew = sysO(data(:));

sysO = 

  comm.CRCGenerator with properties:

           Polynomial: [1 1 1 1 1]
    InitialConditions: 0
         DirectMethod: false
    ReflectInputBytes: false
     ReflectChecksums: false
             FinalXOR: 0
    ChecksumsPerFrame: 5
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See Also
Functions
crc.detector

Objects
comm.CRCGenerator | comm.CRCDetector

Blocks
General CRC Generator | General CRC Syndrome Detector
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cyclgen
Produce parity-check and generator matrices for cyclic code

Syntax
h = cyclgen(n,pol)
h = cyclgen(n,pol,opt)
[h,g] = cyclgen(...)
[h,g,k] = cyclgen(...)

Description
For all syntaxes, the codeword length is n and the message length is k. A polynomial can generate a
cyclic code with codeword length n and message length k if and only if the polynomial is a degree-(n-
k) divisor of x^n-1. (Over the binary field GF(2), x^n-1 is the same as x^n+1.) This implies that k
equals n minus the degree of the generator polynomial.

h = cyclgen(n,pol) produces an (n-k)-by-n parity-check matrix for a systematic binary cyclic
code having codeword length n. The row vector pol gives the binary coefficients, in order of
ascending powers, of the degree-(n-k) generator polynomial. Alternatively, you can specify pol as a
polynomial character vector. For more information, see “Representation of Polynomials in
Communications Toolbox”.

h = cyclgen(n,pol,opt) is the same as the syntax above, except that the argument opt
determines whether the matrix should be associated with a systematic or nonsystematic code. The
values for opt are 'system' and 'nonsys'.

[h,g] = cyclgen(...) is the same as h = cyclgen(...), except that it also produces the k-by-
n generator matrix g that corresponds to the parity-check matrix h.

[h,g,k] = cyclgen(...) is the same as [h,g] = cyclgen(...), except that it also returns the
message length k.

Examples

Parity Check and Generator Matrices for Binary Cyclic Codes

Create parity check and generator matrices for a binary cyclic code having codeword length 7 and
message length 4.

Create the generator polynomial using cyclpoly.

pol = cyclpoly(7,4);

Create the parity check and generator matrices. The parity check matrix parmat has a 3-by-3 identity
matrix embedded in its leftmost columns.

[parmat,genmat,k] = cyclgen(7,pol)
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parmat = 3×7

     1     0     0     1     1     1     0
     0     1     0     0     1     1     1
     0     0     1     1     1     0     1

genmat = 4×7

     1     0     1     1     0     0     0
     1     1     1     0     1     0     0
     1     1     0     0     0     1     0
     0     1     1     0     0     0     1

k = 4

Create a parity check matrix in which the code is not systematic. The matrix parmatn does not have
an embedded 3-by-3 identity matrix.

parmatn = cyclgen(7,pol,'nonsys')

parmatn = 3×7

     1     1     1     0     1     0     0
     0     1     1     1     0     1     0
     0     0     1     1     1     0     1

Create the parity check and generator matrices for a (7,3) binary cyclic code. As this is a systematic
code, there is a 4-by-4 identity matrix in the leftmost columns of parmat2.

parmat2 = cyclgen(7,'1 + x^2 + x^3 + x^4')

parmat2 = 4×7

     1     0     0     0     1     1     0
     0     1     0     0     0     1     1
     0     0     1     0     1     1     1
     0     0     0     1     1     0     1

Version History
Introduced before R2006a

See Also
encode | decode | bchgenpoly | cyclpoly

Topics
“Block Codes”
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cyclpoly
Produce generator polynomials for cyclic code

Syntax
pol = cyclpoly(n,k)
pol = cyclpoly(n,k,opt)

Description
For all syntaxes, a polynomial is represented as a row containing the coefficients in order of
ascending powers.

pol = cyclpoly(n,k) returns the row vector representing one nontrivial generator polynomial
for a cyclic code having codeword length n and message length k.

pol = cyclpoly(n,k,opt) searches for one or more nontrivial generator polynomials for cyclic
codes having codeword length n and message length k. The output pol depends on the argument
opt as shown in the table below.

opt Significance of pol Format of pol
'min' One generator polynomial

having the smallest possible
weight

Row vector representing the
polynomial

'max' One generator polynomial
having the greatest possible
weight

Row vector representing the
polynomial

'all' All generator polynomials Matrix, each row of which
represents one such polynomial

a positive integer, L All generator polynomials
having weight L

Matrix, each row of which
represents one such polynomial

The weight of a binary polynomial is the number of nonzero terms it has. If no generator polynomial
satisfies the given conditions, the output pol is empty and a warning message is displayed.

Examples
Cyclic Code Generator Polynomials

Create [15,4] cyclic code generator polynomials.

Use the input 'all' to show all possible generator polynomials for a [15,4] cyclic code. Use the input
'max' to show that 1 + x + x2 + x3 + x5 + x7 + x8 + x11 is one such polynomial that has the largest
number of nonzero terms.

c1 = cyclpoly(15,4,'all')

c1 = 3×12
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     1     1     0     0     0     1     1     0     0     0     1     1
     1     0     0     1     1     0     1     0     1     1     1     1
     1     1     1     1     0     1     0     1     1     0     0     1

c2 = cyclpoly(15,4,'max')

c2 = 1×12

     1     1     1     1     0     1     0     1     1     0     0     1

This command shows that no generator polynomial for a [15,4] cyclic code has exactly three nonzero
terms.

c3 = cyclpoly(15,4,3)

Warning: No cyclic generator polynomial satisfies the given constraints.

c3 =

     []

Algorithms
If opt is 'min', 'max', or omitted, polynomials are constructed by converting decimal integers to
base p. Based on the decimal ordering, gfprimfd returns the first polynomial it finds that satisfies
the appropriate conditions. This algorithm is similar to the one used in gfprimfd.

Version History
Introduced before R2006a

See Also
cyclgen | encode

Topics
“Block Codes”

2 Functions

2-242



de2bi
(Not recommended) Convert Decimal to Base-P

Note  is not recommended. Instead, use the int2bit function. For more information, see
“Compatibility Considerations”.

Syntax
b = de2bi(d)
b = de2bi(d,n)
b = de2bi(d,n,p)
b = de2bi(d,[],p)
b = de2bi(d, ___ ,flg)

Description
b = de2bi(d) converts a nonnegative decimal integer d to a binary row vector. If d is a vector, the
output b is a matrix in which each row is the binary form of the corresponding element in d.

b = de2bi(d,n) has an output with n columns.

b = de2bi(d,n,p) converts a nonnegative decimal integer d to a base-p row vector.

b = de2bi(d,[],p) specifies the base, p .

b = de2bi(d, ___ ,flg) uses flg to determine whether the first column of b contains the lowest-
order or highest-order digits.

Examples

Convert Decimal to Base-2

This example shows how to convert decimals to binary numbers in their base-2 equivalents.

d_array = [1 2 3 4];

Convert the decimal array to binary by using the de2bi function. Specify that the most significant
digit is the leftmost element and set the number of desired columns to 5. The output becomes a 4-
by-5 matrix where each row corresponds to a decimal value from the input. Because the largest
decimal value in d_array can be expressed in 3 columns, the de2bi pads the matrix with two extra
zero columns at the specified most-significant bit side. If you specify too few columns, the conversion
will fail.

b_array = de2bi(d_array,5,'left-msb')

b_array = 4×5

     0     0     0     0     1
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     0     0     0     1     0
     0     0     0     1     1
     0     0     1     0     0

b_array = de2bi(d_array,5,'right-msb')

b_array = 4×5

     1     0     0     0     0
     0     1     0     0     0
     1     1     0     0     0
     0     0     1     0     0

If you do not specify a number of columns, the number of columns is exactly what is needed to
express the largest decimal of the input.

b_array = de2bi(d_array,'left-msb')

b_array = 4×3

     0     0     1
     0     1     0
     0     1     1
     1     0     0

The output rows for specifying a leftmost-significant bit correspond to:

1 = 0(22) + 0(21) + 1(20)

2 = 0(22) + 1(21) + 0(20)

3 = 0(22) + 1(21) + 1(20)

4 = 1(22) + 0(21) + 0(20)

b_array = de2bi(d_array,'right-msb')

b_array = 4×3

     1     0     0
     0     1     0
     1     1     0
     0     0     1

The output rows for specifying a rightmost-significant bit correspond to:

1 = 1(20) + 0(21) + 0(22)

2 = 0(20) + 1(21) + 0(22)

3 = 1(20) + 1(21) + 0(22)
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4 = 0(20) + 0(21) + 1(22)

Input Arguments
d — Decimal input
nonnegative integer | vector | matrix

Decimal input, specified as a nonnegative integer, vector, or matrix. If d is a matrix, it is treated like
the column vector d(:).

Note To ensure an accurate conversion, d must be less than or equal to 252.

Data Types: double | single | integer | fi

n — Number of output columns
positive integer scalar

The number of output columns specified as a positive scalar. If necessary, the binary representation of
d is padded with extra zeros.
Data Types: double | single

p — Base
2 (default) | positive integer scalar

Base of the output b, specified as an integer greater than or equal to 2.

• If d is a vector, the output b is a matrix in which each row is the base-p form of the corresponding
element in d.

• If d is a matrix, de2bi treats it like the vector d(:).

Data Types: double | single

flg — MSB flag
'right-msb' (default) | 'left-msb'

MSB flag, specified as 'right-msb' or 'left-msb'.

• 'right-msb' –– Indicates the right (or last) column of the binary output, b, as the most
significant bit (or highest-order digit).

• 'left-msb' –– Indicates the left (or first) column of the binary output, b, as the most significant
bit (or highest-order digit).

Data Types: char | string

Output Arguments
b — Binary output
vector | matrix

Binary representation of d, returned as a row vector or matrix. The output is of the same data type as
the input.
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Version History
Introduced before R2006a

de2bi is not recommended. Use int2bit instead.
Not recommended starting in R2021b

Use int2bit instead of de2bi. If converting the representation of numbers from decimal to a base
other than 2, use dec2base.

The code in this table shows decimal-to-binary conversion for various inputs using the recommended
function.

Discouraged Feature Recommended Replacement
% Default (left MSB)
n = randi([1 100]); % Number of integers
bpi = 3;            % Bits per integer
x = randi([0,2^bpi-1],n,1);
y = reshape(de2bi(x,bpi,'left-msb')',[],1)

% Default (left MSB)
n = randi([1 100]); % Number of integers
bpi = 3;            % Bits per integer
x = randi([0,2^bpi-1],n,1);
y = int2bit(x,bpi)

% Default vector (or scalar) input
x = [4 5 9];
y = de2bi(x)

% Default vector (or scalar) input
x = [4 5 9];
y = int2bit(x,ceil(log2(max(x) + 1)), 0)'

% Right MSB
n = randi([1 100]); % Number of integers
bpi = 5;            % Bits per integer
x = randi([0,2^bpi-1],n,1);
y = reshape(de2bi(x,bpi,'right-msb')',[],1)

% Right MSB
n = randi([1 100]); % Number of integers
bpi = 5;            % Bits per integer
x = randi([0,2^bpi-1],n,1);
y = int2bit(x,bpi,false)

% Right MSB, signed input
n = randi([1 100]); % Number of integers
bpi = 8;            % Bits per integer
N = 2^bpi;
x = randi([-N/2,N/2-1],n,1);
y = reshape(de2bi(x+(x<0)*N,bpi,'right-msb')',[],1)

% Right MSB, signed input
n = randi([1 100]); % Number of integers
bpi = 8;            % Bits per integer
N = 2^bpi;
x = randi([-N/2,N/2-1],n,1);
y = int2bit(x+(x<0)*N,bpi,false)

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
bit2int | int2bit
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decode
Block decoder

Syntax
msg = decode(code,n,k,'hamming/fmt',prim_poly)
msg = decode(code,n,k,'linear/fmt',genmat,trt)
msg = decode(code,n,k,'cyclic/fmt',genpoly,trt)
msg = decode(code,n,k)
[msg,err] = decode(...)
[msg,err,ccode] = decode(...)
[msg,err,ccode,cerr] = decode(...)

Optional Inputs
Input Default Value
fmt binary
prim_poly gfprimdf(m) where n = 2^m-1
genpoly cyclpoly(n,k)
trt Uses syndtable to create the syndrome

decoding table associated with the method's
parity-check matrix

Description
For All Syntaxes

The decode function aims to recover messages that were encoded using an error-correction coding
technique. The technique and the defining parameters must match those that were used to encode
the original signal.

The encode reference page explains the meanings of n and k, the possible values of fmt, and the
possible formats for code and msg. You should be familiar with the conventions described there
before reading the rest of this section. Using the decode function with an input argument code that
was not created by the encode function might cause errors.

For Specific Syntaxes

msg = decode(code,n,k,'hamming/fmt',prim_poly) decodes code using the Hamming
method. For this syntax, n must have the form 2m-1 for some integer m greater than or equal to 3,
and k must equal n-m. prim_poly is a polynomial character vector or a row vector that gives the
binary coefficients, in order of ascending powers, of the primitive polynomial for GF(2m) that is used
in the encoding process. The default value of prim_poly is gfprimdf(m). The decoding table that
the function uses to correct a single error in each codeword is syndtable(hammgen(m)).

msg = decode(code,n,k,'linear/fmt',genmat,trt) decodes code, which is a linear block
code determined by the k-by-n generator matrix genmat. genmat is required as input. decode tries
to correct errors using the decoding table trt, where trt is a 2^(n-k)-by-n matrix.
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msg = decode(code,n,k,'cyclic/fmt',genpoly,trt) decodes the cyclic code code and tries
to correct errors using the decoding table trt, where trt is a 2^(n-k)-by-n matrix. genpoly is a
polynomial character vector or a row vector that gives the coefficients, in order of ascending powers,
of the binary generator polynomial of the code. The default value of genpoly is cyclpoly(n,k). By
definition, the generator polynomial for an [n, k] cyclic code must have degree n-k and must divide
xn-1.

msg = decode(code,n,k) is the same as msg = decode(code,n,k,'hamming/binary').

[msg,err] = decode(...) returns a column vector err that gives information about error
correction. If the code is a convolutional code, err contains the metric calculations used in the
decoding decision process. For other types of codes, a nonnegative integer in the rth row of err
indicates the number of errors corrected in the rth message word; a negative integer indicates that
there are more errors in the rth word than can be corrected.

[msg,err,ccode] = decode(...) returns the corrected code in ccode.

[msg,err,ccode,cerr] = decode(...) returns a column vector cerr whose meaning depends
on the format of code:

• If code is a binary vector, a nonnegative integer in the rth row of vec2matcerr indicates the
number of errors corrected in the rth codeword; a negative integer indicates that there are more
errors in the rth codeword than can be corrected.

• If code is not a binary vector, cerr = err.

Examples

Encode and Decode Message with Hamming Code

Set the values of the codeword length and message length.

n = 15; % Codeword length
k = 11; % Message length

Create a random binary message with length equal to the message length.

data = randi([0 1],k,1);

Encode the message.

encData = encode(data,n,k,'hamming/binary');

Corrupt the encoded message sequence by introducing an error in the fourth bit.

encData(4) = ~encData(4);

Decode the corrupted sequence. Observe that the decoder has correctly recovered the message.

decData = decode(encData,n,k,'hamming/binary');
numerr = biterr(data,decData)

numerr = 0
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Algorithms
Depending on the decoding method, decode relies on such lower-level functions as hammgen,
syndtable, and cyclgen.

Version History
Introduced before R2006a

See Also
encode | cyclpoly | syndtable | gen2par

Topics
“Block Codes”
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deintrlv
Restore ordering of symbols

Syntax
deintrlved = deintrlv(data,elements)

Description
deintrlved = deintrlv(data,elements) restores the original ordering of the elements of data
by acting as an inverse of intrlv.

Examples

Apply Interleaving to Reorder and Deinterleaving to Restore Vector Data Order

Use the intrlv function to rearrange the elements of a vector to a random permutation determined
by the randperm function. Use the deintrlv function to restore the element order of the initial
vector by reusing the same random permutation. This illustrates the inverse relationship between the
intrlv and deintrlv functions.

Generate an input signal, data, and a permutation vector, elements.

data = 10:10:100

data = 1×10

    10    20    30    40    50    60    70    80    90   100

elements = randperm(10) % Permutation vector

elements = 1×10

     6     3     7     8     5     1     2     4     9    10

Permute the input signal according to the permutation vector by using the intrlv function and the
restore the input signal order by using the deintrlv function.

a = intrlv(data,elements)

a = 1×10

    60    30    70    80    50    10    20    40    90   100

b = deintrlv(a,elements)

b = 1×10
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    10    20    30    40    50    60    70    80    90   100

Apply Interleaving to Reorder and Deinterleaving to Restore Matrix Data Order

Use the intrlv function to rearrange the elements in the columns of a matrix to a random
permutation vector determined by the randperm function. Use the deintrlv function to restore the
element order of the initial matrix by reusing the same random permutation. This illustrates the
inverse relationship between the intrlv and deintrlv functions.

Generate an input signal, data, and a permutation vector, elements.

data(:,1) = 10:10:100

data = 10×1

    10
    20
    30
    40
    50
    60
    70
    80
    90
   100

data(:,2) = 0.1:0.1:1

data = 10×2

   10.0000    0.1000
   20.0000    0.2000
   30.0000    0.3000
   40.0000    0.4000
   50.0000    0.5000
   60.0000    0.6000
   70.0000    0.7000
   80.0000    0.8000
   90.0000    0.9000
  100.0000    1.0000

elements = randperm(10) % Permutation vector

elements = 1×10

     6     3     7     8     5     1     2     4     9    10

Permute the input signal according to the permutation vector by using the intrlv function, and then
restore the input signal order by using the deintrlv function.

a = intrlv(data,elements)

 deintrlv

2-251



a = 10×2

   60.0000    0.6000
   30.0000    0.3000
   70.0000    0.7000
   80.0000    0.8000
   50.0000    0.5000
   10.0000    0.1000
   20.0000    0.2000
   40.0000    0.4000
   90.0000    0.9000
  100.0000    1.0000

b = deintrlv(a,elements)

b = 10×2

   10.0000    0.1000
   20.0000    0.2000
   30.0000    0.3000
   40.0000    0.4000
   50.0000    0.5000
   60.0000    0.6000
   70.0000    0.7000
   80.0000    0.8000
   90.0000    0.9000
  100.0000    1.0000

Input Arguments
data — Input signal
vector | matrix

Input signal, specified as a vector or matrix. If data is a matrix with multiple rows and columns, the
function processes the columns independently.

If data is a length-N vector or an N-row matrix, elements is a length-N vector that permutes the
integers from 1 to N. To use this function as an inverse of the intrlv function, use the same
elements input in both functions. In that case, the two functions are inverses in the sense that
applying intrlv followed by deintrlv leaves data unchanged.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | fi
Complex Number Support: Yes

elements — Permutation vector
integer vector

Permutation vector, specified as an integer vector. The permutation vector specifies the mapping used
to restore the input signal. The permutation vector length must equal the input signal length and
contain for each integer k in the range [1 length(x,1)]. If data is a length-N vector or an N-row
matrix, elements must be a length-N vector and contain each integer in the range [1 length(x,1)].
The sequence in elements is the sequence in which elements from data or its columns appear in
deintrlved.
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Data Types: double

Output Arguments
deintrlved — Deinterleaved data
vector | matrix

Deinterleaved data, returned as a vector or matrix with the same dimension and datatype as the input
signal, data. The output contains elements from the input signal mapped as
deintrlved(elements(k),n) = data(k,n), for each integer k in the range [1 length(data,1)].

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
intrlv

Topics
“Interleaving”
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dftmtx
Discrete Fourier transform matrix in Galois field

Syntax
dm = dftmtx(alph)

Description
dm = dftmtx(alph) returns a Galois array that represents the discrete Fourier transform
operation on a Galois vector, with respect to the Galois scalar alph. The element alph is a primitive
nth root of unity in the Galois field GF(2m) = GF(n+1); that is, n must be the smallest positive value of
k for which alph^k equals 1. The discrete Fourier transform has size n and dm is an n-by-n array. The
array dm represents the transform in the sense that dm times any length-n Galois column vector yields
the transform of that vector.

Note The inverse discrete Fourier transform matrix is dftmtx(1/alph).

Examples
The example below illustrates the discrete Fourier transform and its inverse, with respect to the
element gf(3,4). The example examines the first n powers of that element to make sure that only
the nth power equals one. Afterward, the example transforms a random Galois vector, undoes the
transform, and checks the result.

m = 4;
n = 2^m-1;
a = 3;
alph = gf(a,m);
mp = minpol(alph);
if (mp(1)==1 && isprimitive(mp)) % Check that alph has order n.
    disp('alph is a primitive nth root of unity.')
    dm = dftmtx(alph);
    idm = dftmtx(1/alph);
    x = gf(randi([0 2^m-1],n,1),m);
    y = dm*x; % Transform x.
    z = idm*y; % Recover x.
    ck = isequal(x,z)
end

The output is

alph is a primitive nth root of unity.

ck =

     1
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Limitations
The Galois field over which this function works must have 256 or fewer elements. In other words,
alph must be a primitive nth root of unity in the Galois field GF(2m), where m is an integer between 1
and 8.

Algorithms
The element dm(a,b) equals alph^((a-1)*(b-1)).

Version History
Introduced before R2006a

See Also
gf | fft | ifft

Topics
“Signal Processing Operations in Galois Fields”
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distspec
Compute distance spectrum of convolutional code

Syntax
spect = distspec(trellis,numcomp)

Description
spect = distspec(trellis,numcomp) computes the free distance and the requested number of
components of the weight and distance spectra of a linear convolutional code. Because convolutional
codes do not have block boundaries, the weight spectrum and distance spectrum are semi-infinite and
well approximated by the first few components.

Examples

Distance Spectrum for Rate 2/3 Convolutional Code

Use the distspec function to compute the distance spectrum for a rate 2/3 convolutional code. Use
the output distance spectrum as an input to the bercoding function, to find a theoretical upper
bound on the bit error rate for a system that uses this code with coherent BPSK modulation. Plot the
upper bound using the berfit function.

The diagram shows a rate 2/3 encoder with two input streams, three output streams, and two shift
registers.

Create a trellis structure to represent the encoder. Set the constraint length of the upper path to 5
and the constraint length of the lower path to 4. The octal representation of the code generator
matrix corresponds to the taps from the upper and lower shift registers. The trellis structure serves
as an input to the distspec function to represent the rate 2/3 convolutional code.
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trellis = poly2trellis([5 4],[23 35 0; 0 5 13])

trellis = struct with fields:
     numInputSymbols: 4
    numOutputSymbols: 8
           numStates: 128
          nextStates: [128x4 double]
             outputs: [128x4 double]

spect = distspec(trellis,4)

spect = struct with fields:
     dfree: 5
    weight: [1 6 28 142]
     event: [1 2 8 25]

Use the bercoding function and the distance spectrum structure to find a theoretical upper bound
on the bit error rate for a system that uses this code with coherent BPSK modulation. Plot the upper
bound using the berfit function.

berub = bercoding(1:10,'conv','hard',2/3,spect);  % BER upper bound
berfit(1:10,berub); ylabel('Upper Bound on BER'); % Plot
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Input Arguments
trellis — Trellis description
structure

Trellis description, specified as a MATLAB structure that contains the trellis description for a rate
K/N code. K represents the number of input bit streams, and N represents the number of output bit
streams.

The trellis structure contains these fields. You can either use the poly2trellis function to create
the trellis structure or create it manually. For more about this structure, see “Trellis Description of a
Convolutional Code” and the istrellis function.

numInputSymbols — Number of symbols input to encoder
2K

Number of symbols input to the encoder, specified as an integer equal to 2K, where K is the number of
input bit streams.
Data Types: double

numOutputSymbols — Number of symbols output from encoder
2N

Number of symbols output from the encoder, specified as an integer equal to 2N, where N is the
number of output bit streams.
Data Types: double

numStates — Number of states in encoder
power of 2

Number of states in the encoder, specified as a power of 2.
Data Types: double

nextStates — Next states
matrix of integers

Next states for all combinations of current states and current inputs, specified as a matrix of integers.
The matrix size must be numStates by 2K.
Data Types: double

outputs — Outputs
matrix of octal numbers

Outputs for all combinations of current states and current inputs, specified as a matrix of octal
numbers. The matrix size must be numStates by 2K.
Data Types: double

Data Types: struct

numcomp — Requested number of components
1 (default) | positive integer
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Requested number of components of the weight and distance spectra of a linear convolutional code to
compute, specified as a positive integer
Data Types: double

Output Arguments
spect — Distance spectrum
structure

Distance spectrum, returned as a structure containing these fields:

Field Meaning
spect.dfree Free distance of the code. This is the minimum

number of errors in the encoded sequence
required to create an error event.

spect.weight A length-n vector that lists the total number of
information bit errors in the error events
enumerated in spect.event.

spect.event A length-n vector that lists the number of error
events for each distance between spect.dfree
and spect.dfree+n-1. The vector represents
the first n components of the distance spectrum.

Algorithms
The function uses a tree search algorithm implemented with a stack, as described in [2].

Version History
Introduced before R2006a

References
[1] Bocharova, I.E., and B.D. Kudryashov. “Rational Rate Punctured Convolutional Codes for Soft-

Decision Viterbi Decoding.” IEEE Transactions on Information Theory 43, no. 4 (July 1997):
1305–13. https://doi.org/10.1109/18.605600.

[2] Cedervall, M.L., and R. Johannesson. “A Fast Algorithm for Computing Distance Spectrum of
Convolutional Codes.” IEEE Transactions on Information Theory 35, no. 6 (November 1989):
1146–59. https://doi.org/10.1109/18.45271.

[3] Chang J., D. Hwang, and M. Lin. “Some Extended Results on the Search for Good Convolutional
Codes.” IEEE Transactions on Information Theory 43, no. 5 (September 1997): 1682–97.
https://doi.org/10.1109/18.623175.

[4] Frenger, P.K., P. Orten, and T. Ottosson. “Comments and Additions to Recent Papers on New
Convolutional Codes.” IEEE Transactions on Information Theory 47, no. 3 (March 2001):
1199–1201. https://doi.org/10.1109/18.915683.
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See Also
Functions
bercoding | berfit | convenc | iscatastrophic | istrellis | poly2trellis
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doppler
Construct Doppler spectrum structure

Syntax
s = doppler(specType)
s = doppler(specType, fieldValue)
s = doppler('BiGaussian', Name,Value)

Description
s = doppler(specType) constructs a Doppler spectrum structure of type specType for use with a
fading channel System object. The returned structure, s, has default values for its dependent fields.

s = doppler(specType, fieldValue) constructs a Doppler spectrum structure of type
specType for use with a fading channel System object. The returned structure, s, has its dependent
field specified to fieldValue.

s = doppler('BiGaussian', Name,Value) constructs a BiGaussian Doppler spectrum structure
for use with a fading channel System object. The returned structure, s, has dependent fields specified
by Name,Value pair arguments.

Examples

Construct a Flat Doppler Spectrum Structure

Construct a flat Doppler structure variable for use with channel objects such as
comm.RayleighChannel.

Invoke the doppler function to create a flat Doppler structure variable.

s = doppler('Flat')

s = struct with fields:
    SpectrumType: 'Flat'

Create a Bell Doppler Structure Variable

Use the doppler function to create a Doppler structure variable having the Bell spectrum.

s = doppler('Bell')

s = struct with fields:
    SpectrumType: 'Bell'
     Coefficient: 9
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Construct a Rounded Doppler Spectrum Structure with Specified Polynomial

Specify the coefficients of the Doppler spectrum structure variable.

Construct a Rounded Doppler spectrum structure with coefficients a0, a2, and a4 set to 2, 6, and 1,
respectively.

s = doppler('Rounded', [2, 6, 1])

s = struct with fields:
    SpectrumType: 'Rounded'
      Polynomial: [2 6 1]

Construct a BiGaussian Doppler Spectrum Structure with Specified Field Values

Use the doppler function to create a Doppler spectrum structure with the parameters specified for a
BiGaussian spectrum.

s = doppler('BiGaussian','NormalizedCenterFrequencies', ...
    [.1 .85],'PowerGains',[1 2])

s = struct with fields:
                    SpectrumType: 'BiGaussian'
    NormalizedStandardDeviations: [0.7071 0.7071]
     NormalizedCenterFrequencies: [0.1000 0.8500]
                      PowerGains: [1 2]

The NormalizedStandardDeviations field is set to the default value. The
NormalizedCenterFrequencies, and PowerGains fields are set to the values specified from the
input arguments.

Input Arguments
specType — Spectrum type of Doppler spectrum structure for use with fading channel
System object
'Jakes' | 'Flat' | 'Rounded' | 'Bell' | 'Asymmetric Jakes' | 'Restricted Jakes' |
'Gaussian' | 'BiGaussian'

The spectrum type of a Doppler spectrum structure for use with a fading channel System object.
Specify this value as a character vector.

The analytical expression for each Doppler spectrum type is described in the “Algorithms” on page 2-
265 section.
Data Types: char

fieldValue — Value of dependent field of Doppler spectrum structure
scalar | vector
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The value of the dependent field of the Doppler spectrum structure, specified as a scalar or vector of
built-in data type. If you do not specify fieldValue , the dependent fields of the spectrum type use
the default values.

Spectrum Type Dependent Field Description Default Value
“Jakes” on page 2-265 — — —
“Flat” on page 2-265 — — —
“Rounded” on page 2-
265

Polynomial 1-by-3 vector of real
finite values,
representing the
polynomial coefficients,
a0, a2 and a4

[1 -1.72 0.785]

“Bell” on page 2-265 Coefficient Nonnegative, finite, real
scalar representing the
Bell spectrum
coefficient

9

“Asymmetric Jakes” on
page 2-265

NormalizedFrequenc
yInterval

1-by-2 vector of real
values between –1 and
1, inclusive,
representing the
minimum and maximum
normalized Doppler
shifts

[0 1]

“Restricted Jakes” on
page 2-266

NormalizedFrequenc
yInterval

1-by-2 vector of real
values between 0 and 1,
inclusive, representing
the minimum and
maximum normalized
Doppler shifts

[0 1]

“Gaussian” on page 2-
266

NormalizedStandard
Deviation

Normalized standard
deviation of the
Gaussian Doppler
spectrum, specified as a
positive, finite, real
scalar

0.7071

“BiGaussian” on page 2-
266

NormalizedStandard
Deviations

Normalized standard
deviations of the
BiGaussian Doppler
spectrum, specified as a
positive, finite, real 1-
by-2 vector

[0.7071 0.7071]

NormalizedCenterFr
eqencies

Normalized center
frequencies of the
BiGaussian Doppler
spectrum specified as a
real 1-by-2 vector whose
elements fall between –
1 and 1

[0 0]
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Spectrum Type Dependent Field Description Default Value
PowerGains Linear power gains of

the BiGaussian Doppler
spectrum specified as a
real nonnegative 1-by-2
vector

[0.5 0.5]

Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: s=doppler('BiGaussian', 'NormalizedStandardDeviations', [.8 .75],
'NormalizedCenterFrequencies', [-.8 0], 'PowerGains', [.6 .6])

NormalizedStandardDeviations — Normalized standard deviations of first and second
Gaussian functions
[1/sqrt(2) 1/sqrt(2)] (default) | 1-by-2 positive numeric vector

The normalized standard deviation of the first and second Gaussian functions. You can specify this
value as a 1-by-2 positive numeric vector, of built-in data types.

When you do not specify this dependent field, the default value is [1/sqrt(2) 1/sqrt(2)].
Data Types: double

NormalizedCenterFrequencies — Normalized center frequencies of first and second
Gaussian functions
[0 0] (default) | 1-by-2 numeric vector

The normalized center frequencies of the first and second Gaussian functions. You can specify this
value as a 1-by-2 numeric vector of real values between –1 and 1, of built-in data types.

When you do not specify this dependent field, the default value is [0 0].
Data Types: double

PowerGains — Power gains of first and second Gaussian functions
[0.5 0.5] (default) | 1-by-2 numeric vector

The power gains of the first and second Gaussian functions. You can specify this value as a 1-by-2
nonnegative numeric vector of built-in data types.

When you do not specify this dependent field, the default value is [0.5 0.5].
Data Types: double
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Algorithms
The following algorithms represent the analytical expressions for each Doppler spectrum type. In
each case, fd denotes the maximum Doppler shift (MaximumDopplerShift property) of the
associated fading channel System object.

Jakes

The theoretical Jakes Doppler spectrum, S(f) has the analytic formula

S(f ) = 1
πfd 1 − (f / fd)2

,   f ≤ fd

Flat

The theoretical Flat Doppler spectrum, S(f) has the analytic formula

S(f ) = 1
2fd

,  f ≤ fd

Rounded

The theoretical Rounded Doppler spectrum, S(f) has the analytic formula

S(f ) = Cr a0 + a2
f
fd

2
+ a4

f
fd

4
,  f ≤ fd

where

Cr = 1
2fd a0 +

a2
3 +

a4
5

and you can specify [a0,  a2,  a4] in the dependent field, polynomial.

Bell

The theoretical Bell Doppler spectrum, S(f) has the analytic formula

S(f ) =
Cb

1 + A f
fd

2

f ≤ fd

where

Cb = A
πfd

You can specify A in the dependent field, coefficient.

Asymmetric Jakes

The theoretical Asymmetric Jakes Doppler spectrum, S(f) has the analytic formula

 doppler

2-265



S(f ) =
Aa

πfd 1 − (f / fd)2
,    − fd ≤ fmin ≤ f ≤ fmax ≤ fd

Aa = 1
1
π sin−1 fmax

fd
− sin−1 fmin

fd

where you can specify fmin/ fd andfmax /fd in the dependent field, NormalizedFrequencyInterval.

Restricted Jakes

The theoretical Restricted Jakes Doppler spectrum, S(f) has the analytic formula

S(f ) =
Ar

πfd 1 − (f / fd)2
,  0 ≤ fmin ≤ f ≤ fmax ≤ fd

where

Ar = 1
2
π sin−1 fmax

fd
− sin−1 fmin

fd

where you can specify fmin/ fd andfmax /fd in the dependent field, NormalizedFrequencyInterval.

Gaussian

The theoretical Gaussian Doppler spectrum, S(f) has the analytic formula

SG(f ) = 1
2πσG

2 exp − f 2

2σG
2

You can specify σG/ fd in the dependent field, NormalizedStandardDeviation.

BiGaussian

The theoretical BiGaussian Doppler spectrum, S(f) has the analytic formula

SG(f ) = AG
CG1

2πσG1
2 exp −

(f − fG1)2

2σG1
2 +

CG2

2πσG2
2 exp −

(f − fG2)2

2σG2
2

where AG = 1
CG1 + CG2

 is a normalization coefficient.

You can specify σG1/fd and σG2/fd in the NormalizedStandardDeviations dependent field.

You can specify fG1/fd and fG2/fd in the NormalizedCenterFrequencies dependent field.

CG1 and CG2 are power gains that you can specify in the PowerGains dependent field.

Version History
Introduced in R2007a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

All inputs must be constants. Expressions or variables are allowed if their values do not change.

See Also
comm.MIMOChannel | comm.RicianChannel | comm.RayleighChannel | MIMO Fading Channel
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dpcmdeco
Decode using differential pulse code modulation

Syntax
sig = dpcmdeco(indx,codebook,predictor)
[sig,quanterror] = dpcmdeco(indx,codebook,predictor)

Description
sig = dpcmdeco(indx,codebook,predictor) implements differential pulse code demodulation
to decode the vector indx. The vector codebook represents the predictive-error quantization
codebook. The vector predictor specifies the predictive transfer function. If the transfer function
has predictive order M, predictor has length M+1 and an initial entry of 0. To decode correctly, use
the same codebook and predictor in dpcmenco and dpcmdeco.

See “Represent Partitions”, “Represent Codebooks”, or the quantiz reference page, for a
description of the formats of partition and codebook.

[sig,quanterror] = dpcmdeco(indx,codebook,predictor) is the same as the syntax above,
except that the vector quanterror is the quantization of the predictive error based on the
quantization parameters. quanterror is the same size as sig.

Note You can estimate the input parameters codebook, partition, and predictor using the
function dpcmopt.

Examples
See “Example: DPCM Encoding and Decoding” and “Example: Comparing Optimized and
Nonoptimized DPCM Parameters” for examples that use dpcmdeco.

Version History
Introduced before R2006a

References

[1] Kondoz, A. M., Digital Speech, Chichester, England, John Wiley & Sons, 1994.

See Also
quantiz | dpcmopt | dpcmenco

Topics
“Differential Pulse Code Modulation”
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dpcmenco
Encode using differential pulse code modulation

Syntax
indx = dpcmenco(sig,codebook,partition,predictor)
[indx,quants] = dpcmenco(sig,codebook,partition,predictor)

Description
indx = dpcmenco(sig,codebook,partition,predictor) implements differential pulse code
modulation to encode the vector sig. partition is a vector whose entries give the endpoints of the
partition intervals. codebook, a vector whose length exceeds the length of partition by one,
prescribes a value for each partition in the quantization. predictor specifies the predictive transfer
function. If the transfer function has predictive order M, predictor has length M+1 and an initial
entry of 0. The output vector indx is the quantization index.

See “Differential Pulse Code Modulation” for more about the format of predictor. See “Represent
Partitions”, “Represent Partitions”, or the reference page for quantiz in this chapter, for a
description of the formats of partition and codebook.

[indx,quants] = dpcmenco(sig,codebook,partition,predictor) is the same as the
syntax above, except that quants contains the quantization of sig based on the quantization
parameters. quants is a vector of the same size as sig.

Note If predictor is an order-one transfer function, the modulation is called a delta modulation.

Examples
See “Example: DPCM Encoding and Decoding” and “Example: Comparing Optimized and
Nonoptimized DPCM Parameters” for examples that use dpcmenco.

Version History
Introduced before R2006a

References

[1] Kondoz, A. M., Digital Speech, Chichester, England, John Wiley & Sons, 1994.

See Also
quantiz | dpcmopt | dpcmdeco

Topics
“Differential Pulse Code Modulation”
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dpcmopt
Optimize differential pulse code modulation parameters

Syntax
predictor = dpcmopt(training_set,ord)
[predictor,codebook,partition] = dpcmopt(training_set,ord,len)
[predictor,codebook,partition] = dpcmopt(training_set,ord,ini_cb)

Description
predictor = dpcmopt(training_set,ord) returns a vector representing a predictive transfer
function of order ord that is appropriate for the training data in the vector training_set.
predictor is a row vector of length ord+1. See “Represent Predictors” for more about its format.

Note dpcmopt optimizes for the data in training_set. For best results, training_set should be
similar to the data that you plan to quantize.

[predictor,codebook,partition] = dpcmopt(training_set,ord,len) is the same as the
syntax above, except that it also returns corresponding optimized codebook and partition vectors
codebook and partition. len is an integer that prescribes the length of codebook. partition is
a vector of length len-1. See “Represent Partitions”, “Represent Codebooks”, or the reference page
for quantiz in this chapter, for a description of the formats of partition and codebook.

[predictor,codebook,partition] = dpcmopt(training_set,ord,ini_cb) is the same as
the first syntax, except that it also returns corresponding optimized codebook and partition vectors
codebook and partition. ini_cb, a vector of length at least 2, is the initial guess of the codebook
values. The output codebook is a vector of the same length as ini_cb. The output partition is a
vector whose length is one less than the length of codebook.

Examples
See “Example: Comparing Optimized and Nonoptimized DPCM Parameters” for an example that uses
dpcmopt.

Version History
Introduced before R2006a

See Also
dpcmenco | dpcmdeco | quantiz | lloyds

Topics
“Differential Pulse Code Modulation”
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dpskdemod
Differential phase shift keying demodulation

Syntax
z = dpskdemod(y,M)
z = dpskdemod(y,M,phaserot)
z = dpskdemod(y,M,phaserot,symorder)

Description
z = dpskdemod(y,M) demodulates the complex envelope, y, of a DPSK-modulated signal having
modulation order M.

z = dpskdemod(y,M,phaserot) specifies the phase rotation of the DPSK modulation.

z = dpskdemod(y,M,phaserot,symorder) also specifies the symbol order.

Examples

DPSK Demodulation

Demodulate DPSK data in a communication channel in which a phase shift is introduced.

Generate a 4-ary data vector and modulate it using DPSK.

M = 4;                          % Alphabet size
dataIn = randi([0 M-1],1000,1); % Random message
txSig = dpskmod(dataIn,M);      % Modulate

Apply the random phase shift resulting from the transmission process.

rxSig = txSig*exp(2i*pi*rand());

Demodulate the received signal.

dataOut = dpskdemod(rxSig,M);

The modulator and demodulator have the same initial condition. However, only the received signal
experiences a phase shift. As a result, the first demodulated symbol is likely to be in error. Therefore,
you should always discard the first symbol when using DPSK.

Find the number of symbol errors.

errs = symerr(dataIn,dataOut)

errs = 1

One symbol is in error. Repeat the error calculation after discarding the first symbol.

errs = symerr(dataIn(2:end),dataIn(2:end))
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errs = 0

Input Arguments
y — DPSK-modulated input signal
vector | matrix

DPSK-modulated input signal, specified as a real or complex vector or matrix. If y is a matrix, the
function processes the columns independently.
Data Types: double
Complex Number Support: Yes

M — Modulation order
integer power of two

Modulation order, specified as an integer power of two.
Example: 2 | 4 | 16
Data Types: double

phaserot — Phase rotation
0 (default) | scalar | []

Phase rotation of the DPSK modulation, specified in radians as a real scalar. The total phase shift per
symbol is the sum of phaserot and the phase generated by the differential modulation.

If you specify phaserot as empty, then dspkdemod uses a phase rotation of 0 degrees.
Example: pi/4
Data Types: double

symorder — Symbol order
'bin' (default) | 'gray'

Symbol order, specified as 'bin' or 'gray'. This argument specifies how the function assigns binary
vectors to corresponding integers.

• If symorder is 'bin', the function uses a natural binary-coded ordering.
• If symorder is 'gray', the function uses a Gray-coded ordering.

Data Types: char

Output Arguments
z — DPSK-demodulated output signal
vector | matrix

DPSK-demodulated output signal, returned as a vector or matrix having the same number of columns
as input signal y.
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Note The differential algorithm used in this function compares two successive elements of a
modulated signal. To determine the first element of vector z, or the first row of matrix z, the function
uses an initial phase rotation of 0.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
dpskmod | pskdemod | pskmod | comm.DPSKDemodulator

Topics
“Phase Modulation”
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dpskmod
Differential phase shift keying modulation

Syntax
y = dpskmod(x,M)
y = dpskmod(x,M,phaserot)
y = dpskmod(x,M,phaserot,symorder)

Description
y = dpskmod(x,M) modulates the input signal using differential phase shift keying (DPSK) with
modulation order M.

y = dpskmod(x,M,phaserot) specifies the phase rotation of the DPSK modulation.

y = dpskmod(x,M,phaserot,symorder) also specifies the symbol order.

Examples

View Signal Trajectory of DPSK-Modulated Signal

Plot the output of the dspkmod function to view the possible transitions between DPSK symbols.

Set the modulation order to 4 to model DQPSK modulation.

M = 4;

Generate a sequence of 4-ary random symbols.

x = randi([0 M-1],500,1);

Apply DQPSK modulation to the input symbols.

y = dpskmod(x,M,pi/8);

Specify a constellation diagram object to display a signal trajectory diagram and without displaying
the corresponding reference constellation. Display the trajectory.

cd = comm.ConstellationDiagram('ShowTrajectory',true,'ShowReferenceConstellation',false);
cd(y)
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Input Arguments
x — Input signal
vector | matrix

Input signal, specified as a vector or matrix of positive integers. The elements of x must have values
in the range of [0, M – 1].
Data Types: double

M — Modulation order
integer power of two

Modulation order, specified as an integer power of two.
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Example: 2 | 4 | 16
Data Types: double

phaserot — Phase rotation
0 (default) | scalar | []

Phase rotation of the DPSK modulation, specified in radians as a real scalar. The total phase shift per
symbol is the sum of phaserot and the phase generated by the differential modulation.

If you specify phaserot as empty, then dpskmod uses a phase rotation of 0 degrees.
Example: pi/4
Data Types: double

symorder — Symbol order
'bin' (default) | 'gray'

Symbol order, specified as 'bin' or 'gray'. This argument specifies how the function assigns binary
vectors to corresponding integers.

• If symorder is 'bin', the function uses a natural binary-coded ordering.
• If symorder is 'gray', the function uses a Gray-coded ordering.

Data Types: char

Output Arguments
y — DPSK-modulated output signal
vector | matrix

Complex baseband representation of a DPSK-modulated output signal, returned as vector or matrix of
complex values. The columns represent independent channels.

Note An initial phase rotation of 0 is used in determining the first element of the output y (or the
first row of y if it is a matrix with multiple rows), because two successive elements are required for a
differential algorithm.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
dpskdemod | pskmod | pskdemod | comm.DPSKModulator
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Topics
“Phase Modulation”
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dvbs2ldpc
Low-density parity-check (LDPC) codes from DVB-S.2 standard

Syntax
H = dvbs2ldpc(r)
H = dvbs2ldpc(r,outputFormat)

Description
H = dvbs2ldpc(r) returns the parity-check matrix H of the LDPC code with code rate r from the
Digital Video Broadcasting standard DVB-S.2. The block length of the code is 64,800.

H = dvbs2ldpc(r,outputFormat) specifies the format for the output parity-check matrix.

Examples

Create LDPC Code Parity-Check Matrix from DVB-S.2 Standard

Create an LDPC parity check matrix for a code rate of 3/5 from the DVB-S.2 standard.

p = dvbs2ldpc(3/5);

Create an LDPC encoder configuration object from the parity-check matrix p. The parity-check matrix
has dimensions of (N-K)-by-N. In the configuration object, the BlockLength property is N, and the
NumInformationBits property is K. Show the properties of the object. Encode a message with one
column of information bits.

cfg = ldpcEncoderConfig(p)

cfg = 
  ldpcEncoderConfig with properties:

     ParityCheckMatrix: [25920x64800 logical]

   Read-only properties:
           BlockLength: 64800
    NumInformationBits: 38880
    NumParityCheckBits: 25920
              CodeRate: 0.6000

infobits = randi([0 1],cfg.NumInformationBits,1);
enc = ldpcEncode(infobits,cfg);

Input Arguments
r — Code rate
1/4 | 1/3 | 2/5 | 1/2 | ...

2 Functions

2-278



Code rate, specified as 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 5/6, 8/9, or 9/10.
Data Types: double

outputFormat — Output format
'sparse' | 'indices'

Output format for parity-check matrix H, specified as 'sparse' or 'indices'.

If you set this value to 'sparse', H is a sparse logical matrix. If you set this value to 'indices', H is
a two-column matrix that defines the row and column indices of the 1s in H.
Data Types: char | string

Output Arguments
H — Parity-check matrix
matrix

Parity-check matrix, returned as a matrix.

The default parity-check matrix of size 32,400-by-64,800 corresponds to an irregular LDPC code with
the structure shown in this table.

Row Number of 1s per Row
1 6
2 to 32400 7

Column Number of 1s per Column
1 to 12960 8
12961–32400 3

Columns from 32,401 to 64,800 form a lower triangular matrix. Only the elements on the main
diagonal of the matrix and the subdiagonal immediately below the main diagonal are 1s. This LDPC
code is used in conjunction with a BCH code in the DVB-S.2 standard to achieve a packet error rate
below 10–7 at about 0.7 dB to 1 dB from the Shannon limit.

Version History
Introduced in R2007a

References
[1] ETSI Standard EN 302 307 V1.4.1: Digital Video Broadcasting (DVB); Second generation framing

structure, channel coding and modulation systems for Broadcasting, Interactive Services,
News Gathering and other broadband satellite applications (DVB-S2), European
Telecommunications Standards Institute, Valbonne, France, 2005-03.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

All inputs must be constants. Expressions or variables are allowed if their values do not change.

See Also
ldpcEncode | ldpcDecode | ldpcQuasiCyclicMatrix | ldpcEncoderConfig |
ldpcDecoderConfig
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dvbsapskdemod
DVB-S2/S2X/SH standard-specific amplitude phase shift keying (APSK) demodulation

Syntax
z = dvbsapskdemod(y,M,stdSuffix)
z = dvbsapskdemod(y,M,stdSuffix,codeIDF)
z = dvbsapskdemod(y,M,stdSuffix,codeIDF,frameLength)
z = dvbsapskdemod( ___ ,Name,Value)

Description
z = dvbsapskdemod(y,M,stdSuffix) demodulates an APSK input signal, y, that was modulated
in accordance with the digital video broadcast (DVB) standard identified by stdSuffix and the
modulation order, M. For a description of DVB-compliant APSK demodulation, see “DVB Compliant
APSK Hard Demodulation” on page 2-287 and “DVB Compliant APSK Soft Demodulation” on page 2-
287.

z = dvbsapskdemod(y,M,stdSuffix,codeIDF) specifies code identifier codeIDF, to use when
selecting the demodulation parameters.

z = dvbsapskdemod(y,M,stdSuffix,codeIDF,frameLength) specifies codeIDF and
frameLength to use when selecting the demodulation parameters.

z = dvbsapskdemod( ___ ,Name,Value) specifies options using one or more name-value pair
arguments using any of the previous syntaxes. For example, 'OutputDataType','double'
specifies the desired output data type. Specify name-value pair arguments after all other input
arguments.

Examples

Demodulate DVB-S2X Specific 64-APSK Signal

Demodulate a 64-APSK signal that was modulated as specified in DVB-S2X. Compute hard decision
integer output and verify that the output matches the input.

Set the modulation order and standard suffix. Generate random data.

M = 64;
std = 's2x';
x = randi([0 M-1],1000,1);

Modulate the data.

y = dvbsapskmod(x,M,std);

Demodulate the received signal. Compare the demodulated data to the original data.

z = dvbsapskdemod(y,M,std);
isequal(z,x)
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ans = logical
   1

Demodulate DVB-S2 Specific 32-APSK Signal

Demodulate a 32-APSK signal that was modulated as specified in DVB-S2. Compute hard decision bit
output and verify that the output matches the input.

Set the modulation order, standard suffix, and code identifier. Generate random bit data.

M = 32;
std = 's2';
codeIDF = '4/5';
numBitsPerSym = log2(M);
x = randi([0 1],100*numBitsPerSym,1,'uint32');

Modulate the data. Use a name-value pair to specify bit input data.

y = dvbsapskmod(x,M,std,codeIDF,'InputType','bit');

Demodulate the received signal. Compare the demodulated data to the original data.

z = dvbsapskdemod(y,M,std,'4/5','OutputType','bit', ...
    'OutputDataType','uint32');
isequal(z,x)

ans = logical
   1

Soft Bit Demodulate DVB-SH Specific 16-APSK Signal

Demodulate a DVB-SH compliant 16-APSK signal and calculate soft bits.

Set the modulation order and generate a random bit sequence.

M = 16;
std = 'sh';
numSym = 20000;
numBitsPerSym = log2(M);
x = randi([0 1],numSym*numBitsPerSym,1);

Modulate the data. Use a name-value pair to specify bit input data.

txSig = dvbsapskmod(x,M,std,'InputType','bit');

Pass the modulated signal through a noisy channel.

rxSig = awgn(txSig,10,'measured');

View the constellation of the received signal using a scatter plot.

scatterplot(rxSig) 
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DVB-SH compliant constellations have unit average power. Demodulate the signal, computing soft
bits using the approximate LLR algorithm.

z = dvbsapskdemod(rxSig,M,std,'OutputType','approxllr', ...
     'NoiseVariance',0.1);

Input Arguments
y — APSK modulated signal
scalar | vector | matrix

APSK modulated signal, specified as a complex scalar, vector, or matrix. When y is a matrix, each
column is treated as an independent channel.

y must be modulated in accordance with Digital Video Broadcasting (DVB) - Satellite Communications
standard DVB-S2, DVB-S2X or DVB-SH. For more information, see [1], [2], and [3].
Data Types: single | double
Complex Number Support: Yes

M — Modulation order
integer

Modulation order, specified as a power of two. The modulation order specifies the total number of
points in the signal constellation.
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Data Types: double

stdSuffix — Standard suffix
's2' | 's2x' | 's2h'

Standard suffix for DVBS modulation variant, specified as 's2', 's2x', or 's2h'.
Data Types: char | string

codeIDF — Code identifier
char | string

Code identifier, specified as a character vector or string. This table lists the acceptable codeIDF
values.

Constellation Order (M) Applicable Standard
(stdSuffix)

Acceptable Code Identifier
(CodeIDF) Values

16 's2' or 's2x' '2/3', '3/4', '4/5', '5/6',
'8/9', '9/10'

16 's2x' '26/45', '3/5', '28/45',
'23/36', '25/36', '13/18',
'7/9', '77/90', '100/180',
'96/180', '90/180',
'18/30', '20/30'

32 's2' or 's2x' '3/4', '4/5', '5/6', '8/9',
'9/10'

32 's2x' '32/45', '11/15', '7/9',
'2/3'

64 's2x' '11/15', '7/9', '4/5',
'5/6', '128/180'

128 's2x' '3/4', '7/9'
256 's2x' '32/45', '3/4', '116/180',

'20/30', '124/180', '22/30'

For more information, refer to Tables 9 and 10 in the DVB-S2 standard [1] and Table 17a in the DVB-
S2X standard [2].
Dependencies

This input argument applies only when stdSuffix is set to 's2' or 's2x'.
Data Types: char | string

frameLength — Frame length
'normal' (default) | 'short'

Frame length, specified as 'normal' or 'short'. The function usesframeLength and codeIDF to
select the modulation parameters.
Dependencies

This input argument applies only when stdSuffix is set to 's2' or 's2x'.
Data Types: char | string
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: y =
dvbsapskdemod(x,M,stdSuffix,'InputType','bit','OutputDataType','single');

OutputType — Output type
'integer' (default) | 'bit' | 'llr' | 'approxllr'

Output type, specified as the comma-separated pair consisting of OutputType and 'integer',
'bit', 'llr', or 'approxllr'. For a description of returned output, see z.
Data Types: char | string

OutputDataType — Output data type
'double' (default) | ...

Output data type, specified as the comma-separated pair consisting of OutputDataType and one of
the indicated data types. Acceptable values for OutputDataType depend on the OutputType value.

OutputType Value Acceptable OutputDataType Values
'integer' 'double', 'single', 'int8', 'int16', 'int32', 'uint8', 'uint16',

or 'uint32'
'bit' 'double', 'single', 'int8', 'int16', 'int32', 'uint8', 'uint16',

'uint32', or 'logical'

Dependencies

This name-value pair argument applies only when OutputType is set to 'integer' or 'bit'.
Data Types: char | string

UnitAveragePower — Unit average power flag
false (default) | true

Unit average power flag, specified as the comma-separated pair consisting of UnitAveragePower
and a logical scalar. When this flag is true, the function scales the constellation to an average power
of 1 watt referenced to 1 ohm. When this flag is false, the function scales the constellation based on
specifications in the relevant standard, as described in [1] and [2].

Note When stdSuffix is set to 'sh', the constellation always has unit average power.

Dependencies

This name-value pair argument applies only when stdSuffix is set to 's2' or 's2x'.
Data Types: logical

NoiseVariance — Noise variance
1 (default) | positive scalar | vector of positive values
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Noise variance, specified as the comma-separated pair consisting of NoiseVariance and a positive
scalar or vector of positive values.

• When specified as a scalar, the same noise variance value is used on all input elements.
• When specified as a vector, the vector length must be equal to the number of columns in the input

signal.

When the noise variance or signal power result in computations involving extreme positive or
negative magnitudes, see “DVB Compliant APSK Soft Demodulation” on page 2-287 for algorithm
selection considerations.

Dependencies

This name-value pair argument applies only when OutputType is set to 'llr' or 'approxllr'.
Data Types: double

PlotConstellation — Option to plot constellation
false (default) | true

Option to plot constellation, specified as the comma-separated pair consisting of
'PlotConstellation' and a logical scalar. To plot the constellation, set PlotConstellation to
true.
Data Types: logical

Output Arguments
z — Demodulated signal
scalar | vector | matrix

Demodulated signal, returned as a scalar, vector, or matrix. The dimensions of the output vary
depending on the specified OutputType value.

OutputType
Value

Return Value of
dvbsapskdemod

Dimensions of z

'integer' Demodulated integer values
from 0 to (M – 1)

z has the same dimensions as input y.

'bit' Demodulated bits The number of rows in z is log2(sum(M)) times the
number of rows in y. Each demodulated symbol is
mapped to a group of log2(sum(M)) elements in a
column, where the first element represents the
MSB and the last element represents the LSB.

'llr' Log-likelihood ratio value for
each bit

'approxllr' Approximate log-likelihood ratio
value for each bit

More About
DVB-S2/S2X/SH

Digital video broadcasting (DVB) standards specify S2, S2X, and SH standard-specific amplitude
phase shift keying (APSK) modulation. For further information on the DVB-S2/S2X/SH standards, see
specified in [1], [2], and [3], respectively.
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DVB Compliant APSK Hard Demodulation

The hard demodulation algorithm applies amplitude phase decoding as described in [4].

DVB Compliant APSK Soft Demodulation

For soft demodulation, two soft-decision log-likelihood ratio (LLR) algorithms are available: exact LLR
and approximate LLR. The exact LLR algorithm is more accurate but has slower execution speed than
the approximate LLR algorithm. For further description of these algorithms, see the “Hard- vs. Soft-
Decision Demodulation” topic.

Note The exact LLR algorithm computes exponentials using finite precision arithmetic. For
computations involving very large positive or negative magnitudes, the exact LLR algorithm yields:

• Inf or -Inf if the noise variance is a very large value
• NaN if the noise variance and signal power are both very small values

The approximate LLR algorithm does not compute exponentials. You can avoid Inf, -Inf, and NaN
results by using the approximate LLR algorithm.
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Version History
Introduced in R2018a

References
[1] ETSI Standard EN 302 307 V1.4.1: Digital Video Broadcasting (DVB); Second generation framing

structure, channel coding and modulation systems for Broadcasting, Interactive Services,
News Gathering and other broadband satellite applications (DVB-S2), European
Telecommunications Standards Institute, Valbonne, France, 2005-03.

[2] ETSI Standard EN 302 307-2 V1.1.1: Digital Video Broadcasting (DVB); Second generation
framing structure, channel coding and modulation systems for Broadcasting, Interactive
Services, News Gathering and other broadband satellite applications (DVB-S2X), European
Telecommunications Standards Institute, Valbonne, France, 2015-02.

[3] ETSI Standard EN 302 583 V1.1.1: Digital Video Broadcasting (DVB); Framing structure, channel
coding and modulation for Satellite Services to Handheld devices (SH), European
Telecommunications Standards Institute, Valbonne, France, 2008-03.

[4] Sebesta, J. “Efficient Method for APSK Demodulation.” Selected Topics on Applied Mathematics,
Circuits, Systems, and Signals (P. Pardalos, N. Mastorakis, V. Mladenov, and Z. Bojkovic, eds.).
Vouliagmeni, Athens, Greece: WSEAS Press, 2009.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
dvbsapskmod | apskdemod | mil188qamdemod | pskdemod | qamdemod | genqamdemod

Objects
comm.GeneralQAMDemodulator | comm.PSKDemodulator

Topics
“Exact LLR Algorithm”
“Approximate LLR Algorithm”
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dvbsapskmod
DVB-S2/S2X/SH standard-specific amplitude phase shift keying (APSK) modulation

Syntax
y = dvbsapskmod(x,M,stdSuffix)
y = dvbsapskmod(x,M,stdSuffix,codeIDF)
y = dvbsapskmod(x,M,stdSuffix,codeIDF,frameLength)
y = dvbsapskmod( ___ ,Name,Value)

Description
y = dvbsapskmod(x,M,stdSuffix) performs APSK modulation on the input signal, x, in
accordance with the digital video broadcast (DVB) standard identified by stdSuffix and the
modulation order, M.

y = dvbsapskmod(x,M,stdSuffix,codeIDF) specifies the code identifier, codeIDF, to use when
selecting the modulation parameters.

y = dvbsapskmod(x,M,stdSuffix,codeIDF,frameLength) specifies codeIDF and
frameLength to use when selecting the modulation parameters.

y = dvbsapskmod( ___ ,Name,Value) specifies options using one or more name-value pair
arguments using any of the previous syntaxes. For example, 'OutputDataType','double'
specifies the desired output data type as double. Specify name-value pair arguments after all other
input arguments.

Examples

Apply DVB-S2X 32-APSK Modulation to Data

Modulate data using the DVB-S2X standard specified 32-APSK modulation scheme. Display the result
in a scatter plot.

Set the modulation order and the suffix identifying the DVB-S2X standard. Create a data vector with
all possible symbols.

M = 32;
stdSuffix = 's2x';
x = (0:M-1);

Modulate the data.

y = dvbsapskmod(x,M,stdSuffix);

Display the constellation using a scatter plot.

scatterplot(y)
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Apply DVB-S2X 64-APSK Modulation Specifying Code Identifier

Modulate data using 64-APSK as specified in DVB-S2X standard. Plot constellation for different code
identifiers.

Set the modulation order and standard suffix. Generate 1000 symbols of random data in one channel.

M = 64;
std = 's2x';
x = randi([0 M-1],1000,1);

Modulate the data according to the 64-APSK constellation for the code identifier 7/9 and plot the
reference constellation.

y1 = dvbsapskmod(x,M,std,'7/9','PlotConstellation',true);
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Modulate setting the code identifier to 132/180 and observe the constellation structure differences.

y2 = dvbsapskmod(x,M,std,'132/180','PlotConstellation',true);
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Apply DVB-S2 16-APSK Modulation Change Frame Length

Modulate data using 16-APSK as specified in DVB-S2 standard for normal and short frame lengths.
Compute the output signal power.

Set the modulation order and the standard suffix. Generate random bit data for 1000 symbols in one
channel.

M = 16;
std = 's2';
x = randi([0 1],1000*log2(M),1);

Set the input type to bit and modulate the data according to the 16-APSK constellation for code
identifier 2/3. Use the default normal frame length.

y1 = dvbsapskmod(x,M,std,'2/3','InputType','bit');

Modulate the data using different settings, set the code-identifier to 8/9 and use a short frame length.

y2 = dvbsapskmod(x,M,std,'8/9','short','InputType','bit');

The average power of the modulated signal changes based on the code identifier. Compute the
average power of the modulated signals.

y1avgPow = mean(abs(y1).^2)
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y1avgPow = 0.7590

y2avgPow = mean(abs(y2).^2)

y2avgPow = 0.7716

Normalize 16-APSK Modulated DVB Signals by Average Power

Modulate data applying 16-APSK as specified in the DVB-SH and DVB-S2 standards. Normalize the
modulator output so that it has an average signal power of 1 W.

Set the modulation order and generate all possible symbols.

M = 16;
x =  0:M-1;

Modulate the data applying 16-APSK as specified in DVB-SH. Use a name-value pair to specify single
data type output.

y1 = dvbsapskmod(x,M,'sh','OutputDataType','single');

Modulate the data applying 16-APSK as specified in DVB-S2. Use a name-value pair to specify single
data type output.

y2 = dvbsapskmod(x,M,'s2','OutputDataType','single');

Modulate the data applying 16-APSK as specified in DVB-S2. Use name-value pairs to set unit average
power to true and to specify single data type output.

y3 = dvbsapskmod(x,M,'s2','UnitAveragePower',true,'OutputDataType','single');

Check which signals have unit average power.

y1avgPow = mean(abs(y1).^2)

y1avgPow = single
    1

y2avgPow = mean(abs(y2).^2)

y2avgPow = single
    0.7752

y3avgPow = mean(abs(y3).^2)

y3avgPow = single
    1.0000

Input Arguments
x — Input signal
scalar | vector | matrix
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Input signal, specified as a scalar, vector, or matrix. The elements of x must be binary values or
integers that range from 0 to (M – 1), where M is the modulation order.

Note To process the input signal as binary elements, set 'InputType' value to 'bit'. For binary
inputs, the number of rows must be an integer multiple of log2(M). A group of log2(M) bits in a column
are mapped onto a symbol, with the first bit representing the MSB and the last bit representing the
LSB.

Data Types: double | single | int8 | int16 | int32 | uint8 | uint16 | uint32 | logical

M — Modulation order
integer

Modulation order, specified as a power of two. The modulation order specifies the total number of
points in the signal constellation.
Data Types: double

stdSuffix — Standard suffix
's2' | 's2x' | 'sh'

Standard suffix for DVBS modulation variant, specified as 's2', 's2x', or 'sh'.
Data Types: char | string

codeIDF — Code identifier
char | string

Code identifier, specified as a character vector or string. This table lists the acceptable codeIDF
values.

Constellation Order (M) Applicable Standard
(stdSuffix)

Acceptable Code Identifier
(CodeIDF) Values

16 's2' or 's2x' '2/3', '3/4', '4/5', '5/6',
'8/9', '9/10'

16 's2x' '26/45', '3/5', '28/45',
'23/36', '25/36', '13/18',
'7/9', '77/90', '100/180',
'96/180', '90/180',
'18/30', '20/30'

32 's2' or 's2x' '3/4', '4/5', '5/6', '8/9',
'9/10'

32 's2x' '32/45', '11/15', '7/9',
'2/3'

64 's2x' '11/15', '7/9', '4/5',
'5/6', '128/180'

128 's2x' '3/4', '7/9'
256 's2x' '32/45', '3/4', '116/180',

'20/30', '124/180', '22/30'
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For more information, refer to Tables 9 and 10 in the DVB-S2 standard, [1], and Table 17a in the DVB-
S2X standard, [2].

Dependencies

This input argument applies only when stdSuffix is set to 's2' or 's2x'.
Data Types: char | string

frameLength — Frame length
'normal' (default) | 'short'

Frame length, specified as 'normal' or 'short'. frameLength and codeIDF are used to
determine the modulation parameters.

Dependencies

This input argument applies only when stdSuffix is set to 's2' or 's2x'.
Data Types: char | string

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: y = dvbsapskmod(x,M,std,'InputType','bit','OutputDataType','single');

InputType — Input type
'integer' (default) | 'bit'

Input type, specified as the comma-separated pair consisting of 'InputType' and either 'integer'
or 'bit'. To use 'integer', the input signal must consist of integer values from 0 to (M – 1). To use
'bit', the input signal must contain binary values and the number of rows must be an integer
multiple of log2(M).
Data Types: char | string

UnitAveragePower — Unit average power flag
false (default) | true

Unit average power flag, specified as the comma-separated pair consisting of 'UnitAveragePower'
and a logical scalar. When this flag is true, the function scales the constellation to an average power
of 1 watt referenced to 1 ohm. When this flag is false, the function scales the constellation based on
specifications in the relevant standard, as described in [1] and [2].

Note When stdSuffix is set to 'sh', the constellation always has unit average power.

Dependencies

This name-value pair argument applies only when stdSuffix is set to 's2' or 's2x'.
Data Types: logical
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OutputDataType — Output data type
'double' (default) | 'single'

Output data type, specified as the comma-separated pair consisting of 'OutputDataType' and
either 'double' or 'single'.
Data Types: char | string

PlotConstellation — Option to plot constellation
false (default) | true

Option to plot constellation, specified as the comma-separated pair consisting of
'PlotConstellation' and a logical scalar. To plot the constellation, set PlotConstellation to
true.
Data Types: logical

Output Arguments
y — Modulated signal
scalar | vector | matrix

Modulated signal, returned as a complex scalar, vector, or matrix. The dimensions of y depend on the
specified 'InputType' value.

'InputType' Value Dimensions of y
'integer' y has the same dimensions as input x.
'bit' The number of rows in y equals the number of rows in x divided by log2(M).

Data Types: double | single

More About
DVB-S2/S2X/SH

Digital video broadcasting (DVB) standards specify S2, S2X, and SH standard-specific amplitude
phase shift keying (APSK) modulation. For further information on the DVB-S2/S2X/SH standards, see
specified in [1], [2], and [3], respectively.

Version History
Introduced in R2018a

References
[1] ETSI Standard EN 302 307 V1.4.1: Digital Video Broadcasting (DVB); Second generation framing

structure, channel coding and modulation systems for Broadcasting, Interactive Services,
News Gathering and other broadband satellite applications (DVB-S2), European
Telecommunications Standards Institute, Valbonne, France, 2005-03.

[2] ETSI Standard EN 302 307-2 V1.1.1: Digital Video Broadcasting (DVB); Second generation
framing structure, channel coding and modulation systems for Broadcasting, Interactive
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Services, News Gathering and other broadband satellite applications (DVB-S2X), European
Telecommunications Standards Institute, Valbonne, France, 2015-02.

[3] ETSI Standard EN 302 583 V1.1.1: Digital Video Broadcasting (DVB); Framing structure, channel
coding and modulation for Satellite Services to Handheld devices (SH), European
Telecommunications Standards Institute, Valbonne, France, 2008-03.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
dvbsapskdemod | apskmod | mil188qammod | qammod | genqammod | pskmod

Objects
comm.GeneralQAMModulator | comm.PSKModulator
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encode
Block encoder

Syntax
code = encode(msg,n,k)
code = encode(msg,n,k,codingMethod,prim_poly)
code = encode(msg,n,k,codingMethod,genmat)
code = encode(msg,n,k,codingMethod,genpoly)
[code,added] = encode( ___ )

Description
code = encode(msg,n,k) encodes message, msg, using the Hamming encoding method with
codeword length, n, and message length, k. The value of n must be calculated for an integer, m, such
that m ≥ 2. The values of n and k are calculated as 2m–1 and n–m, respectively.

code = encode(msg,n,k,codingMethod,prim_poly) encodes msg using codingMethod as the
Hamming encoding method, and prim_poly as the primitive polynomial. The value of n must be
calculated for an integer, m≥2.

code = encode(msg,n,k,codingMethod,genmat) encodes msg using codingMethod as the
linear block encoding method and genmat as the generator matrix. The value of n must be calculated
for an integer, m≥2.

code = encode(msg,n,k,codingMethod,genpoly) encodes msg using codingMethod as the
systematic cyclic code and genpoly, as the generator polynomial. The value of n must be calculated
for an integer, m≥2.

[code,added] = encode( ___ ) returns the additional variable added. added denotes the number
of zeros appended at the end of the message matrix before encoding. You can specify any of the input
argument combinations from the previous syntaxes.

Examples

Encode and Decode Message with Hamming Code

Set the values of the codeword length and message length.

n = 15; % Codeword length
k = 11; % Message length

Create a random binary message with length equal to the message length.

data = randi([0 1],k,1);

Encode the message.

encData = encode(data,n,k,'hamming/binary');
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Corrupt the encoded message sequence by introducing an error in the fourth bit.

encData(4) = ~encData(4);

Decode the corrupted sequence. Observe that the decoder has correctly recovered the message.

decData = decode(encData,n,k,'hamming/binary');
numerr = biterr(data,decData)

numerr = 0

Encode and Decode Message with Linear Block Code

Set the values of codeword length and message length.

n = 7; % Codeword length
k = 3; % Message length

Create a random binary message with length equal to the message length.

data = randi([0 1],k,1);

Create a cyclic generator polynomial. Then, create a parity-check matrix and convert it into a
generator matrix.

pol = cyclpoly(n,k);
parmat = cyclgen(n,pol);
genmat = gen2par(parmat);

Encode the message sequence by using the generator matrix.

encData = encode(data,n,k,'linear/binary',genmat);

Corrupt the encoded message sequence by introducing an error in the third bit.

encData(3) = ~encData(3);

Decode the corrupted sequence. Observe that the decoder has correctly recovered the message.

decData = decode(encData,n,k,'linear/binary',genmat);

Single-error patterns loaded in decoding table.  8 rows remaining.
2-error patterns loaded.  1 rows remaining.
3-error patterns loaded.  0 rows remaining.

numerr = biterr(data,decData)

numerr = 0

Encode and Decode Message with Cyclic Block Code

Set the values of the codeword length and message length.

n = 15; % Codeword length
k = 5; % Message length
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Create a random binary message with length equal to the message length.

data = randi([0 1],k,1);

Create a generator polynomial for a cyclic code. Create a parity-check matrix by using the generator
polynomial.

genpoly = cyclpoly(n,k);
parmat = cyclgen(n,genpoly);

Create a syndrome decoding table by using the parity-check matrix.

trt = syndtable(parmat);

Single-error patterns loaded in decoding table.  1008 rows remaining.
2-error patterns loaded.  918 rows remaining.
3-error patterns loaded.  648 rows remaining.
4-error patterns loaded.  243 rows remaining.
5-error patterns loaded.  0 rows remaining.

Encode the data by using the generator polynomial.

encData = encode(data,n,k,'cyclic/binary',genpoly);

Corrupt the encoded message sequence by introducing errors in the first, second, fourth and seventh
bits.

encData(1) = ~encData(1);
encData(2) = ~encData(2);
encData(4) = ~encData(4);

Decode the corrupted sequence. Observe that the decoder has correctly recovered the message.

decData = decode(encData,n,k,'cyclic/binary',genpoly,trt);
numerr = biterr(data,decData)

numerr = 0

Input Arguments
msg — Input messages
binary column or row vector | binary matrix with k columns | column or row vector of integers in the
range [0, 2k–1]

Input messages, specified as one of these options:

• Binary column or row vector with k columns
• Binary matrix with k columns
• Column or row vector of k columns and having integers in the range [0, 2k–1]

Example: msg = [0 1 1 0, 0 1 0 1, 1 0 0 1] specifies a binary row vector for k=4.
Example: msg = [0 1 1 0; 0 1 0 1; 1 0 0 1] specifies a binary matrix for k=4.
Example: msg = [6, 10, 9] specifies a row vector of integers for k=4.
Data Types: double
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n — Codeword length
positive integer

Codeword length, specified as a positive integer. The function calculates this value as 2^m–1, where
m must be greater than or equal to 2.
Data Types: double

k — Message length
positive integer

Message length, specified as a positive integer. The function calculates this value as n–m, where m
must be greater than or equal to 2.
Data Types: double

codingMethod — Error coding method and format
'hamming/binary' (default) | 'hamming/decimal' | 'linear/binary' | ...

Error coding method and format, specified as one of these:

• 'hamming/binary'
• 'hamming/decimal'
• 'linear/binary'
• 'linear/decimal'
• 'cyclic/binary'
• 'cyclic/decimal'

Data Types: char | string

prim_poly — Primitive polynomial
gfprimdf(n-k) (default) | binary row vector | character vector | string scalar | positive integer

Primitive polynomial, specified as one of these options:

• Binary row vector — This vector gives coefficients of prim_poly in the order of ascending
powers.

• Character vector or a string scalar — This value defines prim_poly in textual representation. For
more information, see polynomial character vector.

• Positive integer — This value defines prim_poly in the range [2m + 1, 2m + 1 – 1].

For more information about default primitive polynomials, see “Default Primitive Polynomials” on
page 2-367. For more information about the representation of primitive polynomials, see “Primitive
Polynomials and Element Representations”.
Data Types: double | char | string

genmat — Generator matrix
k-by-n numeric matrix

Generator matrix, specified as a k-by-n numeric matrix.
Data Types: double
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genpoly — Generator polynomial
cyclpoly(n-k) (default) | binary row vector | character vector | string scalar

Generator polynomial, specified as a polynomial character vector or a row vector that gives the
coefficients in order of ascending powers of the binary generator polynomial. The value of genpoly
for an [n, k] cyclic code must have degree n–k and divide xn-1, where x is an identifier.
Data Types: char | string

Output Arguments
code — Output code
binary column or row vector | binary matrix with n columns | column or row vector of integers in the
range [0, 2n–1].

Output code, returned as one of the options in this table. The value and dimension of code depends
on the value and dimension of the “msg” on page 2-0  and the input message format according to
this table:

msg Value Input Message Format code Value
Binary column or row vector binary Binary column or row vector
Binary matrix with k columns binary Binary matrix with n columns
Column or row vector of
integers in the range [0, 2k–1]

decimal Column or row vector of integers
in the range [0, 2n–1]

added — Additional variable
nonnegative integer

Additional variable, returned as the number of zeros that were appended at the end of the message
matrix before encoding for the matrix to have the appropriate size. The size of the message matrix
depends on the n, k, and msg and the encoding method.

Algorithms
Depending on the error-correction coding method, the encode function relies on lower-level
functions such as hammgen and cyclgen.

Version History
Introduced before R2006a

See Also
decode | cyclgen | cyclpoly | hammgen

Topics
“Block Codes”
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evdoForwardReferenceChannels
Define 1xEV-DO forward reference channel

Syntax
cfg = evdoForwardReferenceChannels(wv)
cfg = evdoForwardReferenceChannels(wv,numpackets)

Description
cfg = evdoForwardReferenceChannels(wv) returns a structure, cfg, that defines 1xEV-DO
forward link parameters given the input waveform identifier, wv. Pass this structure to the
evdoForwardWaveformGenerator function to generate a forward link reference channel
waveform.

For all syntaxes, evdoForwardReferenceChannels creates a configuration structure that is
compliant with the cdma2000 high data rate packet specification, [1].

cfg = evdoForwardReferenceChannels(wv,numpackets) specifies the number of packets to
be generated.

Examples

Generate 1xEV-DO Release 0 Forward Link Waveform

Create a configuration structure for a Release 0 channel having a 921.6 kbps data rate and
transmitted over two slots.

config = evdoForwardReferenceChannels('Rel0-921600-2');

Display the number of slots and the data rate.

config.PacketSequence

ans = struct with fields:
    MACIndex: 0
    DataRate: 921600
    NumSlots: 2

Generate the complex waveform using the associated waveform generator function,
evdoForwardWaveformGenerator.

wv = evdoForwardWaveformGenerator(config);
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Generate 1xEV-DO Revision A Forward Link Waveform

Create a structure to transmit a Revision A 1xEV-DO channel consisting of three 1024-bit packets
transmitted over 2 slots with a 64-bit preamble length.

config = evdoForwardReferenceChannels('RevA-1024-2-64',3);

Verify that the function created a 1-by-3 structure array. Each element in the structure array
corresponds to a data packet.

config.PacketSequence

ans=1×3 struct array with fields:
    MACIndex
    PacketSize
    NumSlots
    PreambleLength

Examine the first structure element to verify the packet size, number of slots, and preamble length
match what you specified in the function call.

config.PacketSequence(1)

ans = struct with fields:
          MACIndex: 0
        PacketSize: 1024
          NumSlots: 2
    PreambleLength: 64

Generate the waveform.

wv = evdoForwardWaveformGenerator(config);

Input Arguments
wv — Waveform identification
character vector

Waveform identification of the reference channel, specified as a character vector.

Parameter
Field

Values Description

wv 'Rel0-38400-16' | 'Rel0-76800-8' |
'Rel0-153600-4' | 'Rel0-307200-2' |
'Rel0-307200-4' | 'Rel0-614400-1' |
'Rel0-614400-2' | 'Rel0-921600-2' |
'Rel0-1228800-1' |
'Rel0-1228800-2' |
'Rel0-1843200-1' |
'Rel0-2457600-1'

Character vector representing the 1xEV-
DO Release 0 reference channel with data
rate in bps and number of slots. For
example, you can specify
'Rel0-153600-4' to create a structure
that represents a reference channel with a
153,600 bps data rate and uses four slots.
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Parameter
Field

Values Description

'RevA-128-1-64' | 'RevA-128-2-128'
| 'RevA-128-4-256' |
'RevA-128-4-1024' |
'RevA-128-8-512' | 'RevA-256-1-64'
| 'RevA-256-2-128' |
'RevA-256-4-256' |
'RevA-256-4-1024' |
'RevA-256-8-512' |
'RevA-256-16-1024' |
'RevA-512-1-64' | 'RevA-512-2-64' |
'RevA-512-2-128' |
'RevA-512-4-128' |
'RevA-512-4-256' |
'RevA-512-4-1024' |
'RevA-512-8-512' |
'RevA-512-16-1024' |
'RevA-1024-1-64' |
'RevA-1024-2-64' |
'RevA-1024-2-128' |
'RevA-1024-4-128' |
'RevA-1024-4-256' |
'RevA-1024-8-512' |
'RevA-1024-16-1024' |
'RevA-2048-1-64' |
'RevA-2048-2-64' |
'RevA-2048-4-128' |
'RevA-3072-1-64' |
'RevA-3072-2-64' 'RevA-4096-1-64'
| 'RevA-4096-2-64' |
'RevA-5120-1-64' |
'RevA-5120-2-64'

Character vector representing the 1xEV-
DO Revision A reference channel with the
packet size in bits, the number of slots,
and the preamble length in chips. For
example, you can specify
'RevA-256-1-64' to create a reference
channel having a 256-bit packet,
transmitted in one slot, with a 64-bit
preamble length.

Example: 'Rel0-614400-2'
Example: 'RevA-4096-2-64'
Data Types: char

numpackets — Number of packets
1 (default) | positive integer scalar

Number of packets, specified as a positive integer.
Example: 4
Data Types: double

Output Arguments
cfg — Configuration of the parameters and channels used by the waveform generator
structure
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Configuration of the parameters and channels used by the waveform generator. The configuration
structure is defined in these tables.

Top-Level Parameters and Substructures

Parameter Field Values Description
Release 'Release0' | 'RevisionA' 1xEV-DO
PNOffset Nonnegative scalar integer [0,

511]
PN offset of the base station

IdleSlotsWithControl 'Off' | 'On' Include idle slots with control channels
EnableControl 'Off' | 'On' Enable control signaling
NumChips Positive scalar integer Number of chips in the waveform
OversamplingRatio Positive scalar integer [1, 8] Oversampling ratio at output
FilterType 'cdma2000Long' |

'cdma2000short' | 'Custom'
| 'Off'

Select filter type or disable filtering

CustomFilterCoeffici
ents

Real vector Custom filter coefficients (applies when the
FilterType field is set to 'Custom')

InvertQ 'Off' | 'On' Negate the quadrature output
EnableModulation 'Off' | 'On' Enable carrier modulation
ModulationFrequency Nonnegative scalar integer Carrier modulation frequency (applies when

EnableModulation is 'On')
PacketSequence Structure See PacketSequence substructure.
PacketDataSources Structure See PacketDataSources substructure.

PacketSequence Substructure

Include the PacketSequence substructure in the cfg structure to define a sequence of data packets
for consecutive transmission. The PacketSequence substructure contains these fields.

Parameter Field Values Description
MACIndex Positive scalar integer MAC index associated with the packet

Release 0
DataRate 38400 | 76800 | 153600 |

307200 | 614400 | 921600 |
1228800 | 1843200 |
2457600

Data rate (bps)

NumSlots Positive scalar integer Number of slots
Revision A

PacketSize 128 | 256 | 512 | 1024 | 2048
| 3072 | 4096 | 5120

Packet size (bits)

NumSlots 1 | 2 | 4 | 8 | 16 Number of slots
PreambleLength 64 | 128 | 256 | 512 | 1024 Preamble length (chips)
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PacketDataSources Substructure

Include a PacketDataSources substructure in the cfg structure to define a set of matching data
sources for each MAC index. The PacketDataSources substructure contains these fields.

Parameter Field Values Description
MACIndex Positive scalar integer MAC index associated with the packet
DataSource Cell array, {'PN Type', RN

Seed} or binary vector.

Standard PN sequence
options are 'PN9', 'PN15',
'PN23', 'PN9-ITU', and
'PN11'.

Data source. Specify a standard PN
sequence with a random number seed or a
custom vector.

EnableCoding 'Off' | 'On' Enable error correction coding

Version History
Introduced in R2015b

References
[1] 3GPP2 C.S0024–A v3.0. “cdma2000 High Rate Packet Data Air Interface Specification.” 3rd

Generation Partnership Project 2.

See Also
evdoForwardWaveformGenerator | evdoReverseReferenceChannels
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evdoForwardWaveformGenerator
Generate 1xEV-DO forward link waveform

Syntax
waveform = evdoForwardWaveformGenerator(cfg)

Description
waveform = evdoForwardWaveformGenerator(cfg) returns the 1xEV-DO forward link
waveform as defined by the parameter configuration structure, cfg.

The top-level parameters and lower-level substructures of cfg specify the waveform and channel
properties the function uses to generate a 1xEV-DO waveform. You can generate cfg by using the
evdoForwardReferenceChannels function.

Note The tables herein list the allowable values for the top-level parameters and substructure fields.
However, not all parameter combinations are supported. To ensure that the input argument is valid,
use the evdoForwardReferenceChannels function. If you input the structure fields manually,
consult [1] to ensure that the input parameter combinations are permitted.

Examples

Generate 1xEV-DO Revision A Forward Link Waveform

Create a structure to transmit a Revision A 1xEV-DO channel consisting of three 1024-bit packets
transmitted over 2 slots with a 64-bit preamble length.

config = evdoForwardReferenceChannels('RevA-1024-2-64',3);

Verify that the function created a 1-by-3 structure array. Each element in the structure array
corresponds to a data packet.

config.PacketSequence

ans=1×3 struct array with fields:
    MACIndex
    PacketSize
    NumSlots
    PreambleLength

Examine the first structure element to verify the packet size, number of slots, and preamble length
match what you specified in the function call.

config.PacketSequence(1)

ans = struct with fields:
          MACIndex: 0
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        PacketSize: 1024
          NumSlots: 2
    PreambleLength: 64

Generate the waveform.

wv = evdoForwardWaveformGenerator(config);

Generate 1xEV-DO Forward Link Waveform with Custom Filter

Create a structure to generate two packets of a 1.8 Mbps Release 0 channel.

config = evdoForwardReferenceChannels("Rel0-1843200-1",2);

Calculate the sample rate of the waveform.

fs = 1.2288e6 * config.OversamplingRatio;

Disable the internal filter of the evdoForwardWaveformGenerator function. Generate the 1xEV-DO
waveform.

config.FilterType = "off";
wv = evdoForwardWaveformGenerator(config);

sa = spectrumAnalyzer( ...
    SampleRate=fs, ...
    ChannelNames=["1xEv-DO","1xEV-DO filtered"]);

Create a lowpass FIR filter with a 500 kHz passband, a 750 kHz stopband, and a stopband
attenuation of 60 dB.

d = designfilt("lowpassfir", ...
    PassbandFrequency=500e3, ...
    StopbandFrequency=750e3, ...
    StopbandAttenuation=60, ...
    SampleRate=fs);

Change the filter type to "Custom" and specify the coefficients from the digital filter, d.

config.FilterType = "Custom";
config.CustomFilterCoefficients = d.Coefficients;

Generate the waveform using the custom filter coefficients.

wvfiltered = evdoForwardWaveformGenerator(config);

Plot the spectrum of the unfiltered and filtered 1xEV-DO waveform. The filter attenuates the
waveform by 60 dB for frequencies outside of ± 750 kHz.

sa(wv,wvfiltered)
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Input Arguments
cfg — Configuration of the parameters and channels used by the waveform generator
structure

Configuration of the parameters and channels used by the waveform generator. The configuration
structure is defined in these tables.

Top-Level Parameters and Substructures

Parameter Field Values Description
Release 'Release0' | 'RevisionA' 1xEV-DO
PNOffset Nonnegative scalar integer [0,

511]
PN offset of the base station

IdleSlotsWithControl 'Off' | 'On' Include idle slots with control channels
EnableControl 'Off' | 'On' Enable control signaling
NumChips Positive scalar integer Number of chips in the waveform
OversamplingRatio Positive scalar integer [1, 8] Oversampling ratio at output
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Parameter Field Values Description
FilterType 'cdma2000Long' |

'cdma2000short' | 'Custom'
| 'Off'

Select filter type or disable filtering

CustomFilterCoeffici
ents

Real vector Custom filter coefficients (applies when the
FilterType field is set to 'Custom')

InvertQ 'Off' | 'On' Negate the quadrature output
EnableModulation 'Off' | 'On' Enable carrier modulation
ModulationFrequency Nonnegative scalar integer Carrier modulation frequency (applies when

EnableModulation is 'On')
PacketSequence Structure See PacketSequence substructure.
PacketDataSources Structure See PacketDataSources substructure.

PacketSequence Substructure

Include the PacketSequence substructure in the cfg structure to define a sequence of data packets
for consecutive transmission. The PacketSequence substructure contains these fields.

Parameter Field Values Description
MACIndex Positive scalar integer MAC index associated with the packet

Release 0
DataRate 38400 | 76800 | 153600 |

307200 | 614400 | 921600 |
1228800 | 1843200 |
2457600

Data rate (bps)

NumSlots Positive scalar integer Number of slots
Revision A

PacketSize 128 | 256 | 512 | 1024 | 2048
| 3072 | 4096 | 5120

Packet size (bits)

NumSlots 1 | 2 | 4 | 8 | 16 Number of slots
PreambleLength 64 | 128 | 256 | 512 | 1024 Preamble length (chips)

PacketDataSources Substructure

Include a PacketDataSources substructure in the cfg structure to define a set of matching data
sources for each MAC index. The PacketDataSources substructure contains these fields.

Parameter Field Values Description
MACIndex Positive scalar integer MAC index associated with the packet
DataSource Cell array, {'PN Type', RN

Seed} or binary vector.

Standard PN sequence
options are 'PN9', 'PN15',
'PN23', 'PN9-ITU', and
'PN11'.

Data source. Specify a standard PN
sequence with a random number seed or a
custom vector.
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Parameter Field Values Description
EnableCoding 'Off' | 'On' Enable error correction coding

Output Arguments
waveform — Modulated baseband waveform comprising the primary physical channels
complex vector array

Modulated baseband waveform comprising the primary cdma2000 physical channels, returned as a
complex vector array.

Version History
Introduced in R2015b

References
[1] 3GPP2 C.S0024–A v3.0. “cdma2000 High Rate Packet Data Air Interface Specification.” 3rd

Generation Partnership Project 2.

See Also
cdma2000ForwardReferenceChannels | cdma2000ReverseWaveformGenerator
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evdoReverseReferenceChannels
Define 1xEV-DO reverse reference channel

Syntax
cfg = evdoReverseReferenceChannels(wv)
cfg = evdoReverseReferenceChannels(wv,numpackets)

Description
cfg = evdoReverseReferenceChannels(wv) returns a structure, cfg, that defines 1xEV-DO
reverse link parameters given the input waveform identifier, wv. Pass this structure to the
evdoReverseWaveformGenerator function to generate a reverse link reference channel waveform.

For all syntaxes, evdoReverseReferenceChannels creates a structure that is compliant with the
cdma2000 high data rate packet specification,[1].

cfg = evdoReverseReferenceChannels(wv,numpackets) specifies the number of packets to
be generated.

Examples

Generate 1xEV-DO Reverse Channel Waveform

Create a structure to generate a Release 0, 1xEV-DO waveform having a 19.2 kbps data rate.

config = evdoReverseReferenceChannels('Rel0-19200');

Verify that the packet has a data rate of 19.2 kbps.

config.PacketSequence.DataRate

ans = 19200

Generate the complex waveform.

wv = evdoReverseWaveformGenerator(config);

Generate 1xEV-DO Revision A Reverse Link Waveform

Create a structure for a Revision A 1xEV-DO channel having 2048-bit packets, transmitted in 12 slots.
Specify that five packets are transmitted.

config = evdoReverseReferenceChannels('RevA-2048-12',5);

Verify that a 1-by-5 structure array is created. Each element in the structure array corresponds to a
data packet.

config.PacketSequence
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ans=1×5 struct array with fields:
    Power
    DataSource
    EnableCoding
    PayloadSize
    NumSlots
    DataRate

Examine the first structure element to verify the packet size and the number of slots are as specified
in the function call.

config.PacketSequence(1)

ans = struct with fields:
           Power: 0
      DataSource: {'PN9'  [1]}
    EnableCoding: 'On'
     PayloadSize: 2048
        NumSlots: 12
        DataRate: 102400

Generate the waveform.

wv = evdoReverseWaveformGenerator(config);

Input Arguments
wv — Waveform identification
character vector

Waveform identification of the reference channel, specified as a character vector.

Parameter
Field

Values Description

wv 'Rel0-9600' |
'Rel0-19200' |
'Rel0-38400' |
'Rel0-76800' |
'Rel0-153600'

Character vector representing the 1xEV-DO
Release 0 data rate in bps. For example, you can
specify 'Rel0-153600' to create a structure
corresponding to a Release 0 reference channel
having a 153,600 bps data rate.
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Parameter
Field

Values Description

'RevA-128-4' |
'RevA-128-8' |
'RevA-128-12' |
'RevA-128-16' |
'RevA-256-4' |
'RevA-256-8' |
'RevA-256-12' |
'RevA-256-16' |
'RevA-512-4' |
'RevA-512-8' |
'RevA-512-12' |
'RevA-512-16' |
'RevA-768-4' |
'RevA-768-8' |
'RevA-768-12' |
'RevA-768-16' |
'RevA-1024-4' |
'RevA-1024-8' |
'RevA-1024-12' |
'RevA-1024-16' |
'RevA-1536-4' |
'RevA-1536-8' |
'RevA-1536-12' |
'RevA-1536-16' |
'RevA-2048-4' |
'RevA-2048-8' |
'RevA-2048-12' |
'RevA-2048-16' |
'RevA-3072-4' |
'RevA-3072-8' |
'RevA-3072-12' |
'RevA-3072-16' |
'RevA-4096-4' |
'RevA-4096-8' |
'RevA-4096-12' |
'RevA-4096-16' |
'RevA-6144-4' |
'RevA-6144-8' |
'RevA-6144-12' |
'RevA-6144-16' |
'RevA-8192-4' |
'RevA-8192-8' |
'RevA-8192-12' |
'RevA-8192-16' |
'RevA-12288-4' |
'RevA-12288-8' |
'RevA-12288-12' |
'RevA-12288-16'

Character vector representing the 1xEV-DO
Revision A packet size in bits and the number of
slots. For example, you can specify
'RevA-256-4' to create a structure
corresponding to a Revision A reference channel
having 256-bit packets and transmitted in four
slots.
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Example: 'Rel0-38400'
Example: 'RevA-3072-12'
Data Types: char

numpackets — Number of packets
1 (default) | positive integer scalar

Number of packets, specified as a positive integer.
Example: 2
Data Types: double

Output Arguments
cfg — Configuration of the parameters and channels used by the waveform generator
structure

Configuration of the parameters and channels used by the waveform generator. The configuration
structure is defined in these tables.

Top-Level Parameters and Substructures

Parameter Field Values Description
Release 'Release0' | 'RevisionA' 1xEV-DO applicable standard
LongCodeMaskI 42-bit binary number Long code identifier for in-phase channel
LongCodeMaskQ 42-bit binary number Long code identifier for quadrature channel
NumChips Positive scalar integer Number of chips in the waveform
OversamplingRatio Positive scalar integer Oversampling ratio at output
FilterType 'cdma2000Long' |

'cdma2000Short' | 'Custom'
| 'Off'

Specify the filter type or disable filtering

CustomFilterCoeffici
ents

Real vector Custom filter coefficients (applies when
FilterType is set to 'Custom')

InvertQ 'Off' | 'On' Negate the quadrature output
EnableModulation 'Off' | 'On' Enable carrier modulation
ModulationFrequency Nonnegative scalar integer Carrier modulation frequency (applies when

EnableModulation is 'On')
ACKChannel Structure See ACKChannel substructure.
PilotChannel Structure See PilotChannel substructure.
AuxPilotChannel Not present or structure See AuxPilotChannel substructure.
PacketSequence Structure See PacketSequence substructure.

ACKChannel Substructure

Include the ACKChannel substructure in the cfg structure to specify the acknowledgment channel.
The ACKChannel substructure contains these fields.
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Parameter Fields Values Description
Enable 'On' | 'Off' Character vector to enable or

disable the channel
Power Real scalar Channel power (dBW)
DataSource Cell array, {'PN Type', RN

Seed} or binary vector.

Standard PN sequence options
are 'PN9', 'PN15', 'PN23',
'PN9-ITU', and 'PN11'.

Data source. Specify a standard
PN sequence with a random
number seed or a custom vector.

PilotChannel Substructure

Include the PilotChannel substructure in the cfg structure to specify the pilot channel. The
PilotChannel substructure contains these fields.

Parameter Fields Values Description
Enable 'On' | 'Off' Character vector to enable or

disable the channel
Power Real scalar Channel power (dBW)
DataSource Cell array, {'PN Type', RN

Seed} or binary vector.

Standard PN sequence options
are 'PN9', 'PN15', 'PN23',
'PN9-ITU', and 'PN11'.

Data source. Specify a standard
PN sequence with a random
number seed or a custom vector.

EnableCoding 'On' | 'Off' Enable channel coding

AuxPilotChannel Substructure

Include the AuxPilotChannel substructure in the cfg structure to specify the auxiliary pilot
channel, which is available only for Revision A. The AuxPilotChannel substructure contains these
fields.

Parameter Fields Values Description
Enable 'On' | 'Off' Character vector to enable or

disable the channel
Power Real scalar Channel power (dBW)
DataSource Cell array, {'PN Type', RN

Seed} or binary vector.

Standard PN sequence options
are 'PN9', 'PN15', 'PN23',
'PN9-ITU', and 'PN11'.

Data source. Specify a standard
PN sequence with a random
number seed or a custom vector.

EnableCoding 'On' | 'Off' Enable channel coding

PacketSequence Substructure

Include the PacketSequence substructure in the cfg structure to define a sequence of data packets
for consecutive transmission. The PacketSequence substructure contains these fields.
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Parameter Field Values Description
Power Real scalar MAC index associated with the packet

EnableCoding 'Off' | 'On' Enable error correction coding
DataSource Cell array, {'PN Type', RN

Seed} or binary vector.

Standard PN sequence
options are 'PN9', 'PN15',
'PN23', 'PN9-ITU', and
'PN11'.

Data source. Specify a standard PN
sequence with a random number seed or a
custom vector.

Release 0
DataRate 9600 | 19200 | 38400 |

76800 | 153600
Data rate (bps)

Revision A
PacketSize 128 | 256 | 512 | 768 | 1024 |

1536 | 2048 | 3072 | 4096 |
6144 | 8192 | 12288

Packet size (bits)

NumSlots 4 | 8 | 12 | 16 Number of slots

Data Types: struct

Version History
Introduced in R2015b

References
[1] 3GPP2 C.S0024–A v3.0. “cdma2000 High Rate Packet Data Air Interface Specification.” 3rd

Generation Partnership Project 2.

See Also
evdoReverseWaveformGenerator | evdoForwardReferenceChannels
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evdoReverseWaveformGenerator
Generate 1xEV-DO reverse link waveform

Syntax
waveform = evdoReverseWaveformGenerator(cfg)

Description
waveform = evdoReverseWaveformGenerator(cfg) returns the 1xEV-DO reverse link
waveform as defined by the parameter configuration structure, cfg.

The top-level parameters and lower-level substructures of cfg specify the waveform and channel
properties used by the function to generate a 1xEV-DO waveform. You can generate cfg by using the
evdoReverseReferenceChannels function.

Note The tables herein list the allowable values for the top-level parameters and substructure fields.
However, not all parameter combinations are supported. To ensure that the input argument is valid,
use the evdoReverseReferenceChannels function. If you input the structure fields manually,
consult [1] to ensure that the input parameter combinations are permitted.

Examples

Generate 1xEV-DO Reverse Channel Waveform

Create a structure to generate a Release 0, 1xEV-DO waveform having a 19.2 kbps data rate.

config = evdoReverseReferenceChannels('Rel0-19200');

Verify that the packet has a data rate of 19.2 kbps.

config.PacketSequence.DataRate

ans = 19200

Generate the complex waveform.

wv = evdoReverseWaveformGenerator(config);

Generate 1xEV-DO Reverse Link Waveform with Custom Filter

Create a structure to generate four packets of a Revision A channel having 768-bit packets
transmitted over eight slots.

config = evdoReverseReferenceChannels("RevA-768-8",4);

Calculate the sample rate of the waveform.
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fs = 1.2288e6 * config.OversamplingRatio;

Disable the internal filter of the evdoReverseWaveformGenerator. Generate the 1xEV-DO
waveform.

config.FilterType = "off";
wv = evdoReverseWaveformGenerator(config);

sa = spectrumAnalyzer( ...
    SampleRate=fs, ...
    ChannelNames=["1xEV-DO","1xEV-DO filtered"]);

Create a lowpass FIR filter with a 500 kHz passband, a 750 kHz stopband, and a stopband
attenuation of 60 dB.

d = designfilt("lowpassfir", ...
    PassbandFrequency=500e3, ...
    StopbandFrequency=750e3, ...
    StopbandAttenuation=60, ...
    SampleRate=fs);

Change the filter type to "Custom" and specify the coefficients from the digital filter, d.

config.FilterType = "Custom";
config.CustomFilterCoefficients = d.Coefficients;

Generate the waveform using the custom filter coefficients.

filtwv = evdoReverseWaveformGenerator(config);

Plot the spectrum of the unfiltered and filtered 1xEV-DO waveform. The filter attenuates the
waveform by 60 dB for frequencies outside of ± 750 kHz.

sa(wv,filtwv)
release(sa)
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Input Arguments
cfg — Configuration of the parameters and channels used by the waveform generator
structure

Configuration of the parameters and channels used by the waveform generator. The configuration
structure is defined in these tables.

Top-Level Parameters and Substructures

Parameter Field Values Description
Release 'Release0' | 'RevisionA' 1xEV-DO applicable standard
LongCodeMaskI 42-bit binary number Long code identifier for in-phase channel
LongCodeMaskQ 42-bit binary number Long code identifier for quadrature channel
NumChips Positive scalar integer Number of chips in the waveform
OversamplingRatio Positive scalar integer Oversampling ratio at output
FilterType 'cdma2000Long' |

'cdma2000Short' | 'Custom'
| 'Off'

Specify the filter type or disable filtering
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Parameter Field Values Description
CustomFilterCoeffici
ents

Real vector Custom filter coefficients (applies when
FilterType is set to 'Custom')

InvertQ 'Off' | 'On' Negate the quadrature output
EnableModulation 'Off' | 'On' Enable carrier modulation
ModulationFrequency Nonnegative scalar integer Carrier modulation frequency (applies when

EnableModulation is 'On')
ACKChannel Structure See ACKChannel substructure.
PilotChannel Structure See PilotChannel substructure.
AuxPilotChannel Not present or structure See AuxPilotChannel substructure.
PacketSequence Structure See PacketSequence substructure.

ACKChannel Substructure

Include the ACKChannel substructure in the cfg structure to specify the acknowledgment channel.
The ACKChannel substructure contains these fields.

Parameter Fields Values Description
Enable 'On' | 'Off' Character vector to enable or

disable the channel
Power Real scalar Channel power (dBW)
DataSource Cell array, {'PN Type', RN

Seed} or binary vector.

Standard PN sequence options
are 'PN9', 'PN15', 'PN23',
'PN9-ITU', and 'PN11'.

Data source. Specify a standard
PN sequence with a random
number seed or a custom vector.

PilotChannel Substructure

Include the PilotChannel substructure in the cfg structure to specify the pilot channel. The
PilotChannel substructure contains these fields.

Parameter Fields Values Description
Enable 'On' | 'Off' Character vector to enable or

disable the channel
Power Real scalar Channel power (dBW)
DataSource Cell array, {'PN Type', RN

Seed} or binary vector.

Standard PN sequence options
are 'PN9', 'PN15', 'PN23',
'PN9-ITU', and 'PN11'.

Data source. Specify a standard
PN sequence with a random
number seed or a custom vector.

EnableCoding 'On' | 'Off' Enable channel coding
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AuxPilotChannel Substructure

Include the AuxPilotChannel substructure in the cfg structure to specify the auxiliary pilot
channel, which is available only for Revision A. The AuxPilotChannel substructure contains these
fields.

Parameter Fields Values Description
Enable 'On' | 'Off' Character vector to enable or

disable the channel
Power Real scalar Channel power (dBW)
DataSource Cell array, {'PN Type', RN

Seed} or binary vector.

Standard PN sequence options
are 'PN9', 'PN15', 'PN23',
'PN9-ITU', and 'PN11'.

Data source. Specify a standard
PN sequence with a random
number seed or a custom vector.

EnableCoding 'On' | 'Off' Enable channel coding

PacketSequence Substructure

Include the PacketSequence substructure in the cfg structure to define a sequence of data packets
for consecutive transmission. The PacketSequence substructure contains these fields.

Parameter Field Values Description
Power Real scalar MAC index associated with the packet

EnableCoding 'Off' | 'On' Enable error correction coding
DataSource Cell array, {'PN Type', RN

Seed} or binary vector.

Standard PN sequence
options are 'PN9', 'PN15',
'PN23', 'PN9-ITU', and
'PN11'.

Data source. Specify a standard PN
sequence with a random number seed or a
custom vector.

Release 0
DataRate 9600 | 19200 | 38400 |

76800 | 153600
Data rate (bps)

Revision A
PacketSize 128 | 256 | 512 | 768 | 1024 |

1536 | 2048 | 3072 | 4096 |
6144 | 8192 | 12288

Packet size (bits)

NumSlots 4 | 8 | 12 | 16 Number of slots

Output Arguments
waveform — Modulated baseband waveform comprising the physical channels
complex vector array

Modulated baseband waveform comprising the 1xEV-DO physical channels, returned as a complex
vector array.
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Version History
Introduced in R2015b

References
[1] 3GPP2 C.S0024–A v3.0. “cdma2000 High Rate Packet Data Air Interface Specification.” 3rd

Generation Partnership Project 2.

See Also
evdoReverseReferenceChannels | evdoForwardWaveformGenerator
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eyediagram
Generate eye diagram

Syntax
eyediagram(x,n)
eyediagram(x,n,period)
eyediagram(x,n,period,offset)
eyediagram(x,n,period,offset,plotstring)
eyediagram(x,n,period,offset,plotstring,h)
h = eyediagram( ___ )

Description
eyediagram(x,n) generates an eye diagram for signal x, plotting n samples in each trace. The
labels on the horizontal axis of the diagram range between –1/2 and 1/2. The function assumes that
the first value of the signal and every nth value thereafter, occur at integer times.

eyediagram(x,n,period) sets the labels on the horizontal axis to the range between –period/2 to
period/2.

eyediagram(x,n,period,offset) specifies the offset for the eye diagram. The function assumes
that the (offset + 1)th value of the signal and every nth value thereafter, occur at times that are
integer multiples of period.

eyediagram(x,n,period,offset,plotstring) specifies plot attributes for the eye diagram.

eyediagram(x,n,period,offset,plotstring,h) generates the eye diagram in an existing
figure whose handle is h.

Note Use of hold on to plot multiple signals in the same figure is not supported.

h = eyediagram( ___ ) returns the handle to the figure that contains the eye diagram. You can
specify any of the input argument combinations from the previous syntaxes.

Examples

Generate Eye Diagram of Filtered QPSK Signal

Generate an eyediagram of a filtered QPSK signal.

Generate random symbols. Apply QPSK modulation to get a modulated signal.

data = randi([0 3],1000,1);
modSig = pskmod(data,4,pi/4);

Specify the number of output samples per symbol parameter. Create a transmit filter object,
txfilter.
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sps=4;
txfilter = comm.RaisedCosineTransmitFilter('OutputSamplesPerSymbol',sps);

Filter the modulated signal modSig.

txSig = txfilter(modSig);

Display the eye diagram.

eyediagram(txSig,2*sps)

Input Arguments
x — Input signal
vector | matrix

Input signal, specified as a vector or matrix.
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The interpretation of x and the number of plots depend on the shape and complexity of x.

• If x is a real-valued two-column matrix, the function interprets the first column as in-phase
components and the second column as quadrature components. The two components appear in
different subplots of a single figure window.

• If x is a complex-valued vector, the function interprets the real part as in-phase components and
the imaginary part as quadrature components. The two components appear in different subplots of
a single figure window.

• If x is a real-valued vector, the function interprets the vector as a real signal. The figure window
contains a single plot.

Data Types: double
Complex Number Support: Yes

n — Number of samples per trace
integer greater than 1

Number of samples per trace, specified as a integer greater than 1.
Data Types: double

period — Trace period
1 (default) | positive scalar

Trace period, specified as a positive scalar. The labels on the horizontal axis of the eye diagram range
between –period/2 to period/2.
Data Types: double

offset — Offset value
0 (default) | integer in the range from 0 to (n–1)

Offset value, specified as an integer in the range 0 to (n–1). The function assumes that the (offset +
1)th value of the signal and every nth value thereafter, occur at times that are integer multiples of the
input period.
Data Types: double

plotstring — Plot attributes
'b-' (default) | character vector | string scalar

Plot attributes, specified as a character vector or string scalar containing symbols.

This argument sets the plotting symbol, line type, and color for the eye diagram. The format and
meaning of the symbols are the same as in the plot function. For example, the default value 'b-'
produces a solid blue line.
Data Types: char | string

h — Figure handle
Figure object

Figure handle to an existing figure that contains an eye diagram, specified as a Figure object. h
must be a handle to a figure that the eyediagram function previously generated.
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Output Arguments
h — Figure handle
Figure object

Figure handle, returned as a Figure object. To modify properties of this object, see Figure
Properties.

Version History
Introduced before R2006a

See Also
Functions
scatterplot | plot

Objects
comm.ConstellationDiagram

Topics
“Eye Diagram Analysis”
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fft
Discrete Fourier transform of Galois array

Syntax
fft(x) 

Description
fft(x) is the discrete Fourier transform (DFT) of the Galois vector x. If x is in the Galois field
GF(2m), the length of x must be 2m-1.

Examples

Discrete Fourier Transform of Galois Vector

Set the order of the Galois field. Because x is in the Galois field (24), the length of x must be 2m− 1.

m = 4;
n = 2^m-1;

Generate a random GF vector.

x = gf(randi([0 2^m-1],n,1),m);

Perform the Fourier transform.

y = fft(x);

Invert the transform.

z = ifft(y);

Confirm that the inverse transform z = x.

isequal(z,x)

ans = logical
   1

Limitations
The Galois field over which this function works must have 256 or fewer elements. In other words, x
must be in the Galois field GF(2m), where m is an integer between 1 and 8.
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Algorithms
If x is a column vector, fft applies dftmtx to the primitive element of the Galois field and multiplies
the resulting matrix by x.

Version History
Introduced before R2006a

See Also
gf | ifft | dftmtx

Topics
“Signal Processing Operations in Galois Fields”
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filter (Galois field)
1-D digital filter over Galois field

Syntax
y = filter(b,a,x)
[y,zf] = filter(b,a,x)

Description
y = filter(b,a,x) filters the data in the vector x with the filter described by numerator
coefficient vector b and denominator coefficient vector a. The vectors b, a, and x must be Galois
vectors in the same field. If a(1) is not equal to 1, then filter normalizes the filter coefficients by
a(1). As a result, a(1) must be nonzero.

The filter is a Direct Form II Transposed implementation of the standard difference equation shown
here:

a(1)*y(n) = b(1)*x(n) + b(2)*x(n-1) + ... + b(nb+1)*x(n-nb) ...
                      - a(2)*y(n-1) - ... - a(na+1)*y(n-na)

[y,zf] = filter(b,a,x) returns the final conditions of the filter delays in the Galois vector zf.
The length of the vector zf is max(size(a),size(b))-1.

Examples
Filter a Galois Field

When using the Galois 1-D digital filter function, the data is normalized by the first element of the
denominator coefficient vector.

a = gf([2 3 5 7],3);
b = gf([1 3],3);
x = gf(randi([0,7],10,1),3);
filt_x = filter(b,a,x)

 
filt_x = GF(2^3) array. Primitive polynomial = D^3+D+1 (11 decimal)
 
Array elements = 
 
   6
   6
   3
   4
   7
   4
   2
   2
   0
   5
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The first coefficient of the denominator coefficient vector, a(1) = 2. To confirm the function
normalizes the data, manually normalize the filtered data. Use isequal to compare the outputs. We
see they are equal.

filt_x2 = a(1) * filter(b/a(1),a,x)

 
filt_x2 = GF(2^3) array. Primitive polynomial = D^3+D+1 (11 decimal)
 
Array elements = 
 
   6
   6
   3
   4
   7
   4
   2
   2
   0
   5

isequal(filt_x,filt_x2)

ans = logical
   1

Version History
Introduced before R2006a

See Also
gf
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fmdemod
Frequency demodulation

Syntax
z = fmdemod(y,Fc,Fs,freqdev)
z = fmdemod(y,Fc,Fs,freqdev,ini_phase)

Description
z = fmdemod(y,Fc,Fs,freqdev) returns a demodulated signal z, given the input frequency
modulated (FM) signal y, where the carrier signal has frequency Fc and sampling rate Fs. freqdev
is the frequency deviation of the modulated signal.

Note

• The value of Fs must satisfy Fs ≥ 2Fc.
• The value of freqdev must satisfy freqdev < Fc.

z = fmdemod(y,Fc,Fs,freqdev,ini_phase) specifies the initial phase of the modulated signal
in radians.

Examples

FM Modulate and Demodulate Sinusoidal Signal

Set the sampling frequency to 1kHz and carrier frequency to 200 Hz. Generate a time vector having a
duration of 0.2 s.

fs = 1000; 
fc = 200;  
t = (0:1/fs:0.2)';

Create two-tone sinusoidal signal with frequencies 30 and 60 Hz.

x = sin(2*pi*30*t)+2*sin(2*pi*60*t);

Set the frequency deviation to 50 Hz.

fDev = 50;

Frequency modulate x.

y = fmmod(x,fc,fs,fDev);

Demodulate z.

z = fmdemod(y,fc,fs,fDev);
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Plot the original and demodulated signals.

plot(t,x,'c',t,z,'b--');
xlabel('Time (s)')
ylabel('Amplitude')
legend('Original Signal','Demodulated Signal')

The demodulated signal closely approximates the original.

Input Arguments
y — Frequency modulated input signal
scalar | vector | matrix | 3-D array

Frequency modulated input signal, specified as a scalar, vector, matrix, or 3-D array. Each element of
y must be real.
Data Types: double | single

Fc — Carrier frequency
positive real scalar

Carrier frequency in hertz (Hz), specified as a positive real scalar.
Data Types: double
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Fs — Sampling rate
positive scalar

Sampling rate in hertz (Hz), specified as a positive scalar.
Data Types: double

freqdev — Frequency deviation
positive scalar

Frequency deviation of the modulated signal in hertz (Hz), specified as a positive scalar.
Data Types: double

ini_phase — Initial phase
scalar

Initial phase of the modulated signal in radians, specified as a scalar.
Data Types: double

Output Arguments
z — Frequency demodulated output signal
scalar | vector | matrix | 3-D array

Frequency demodulated signal, returned as a scalar, vector, matrix, or 3-D array.

Version History
Introduced before R2006a

See Also
Functions
amdemod | fmmod | pmdemod

Objects
comm.FMBroadcastDemodulator | comm.FMDemodulator

Topics
“Analog Passband Modulation”
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fmmod
Frequency modulation

Syntax
y = fmmod(x,Fc,Fs,freqdev)
y = fmmod(x,Fc,Fs,freqdev,ini_phase)

Description
y = fmmod(x,Fc,Fs,freqdev) returns a frequency modulated (FM) signal y, given the input
message signal x, where the carrier signal has frequency Fc and sampling rate Fs. freqdev is the
frequency deviation of the modulated signal.

Note

• The value of Fs must satisfy Fs ≥ 2Fc.
• The value of freqdev must satisfy freqdev < Fc.

y = fmmod(x,Fc,Fs,freqdev,ini_phase) specifies the initial phase of the modulated signal.

Examples

FM Modulate a Sinusoidal Signal

Set the sampling frequency to 1kHz and carrier frequency to 200 Hz. Generate a time vector having a
duration of 0.2 s.

fs = 1000; 
fc = 200;  
t = (0:1/fs:0.2)';

Create two tone sinusoidal signal with frequencies 30 and 60 Hz.

x = sin(2*pi*30*t)+2*sin(2*pi*60*t);

Set the frequency deviation to 50 Hz.

fDev = 50;

Frequency modulate x.

y = fmmod(x,fc,fs,fDev);

Plot the original and modulated signals.

plot(t,x,'c',t,y,'b--')
xlabel('Time (s)')
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ylabel('Amplitude')
legend('Original Signal','Modulated Signal')

Input Arguments
x — Input message signal
scalar | vector | matrix | 3-D array

Input message signal, specified as a scalar, vector, matrix, or a 3-D array. Each element of x must be
real.
Data Types: single | double

Fc — Carrier frequency
positive real scalar

Carrier frequency in hertz (Hz), specified as a positive real scalar.
Data Types: single | double

Fs — Sampling rate
positive real scalar

Sampling rate in hertz (Hz), specified as a positive real scalar.
Data Types: single | double
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freqdev — Frequency deviation
positive real scalar

Frequency deviation of the modulated signal in hertz (Hz), specified as a positive real scalar.
Data Types: single | double

ini_phase — Initial phase
real scalar

Initial phase of the modulated signal in radians, specified as a real scalar.
Data Types: single | double

Output Arguments
y — Frequency modulated output signal
scalar | vector | matrix | 3-D array

Frequency modulated signal, returned as a scalar, vector, matrix, or 3-D array.

Version History
Introduced before R2006a

See Also
Functions
fmdemod | ammod | pmmod

Objects
comm.FMModulator | comm.FMBroadcastModulator

Topics
“Analog Passband Modulation”
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frequencyOffset
Apply frequency offset to input signal

Syntax
y = frequencyOffset(x,samplerate,offset)

Description
y = frequencyOffset(x,samplerate,offset) applies the specified frequency offset to the
input signal x.

Examples

Apply Frequency Offset to Rectangular 16-QAM Signal

Generate a rectangular 16-point quadrature amplitude modulated (16-QAM) signal by modulating a
vector of input data.

M = 16;
data = (0:M-1)';
x = qammod(data,M);

Specify the signal sample rate and the frequency offset to apply.

samplerate = 1;
offset = 100e3;

Apply the frequency offset to the input signal.

y = frequencyOffset(x,samplerate,offset);

Apply Frequency Offset to Sine Wave

Define parameters to configure the signal and spectrum analyzer.

fc = 1e6;         % Carrier frequency (Hz)
fs = 4e6;         % Sample rate (Hz)
Nspf = 100e3;     % Number of samples per frame
freqSpan = 400e3; % Frequency span for spectrum computation (Hz)

Create sine wave and spectrum analyzer objects with the specified parameter values.

sinewave = dsp.SineWave(Amplitude=1, ...
    Frequency=fc, ...
    SampleRate=fs, ...
    SamplesPerFrame=Nspf, ...
    ComplexOutput=true);
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sascope = spectrumAnalyzer( ...
    SampleRate=fs, ...
    FrequencySpan="Span and center frequency", ...
    CenterFrequency=fc, ...
    Span=freqSpan, ...
    SpectrumType="Power density", ...
    SpectralAverages=10, ...
    SpectrumUnits="dBW/Hz", ...
    ShowLegend=true, ...
    ChannelNames=["Input sine wave","Frequency-offset sine wave"], ...
    YLimits=[-50 10]);

Generate a sine wave signal.

x = sinewave();

Apply a frequency offset of 100 kHz to the signal.

offset = 100e3;
y = frequencyOffset(x,fs,offset);

Display the input and frequency-shifted signals by using the spectrum analyzer.

sascope(x,y)
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Input Arguments
x — Input signal
column vector | matrix

Input signal, specified as a column vector or matrix.
Data Types: double | single
Complex Number Support: Yes

samplerate — Sampling rate
positive scalar

Sampling rate of the input signal in Hz, specified as a positive scalar.
Data Types: double

offset — Frequency offset
scalar | row vector

Frequency offset in Hz, specified as a scalar or row vector.

• If offset is a scalar, the function applies the same frequency offset to each channel.
• If offset is a vector, then each element specifies the frequency offset that the function applies to

the corresponding column (channel) of the input signal. The number of elements in offset must
equal the number of columns in x.

Data Types: double

Output Arguments
y — Output signal
column vector | matrix

Output signal, returned as a vector or matrix with the same dimensions and data type as x. The
number of columns in y corresponds to the number of channels.
Data Types: double | single
Complex Number Support: Yes

Version History
Introduced in R2022a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
iqimbal

 frequencyOffset

2-341



Objects
comm.PhaseFrequencyOffset | comm.CoarseFrequencyCompensator

Blocks
Phase/Frequency Offset
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fskdemod
Frequency shift keying demodulation

Syntax
z = fskdemod(y,M,freq_sep,nsamp)
z = fskdemod(y,M,freq_sep,nsamp,Fs)
z = fskdemod(y,M,freq_sep,nsamp,Fs,symorder)

Description
z = fskdemod(y,M,freq_sep,nsamp) noncoherently demodulates the complex envelope y of a
signal using the frequency shift key method.

z = fskdemod(y,M,freq_sep,nsamp,Fs) specifies the sampling frequency in Hz.

z = fskdemod(y,M,freq_sep,nsamp,Fs,symorder) specifies how the function assigns binary
words to corresponding integers.

Examples

Modulation and Demodulation of an FSK Signal in AWGN

Pass an FSK signal through an AWGN channel and estimate the resulting bit error rate (BER).
Compare the estimated BER to the theoretical value.

Set the simulation parameters.

M = 2;         % Modulation order
k = log2(M);   % Bits per symbol
EbNo = 5;      % Eb/No (dB)
Fs = 16;       % Sample rate (Hz)
nsamp = 8;     % Number of samples per symbol
freqsep = 10;  % Frequency separation (Hz)

Generate random data symbols.

data = randi([0 M-1],5000,1);

Apply FSK modulation.

txsig = fskmod(data,M,freqsep,nsamp,Fs);

Pass the signal through an AWGN channel

rxSig  = awgn(txsig,EbNo+10*log10(k)-10*log10(nsamp),...
    'measured',[],'dB');

Demodulate the received signal.

dataOut = fskdemod(rxSig,M,freqsep,nsamp,Fs);
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Calculate the bit error rate.

[num,BER] = biterr(data,dataOut);

Determine the theoretical BER and compare it to the estimated BER. Your BER value might vary
because the example uses random numbers.

BER_theory = berawgn(EbNo,'fsk',M,'noncoherent');
[BER BER_theory]

ans = 1×2

    0.0958    0.1029

Input Arguments
y — FSK-modulated output signal
vector | matrix

Complex baseband representation of a FSK-modulated signal, specified as vector or matrix of complex
values. If y is a matrix with multiple rows and columns, fskdemod processes the columns
independently.
Data Types: double | single

M — Modulation order
integer power of two

Modulation order, specified as an integer power of two.
Example: 2 | 4 | 16
Data Types: double

symorder — Symbol order
'bin' (default) | 'gray'

Symbol order, specified as 'bin' or 'gray'. This argument specifies how the function assigns binary
vectors to corresponding integers.

• If symorder is 'bin', the function uses a binary-coded ordering.
• If symorder is 'gray', the function uses a Gray-coded ordering.

Data Types: char

freq_sep — Desired separation between frequencies
positive scalar

Desired separation between frequencies, specified in Hz. By the Nyquist sampling theorem,
freq_sep and M must satisfy (M-1)*freq_sep <= 1.
Data Types: double

nsamp — Number of samples per output symbol
positive scalar greater than 1
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Number of samples per output symbol, specified as a positive scalar greater than 1.
Data Types: double

Fs — Sample rate
1 Hz (default) | positive scalar

Sample rate, specified as a positive scalar.
Data Types: double

Output Arguments
z — Output signal
vector | matrix

Output signal, returned as a vector or matrix of positive integers. The elements of z have values in
the range of [0, M – 1].
Example: randi([0 3],100,1)
Data Types: double

Version History
Introduced before R2006a

References
[1] Sklar, Bernard. Digital Communications: Fundamentals and Applications. 2nd ed. Upper Saddle

River, N.J: Prentice-Hall PTR, 2001.

See Also
fskmod | pskmod | pskdemod

Topics
“Digital Baseband Modulation”
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fskmod
Frequency shift keying modulation

Syntax
y = fskmod(x,M,freq_sep,nsamp)
y = fskmod(x,M,freq_sep,nsamp,Fs)
y = fskmod(x,M,freq_sep,nsamp,Fs,phase_cont)
y = fskmod(x,M,freq_sep,nsamp,Fs,phase_cont,symorder)

Description
y = fskmod(x,M,freq_sep,nsamp) outputs the complex envelope y of the modulation of the
message signal x using frequency shift keying modulation.

y = fskmod(x,M,freq_sep,nsamp,Fs) specifies the sampling rate of y.

y = fskmod(x,M,freq_sep,nsamp,Fs,phase_cont) specifies the phase continuity.

y = fskmod(x,M,freq_sep,nsamp,Fs,phase_cont,symorder) specifies how the function
assigns binary words to corresponding integers.

Examples

Plot FSK Signal Spectrum

Generate an FSK modulated signal and display its spectral characteristics.

Set the function parameters.

M = 4;       % Modulation order
freqsep = 8; % Frequency separation (Hz)
nsamp = 8;   % Number of samples per symbol
Fs = 32;     % Sample rate (Hz)

Generate random M-ary symbols.

x = randi([0 M-1],1000,1);

Apply FSK modulation.

y = fskmod(x,M,freqsep,nsamp,Fs);

Create a spectrum analyzer System object™ and call it to display a plot of the signal spectrum.

specAnal = spectrumAnalyzer(SampleRate=Fs);
specAnal(y)
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Input Arguments
x — Input signal
vector | matrix

Input signal, specified as a vector or matrix of positive integers. The elements of x must have values
in the range of [0, M – 1]. If x is a matrix, fskmod processes the columns independently.
Example: randi([0 3],100,1)
Data Types: double

M — Modulation order
integer power of two

Modulation order, specified as an integer power of two.
Example: 2 | 4 | 16
Data Types: double

symorder — Symbol order
'bin' (default) | 'gray'

Symbol order, specified as 'bin' or 'gray'. This argument specifies how the function assigns binary
vectors to corresponding integers.
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• If symorder is 'bin', the function uses a natural binary-coded ordering.
• If symorder is 'gray', the function uses a Gray-coded ordering.

Data Types: char

freq_sep — Desired separation between frequencies
positive scalar

Desired separation between frequencies, specified in Hz. By the Nyquist sampling theorem,
freq_sep and M must satisfy (M-1)*freq_sep <= 1.
Data Types: double

nsamp — Number of samples per output symbol
positive scalar greater than 1

Number of samples per output symbol, specified as a positive scalar greater than 1.
Data Types: double

Fs — Sample rate
1 Hz (default) | positive scalar

Sample rate, specified as a positive scalar.
Data Types: double

phase_cont — Phase continuity
'cont' (default) | 'discont'

Phase continuity, specified as either 'cont' or 'discont'. Set phase_cont to 'cont' to force
phase continuity across symbol boundaries in y, or 'discont' to avoid forcing phase continuity.
Data Types: char

Output Arguments
y — FSK-modulated output signal
vector | matrix

Complex baseband representation of a FSK-modulated signal, returned as vector or matrix of complex
values. The columns of y represent independent channels.
Data Types: double | single

Version History
Introduced before R2006a

References
[1] Sklar, Bernard. Digital Communications: Fundamentals and Applications. Upper Saddle River, NJ:

Prentice-Hall, 2001.
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See Also
fskdemod | pskmod | pskdemod

Topics
“Digital Baseband Modulation”
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gen2par
Convert between parity-check and generator matrices

Syntax
parmat = gen2par(genmat)
genmat = gen2par(parmat)

Description
parmat = gen2par(genmat) converts the standard-form binary generator matrix genmat into the
corresponding parity-check matrix parmat.

genmat = gen2par(parmat) converts the standard-form binary parity-check matrix parmat into
the corresponding generator matrix genmat.

The standard forms of the generator and parity-check matrices for an [n,k] binary linear block code
are shown in the table below

Type of Matrix Standard Form Dimensions
Generator [Ik P] or [P Ik] k-by-n
Parity-check [-P' In-k] or [In-k -P' ] (n-k)-by-n

.

where Ik is the identity matrix of size k and the ' symbol indicates matrix transpose. Two standard
forms are listed for each type, because different authors use different conventions. For binary codes,
the minus signs in the parity-check form listed above are irrelevant; that is, -1 = 1 in the binary field.

Examples

Convert Parity-Check Matrix for a Hamming Code to Generator Matrix

Convert the parity-check matrix for a Hamming code into the corresponding generator matrix and
back again.

Create the parity-check matrix.

parmat = hammgen(3)

parmat = 3×7

     1     0     0     1     0     1     1
     0     1     0     1     1     1     0
     0     0     1     0     1     1     1

Convert the parity-check matrix into the corresponding generator matrix.

genmat = gen2par(parmat)
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genmat = 4×7

     1     1     0     1     0     0     0
     0     1     1     0     1     0     0
     1     1     1     0     0     1     0
     1     0     1     0     0     0     1

Convert the generator matrix back again. The output, parmat2, should be the same as the original
matrix, parmat.

parmat2 = gen2par(genmat)

parmat2 = 3×7

     1     0     0     1     0     1     1
     0     1     0     1     1     1     0
     0     0     1     0     1     1     1

Version History
Introduced before R2006a

See Also
cyclgen | hammgen

Topics
“Block Codes”
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genqamdemod
General quadrature amplitude demodulation

Syntax
z = genqamdemod(y,const)

Description
z = genqamdemod(y,const) demodulates the complex envelope, y, of a quadrature amplitude
modulated signal using the signal mapping specified in const.

Examples

General QAM Modulation and Demodulation

Create the points that describe a hexagonal constellation.

inphase = [1/2 1 1 1/2 1/2 2 2 5/2];
quadr = [0 1 -1 2 -2 1 -1 0];
inphase = [inphase;-inphase]; inphase = inphase(:);
quadr = [quadr;quadr]; quadr = quadr(:);
const = inphase + 1i*quadr;

Plot the constellation.

h = scatterplot(const);
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Generate input data symbols. Modulate the symbols using this constellation.

x = [3 8 5 10 7];
y = genqammod(x,const);

Demodulate the modulated signal, y.

z = genqamdemod(y,const);

Plot the modulated signal in same figure.

hold on;
scatterplot(y,1,0,'ro',h);
legend('Constellation','Modulated signal');
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Determine the number of symbol errors between the demodulated data to the original sequence.

numErrs = symerr(x,z)

numErrs = 0

Input Arguments
y — Complex envelope
scalar | vector | matrix | 3-D array

Complex envelope, specified as a scalar, vector, matrix, or 3-D array of numeric values. If y is a matrix
with multiple rows, the function processes the rows independently.

const — Signal mapping
complex vector

Signal mapping, specified as a complex vector.
Data Types: double | single

Output Arguments
z — Message signal
scalar | vector | matrix | 3-D array
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Message signal, returned as a scalar, vector, matrix, or 3-D array of numeric values. The message
signal consists of integers between 0 and length(const)–1. The datatype of z is the same as the
data type of input x.
Data Types: double | single

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
genqammod | qammod | qamdemod | pammod | pamdemod

Topics
“Digital Baseband Modulation”
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genqammod
General quadrature amplitude modulation (QAM)

Syntax
y = genqammod(x,const)

Description
y = genqammod(x,const) returns the complex envelop of the QAM for message signal x. Input
const specifies the signal mapping for the modulation.

Examples

Estimate Symbol Rate for General QAM Modulation in AWGN Channel

Transmit and receive data using a nonrectangular 16-ary constellation in the presence of Gaussian
noise. Show the scatter plot of the noisy constellation and estimate the symbol error rate (SER) for
two different SNRs.

Create a 16-QAM constellation based on the V.29 standard for telephone-line modems.

c = [-5 -5i 5 5i -3 -3-3i -3i 3-3i 3 3+3i 3i -3+3i -1 -1i 1 1i];
sigpower = pow2db(mean(abs(c).^2));
M = length(c);

Generate random symbols.

data = randi([0 M-1],2000,1);

Modulate the data by using the genqammod function. General QAM modulation is necessary because
the custom constellation is not rectangular.

modData = genqammod(data,c);

Pass the signal through an AWGN channel with a 20 dB SNR.

rxSig = awgn(modData,20,sigpower);

Display a scatter plot of the received signal and the reference constellation c.

h = scatterplot(rxSig);
hold on
scatterplot(c,[],[],'r*',h)
grid
hold off
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Demodulate the received signal by using the genqamdemod function. Determine the number of
symbol errors and the SER.

demodData = genqamdemod(rxSig,c);
[numErrors,ser] = symerr(data,demodData)

numErrors = 1

ser = 5.0000e-04

Repeat the transmission and demodulation process with an AWGN channel with a 10 dB SNR.
Determine the SER for the reduced SNR. As expected, the performance degrades when the SNR is
decreased.

rxSig = awgn(modData,10,sigpower);
demodData = genqamdemod(rxSig,c);
[numErrors,ser] = symerr(data,demodData)

numErrors = 461

ser = 0.2305

General QAM Modulation and Demodulation

Create the points that describe a hexagonal constellation.
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inphase = [1/2 1 1 1/2 1/2 2 2 5/2];
quadr = [0 1 -1 2 -2 1 -1 0];
inphase = [inphase;-inphase]; inphase = inphase(:);
quadr = [quadr;quadr]; quadr = quadr(:);
const = inphase + 1i*quadr;

Plot the constellation.

h = scatterplot(const);

Generate input data symbols. Modulate the symbols using this constellation.

x = [3 8 5 10 7];
y = genqammod(x,const);

Demodulate the modulated signal, y.

z = genqamdemod(y,const);

Plot the modulated signal in same figure.

hold on;
scatterplot(y,1,0,'ro',h);
legend('Constellation','Modulated signal');
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Determine the number of symbol errors between the demodulated data to the original sequence.

numErrs = symerr(x,z)

numErrs = 0

Input Arguments
x — Message signal
scalar | vector | matrix | 3-D array

Message signal, specified as a scalar, vector, matrix, or 3-D array of numeric values. The message
signal must consist of integers from 0 and length(const)–1. If x is a matrix with multiple rows, the
function processes the columns independently.
Data Types: double | single | fi | int8 | int16 | uint8 | uint16

const — Signal mapping
complex vector

Signal mapping, specified as a complex vector.
Data Types: double | single | fi | int8 | int16 | uint8 | uint16
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Output Arguments
y — Complex envelope
scalar | vector | matrix | 3-D array

Complex envelope, returned as a scalar, vector, matrix, or 3-D array of numeric values. The length of
y is the same as the length of input x.
Data Types: double | single | fi | int8 | int16 | uint8 | uint16

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
genqamdemod | qammod | qamdemod | pammod | pamdemod

Topics
“Digital Baseband Modulation”

2 Functions

2-360



getTurboIOIndices
Compute output indices for turbo coding

Syntax
indices=getTurboIOIndices(blklen,N,mlen)
indices=getTurboIOIndices(blklen,N,mlen,'LTE')

Description
Use getTurboIOIndices to generate the output indices for the comm.TurboEncoder and input indices
for the comm.TurboDecoder and System objects.

indices=getTurboIOIndices(blklen,N,mlen) computes the indices for a given input block
length, blklen, number of output streams, N, and the memory length, mlen, relative to the fully
encoded output. In this mode, the second interleaved, systematic bit-stream is punctured. N and mlen
correspond to the constituent coder configuration for the comm.TurboEncoder and
comm.TurboDecoder System objects.

indices=getTurboIOIndices(blklen,N,mlen,'LTE') computes LTE-like output indices as
specified by TS 36.212. For LTE, the second systematic bit-stream is punctured and the tail bits are
reordered.

Examples

Create Output Indices for Turbo Encoder

Create output indices for use with a turbo encoder System object™.

Initialize input parameters for a constituent turbo encoder configuration having 2 streams, 3
registers and a block length of 64. Create the output indices vector. Display the number of tail bits
and the values of the tail bits.

blklen = 64; % Block length
N = 2;       % Number of streams
mlen = 3;    % Number of registers
firsttailbit = blklen * (2*N - 1) + 1;
outindices = getTurboIOIndices(blklen,N,mlen);
numtailbits = length(outindices(firsttailbit:end)')

numtailbits = 9

tailbits = outindices(firsttailbit:end)'

tailbits = 1×9

   257   258   260   261   262   264   265   266   268
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For comparison, keep the same input settings for the block length, number of streams, and number of
registers, but create a set of LTE-like output indices vector by adding 'LTE' as the fourth input
argument.

outindices = getTurboIOIndices(blklen,N,mlen,'LTE');

Display the number of tail bits and the values of the tail bits. The LTE-like output indices have
ordering as specified in TS 36.212 and include tail bits for all output streams.

numtailbitsLTE = length(outindices(firsttailbit:end)')

numtailbitsLTE = 12

tailbitsLTE = outindices(firsttailbit:end)'

tailbitsLTE = 1×12

   257   258   261   262   265   266   259   260   263   264   267   268

Input Arguments
blklen — Block length
64 (default) | nonnegative integer

Block length, specified as a nonnegative integer.
Data Types: double

N — Number of output streams
2 (default) | integer greater than 1

Number of output streams, specified as an integer greater than 1.
Data Types: double

mlen — Number of registers
2 (default) | integer

Number of registers, specified as a positive integer.
Data Types: double

Output Arguments
indices — Output indices
column vector

Output indices, returned as column vector of positive integers.

Version History
Introduced in R2021a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
comm.TurboDecoder | comm.TurboEncoder
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gf
Galois field array

Syntax
x_gf = gf(x)
x_gf = gf(x,m)
x_gf = gf(x,m,prim_poly)

Description
x_gf = gf(x) creates a Galois field (GF) array, GF(2), from matrix x.

x_gf = gf(x,m) creates a Galois field array from matrix x. The Galois field has 2m elements, where
m is an integer from 1 through 16.

x_gf = gf(x,m,prim_poly) creates a Galois field array from matrix x by using the primitive
polynomial prim_poly.

Examples

Create GF(2) Array from Specified Matrix

Specify a matrix of 0s and 1s.

x = [0 1 1; 0 1 0; 1 1 1];

Create a GF(2) array from x.

x_gf = gf(x)

 
x_gf = GF(2) array. 
 
Array elements = 
 
   0   1   1
   0   1   0
   1   1   1

Create Sequence of GF(16) Elements

Set the order of the Galois field to 16, where the order equals 2m. Specify a matrix of elements that
range from 0 to 2m− 1. Create the Galois field array.

m = 4;
x = [3 2 9; 1 2 1];
y = gf(x,m)
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y = GF(2^4) array. Primitive polynomial = D^4+D+1 (19 decimal)
 
Array elements = 
 
   3   2   9
   1   2   1

Create GF Sequence with Specified Primitive Polynomial

Create a sequence of integers. Create a Galois field array in GF(25).

x = [17 8 11 27];
y = gf(x,5)

 
y = GF(2^5) array. Primitive polynomial = D^5+D^2+1 (37 decimal)
 
Array elements = 
 
   17    8   11   27

Determine all possible primitive polynomials for GF(25).

pp = primpoly(5,'all')

 
Primitive polynomial(s) = 
 
D^5+D^2+1
D^5+D^3+1
D^5+D^3+D^2+D^1+1
D^5+D^4+D^2+D^1+1
D^5+D^4+D^3+D^1+1
D^5+D^4+D^3+D^2+1

pp = 6×1

    37
    41
    47
    55
    59
    61

Create a Galois field array using the primitive polynomial that has a decimal equivalent of 59.

z = gf(x,5,'D5+D4+D3+D+1')

 
z = GF(2^5) array. Primitive polynomial = D^5+D^4+D^3+D+1 (59 decimal)
 
Array elements = 
 
   17    8   11   27
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Check Galois Generator Polynomial Validity

Use the genpoly2b function to return the corresponding Galois field array value and the generator
polynomial validity indication.

Create a valid Galois field array object.

genpoly = gf([1 1 6],3)

 
genpoly = GF(2^3) array. Primitive polynomial = D^3+D+1 (11 decimal)
 
Array elements = 
 
   1   1   6

[b,ecode] = genpoly2b(genpoly,3,11)

b = 1

ecode = 1

Input Arguments
x — Input matrix
matrix with all values greater than or equal to zero

Input matrix, specified as a matrix with values greater than or equal to zero. The function uses this
value to create a GF array.

• If you do not specify the prim_poly input argument, each element of x must be an integer in the
range [0, 2m–1].

• If you specify prim_poly input argument, each element of x must be 0 or 1.

Data Types: double

m — Order of primitive polynomial
positive integer

Order of primitive polynomial, specified as a positive integer from 1 through 16. The function uses
this value to calculate the distinct number of elements in the GF.
Data Types: double

prim_poly — Primitive polynomial
primitive polynomial in GF(2m) (default) | binary row vector | character vector | string scalar | positive
integer

Primitive polynomial, specified as one of these options:

• Binary row vector — This vector specifies coefficients of prim_poly in the order of ascending
powers.
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• Character vector or a string scalar — This value defines prim_poly in a textual representation.
For more details, refer to polynomial character vector.

• Positive integer — This value defines prim_poly in the range [(2m + 1), (2m+1 – 1)].

If prim_poly is not specified, see “Default Primitive Polynomials” on page 2-367 for the list of
default primitive polynomial used for each Galois field array GF(2m).
Data Types: double | char | string

Output Arguments
x_gf — Galois field array
variable that MATLAB recognizes as a Galois field array

Galois field array, returned as a variable that MATLAB recognizes as a Galois field array, rather than
an array of integers. As a result, when you manipulate the variable, MATLAB works within the Galois
field the variable specifies. For example, if you apply the log function to a Galois array, MATLAB
computes the logarithm in the Galois field for that Galois array and not in the field of real or complex
numbers.

More About
Default Primitive Polynomials

This table lists the default primitive polynomial used for each Galois field array GF(2m). To use a
different primitive polynomial, specify prim_poly as an input argument. prim_poly must be in the
range [(2m + 1), (2m+1 – 1)] and must indicate an irreducible polynomial. For more information, see
“Primitive Polynomials and Element Representations”.

Value of m Default Primitive Polynomial Integer Representation
1 D + 1 3
2 D2 + D + 1 7
3 D3 + D + 1 11
4 D4 + D + 1 19
5 D5 + D2 + 1 37
6 D6 + D + 1 67
7 D7 + D3 + 1 137
8 D8 + D4 + D3 + D2 + 1 285
9 D9 + D4 + 1 529
10 D10 + D3 + 1 1033
11 D11 + D2 + 1 2053
12 D12 + D6 + D4 + D + 1 4179
13 D13 + D4 + D3 + D + 1 8219
14 D14 + D10 + D6 + D + 1 17475
15 D15 + D + 1 32771
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Value of m Default Primitive Polynomial Integer Representation
16 D16 + D12 + D3 + D + 1 69643

Galois Computations

This table lists the operations supported for Galois field arrays.

Operation Description
+ - Addition and subtraction of Galois arrays
* / \ Matrix multiplication and division of Galois arrays
.* ./ .\ Elementwise multiplication and division of Galois

arrays
^ Matrix exponentiation of Galois array
.^ Elementwise exponentiation of Galois array
' .' Transpose of Galois array
==, ~= Relational operators for Galois arrays
all True if all elements of a Galois vector are nonzero
any True if any element of a Galois vector is nonzero
conv Convolution of Galois vectors
convmtx Convolution matrix of Galois field vector
deconv Deconvolution and polynomial division
det Determinant of square Galois matrix
dftmtx Discrete Fourier transform matrix in a Galois field
diag Diagonal Galois matrices and diagonals of a

Galois matrix
fft Discrete Fourier transform
filter (gf) One-dimensional digital filter over a Galois field
ifft Inverse discrete Fourier transform
inv Inverse of Galois matrix
length Length of Galois vector
log Logarithm in a Galois field
lu Lower-Upper triangular factorization of Galois

array
minpol Find the minimal polynomial for a Galois element
mldivide Matrix left division \ of Galois arrays
polyval Evaluate polynomial in Galois field
rank Rank of a Galois array
reshape Reshape Galois array
roots Find polynomial roots across a Galois field
size Size of Galois array
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Operation Description
tril Extract lower triangular part of Galois array
triu Extract upper triangular part of Galois array

Version History
Introduced before R2006a

See Also
Functions
cosets | isprimitive | gftable | primpoly

Topics
“Galois Field Computations”
“Error Detection and Correction”
“ElGamal Public Key Cryptosystem”
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gfadd
Add polynomials over Galois field

Syntax
c = gfadd(a,b)
c = gfadd(a,b,p)
c = gfadd(a,b,p,len)
c = gfadd(a,b,field)

Description

Note This function performs computations in GF(pm) where p is prime. To work in GF(2m), apply the
+ operator to Galois arrays of equal size. For details, see “Example: Addition and Subtraction”.

c = gfadd(a,b) adds two GF(2) polynomials, a and b, which can be either polynomial character
vectors or numeric vectors. If a and b are vectors of the same orientation but different lengths, then
the shorter vector is zero-padded. If a and b are matrices they must be of the same size.

c = gfadd(a,b,p) adds two GF(p) polynomials, where p is a prime number. a, b, and c are row
vectors that give the coefficients of the corresponding polynomials in order of ascending powers.
Each coefficient is between 0 and p-1. If a and b are matrices of the same size, the function treats
each row independently.

c = gfadd(a,b,p,len) adds row vectors a and b as in the previous syntax, except that it returns
a row vector of length len. The output c is a truncated or extended representation of the sum. If the
row vector corresponding to the sum has fewer than len entries (including zeros), extra zeros are
added at the end; if it has more than len entries, entries from the end are removed.

c = gfadd(a,b,field) adds two GF(pm) elements, where m is a positive integer. a and b are the
exponential format of the two elements, relative to some primitive element of GF(pm). field is the
matrix listing all elements of GF(pm), arranged relative to the same primitive element. c is the
exponential format of the sum, relative to the same primitive element. See “Representing Elements of
Galois Fields” for an explanation of these formats. If a and b are matrices of the same size, the
function treats each element independently.

Examples

Add Two GF Arrays

Sum 2 + 3x + x2 and 4 + 2x + 3x2 over GF(5).

x = gfadd([2 3 1],[4 2 3],5)

x = 1×3

     1     0     4
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Add the two polynomials and display the first two elements.

y = gfadd([2 3 1],[4 2 3],5,2)

y = 1×2

     1     0

For prime number p and exponent m, create a matrix listing all elements of GF(p^m) given primitive
polynomial 2 + 2x + x2.

p = 3;
m = 2;
primpoly = [2 2 1];
field = gftuple((-1:p^m-2)',primpoly,p);

Sum A2 and A4. The result is A.

g = gfadd(2,4,field)

g = 1

Version History
Introduced before R2006a

See Also
gfsub | gfconv | gfmul | gfdeconv | gfdiv | gftuple

Topics
“Arithmetic in Galois Fields”
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gfconv
Multiply polynomials over Galois field

Syntax
c = gfconv(a,b)
c = gfconv(a,b,p)
c = gfconv(a,b,field)

c = gfconv(polys)
c = gfconv(polys,p)
c = gfconv(polys,field)

Description
c = gfconv(a,b) returns a row vector that specifies the GF(2) polynomial coefficients in order of
ascending powers. The returned vector results from the multiplication of GF(2) polynomials a and b.
The polynomial degree of the resulting GF(2) polynomial c equals the degree of a plus the degree of
b.

For additional information, see “Tips” on page 2-376.

c = gfconv(a,b,p) multiplies two GF(p) polynomials, where p is a prime number. a, b, and c are
in the same Galois field. a, b, and c are polynomials with coefficients in order of ascending powers.
Each coefficient is in the range [0, p–1].

c = gfconv(a,b,field) multiplies two GF(pm) polynomials, where field is a matrix containing
the m-tuple of all elements in GF(pm). p is a prime number, and m is a positive integer. a, b, and c are
in the same Galois field.

In this syntax, each coefficient is specified in exponential format, specifically [-Inf, 0, 1, 2, ...]. The
elements in exponential format represent the field elements [0, 1, α, α2, ...] relative to some
primitive element α of GF(pm).

c = gfconv(polys) returns a row vector that specifies the GF(2) polynomial coefficients in order
of ascending powers. The returned vector results from the multiplication of the GF(2) polynomials
specified in polys. The polynomial degree of the resulting GF(2) polynomial c equals the sum of the
degrees of the polynomials contained in polys. Use this syntax when polys specifies polynomials as
a cell array of character vectors or as a string array.

c = gfconv(polys,p) multiplies the GF(p) polynomials specified in polys, where p is a prime
number. polys and c are polynomials with coefficients in order of ascending powers. Each coefficient
is in the range [0, p–1]. a, b, and c are in the same Galois field.

c = gfconv(polys,field) multiplies the GF(pm) polynomials in polys, where field is a matrix
containing the m-tuple of all elements in GF(pm). p is a prime number, and m is a positive integer. a,
b, and c are in the same Galois field.

In this syntax, each coefficient is specified in exponential format, specifically [-Inf, 0, 1, 2, ...]. The
elements in exponential format represent the field elements [0, 1, α, α2, ...] relative to some
primitive element α of GF(pm).
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Examples

Multiply GF(2) Polynomials

Multiply 1 + 2x + 3x2 + 4x3 and 1 + x three times. Represent the polynomials as row vectors,
character vectors, and strings.

c_rv = gfconv([1 1 0 1],[1 1])

c_rv = 1×5

     1     0     1     1     1

c_cv = gfconv('1 + x + x^3','1 + x')

c_cv = 1×5

     1     0     1     1     1

c_s = gfconv("1 + x + x^3","1 + x")

c_s = 1×5

     1     0     1     1     1

The results corresponds to 1 + x2 + x3 + x4.

Multiply Polynomials Over GF(3)

Multiply 1 + x + x4 and x + x2 over the Galois field GF(3).

gfc = gfconv([1 1 0 0 1],[0 1 1],3)

gfc = 1×7

     0     1     2     1     0     1     1

The result corresponds to x + 2x2 + x3 + x5 + x6.

Multiply Polynomials Over GF(2^4) Using Field Input

Multiply 1 + 2x + 3x2 + 4x3 + 5x4 and 1 + x in the Galois field GF(24).

field = gftuple([-1:2^4-2]',4,2);
c = gfconv('1 + 2x + 3x^2 + 4x^3 + 5x^4','1 + x',field)

c = 1×6
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     2     6     7     8     9     6

Use the gfpretty function to display the result in polynomial form.

gfpretty(c)

 
                                   2      3      4      5
                      2 + 6 X + 7 X  + 8 X  + 9 X  + 6 X 

Multiply GF(2) Polynomials Specified As Cell Array

Create a cell array containing three polynomials that result in the DVB-S2 generator polynomial for
t = 3 when multiplied together.

polyCell = {'1 + x + x3 + x5 + x14', ...
    '1 + x6 + x8 + x11 + x14','1 + x + x2 + x6 + x9 + x10 + x14'};
gp = gfconv(polyCell); % DVB-S2 for t=3

Use the gfpretty function to display the result in polynomial form.

gfpretty(gp)

 
     4    6    8    10    11    13    16    17    20    24    25    26    27
1 + X  + X  + X  + X   + X   + X   + X   + X   + X   + X   + X   + X   + X  
 
              30    31    32    33    34    35    36    37    38    39    42
           + X   + X   + X   + X   + X   + X   + X   + X   + X   + X   + X  

Multiply Polynomials Expressed As Strings in GF(2^4) Using Field Input

Multiply 1 + 2x + 3x2 + 4x3 + 5x4, 1 + x, and 1 + x3 in the Galois field GF(24).

field = gftuple((-1:2^4-2)', 4, 2);
c = gfconv(["1 + 2x + 3x^2 + 4x^3 + 5x^4","1 + x","1 + x3"],field)

c = 1×9

     4    13    14     9     2     1     7     8     8

Use the gfpretty function to display the result in polynomial form.

gfpretty(c)

 
                          2      3      4    5      6      7      8
           4 + 13 X + 14 X  + 9 X  + 2 X  + X  + 7 X  + 8 X  + 8 X 
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Input Arguments
a — Galois field polynomial
row vector | character vector | string

Galois field polynomial, specified as a row vector, character vector, or string. a can be either a
“Representation of Polynomials in Communications Toolbox” or numeric vector.

a and b must both be GF(p) polynomials or GF(pm) polynomials, where p is prime. The value of p is as
specified when included, 2 when omitted, or implied when field is specified.
Example: [1 2 3 4] is the polynomial 1+2x+3x2+4x3 in GF(5) expressed as a row vector.
Data Types: double | char | string

b — Galois field polynomial
row vector | character vector | string

Galois field polynomial, specified as a row vector, character vector, or string. b can be either a
“Representation of Polynomials in Communications Toolbox” or numeric vector.

a and b must both be GF(p) polynomials or GF(pm) polynomials, where p is prime. The value of p is as
specified when included, 2 when omitted, or implied when field is specified.
Example: '1 + x' is a polynomial in GF(24) expressed as a character vector.
Data Types: double | char | string

p — Prime number
2 (default) | prime number

Prime number, specified as a prime number.
Data Types: double

field — m-tuple of all elements in GF(pm)
matrix

m-tuple of all elements in GF(pm), specified as a matrix. field is the matrix listing all elements of
GF(pm), arranged relative to the same primitive element. To generate the m-tuple of all elements in
GF(pm), use

field =gftuple([-1:p^m-2]',m,p)

The coefficients, specified in exponential format, represent the field elements in GF(pm). For an
explanation of these formats, see “Representing Elements of Galois Fields”.
Data Types: double

polys — Galois field polynomial list
cell array of character vectors | string array

Galois field polynomial list, specified as a cell array of character vectors or a string array.
Example: ["1+x+x3+x5+x14","1+x6+x8+x11+x14"] is a string array of polynomials.
Data Types: cell | string
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Output Arguments
c — Galois field polynomial
row vector

Galois field polynomial, returned as a row vector of the polynomial coefficients in order of ascending
powers. The polynomial degree of the resulting GF(pm) polynomial c equals the sum of the degrees of
the input polynomials. c is in the same Galois field as the input polynomials.

Tips
• The gfconv function performs computations in GF(pm), where p is prime, and m is a positive

integer. It multiplies polynomials over a Galois field. To work in GF(2m), you can also use the conv
function of the gf object with Galois arrays. For details, see “Multiplication and Division of
Polynomials”.

• To multiply elements of a Galois field, use gfmul instead of gfconv. Algebraically, multiplying
polynomials over a Galois field is equivalent to convolving vectors containing the coefficients of
the polynomials. This convolution operation uses arithmetic over the same Galois field.

Version History
Introduced before R2006a

See Also
Functions
gfdeconv | gfadd | gfsub | gfmul | gftuple | gfpretty

Topics
“Representation of Polynomials in Communications Toolbox”
“Representing Elements of Galois Fields”
“Multiplication and Division of Polynomials”
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gfcosets
Produce cyclotomic cosets for Galois field

Syntax
c = gfcosets(m)
c = gfcosets(m,p)

Description

Note This function performs computations in GF(pm), where p is prime. To work in GF(2m), use the
cosets function.

c = gfcosets(m) produces cyclotomic cosets mod(2m - 1). Each row of the output GFCS contains
one cyclotomic coset.

c = gfcosets(m,p) produces the cyclotomic cosets for GF(p^m), where m is a positive integer and
p is a prime number.

The output matrix c is structured so that each row represents one coset. The row represents the
coset by giving the exponential format of the elements of the coset, relative to the default primitive
polynomial for the field. For a description of exponential formats, see “Representing Elements of
Galois Fields”.

The first column contains the coset leaders. Because the lengths of cosets might vary, entries of NaN
are used to fill the extra spaces when necessary to make c rectangular.

A cyclotomic coset is a set of elements that all satisfy the same minimal polynomial. For more details
on cyclotomic cosets, see the works listed in “References” on page 2-378.

Examples
The command below finds the cyclotomic cosets for GF(9).

c = gfcosets(2,3)

The output is

c =

     0   NaN
     1     3
     2     6
     4   NaN
     5     7

The gfminpol function can check that the elements of, for example, the third row of c indeed belong
in the same coset.

m = [gfminpol(2,2,3); gfminpol(6,2,3)] % Rows are identical.
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The output is

m =

     1     0     1
     1     0     1

Version History
Introduced before R2006a

References

[1] Blahut, Richard E., Theory and Practice of Error Control Codes, Reading, MA, Addison-Wesley,
1983, p. 105.

[2] Lin, Shu, and Daniel J. Costello, Jr., Error Control Coding: Fundamentals and Applications,
Englewood Cliffs, NJ, Prentice-Hall, 1983.

See Also
gfminpol | gfprimdf | gfroots
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gfdeconv
Divide polynomials over Galois field

Syntax
[q,r] = gfdeconv(b,a)
[q,r] = gfdeconv(b,a,p)
[q,r] = gfdeconv(b,a,field)

Description
[q,r] = gfdeconv(b,a) returns the quotient q and remainder r as row vectors that specify GF(2)
polynomial coefficients in order of ascending powers. The returned vectors result from the division b
by a. a, b, and q are in GF(2).

For additional information, see “Tips” on page 2-382.

[q,r] = gfdeconv(b,a,p) divides two GF(p) polynomials, where p is a prime number. b, a, and q
are in the same Galois field. b, a, q, and r are polynomials with coefficients in order of ascending
powers. Each coefficient is in the range [0, p–1].

[q,r] = gfdeconv(b,a,field) divides two GF(pm) polynomials, where field is a matrix
containing the m-tuple of all elements in GF(pm). p is a prime number, and m is a positive integer. b,
a, and q are in the same Galois field.

In this syntax, each coefficient is specified in exponential format, specifically [-Inf, 0, 1, 2, ...]. The
elements in exponential format represent the field elements [0, 1, α, α2, ...] relative to some
primitive element α of GF(pm).

Examples

Divide Polynomials in GF(3)

Divide x + x3 + x4 by 1 + x in the Galois field GF(3) three times. Represent the polynomials as row
vectors, character vectors, and strings.

p = 3;

Represent the polynomials using row vectors and divide them in GF(3).

b = [0 1 0 1 1];
a = [1 1];
[q_rv,r_rv] = gfdeconv(b,a,p)

q_rv = 1×4

     1     0     0     1

r_rv = 2
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To confirm the output, compare the original Galois field polynomials to the result of adding the
remainder to the product of the quotient and the divisor.

bnew = gfadd(gfconv(q_rv,a,p),r_rv,p);
isequal(b,bnew)

ans = logical
   1

Represent the polynomials using character vectors and divide them in GF(3).

b = 'x + x^3 + x^4';
a = '1 + x';
[q_cv,r_cv] = gfdeconv(b,a,p)

q_cv = 1×4

     1     0     0     1

r_cv = 2

Represent the polynomials using strings and divide them in GF(3) .

b = "x + x^3 + x^4";
a = "1 + x";
[q_s,r_s] = gfdeconv(b,a,p)

q_s = 1×4

     1     0     0     1

r_s = 2

Use the gfpretty function to display the result without the remainder in polynomial form.

gfpretty(q_s)

 
                                         3
                                    1 + X 

Check for Irreducibility and Primitiveness over GF(3^k)

In the Galois field GF(3), output polynomials of the form xk− 1 for k in the range [2, 8] that are evenly
divisible by 1 + x2. An irreducible polynomial over GF(p) of degree at least 2 is primitive if and only if
it does not divide −1 + xk evenly for any positive integer k less than pm− 1. For more information,
see the gfprimck function.

The irreducibility of 1 + x2 over GF(3), along with the polynomials that are output, indicates that
1 + x2 is not primitive for GF(32).

p = 3; m = 2;
a = [1 0 1]; % 1+x^2
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for ii = 2:p^m-1
   b = gfrepcov(ii); % x^ii
   b(1) = p-1; % -1+x^ii
   [quot,remd] = gfdeconv(b,a,p);
   % Display -1+x^ii if a divides it evenly.
   if remd==0
      multiple{ii}=b;
      gfpretty(b)
   end
end

 
                                         4
                                    2 + X 
 
                                         8
                                    2 + X 

Input Arguments
b — Galois field polynomial
row vector | character vector | string

Galois field polynomial, specified as a row vector, character vector, or string. b can be either a
“Representation of Polynomials in Communications Toolbox” or numeric vector.

a and b must both be GF(p) polynomials or GF(pm) polynomials, where p is prime. The value of p is as
specified when included, 2 when omitted, or implied when field is specified.
Example: '1 + x' is a polynomial in GF(24) expressed as a character vector.
Data Types: double | char | string

a — Galois field polynomial
row vector | character vector | string

Galois field polynomial, specified as a row vector, character vector, or string. a can be either a
“Representation of Polynomials in Communications Toolbox” or numeric vector.

a and b must both be GF(p) polynomials or GF(pm) polynomials, where p is prime. The value of p is as
specified when included, 2 when omitted, or implied when field is specified.
Example: [1 2 3 4] is the polynomial 1+2x+3x2+4x3 in GF(5) expressed as a row vector.
Data Types: double | char | string

p — Prime number
2 (default) | prime number

Prime number, specified as a prime number.
Data Types: double

field — m-tuple of all elements in GF(pm)
matrix
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m-tuple of all elements in GF(pm), specified as a matrix. field is the matrix listing all elements of
GF(pm), arranged relative to the same primitive element. To generate the m-tuple of all elements in
GF(pm), use

field =gftuple([-1:p^m-2]',m,p)

The coefficients, specified in exponential format, represent the field elements in GF(pm). For an
explanation of these formats, see “Representing Elements of Galois Fields”.
Data Types: double

Output Arguments
q — Galois field polynomial
row vector

Galois field polynomial, returned as a row vector of the polynomial coefficients in order of ascending
powers. q is the quotient from the division of b by a and is in the same Galois field as the input
polynomials.

r — Division remainder
scalar | row vector

Division remainder, returned as a scalar or a row vector of the polynomial coefficients in order of
ascending powers. r is the remainder resulting from the division of b by a.

Tips
• The gfdeconv function performs computations in GF(pm), where p is prime, and m is a positive

integer. It divides polynomials over a Galois field. To work in GF(2m), use the deconv function of
the gf object with Galois arrays. For details, see “Multiplication and Division of Polynomials”.

• To divide elements of a Galois field, you can also use gfdiv instead of gfdeconv. Algebraically,
dividing polynomials over a Galois field is equivalent to deconvolving vectors containing the
coefficients of the polynomials. This deconvolution operation uses arithmetic over the same Galois
field.

Version History
Introduced before R2006a

See Also
Functions
gfconv | gfadd | gfsub | gfdiv | gftuple

Topics
“Tips” on page 2-376
“Representation of Polynomials in Communications Toolbox”
“Representing Elements of Galois Fields”
“Multiplication and Division of Polynomials”
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gfdiv
Divide elements of Galois field

Syntax
quot = gfdiv(b,a)
quot = gfdiv(b,a,p)
quot = gfdiv(b,a,field)

Description

Note This function performs computations in GF(pm), where p is prime. To work in GF(2m), apply
the ./ operator to Galois arrays. For details, see “Example: Division”.

The gfdiv function divides elements of a Galois field. (To divide polynomials over a Galois field, use
gfdeconv instead.)

quot = gfdiv(b,a) divides b by a in GF(2) element-by-element. a and b are scalars, vectors or
matrices of the same size. Each entry in a and b represents an element of GF(2). The entries of a and
b are either 0 or 1.

quot = gfdiv(b,a,p) divides b by a in GF(p) and returns the quotient. p is a prime number. If a
and b are matrices of the same size, the function treats each element independently. All entries of b,
a, and quot are between 0 and p-1.

quot = gfdiv(b,a,field) divides b by a in GF(pm) and returns the quotient. p is a prime number
and m is a positive integer. If a and b are matrices of the same size, then the function treats each
element independently. All entries of b, a, and quot are the exponential formats of elements of
GF(pm) relative to some primitive element of GF(pm). field is the matrix listing all elements of
GF(pm), arranged relative to the same primitive element. See “Representing Elements of Galois
Fields” for an explanation of these formats.

In all cases, an attempt to divide by the zero element of the field results in a “quotient” of NaN.

Examples
The code below displays lists of multiplicative inverses in GF(5) and GF(25). It uses column vectors as
inputs to gfdiv.

% Find inverses of nonzero elements of GF(5).
p = 5;
b = ones(p-1,1);
a = [1:p-1]';
quot1 = gfdiv(b,a,p);
disp('Inverses in GF(5):')
disp('element  inverse')
disp([a, quot1])

% Find inverses of nonzero elements of GF(25).
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m = 2;
field = gftuple([-1:p^m-2]',m,p);
b = zeros(p^m-1,1); % Numerator is zero since 1 = alpha^0.
a = [0:p^m-2]';
quot2 = gfdiv(b,a,field);
disp('Inverses in GF(25), expressed in EXPONENTIAL FORMAT with')
disp('respect to a root of the default primitive polynomial:')
disp('element  inverse')
disp([a, quot2])

Version History
Introduced before R2006a

See Also
gfmul | gfdeconv | gfconv | gftuple
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gffilter (prime Galois field)
Filter data using polynomials over prime Galois field

Syntax
y = gffilter(b,a,x)
y = gffilter(b,a,x,p)

Description

Note This function performs computations in GF(pm), where p is prime. To work in GF(2m), use the
filter function with Galois arrays. For details, see “Filtering”.

y = gffilter(b,a,x) filters the data in vector x with the filter described by vectors b and a. The
vectors b, a and x must be in GF(2), that is, be binary and y is also in GF(2).

y = gffilter(b,a,x,p) filters the data x using the filter described by vectors a and b. y is the
filtered data in GF(p). p is a prime number, and all entries of a and b are between 0 and p-1.

By definition of the filter, y solves the difference equation

a(1)y(n) = b(1)x(n)+b(2)x(n-1)+b(3)x(n-2)+...+b(B+1)x(n-B) 
                     -a(2)y(n-1)-a(3)y(n-2)-...-a(A+1)y(n-A)

where

• A+1 is the length of the vector a
• B+1 is the length of the vector b
• n varies between 1 and the length of the vector x.

The vector a represents the degree-na polynomial

a(1)+a(2)x+a(3)x^2+...+a(A+1)x^A

Examples
The impulse response of a particular filter is given in the code and diagram below.

b = [1 0 0 1 0 1 0 1];
a = [1 0 1 1];
y = gffilter(b,a,[1,zeros(1,19)]);
stem(y);
axis([0 20 -.1 1.1])

 gffilter (prime Galois field)
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Version History
Introduced before R2006a

See Also
gfconv | gfadd
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gflineq
Find particular solution of Ax = b over prime Galois field

Syntax
x = gflineq(A,b)
x = gflineq(A,b,p)
[x,vld] = gflineq(...)

Description

Note This function performs computations in GF(p), where p is prime. To work in GF(2m), apply the \
or / operator to Galois arrays. For details, see “Solving Linear Equations”.

x = gflineq(A,b) outputs a particular solution of the linear equation A x = b in GF(2). The
elements in a, b and x are either 0 or 1. If the equation has no solution, then x is empty.

x = gflineq(A,b,p) returns a particular solution of the linear equation A x = b over GF(p),
where p is a prime number. If A is a k-by-n matrix and b is a vector of length k, x is a vector of length
n. Each entry of A, x, and b is an integer between 0 and p-1. If no solution exists, x is empty.

[x,vld] = gflineq(...) returns a flag vld that indicates the existence of a solution. If vld = 1,
the solution x exists and is valid; if vld = 0, no solution exists.

Examples
The code below produces some valid solutions of a linear equation over GF(3).

A = [2 0 1;
     1 1 0;
     1 1 2];
% An example in which the solutions are valid
[x,vld] = gflineq(A,[1;0;0],3)

The output is below.

x =

     2
     1
     0

vld =

     1

By contrast, the command below finds that the linear equation has no solutions.

[x2,vld2] = gflineq(zeros(3,3),[2;0;0],3)
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The output is below.

This linear equation has no solution.

x2 =

     []

vld2 =

     0

Algorithms
gflineq uses Gaussian elimination.

Version History
Introduced before R2006a

See Also
gfadd | gfdiv | gfroots | gfrank | gfconv | conv
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gfminpol
Find minimal polynomial of Galois field element

Syntax
pol = gfminpol(k,m)
pol = gfminpol(k,m,p)
pol = gfminpol(k,prim_poly,p)

Description

Note This function performs computations in GF(pm), where p is prime. To work in GF(2m), use the
minpol function with Galois arrays. For details, see “Minimal Polynomials”.

pol = gfminpol(k,m) produces a minimal polynomial for each entry in k. k must be either a scalar
or a column vector. Each entry in k represents an element of GF(2m) in exponential format. That is, k
represents alpha^k, where alpha is a primitive element in GF(2m). The ith row of pol represents the
minimal polynomial of k(i). The coefficients of the minimal polynomial are in the base field GF(2) and
listed in order of ascending exponents.

pol = gfminpol(k,m,p) finds the minimal polynomial of Ak over GF(p), where p is a prime
number, m is an integer greater than 1, and A is a root of the default primitive polynomial for
GF(p^m). The format of the output is as follows:

• If k is a nonnegative integer, pol is a row vector that gives the coefficients of the minimal
polynomial in order of ascending powers.

• If k is a vector of length len all of whose entries are nonnegative integers, pol is a matrix having
len rows; the rth row of pol gives the coefficients of the minimal polynomial of Ak(r) in order of
ascending powers.

pol = gfminpol(k,prim_poly,p) is the same as the first syntax listed, except that A is a root of
the primitive polynomial for GF(pm) specified by prim_poly. prim_poly is a polynomial character
vector or a row vector that gives the coefficients of the degree-m primitive polynomial in order of
ascending powers.

Examples
The syntax gfminpol(k,m,p) is used in the sample code in “Characterization of Polynomials”.

Version History
Introduced before R2006a

See Also
gfprimdf | gfcosets | gfroots
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gfmul
Multiply elements of Galois field

Syntax
c = gfmul(a,b,p)
c = gfmul(a,b,field)

Description

Note This function performs computations in GF(pm) where p is prime. To work in GF(2m), apply
the .* operator to Galois arrays. For details, see “Example: Multiplication”.

The gfmul function multiplies elements of a Galois field. (To multiply polynomials over a Galois field,
use gfconv instead.)

c = gfmul(a,b,p) multiplies a and b in GF(p). Each entry of a and b is between 0 and p-1. p is a
prime number. If a and b are matrices of the same size, the function treats each element
independently.

c = gfmul(a,b,field) multiplies a and b in GF(pm), where p is a prime number and m is a
positive integer. a and b represent elements of GF(pm) in exponential format relative to some
primitive element of GF(pm). field is the matrix listing all elements of GF(pm), arranged relative to
the same primitive element. c is the exponential format of the product, relative to the same primitive
element. See “Representing Elements of Galois Fields” for an explanation of these formats. If a and b
are matrices of the same size, the function treats each element independently.

Examples
“Arithmetic in Galois Fields” contains examples. Also, the code below shows that

A2 ⋅ A4 = A6

where A is a root of the primitive polynomial 2 + 2x + x2 for GF(9).

p = 3; m = 2;
prim_poly = [2 2 1];
field = gftuple([-1:p^m-2]',prim_poly,p);
a = gfmul(2,4,field)

The output is

a =

     6

Version History
Introduced before R2006a
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See Also
gfdiv | gfdeconv | gfadd | gfsub | gftuple
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gfpretty
Polynomial in traditional format

Syntax
gfpretty(a)
gfpretty(a,st)
gfpretty(a,st,n)

Description
gfpretty(a) displays a polynomial in a traditional format, using X as the variable and the entries of
the row vector a as the coefficients in order of ascending powers. The polynomial is displayed in
order of ascending powers. Terms having a zero coefficient are not displayed.

gfpretty(a,st) is the same as the first syntax listed, except that the content of st is used as the
variable instead of X.

gfpretty(a,st,n) is the same as the first syntax listed, except that the content of st is used as the
variable instead of X, and each line of the display has width n instead of the default value of 79.

Note For all syntaxes: If you do not use a fixed-width font, the spacing in the display might not look
correct.

Examples

Display Polynomials in Traditional Format

Display statements about randomly selected elements of GF(81).

Use the gfprimfd function to find the primitive polynomials for GF(81).

p = 3; 
m = 4;
primpolys = gfprimfd(m,'all',p);
[rows, cols] = size(primpolys);

Randomly select a primitive polynomial by selecting a row jj from primpolys, and then display the
jjth primitive polynomial in the traditional format by using the gfpretty function.

jj = randi([1,rows]);
gfpretty(primpolys(jj,:))

 
                                     2      3    4
                            2 + X + X  + 2 X  + X 

For the root A of the primitive polynomial primpoly(jj,:), a randomly selected element A^ii from
GF(81) can be displayed in traditional format by using the gfpretty function.
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ii = randi([1,p^m-2]);
gfpretty([zeros(1,ii),1],'A')

 
                                       72
                                      A  

The element A^ii can be expressed as shown here by using the gfpretty and gftuple functions.

gfpretty(gftuple(ii,m,p),'A')

 
                                      2      3
                                 1 + A  + 2 A 

Version History
Introduced before R2006a

See Also
gftuple | gfprimdf

 gfpretty
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gfprimck
Check whether polynomial over Galois field is primitive

Syntax
ck = gfprimck(a)
ck = gfprimck(a,p)

Description

Note This function performs computations in GF(pm), where p is prime. If you are working in GF(2m),
use the isprimitive function. For details, see Finding Primitive Polynomials in “Primitive
Polynomials and Element Representations”.

ck = gfprimck(a) checks whether the degree-m GF(2) polynomial a is a primitive polynomial for
GF(2m), where m = length(a) - 1. The output ck is as follows:

• -1 if a is not an irreducible polynomial
• 0 if a is irreducible but not a primitive polynomial for GF(pm)
• 1 if a is a primitive polynomial for GF(pm)

ck = gfprimck(a,p) checks whether the degree-m GF(P) polynomial a is a primitive polynomial
for GF(pm). p is a prime number.

a is either a polynomial character vector or a row vector representing the polynomial by listing its
coefficients in ascending order. For example, in GF(5), '4 + 3x + 2x^3' and [4 3 0 2] are
equivalent.

This function considers the zero polynomial to be “not irreducible” and considers all polynomials of
degree zero or one to be primitive.

Examples
“Characterization of Polynomials” contains examples.

Algorithms
An irreducible polynomial over GF(p) of degree at least 2 is primitive if and only if it does not divide
-1 + xk for any positive integer k smaller than pm-1.

Version History
Introduced before R2006a
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References

[1] Clark, George C. Jr., and J. Bibb Cain, Error-Correction Coding for Digital Communications, New
York, Plenum, 1981.

[2] Krogsgaard, K., and T., Karp, Fast Identification of Primitive Polynomials over Galois Fields:
Results from a Course Project, ICASSP 2005, Philadelphia, PA, 2004.

See Also
gfprimfd | gfprimdf | gftuple | gfminpol | gfadd
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gfprimdf
Provide default primitive polynomials for Galois field

Syntax
pol = gfprimdf(m)
pol = gfprimdf(m,p)

Description

Note This function performs computations in GF(pm), where p is prime. To work in GF(2m), use the
primpoly function. For details, see Finding Primitive Polynomials in “Primitive Polynomials and
Element Representations”.

pol = gfprimdf(m) outputs the default primitive polynomial pol in GF(2m).

pol = gfprimdf(m,p) returns the row vector that gives the coefficients, in order of ascending
powers, of the default primitive polynomial for GF(pm). m is a positive integer and p is a prime
number.

Examples

Find Default Primitive Polynomial for GF(52)

Find the default primitive polynomial for GF(52) by using the gfprimdf function. Then use the
gfpretty function to display it in polynomial format.

pol = gfprimdf(2,5)

pol = 1×3

     2     1     1

gfpretty(pol)

 
                                           2
                                  2 + X + X 

Find Default Primitive Polynomials for Range of Galois Fields

Find the default primitive polynomials for a range of Galois fields by using the gfprimdf function.

Use the gfpretty function to display the default primitive polynomial for each of the fields GF(3m),
where the range for m is [3, 5].
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for m = 3:5
   gfpretty(gfprimdf(m,3))
end

 
                                            3
                                 1 + 2 X + X 
 
                                           4
                                  2 + X + X 
 
                                            5
                                 1 + 2 X + X 

Version History
Introduced before R2006a

See Also
gfprimck | gfprimfd | gftuple | gfminpol
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gfprimfd
Find primitive polynomials for Galois field

Syntax
pol = gfprimfd(m,opt,p)

Description

Note This function performs computations in GF(pm), where p is prime. To work in GF(2m), use the
primpoly function. For details, see Finding Primitive Polynomials in “Primitive Polynomials and
Element Representations”.

• If m = 1, pol = [1 1].
• A polynomial is represented as a row containing the coefficients in order of ascending powers.

pol = gfprimfd(m,opt,p) searches for one or more primitive polynomials for GF(p^m), where p
is a prime number and m is a positive integer. If m = 1, pol = [1 1]. If m > 1, the output pol depends
on the argument opt as shown in the table below. Each polynomial is represented in pol as a row
containing the coefficients in order of ascending powers.

opt Significance of pol Format of pol
'min' One primitive polynomial for

GF(p^m) having the smallest
possible number of nonzero
terms

The row vector representing the
polynomial

'max' One primitive polynomial for
GF(p^m) having the greatest
possible number of nonzero
terms

The row vector representing the
polynomial

'all' All primitive polynomials for
GF(p^m)

A matrix, each row of which
represents one such polynomial

A positive integer All primitive polynomials for
GF(p^m) that have opt nonzero
terms

A matrix, each row of which
represents one such polynomial

Examples
The code below seeks primitive polynomials for GF(81) having various other properties. Notice that
fourterms is empty because no primitive polynomial for GF(81) has exactly four nonzero terms. Also
notice that fewterms represents a single polynomial having three terms, while threeterms
represents all of the three-term primitive polynomials for GF(81).

p = 3; m = 4; % Work in GF(81).
fewterms = gfprimfd(m,'min',p)
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threeterms = gfprimfd(m,3,p)
fourterms = gfprimfd(m,4,p)

The output is below.

fewterms =

     2     1     0     0     1

threeterms =

     2     1     0     0     1
     2     2     0     0     1
     2     0     0     1     1
     2     0     0     2     1

No primitive polynomial satisfies the given constraints.

fourterms =

     []

Algorithms
gfprimfd tests for primitivity using gfprimck. If opt is 'min', 'max', or omitted, polynomials are
constructed by converting decimal integers to base p. Based on the decimal ordering, gfprimfd
returns the first polynomial it finds that satisfies the appropriate conditions.

Version History
Introduced before R2006a

See Also
gfprimck | gfprimdf | gftuple | gfminpol
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gfrank
Compute rank of matrix over Galois field

Syntax
rk = gfrank(A,p)

Description

Note This function performs computations in GF(p) where p is prime. If you are working in GF(2m),
use the rank function with Galois arrays. For details, see “Computing Ranks”.

rk = gfrank(A,p) calculates the rank of the matrix A in GF(p), where p is a prime number.

Examples
In the code below, gfrank says that the matrix A has less than full rank. This conclusion makes sense
because the determinant of A is zero mod p.

A = [1 0 1;
   2 1 0;
   0 1 1];
p = 3;
det_a = det(A); % Ordinary determinant of A
detmodp = rem(det(A),p); % Determinant mod p
rankp = gfrank(A,p);
disp(['Determinant = ',num2str(det_a)])
disp(['Determinant mod p is ',num2str(detmodp)])
disp(['Rank over GF(p) is ',num2str(rankp)])

The output is below.

Determinant = 3
Determinant mod p is 0
Rank over GF(p) is 2

Algorithms
gfrank uses an algorithm similar to Gaussian elimination.

Version History
Introduced before R2006a
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gfrepcov
Convert one binary polynomial representation to another

Syntax
polystandard = gfrepcov(poly2)

Description
Two logical ways to represent polynomials over GF(2) are listed below.

1 [A_0 A_1 A_2 ... A_(m-1)] represents the polynomial

A_0 + A_1x + A_2x2 +⋯+ A_(m‐1)xm− 1

Each entry A_k is either one or zero.
2 [A_0 A_1 A_2 ... A_(m-1)] represents the polynomial

xA_0 + xA_1 + xA_2 +⋯+ xA_(m‐1)

Each entry A_k is a nonnegative integer. All entries must be distinct.

Format 1 is the standard form used by the Galois field functions in this toolbox, but there are some
cases in which format 2 is more convenient.

polystandard = gfrepcov(poly2) converts from the second format to the first, for polynomials
of degree at least 2. poly2 and polystandard are row vectors. The entries of poly2 are distinct
integers, and at least one entry must exceed 1. Each entry of polystandard is either 0 or 1.

Examples
The command below converts the representation format of the polynomial 1 + x2 + x5.

polystandard = gfrepcov([0 2 5])

polystandard =

     1     0     1     0     0     1

Version History
Introduced before R2006a

See Also
gfpretty

 gfrepcov
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gfroots
Find roots of polynomial over prime Galois field

Syntax
rt = gfroots(f,m,p)
rt = gfroots(f,prim_poly,p)
[rt,rt_tuple] = gfroots(...)
[rt,rt_tuple,field] = gfroots(...)

Description

Note This function performs computations in GF(pm), where p is prime. To work in GF(2m), use the
roots function with Galois arrays. For details, see “Roots of Polynomials”.

For all syntaxes, f is a polynomial character vector or a row vector that gives the coefficients, in
order of ascending powers, of a degree-d polynomial.

Note gfroots lists each root exactly once, ignoring multiplicities of roots.

rt = gfroots(f,m,p) finds roots in GF(p^m) of the polynomial that f represents. rt is a column
vector each of whose entries is the exponential format of a root. The exponential format is relative to
a root of the default primitive polynomial for GF(p^m).

rt = gfroots(f,prim_poly,p) finds roots in GF(pm) of the polynomial that f represents. rt is a
column vector each of whose entries is the exponential format of a root. The exponential format is
relative to a root of the degree-m primitive polynomial for GF(pm) that prim_poly represents.

[rt,rt_tuple] = gfroots(...) returns an additional matrix rt_tuple, whose kth row is the
polynomial format of the root rt(k). The polynomial and exponential formats are both relative to the
same primitive element.

[rt,rt_tuple,field] = gfroots(...) returns additional matrices rt_tuple and field.
rt_tuple is described in the preceding paragraph. field gives the list of elements of the extension
field. The list of elements, the polynomial format, and the exponential format are all relative to the
same primitive element.

Note For a description of the various formats that gfroots uses, see “Representing Elements of
Galois Fields”.

Examples
“Roots of Polynomials” contains a description and example of the use of gfroots.

The code below finds the polynomial format of the roots of the primitive polynomial 2 + x3 + x4 for
GF(81). It then displays the roots in traditional form as polynomials in alph. (The output is omitted
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here.) Because prim_poly is both the primitive polynomial and the polynomial whose roots are
sought, alph itself is a root.

p = 3; m = 4;
prim_poly = [2 0 0 1 1]; % A primitive polynomial for GF(81)
f = prim_poly; % Find roots of the primitive polynomial.
[rt,rt_tuple] = gfroots(f,prim_poly,p);
% Display roots as polynomials in alpha.
for ii = 1:length(rt_tuple)
  gfpretty(rt_tuple(ii,:),'alpha')
end

Version History
Introduced before R2006a

See Also
gfprimdf

 gfroots
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gfsub
Subtract polynomials over Galois field

Syntax
c = gfsub(a,b,p)
c = gfsub(a,b,p,len)
c = gfsub(a,b,field)

Description

Note This function performs computations in GF(pm), where p is prime. To work in GF(2m), apply the
- operator to Galois arrays of equal size. For details, see “Example: Addition and Subtraction”.

c = gfsub(a,b,p) calculates a minus b, where a and b represent polynomials over GF(p) and p is
a prime number. a, b, and c are row vectors that give the coefficients of the corresponding
polynomials in order of ascending powers. Each coefficient is between 0 and p-1. If a and b are
matrices of the same size, the function treats each row independently. Alternatively, a and b can be
represented as polynomial character vectors.

c = gfsub(a,b,p,len) subtracts row vectors as in the syntax above, except that it returns a row
vector of length len. The output c is a truncated or extended representation of the answer. If the row
vector corresponding to the answer has fewer than len entries (including zeros), extra zeros are
added at the end; if it has more than len entries, entries from the end are removed.

c = gfsub(a,b,field) calculates a minus b, where a and b are the exponential format of two
elements of GF(pm), relative to some primitive element of GF(pm). p is a prime number and m is a
positive integer. field is the matrix listing all elements of GF(pm), arranged relative to the same
primitive element. c is the exponential format of the answer, relative to the same primitive element.
See “Representing Elements of Galois Fields” for an explanation of these formats. If a and b are
matrices of the same size, the function treats each element independently.

Examples

Subtract Two GF Arrays

Calculate (2 + 3x + x2) − (4 + 2x + 3x2) over GF(5).

x = gfsub([2 3 1],[4 2 3],5)

x = 1×3

     3     1     3

Subtract the two polynomials and display the first two elements.

y = gfsub([2 3 1],[4 2 3],5,2)
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y = 1×2

     3     1

For prime number p and exponent m, create a matrix listing all elements of GF(p^m) given primitive
polynomial 2 + 2x + x2.

p = 3;
m = 2;
primpoly = [2 2 1];
field = gftuple((-1:p^m-2)',primpoly,p);

Subtract A4 from A2. The result is A7.

g = gfsub(2,4,field)

g = 7

Version History
Introduced before R2006a

See Also
gfadd | gfconv | gfmul | gfdeconv | gfdiv | gftuple
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gftable
Generate file to accelerate Galois field computations

Syntax
gftable(m,prim_poly); 

Description
gftable(m,prim_poly) generates a file that can help accelerate computations in the field
GF(2^m) as described by the nondefault primitive polynomial prim_poly, which can be either a
polynomial character vector or an integer. prim_poly represents a primitive polynomial for GF(2^m),
where 1 < m < 16, using the format described in “Primitive Polynomials and Element
Representations”. The function places the file, called userGftable.mat, in your current working
folder. If necessary, the function overwrites any writable existing version of the file.

Note If prim_poly is the default primitive polynomial for GF(2^m) listed in the table on the gf
reference page, this function has no effect. A MAT-file in your MATLAB installation already includes
information that facilitates computations with respect to the default primitive polynomial.

Examples
In the example below, you expect t3 to be similar to t1 and to be significantly smaller than t2,
assuming that you do not already have a userGftable.mat file that includes the (m, prim_poly)
pair (8, 501). Notice that before executing the gftable command, MATLAB displays a warning and
that after executing gftable, there is no warning. By executing the gftable command you save the
GF table for faster calculations.

% Sample code to check how much gftable improves speed.
tic; a = gf(repmat([0:2^8-1],1000,1),8); b = a.^100; t1 = toc;
tic; a = gf(repmat([0:2^8-1],1000,1),8,501); b = a.^100; t2 = toc;
gftable(8,501); % Include this primitive polynomial in the file.
tic; a = gf(repmat([0:2^8-1],1000,1),8,501); b = a.^100; t3 = toc;

Version History
Introduced before R2006a

See Also
gf

Topics
“Speed and Nondefault Primitive Polynomials”

2 Functions

2-406



gftrunc
Minimize length of polynomial representation

Syntax
c = gftrunc(a)

Description
c = gftrunc(a) truncates a row vector, a, that gives the coefficients of a GF(p) polynomial in order
of ascending powers. If a(k) = 0 whenever k > d + 1, the polynomial has degree d. The row vector c
omits these high-order zeros and thus has length d + 1.

Examples

Truncate Row-Vector Representation of Galois Field Polynomial

Use gftrunc to truncate the row-vector representation of x2 + 2x3 + 3x4 + 4x7 + 5x8, removing
nonsignificant zero-valued elements.

vec = [0 0 1 2 3 0 0 4 5 0 0]

vec = 1×11

     0     0     1     2     3     0     0     4     5     0     0

gfpretty([vec])

 
                         2      3      4      7      8
                        X  + 2 X  + 3 X  + 4 X  + 5 X 

Zeros are removed from the end of the row-vector representation, but not from the beginning or
middle of the row vector.

c = gftrunc([0 0 1 2 3 0 0 4 5 0 0])

c = 1×9

     0     0     1     2     3     0     0     4     5

gfpretty(c)

 
                         2      3      4      7      8
                        X  + 2 X  + 3 X  + 4 X  + 5 X 
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Version History
Introduced before R2006a

See Also
gfadd | gfsub | gfconv | gfdeconv | gftuple
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gftuple
Simplify or convert Galois field element formatting

Syntax
tp = gftuple(a,m)
tp = gftuple(a,prim_poly)
tp = gftuple(a,m,p)
tp = gftuple(a,prim_poly,p)
tp = gftuple(a,prim_poly,p,prim_ck)
[tp,expform] = gftuple(...)

Description

Note This function performs computations in GF(pm), where p is prime. To perform equivalent
computations in GF(2m), apply the .^ operator and the log function to Galois arrays. For more
information, see “Example: Exponentiation” and “Example: Elementwise Logarithm”.

For All Syntaxes

gftuple serves to simplify the polynomial or exponential format of Galois field elements, or to
convert from one format to another. For an explanation of the formats that gftuple uses, see
“Representing Elements of Galois Fields”.

In this discussion, the format of an element of GF(pm) is called “simplest” if all exponents of the
primitive element are

• Between 0 and m-1 for the polynomial format
• Either -Inf, or between 0 and pm-2, for the exponential format

For all syntaxes, a is a matrix, each row of which represents an element of a Galois field. The format
of a determines how MATLAB interprets it:

• If a is a column of integers, MATLAB interprets each row as an exponential format of an element.
Negative integers are equivalent to -Inf in that they all represent the zero element of the field.

• If a has more than one column, MATLAB interprets each row as a polynomial format of an
element. (Each entry of a must be an integer between 0 and p-1.)

The exponential or polynomial formats mentioned above are all relative to a primitive element
specified by the second input argument. The second argument is described below.

For Specific Syntaxes

tp = gftuple(a,m) returns the simplest polynomial format of the elements that a represents,
where the kth row of tp corresponds to the kth row of a. The formats are relative to a root of the
default primitive polynomial for GF(2^m), where m is a positive integer.
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tp = gftuple(a,prim_poly) is the same as the syntax above, except that prim_poly is a
polynomial character vector or a row vector that lists the coefficients of a degree m primitive
polynomial for GF(2^m) in order of ascending exponents.

tp = gftuple(a,m,p) is the same as tp = gftuple(a,m) except that 2 is replaced by a prime
number p.

tp = gftuple(a,prim_poly,p) is the same as tp = gftuple(a,prim_poly) except that 2 is
replaced by a prime number p.

tp = gftuple(a,prim_poly,p,prim_ck) is the same as tp = gftuple(a,prim_poly,p)
except that gftuple checks whether prim_poly represents a polynomial that is indeed primitive. If
not, then gftuple generates an error and tp is not returned. The input argument prim_ck can be
any number or character vector; only its existence matters.

[tp,expform] = gftuple(...) returns the additional matrix expform. The kth row of expform
is the simplest exponential format of the element that the kth row of a represents. All other features
are as described in earlier parts of this “Description” section, depending on the input arguments.

Examples
• “List of All Elements of a Galois Field” (end of section)
• “Converting to Simplest Polynomial Format”

As another example, the gftuple command below generates a list of elements of GF(p^m), arranged
relative to a root of the default primitive polynomial. Some functions in this toolbox use such a list as
an input argument.

p = 5; % Or any prime number
m = 4; % Or any positive integer
field = gftuple([-1:p^m-2]',m,p);

Finally, the two commands below illustrate the influence of the shape of the input matrix. In the first
command, a column vector is treated as a sequence of elements expressed in exponential format. In
the second command, a row vector is treated as a single element expressed in polynomial format.

tp1 = gftuple([0; 1],3,3)
tp2 = gftuple([0, 0, 0, 1],3,3)

The output is below.

tp1 =

     1     0     0
     0     1     0

tp2 =

     2     1     0

The outputs reflect that, according to the default primitive polynomial for GF(33), the relations below
are true.
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α0 = 1 + 0α + 0α2

α1 = 0 + 1α + 0α2

0 + 0α + 0α2 + α3 = 2 + α + 0α2

Algorithms
gftuple uses recursive callbacks to determine the exponential format.

Version History
Introduced before R2006a

See Also
gfadd | gfmul | gfconv | gfdiv | gfdeconv | gfprimdf
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gfweight
Calculate minimum distance of linear block code

Syntax
wt = gfweight(genmat)
wt = gfweight(genmat,'gen')
wt = gfweight(parmat,'par')
wt = gfweight(genpoly,n)

Description
The minimum distance, or minimum weight, of a linear block code is defined as the smallest positive
number of nonzero entries in any n-tuple that is a codeword.

wt = gfweight(genmat) returns the minimum distance of the linear block code whose generator
matrix is genmat.

wt = gfweight(genmat,'gen') returns the minimum distance of the linear block code whose
generator matrix is genmat.

wt = gfweight(parmat,'par') returns the minimum distance of the linear block code whose
parity-check matrix is parmat.

wt = gfweight(genpoly,n) returns the minimum distance of the cyclic code whose codeword
length is n and whose generator polynomial is represented by genpoly. genpoly is a polynomial
character vector or a row vector that gives the coefficients of the generator polynomial in order of
ascending powers.

Examples

Calculate Minimum Distance of Linear Block Code

Calculate the minimum distance of a cyclic code using several methods.

Create the generate polynomial for a (7,4) cyclic code.

n = 7;
genpoly = cyclpoly(n,4);

Calculate the minimum distance for the cyclic code using:

1 Generator polynomial genmat
2 Parity check matrix parmat
3 Generator polynomial genpoly
4 Generator polynomial specified as a character vector
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[parmat, genmat] = cyclgen(n,genpoly);
wts = [gfweight(genmat,'gen') gfweight(parmat,'par'),...
    gfweight(genpoly,n) gfweight('1+x2+x3',n)]

wts = 1×4

     3     3     3     3

Version History
Introduced before R2006a

See Also
hammgen | cyclpoly | bchgenpoly

Topics
“Block Codes”
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gray2bin
(To be removed) Convert Gray-encoded positive integers to corresponding Gray-decoded integers

Note  will be removed in a future release. Instead, use the appropriate modulation object or function
to remap constellation points. For more information, see “Compatibility Considerations”.

Syntax
y = gray2bin(x,modulation,M)
[y,map] = gray2bin(x,modulation,M)

Description
y = gray2bin(x,modulation,M) generates a Gray-decoded output vector or matrix y with the
same dimensions as its input parameter x. x can be a scalar, vector, matrix, or 3-D array.
modulation is the modulation type and must be 'qam', 'pam', 'fsk', 'dpsk', or 'psk'. M is the
modulation order and must be an integer power of 2.

[y,map] = gray2bin(x,modulation,M) generates a Gray-decoded output y with its respective
Gray-encoded constellation map, map.

You can use map output to label a Gray-encoded constellation. The map output gives the Gray-
encoded labels for the corresponding modulation. See “Binary to Gray Symbol Mapping” on page 2-
414 example.

Note If you are converting binary coded data to Gray-coded data and modulating the result
immediately afterwards, you should use the appropriate modulation object or function with the
'Gray' symbol ordering option, instead of gray2bin.

Examples

Binary to Gray Symbol Mapping

This example shows how to use the bin2gray and gray2bin functions to map integer inputs from a
natural binary order symbol mapping to a Gray-coded signal constellation and vice versa, assuming
16-QAM modulation. In addition, a visual representation of the difference between Gray-coded and
binary-coded symbol mappings is shown.

Create a complete vector of 16-QAM integers. Convert the input vector from a natural binary order to
a Gray-encoded vector using bin2gray. Convert Gray to Binary Convert the Gray-encoded symbols,
y, back to a binary ordering using gray2bin. Verify that the original data, x, and the final output
vector, z, are identical.

M = 16;
x = (0:M-1);
[y,mapy] = bin2gray(x,'qam',M);
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z = gray2bin(y,'qam',M);
isequal(x,z)

ans = logical
   1

Show symbol mappings. To create a constellation plot showing the different symbol mappings, use the
qammod function to find the complex symbol values. Plot the constellation symbols and label them
using the Gray (y) and binary (z) output vectors. The binary representation of the Gray-coded
symbols is shown in black and the binary representation of the naturally ordered symbols is shown in
red. Set the axes scaling so that all points are displayed.

sym = qammod(x,M);
scatterplot(sym,1,0,'b*');
for k = 1:16 
    text(real(sym(k))-0.3,imag(sym(k))+0.3,... 
        dec2base(mapy(k),2,4)); 
    text(real(sym(k))-0.3,imag(sym(k))-0.3,... 
        dec2base(z(k),2,4),'Color',[1 0 0]);
end
axis([-4 4 -4 4])

Input Arguments
x — Gray-encoded data
vector | matrix
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Gray-encoded input data, specified as a vector or matrix.
Data Types: double

modulation — Modulation type
'qam' | 'pam' | 'fsk' | 'dpsk' | 'psk'

Modulation type, specified as, 'qam', 'pam', 'fsk', 'dpsk', or 'psk'

M — Modulation order
scalar

Modulation order, specified as an integer power of 2.
Data Types: double

Output Arguments
y — Gray-decoded data
vector | matrix

Gray-decoded data with the same size and dimensions input x.

map — Map of labels
vector

Map output to label a Gray-encoded constellation, specified as a vector with a length the size of the
modulation order, M. The map gives the Gray-encoded labels for the corresponding modulation.

Version History
Introduced before R2006a

gray2bin will be removed
Warns starting in R2021b

The gray2bin function will be removed in a future release. Instead, use the appropriate modulation
object or function to remap constellation points. This table shows the remapping based on modulation
type.

When you use the workflow that is discouraged, the bin2gray and gray2bin functions convert a
binary representation to a natural binary or Gray encoding. After the conversion, you must specify
'bin' for the symbol order when you call the modulation and demodulation functions.

When you use the workflow that is recommended, for any given of modulation scheme, you provide
decimal values when you call the modulation and demodulation functions. When you call the
modulation and demodulation functions, specify the symbol order as 'bin' for natural binary
encoding or 'gray' for Gray encoding.

If your workflow uses bin2gray or gray2bin with any of the modulations schemes in this table,
follow the appropriate example.

2 Functions

2-416



Modulation Discouraged Usage Recommended Replacement
QAM (qammod and qamdemod) x = randi([0 63],1,100);

y = bin2gray(x,'qam',64);
z = qammod(y,64,'bin');

x = 2*(randn(100,1)+1j*randn(100,1));
y = qamdemod(x,64,'bin');
z = gray2bin(y,'qam',64);

x = randi([0 63],1,100);
z = qammod(x,64,'gray');

x = 2*(randn(100,1)+1j*randn(100,1));
z = qamdemod(x,64,'gray')

PAM (pammod and pamdemod) x = randi([0 63],1,100);
y = gray2bin(x,'pam',64);
z = pammod(y,64,pi/4,'bin');

x = 2*(randn(100,1)+1j*randn(100,1));
y = pamdemod(x,64,pi/4,'bin');
z = bin2gray(y,'pam',64);

x = randi([0 63],1,100);
z = pammod(x,64,pi/4,'gray');

x = 2*(randn(100,1)+1j*randn(100,1));
z = pamdemod(x,64,pi/4,'gray')

FSK (fskmod and fskdemod) x = randi([0 63],1,100);
y = gray2bin(x,'fsk',64);
z = fskmod(y,64,1,256,256,'cont','bin')

x = 2*(randn(512,1)+1j*randn(512,1));
y = fskdemod(x,64,1,256,256,'bin');
z = bin2gray(y,'fsk',64)

x = randi([0 63],1,100);
z = fskmod(x,64,1,256,256,'cont','gray')

x = 2*(randn(512,1)+1j*randn(512,1));
z = fskdemod(x,64,1,256,256,'gray');

DPSK (dpskmod and dpskdemod) x = randi([0 63],1,100);
y = gray2bin(x,'dpsk',64);
z = dpskmod(y,64,pi/4,'bin');

x = 2*(randn(100,1)+1j*randn(100,1));
y = dpskdemod(x,64,pi/4,'bin');
z = bin2gray(y,'dpsk',64);

x = randi([0 63],1,100);
z = dpskmod(x,64,pi/4,'gray');

x = 2*(randn(100,1)+1j*randn(100,1));
z = dpskdemod(x,64,pi/4,'gray');

PSK (pskmod and pskdemod) x = randi([0 63],1,100);
y = gray2bin(x,'psk',64);
z = pskmod(y,64,0,'bin');

x = 2*(randn(100,1)+1j*randn(100,1));
y = pskdemod(x,64,0,'bin');
z = bin2gray(y,'psk',64);

x = randi([0 63],1,100);
z = pskmod(x,64,0,'gray');

x = 2*(randn(100,1)+1j*randn(100,1));
z = pskdemod(x,64,0,'gray');

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
dpskmod | dpskdemod | fskdemod | pamdemod | pskdemod | qamdemod | fskmod | pammod | pskmod
| qammod

Topics
Gray Encoding a Modulated Signal
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gsmCheckTimeMask
Inspect GSM burst against time mask

Syntax
gsmCheckTimeMask(gsmCfg)
gsmCheckTimeMask(gsmCfg,tn)

pf = gsmCheckTimeMask(gsmCfg)
pf = gsmCheckTimeMask(gsmCfg,tn)

Description
gsmCheckTimeMask(gsmCfg) plots the burst for the first time slot and the upper and lower time
masks for the input GSM configuration object. The RiseTime, RiseDelay, FallTime, and
FallDelay properties of the configuration object define the power level versus time characteristics.
For more information, see “Time Mask” on page 2-432.

gsmCheckTimeMask(gsmCfg,tn) plots the burst for the specified time slot, tn.

pf = gsmCheckTimeMask(gsmCfg) returns a pass or fail result for the specified configuration
object indicating compliance of the burst in the first time slot with the time mask defined in the GSM
standard. For more information, see “Time Mask” on page 2-432.

pf = gsmCheckTimeMask(gsmCfg,tn) returns a pass or fail result indicating compliance of the
burst in the specified time slot, tn.

Examples

Check GSM Burst Against Time Mask

Create a GSM uplink TDMA frame configuration object with default settings. The GSM TDMA frame
has eight time slots. Check the burst in the first time slot against the time mask specified by the GSM
standard.

Create a GSM uplink TDMA frame configuration object with default settings.

cfggsmul = gsmUplinkConfig;

Use the gsmCheckTimeMask function to view the time mask and verify that the configured rise and
fall characteristics of the burst comply with the time mask specified in the GSM standard. Plot the
GSM burst and time mask. When no time slot number is provided, the gsmCheckTimeMask function
shows the first time slot, TN=0.

pf = gsmCheckTimeMask(cfggsmul);
if pf
    disp('Time mask test passed.')
else
    disp('Time mask test failed.')
end
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Time mask test passed.

gsmCheckTimeMask(cfggsmul);

Adjust the rise time of the GSM uplink TDMA frame configuration object, specifying a value that
causes a time mask failure.

cfggsmul.RiseTime = 5

cfggsmul = 
  gsmUplinkConfig with properties:

           BurstType: [NB    NB    NB    NB    NB    NB    NB    NB]
    SamplesPerSymbol: 16
                 TSC: [0 1 2 3 4 5 6 7]
         Attenuation: [0 0 0 0 0 0 0 0]
            RiseTime: 5
           RiseDelay: 0
            FallTime: 2
           FallDelay: 0

Use the gsmCheckTimeMask function to inspect the time mask of cfggsmul. The pass or fail result
shows that the cfggsmul configuration now fails the time mask and the plot shows the upper time
mask fails.

pf = gsmCheckTimeMask(cfggsmul);
if pf
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    disp('Time mask test passed.')
else
    disp('Time mask test failed.')
end

Time mask test failed.

gsmCheckTimeMask(cfggsmul);

Check GSM Burst in Specified Time Slot Against Time Mask

Create a GSM uplink TDMA frame configuration object with default settings. The GSM TDMA frame
has eight time slots. Check the burst in the specified time slot against the time mask specified by the
GSM standard.

Create a GSM downlink TDMA frame configuration object with default settings.

cfggsmul = gsmDownlinkConfig;

Use the gsmCheckTimeMask function to view the time mask and verify that the configured rise and
fall characteristics of the burst in the specified time slot comply with the time mask specified by the
GSM standard. Plot the GSM burst and time mask.

tn = 6; % Time slot number 6
pf = gsmCheckTimeMask(cfggsmul,tn);
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if pf
    disp('Time mask test passed.')
else
    disp('Time mask test failed.')
end

Time mask test passed.

gsmCheckTimeMask(cfggsmul,tn);

Adjust the fall delay of the GSM downlink TDMA frame configuration object, specifying a value that
causes a time mask failure.

cfggsmul.FallDelay = 4

cfggsmul = 
  gsmDownlinkConfig with properties:

           BurstType: [NB    NB    NB    NB    NB    NB    NB    NB]
    SamplesPerSymbol: 16
                 TSC: [0 1 2 3 4 5 6 7]
         Attenuation: [0 0 0 0 0 0 0 0]
            RiseTime: 2
           RiseDelay: 0
            FallTime: 2
           FallDelay: 4
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Use the gsmCheckTimeMask function to inspect the time mask of cfggsmul. The pass or fail result
shows that the cfggsmul configuration now fails the time mask and the plot shows the upper time
mask fails.

pf = gsmCheckTimeMask(cfggsmul,tn);
if pf
    disp('Time mask test passed.')
else
    disp('Time mask test failed.')
end

Time mask test failed.

gsmCheckTimeMask(cfggsmul,tn);

Check Time Mask for GSM Bursts

Create GSM downlink and uplink TDMA frame configuration objects that use the various burst types
available.

• Normal bursts and bursts with no data are valid for downlink and uplink frames.
• Frequency correction, synchronization, and dummy bursts are valid in downlink frames only.
• Access bursts are valid in uplink frames only.
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View time masks for the different burst types against the time mask specified by the GSM standard
for the downlink and uplink frames.

Create a GSM downlink TDMA frame configuration object that configures the times slot bursts as [NB
FB SB Dummy Off Off Off Off].

cfggsmdl = gsmDownlinkConfig('BurstType',["NB" "FB" "SB" "Dummy" "Off" "Off" "Off" "Off"])

cfggsmdl = 
  gsmDownlinkConfig with properties:

           BurstType: [NB    FB    SB    Dummy    Off    Off    Off    Off]
    SamplesPerSymbol: 16
                 TSC: [0 1 2 3 4 5 6 7]
         Attenuation: [0 0 0 0 0 0 0 0]
            RiseTime: 2
           RiseDelay: 0
            FallTime: 2
           FallDelay: 0

Use the gsmCheckTimeMask function to view the time mask for the different time slot burst types.
For downlink GSM TDMA frames the same time mask limits applies for all burst types.

for tn = 0:4
    [dlbt,dlbtVal] = enumeration(cfggsmdl.BurstType);
    dlBurstInfo = ['Downlink (TN=',num2str(tn),'), BurstType: ',dlbtVal{tn+1}];
    disp(dlBurstInfo)
    gsmCheckTimeMask(cfggsmdl,tn);
end

Downlink (TN=0), BurstType: NB
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Downlink (TN=1), BurstType: FB
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Downlink (TN=2), BurstType: SB
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Downlink (TN=3), BurstType: Dummy
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Downlink (TN=4), BurstType: Off
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Create a GSM uplink TDMA frame configuration object that configures the times slot bursts as [NB
AB Off Off Off Off Off Off].

cfggsmul = gsmUplinkConfig('BurstType',["NB" "AB" "Off" "Off" "Off" "Off" "Off" "Off"])

cfggsmul = 
  gsmUplinkConfig with properties:

           BurstType: [NB    AB    Off    Off    Off    Off    Off    Off]
    SamplesPerSymbol: 16
                 TSC: [0 1 2 3 4 5 6 7]
         Attenuation: [0 0 0 0 0 0 0 0]
            RiseTime: 2
           RiseDelay: 0
            FallTime: 2
           FallDelay: 0

Use the gsmCheckTimeMask function to view the time masks for the different time slot burst types.
For uplink GSM TDMA frames the access burst has a shorter time mask than the normal burst or no
data burst.

for tn = 0:2
    [ulbt,ulbtVal] = enumeration(cfggsmul.BurstType);
    ulBurstInfo = ['Uplink (TN=',num2str(tn),'), BurstType: ',ulbtVal{tn+1}];
    disp(ulBurstInfo)
    gsmCheckTimeMask(cfggsmul,tn);
end
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Uplink (TN=0), BurstType: NB

Uplink (TN=1), BurstType: AB
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Uplink (TN=2), BurstType: Off
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Input Arguments
gsmCfg — GSM configuration
gsmUplinkConfig object | gsmDownlinkConfig object

GSM configuration, specified as a gsmUplinkConfig or gsmDownlinkConfig object.

tn — Time slot number
0 (default) | integer in the range [0, 7]

Time slot number, specified as an integer in the range [0, 7].
Data Types: double

Output Arguments
pf — Pass or fail result
0 | 1

Pass or fail result, returned as:

• 1 if the time mask passes
• 0 if the time mask fails

For more information, see “Time Mask” on page 2-432.
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More About
Time Mask

The time mask defines the allowable transmitted power level versus time for time slot bursts in a
GSM TDMA frame. This figure, from Annex B of TS 45.005, shows the upper and lower power limits
for the time mask of a burst.

Version History
Introduced in R2019b

References
[1] 3GPP TS 45.005. "GSM/EDGE Radio transmission and reception." 3rd Generation Partnership

Project; Technical Specification Group Radio Access Network.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Outputting a plot is not supported for code generation.

See Also
Objects
gsmDownlinkConfig | gsmUplinkConfig
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Functions
gsmFrame | gsmInfo

Topics
“GSM TDMA Frame Parameterization for Waveform Generation”

 gsmCheckTimeMask

2-433



gsmFrame
Create GSM waveform

Syntax
gsmWaveform = gsmFrame(gsmCfg)
gsmWaveform = gsmFrame(gsmCfg,numFrames)

Description
gsmWaveform = gsmFrame(gsmCfg) creates a GSM waveform with one TDMA frame based on the
input GSM configuration object. The encrypted bit field of the transmission data bursts is filled with
random data. For more information, see “GSM Frames, Time Slots, and Bursts” on page 2-440.

gsmWaveform = gsmFrame(gsmCfg,numFrames) creates a GSM waveform, with numFrames
identically configured TDMA frames. In each frame, the encrypted bit field of the transmission data
bursts is filled with random data. For more information, see “GSM Frames, Time Slots, and Bursts”
on page 2-440.

Examples

Create GSM Uplink Waveform

Create a GSM uplink TDMA frame configuration object with default settings, and then create a GSM
waveform containing one TDMA frame. GSM TDMA frames have eight time slots, each separated by a
guard period of 8.25 symbols or about 30.46x10e-3 ms. Plot the GSM waveform.

Create a GSM uplink TDMA frame configuration object with default settings.

cfggsmul = gsmUplinkConfig

cfggsmul = 
  gsmUplinkConfig with properties:

           BurstType: [NB    NB    NB    NB    NB    NB    NB    NB]
    SamplesPerSymbol: 16
                 TSC: [0 1 2 3 4 5 6 7]
         Attenuation: [0 0 0 0 0 0 0 0]
            RiseTime: 2
           RiseDelay: 0
            FallTime: 2
           FallDelay: 0

Display information about the configured gsmUplinkConfig object by using the gsmInfo function.
Assign the sample rate to a variable, Rs, for use in computing the plot timescale.

wfInfo = gsmInfo(cfggsmul)

wfInfo = struct with fields:
              SymbolRate: 2.7083e+05
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              SampleRate: 4.3333e+06
    BandwidthTimeProduct: 0.3000
    BurstLengthInSymbols: 156.2500
       NumBurstsPerFrame: 8
    BurstLengthInSamples: 2500
    FrameLengthInSamples: 20000

Rs = wfInfo.SampleRate;

Create the GSM waveform by using the gsmFrame function, and then plot the GSM waveform.

waveform = gsmFrame(cfggsmul);

t = (0:length(waveform)-1)/Rs*1e3;
subplot(2,1,1)
plot(t,abs(waveform))
grid on
axis([0 5 0 1.2])
title('GSM Uplink Waveform - Amplitude')
xlabel('Time (ms)')
ylabel('Amplitude')
subplot(2,1,2)
plot(t,unwrap(angle(waveform)))
grid on
title('GSM Uplink Waveform - Phase')
xlabel('Time (ms)')
ylabel('Phase (rad)')
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Create GSM Uplink Waveform Containing Five TDMA Frames

Create a GSM downlink TDMA frame configuration object with default settings, and then create a
GSM waveform containing five TDMA frames. GSM TDMA frames have eight time slots, each
separated by a guard period of 8.25 symbols or about 30.46x10e-3 ms. Plot the GSM waveform.

Create a GSM uplink TDMA frame configuration object, specifying 3 dB of attenuation in the last time
slot to help identify the end of each frame.

cfggsmul = gsmUplinkConfig('Attenuation',[0 0 0 0 0 0 0 3])

cfggsmul = 
  gsmUplinkConfig with properties:

           BurstType: [NB    NB    NB    NB    NB    NB    NB    NB]
    SamplesPerSymbol: 16
                 TSC: [0 1 2 3 4 5 6 7]
         Attenuation: [0 0 0 0 0 0 0 3]
            RiseTime: 2
           RiseDelay: 0
            FallTime: 2
           FallDelay: 0

Display information about the configured gsmUplinkConfig object by using the gsmInfo function.
Assign the frame length in samples to a variable, spf, for use in computing the plot timescale.

wfInfo = gsmInfo(cfggsmul)

wfInfo = struct with fields:
              SymbolRate: 2.7083e+05
              SampleRate: 4.3333e+06
    BandwidthTimeProduct: 0.3000
    BurstLengthInSymbols: 156.2500
       NumBurstsPerFrame: 8
    BurstLengthInSamples: 2500
    FrameLengthInSamples: 20000

spf = wfInfo.FrameLengthInSamples;

Create the GSM waveform by using the gsmFrame function, and then plot the GSM waveform. The
last time slot of each frame is 3 dB less than the other time slots in that frame.

numFrames = 5;
waveform = gsmFrame(cfggsmul,numFrames);

t = 8*(0:length(waveform)-1)/spf;

numTS = 8*numFrames;
subplot(2,1,1)
plot(t,abs(waveform))
grid on
axis([0 numTS 0 1.2])
title('GSM Uplink Waveform - Amplitude')
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xlabel('Time Slots')
ylabel('Amplitude')
subplot(2,1,2)
plot(t,unwrap(angle(waveform)))
grid on
title('GSM Uplink Waveform - Phase')
xlabel('Time Slots')
ylabel('Phase (rad)')

Create GSM Downlink Waveform

Create a GSM downlink TDMA frame configuration object with default settings, and then create a
GSM waveform containing one TDMA frame. The GSM TDMA frame has eight time slots, each
separated by a guard period of 8.25 symbols or about 30.46x10e-3 ms. Plot the GSM waveform.

Create a GSM downlink TDMA frame configuration object with default settings.

cfggsmdl = gsmDownlinkConfig

cfggsmdl = 
  gsmDownlinkConfig with properties:

           BurstType: [NB    NB    NB    NB    NB    NB    NB    NB]
    SamplesPerSymbol: 16
                 TSC: [0 1 2 3 4 5 6 7]
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         Attenuation: [0 0 0 0 0 0 0 0]
            RiseTime: 2
           RiseDelay: 0
            FallTime: 2
           FallDelay: 0

Display information about the configured gsmDownlinkConfig object by using the gsmInfo
function. Assign the sample rate to a variable, Rs, for use in computing the plot timescale.

wfInfo = gsmInfo(cfggsmdl)

wfInfo = struct with fields:
              SymbolRate: 2.7083e+05
              SampleRate: 4.3333e+06
    BandwidthTimeProduct: 0.3000
    BurstLengthInSymbols: 156.2500
       NumBurstsPerFrame: 8
    BurstLengthInSamples: 2500
    FrameLengthInSamples: 20000

Rs = wfInfo.SampleRate;

Create the GSM waveform by using the gsmFrame function, and then plot the GSM waveform.

waveform = gsmFrame(cfggsmdl);

t = (0:length(waveform)-1)/Rs*1e3;
subplot(2,1,1)
plot(t,abs(waveform))
grid on
axis([0 5 0 1.2])
title('GSM Downlink Waveform - Amplitude')
xlabel('Time (ms)')
ylabel('Amplitude')
subplot(2,1,2)
plot(t,unwrap(angle(waveform)))
grid on
title('GSM Downlink Waveform - Phase')
xlabel('Time (ms)')
ylabel('Phase (rad)')
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Input Arguments
gsmCfg — GSM configuration
gsmUplinkConfig object | gsmDownlinkConfig object

GSM configuration, specified as a gsmUplinkConfig or gsmDownlinkConfig object.

numFrames — Number of TDMA frames
16 (default) | positive integer

Number of TDMA frames in the waveform, specified as a positive integer.
Data Types: double

Output Arguments
gsmWaveform — Output time-domain waveform
complex-valued column vector

Output time-domain waveform, returned as a complex-valued column vector of length Ns, where Ns
represents the number of time-domain samples. The function generates this waveform in the form of
complex in-phase quadrature (IQ) samples.
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More About
GSM Frames, Time Slots, and Bursts

In GSM, transmissions consist of TDMA frames. Each GSM TDMA frame consists of eight time slots.
The transmission data content of a time slot is called a burst. As described in Section 5.2 of 3GPP TS
45.011, a GSM time slot has a 156.25-symbol duration when using the normal symbol period, which is
a time interval of 15/26 ms or about 576.9 microseconds. A guard period of 8.25 symbols or about
30.46 microseconds separates each time slot. The GSM standards describes a symbol as one bit
period. Since GSM uses GMSK modulation, there is one bit per bit period. The transmission timing of
a burst within a time slot is defined in terms of the bit number (BN). The BN refers to a particular bit
period within a time slot. The bit with the lowest BN is transmitted first. BN0 is the first bit period,
and BN156 is the last quarter-bit period.

This image from 3GPP TS 45.011 shows the relationship between different frame types and the
relationship between different burst types.

This table shows the supported burst types and their characteristics.

Burst Type Description Link Direction Useful Duration
NB Normal burst Uplink/Downlink 147
FB Frequency correction

burst
Downlink 147

SB Synchronization burst Downlink 147
Dummy Dummy burst Downlink 147
AB Access burst Uplink 87
Off No burst sent Uplink/Downlink 0

Useful duration, described in Section 5.2.2 of 3GPP TS 45.002, is a characteristic of GSM bursts. The
useful duration, or useful part, of a burst is defined as beginning halfway through BN0 and ending
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half a bit period before the start of the guard period. The guard period is the period between bursts
in successive time slots. This figure, from Section 2.2 of 3GPP TS 45.004, shows the leading and
trailing ½ bit difference between the useful and active parts of the burst.

For more information, see “GSM TDMA Frame Parameterization for Waveform Generation”.

Training Sequence Code (TSC)

Normal bursts include a training sequence bits field assigned a bit pattern based on the specified
TSC. For GSM, you can select one of these eight training sequences for normal burst type time slots.

Training Sequence Code (TSC) Training Sequence Bits (BN61, BN62, …,
BN86)

0 (0,0,1,0,0,1,0,1,1,1,0,0,0,0,1,0,0,0,1,0,0,1,0,1,1,1)
1 (0,0,1,0,1,1,0,1,1,1,0,1,1,1,1,0,0,0,1,0,1,1,0,1,1,1)
2 (0,1,0,0,0,0,1,1,1,0,1,1,1,0,1,0,0,1,0,0,0,0,1,1,1,0)
3 (0,1,0,0,0,1,1,1,1,0,1,1,0,1,0,0,0,1,0,0,0,1,1,1,1,0)
4 (0,0,0,1,1,0,1,0,1,1,1,0,0,1,0,0,0,0,0,1,1,0,1,0,1,1)
5 (0,1,0,0,1,1,1,0,1,0,1,1,0,0,0,0,0,1,0,0,1,1,1,0,1,0)
6 (1,0,1,0,0,1,1,1,1,1,0,1,1,0,0,0,1,0,1,0,0,1,1,1,1,1)
7 (1,1,1,0,1,1,1,1,0,0,0,1,0,0,1,0,1,1,1,0,1,1,1,1,0,0)

For more information, see Section 5.2.3 in 3GPP TS 45.002.

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
Objects
gsmDownlinkConfig | gsmUplinkConfig

Functions
gsmCheckTimeMask | gsmInfo

Topics
“GSM TDMA Frame Parameterization for Waveform Generation”
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gsmInfo
View GSM waveform information

Syntax
infostruct= gsmInfo(gsmCfg)

Description
infostruct= gsmInfo(gsmCfg) returns a structure containing characteristic waveform
information for the input GSM configuration object.

Examples

View GSM Configuration Object Information

View information from downlink and uplink GSM configuration objects.

Create a GSM downlink configuration object with default settings and use gsmInfo to view the
waveform information structure.

cfgDL = gsmDownlinkConfig;
infostructDL = gsmInfo(cfgDL)

infostructDL = struct with fields:
              SymbolRate: 2.7083e+05
              SampleRate: 4.3333e+06
    BandwidthTimeProduct: 0.3000
    BurstLengthInSymbols: 156.2500
       NumBurstsPerFrame: 8
    BurstLengthInSamples: 2500
    FrameLengthInSamples: 20000

Create a GSM uplink configuration object with default settings and use gsmInfo to view the
waveform information structure.

cfgUL = gsmUplinkConfig;
infostructUL = gsmInfo(cfgUL)

infostructUL = struct with fields:
              SymbolRate: 2.7083e+05
              SampleRate: 4.3333e+06
    BandwidthTimeProduct: 0.3000
    BurstLengthInSymbols: 156.2500
       NumBurstsPerFrame: 8
    BurstLengthInSamples: 2500
    FrameLengthInSamples: 20000
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Create GSM Uplink Waveform Containing Five TDMA Frames

Create a GSM downlink TDMA frame configuration object with default settings, and then create a
GSM waveform containing five TDMA frames. GSM TDMA frames have eight time slots, each
separated by a guard period of 8.25 symbols or about 30.46x10e-3 ms. Plot the GSM waveform.

Create a GSM uplink TDMA frame configuration object, specifying 3 dB of attenuation in the last time
slot to help identify the end of each frame.

cfggsmul = gsmUplinkConfig('Attenuation',[0 0 0 0 0 0 0 3])

cfggsmul = 
  gsmUplinkConfig with properties:

           BurstType: [NB    NB    NB    NB    NB    NB    NB    NB]
    SamplesPerSymbol: 16
                 TSC: [0 1 2 3 4 5 6 7]
         Attenuation: [0 0 0 0 0 0 0 3]
            RiseTime: 2
           RiseDelay: 0
            FallTime: 2
           FallDelay: 0

Display information about the configured gsmUplinkConfig object by using the gsmInfo function.
Assign the frame length in samples to a variable, spf, for use in computing the plot timescale.

wfInfo = gsmInfo(cfggsmul)

wfInfo = struct with fields:
              SymbolRate: 2.7083e+05
              SampleRate: 4.3333e+06
    BandwidthTimeProduct: 0.3000
    BurstLengthInSymbols: 156.2500
       NumBurstsPerFrame: 8
    BurstLengthInSamples: 2500
    FrameLengthInSamples: 20000

spf = wfInfo.FrameLengthInSamples;

Create the GSM waveform by using the gsmFrame function, and then plot the GSM waveform. The
last time slot of each frame is 3 dB less than the other time slots in that frame.

numFrames = 5;
waveform = gsmFrame(cfggsmul,numFrames);

t = 8*(0:length(waveform)-1)/spf;

numTS = 8*numFrames;
subplot(2,1,1)
plot(t,abs(waveform))
grid on
axis([0 numTS 0 1.2])
title('GSM Uplink Waveform - Amplitude')
xlabel('Time Slots')
ylabel('Amplitude')
subplot(2,1,2)

2 Functions

2-444



plot(t,unwrap(angle(waveform)))
grid on
title('GSM Uplink Waveform - Phase')
xlabel('Time Slots')
ylabel('Phase (rad)')

Input Arguments
gsmCfg — GSM configuration
gsmUplinkConfig object | gsmDownlinkConfig object

GSM configuration, specified as a gsmUplinkConfig or gsmDownlinkConfig object.

Output Arguments
infostruct — Structure containing object information
struct

Structure containing these fields with information about the characteristic GSM waveform based on
the input configuration object.

SymbolRate — GSM symbol rate
positive integer

GSM symbol rate in symbols per second, returned as a positive integer.
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SampleRate — GSM sample rate
positive integer

GSM sample rate in samples per second, returned as a positive integer.

BandwidthTimeProduct — Product of bandwidth and symbol time of Gaussian pulse
positive integer

Product of bandwidth and symbol time of Gaussian pulse for the GMSK modulator, returned as a
positive integer.

BurstLengthInSymbols — GSM burst length
positive scalar

GSM burst length in symbols, returned as a positive scalar.

NumBurstsPerFrame — Number of bursts in GSM TDMA frame
positive integer

Number of bursts in a GSM TDMA frame, returned as a positive integer.

BurstLengthInSamples — GSM burst length
positive integer

GSM burst length in samples, returned as a positive integer.

FrameLengthInSamples — GSM frame length
positive integer

GSM frame length in samples, returned as a positive integer.

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
gsmDownlinkConfig | gsmUplinkConfig

Functions
gsmCheckTimeMask | gsmFrame

Topics
“GSM TDMA Frame Parameterization for Waveform Generation”
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hammgen
Parity-check and generator matrices for Hamming code

Syntax
h = hammgen(m)
h = hammgen(m,poly)
[h,g] = hammgen( ___ )
[h,g,n,k] = hammgen( ___ )

Description
h = hammgen(m) returns an m-by-n parity-check matrix, h, for a Hamming code of codeword length
n = 2m–1. The message length of the Hamming code is n – m. The binary primitive polynomial that
the function uses to create the Hamming code is the default primitive polynomial in GF(2^m). For
more details of this default polynomial, see the gfprimdf function.

h = hammgen(m,poly) specifies poly, a binary primitive polynomial for GF(2m). The function uses
poly to create the Hamming code.

[h,g] = hammgen( ___ ) additionally returns a k-by-n generator matrix, g, that corresponds to the
parity-check matrix h. Specify any of the input argument combinations from the previous syntaxes.

[h,g,n,k] = hammgen( ___ ) also returns n, the codeword length and k, the message length, for
the Hamming code.

Examples

Generate Hamming Code Parity-Check Matrix Using Default Primitive Polynomial

Generate a parity-check matrix, h, for a Hamming code of codeword length 7. The function uses the
default primitive polynomial in GF(8) to create the Hamming code.

h = hammgen(3)

h = 3×7

     1     0     0     1     0     1     1
     0     1     0     1     1     1     0
     0     0     1     0     1     1     1

Generate Hamming Code Parity-Check Matrix from Primitive Polynomials

Generate the parity-check matrices for the Hamming code of codeword length 15, specifying the
primitive polynomials 1 + D + D4 and 1 + D3 + D4 in GF(16).
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h1 = hammgen(4,'1+D+D^4')

h1 = 4×15

     1     0     0     0     1     0     0     1     1     0     1     0     1     1     1
     0     1     0     0     1     1     0     1     0     1     1     1     1     0     0
     0     0     1     0     0     1     1     0     1     0     1     1     1     1     0
     0     0     0     1     0     0     1     1     0     1     0     1     1     1     1

h2 = hammgen(4,'1+D^3+D^4')

h2 = 4×15

     1     0     0     0     1     1     1     1     0     1     0     1     1     0     0
     0     1     0     0     0     1     1     1     1     0     1     0     1     1     0
     0     0     1     0     0     0     1     1     1     1     0     1     0     1     1
     0     0     0     1     1     1     1     0     1     0     1     1     0     0     1

Remove the embedded 4-by-4 identity matrices that is, the leftmost four columns in each parity-check
matrix.

h1 = h1(:,5:end)

h1 = 4×11

     1     0     0     1     1     0     1     0     1     1     1
     1     1     0     1     0     1     1     1     1     0     0
     0     1     1     0     1     0     1     1     1     1     0
     0     0     1     1     0     1     0     1     1     1     1

h2 = h2(:,5:end)

h2 = 4×11

     1     1     1     1     0     1     0     1     1     0     0
     0     1     1     1     1     0     1     0     1     1     0
     0     0     1     1     1     1     0     1     0     1     1
     1     1     1     0     1     0     1     1     0     0     1

Verify that the two resulting matrices differ.

isequal(h1,h2)

ans = logical
   0

Generate Hamming Code Parity-Check and Generator Matrices

Generate the parity-check matrix, h and the generator matrix, g for the Hamming code of codeword
length 7. Also return the codeword length, n, and the message length, k for the Hamming code. The
function uses the default primitive polynomial in GF(8) to create the Hamming code.
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[h,g,n,k] = hammgen(3)

h = 3×7

     1     0     0     1     0     1     1
     0     1     0     1     1     1     0
     0     0     1     0     1     1     1

g = 4×7

     1     1     0     1     0     0     0
     0     1     1     0     1     0     0
     1     1     1     0     0     1     0
     1     0     1     0     0     0     1

n = 7

k = 4

Input Arguments
m — Number of rows in parity-check matrix
integer greater than or equal to two

Number of rows in parity-check matrix, specified as an integer greater than or equal to two. The
function uses this value to calculate the codeword length and the message length of the Hamming
code.
Data Types: double

poly — Binary primitive polynomial in GF(2m)
binary row vector | character vector | string scalar

Binary primitive polynomial in GF(2m), specified as one of these values:

• Binary row vector of the polynomial coefficients in order of ascending powers
• Character vector
• String scalar

If poly is specified as a non-primitive polynomial, then the function hammgen displays an error.
Data Types: double | char | string

Output Arguments
h — Parity-check matrix for Hamming code
m-by-n matrix of binary values

Parity-check matrix for Hamming code, returned as an m-by-n matrix of binary values for the
Hamming code.
Data Types: single | double
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g — Generator matrix for Hamming code
k-by-n matrix of binary values

Generator matrix for Hamming code, returned as a k-by-n matrix of binary values corresponding to
the parity-check matrix h.
Data Types: single | double

n — Codeword length of Hamming code
positive integer

Codeword length of Hamming code, returned as a positive integer. This value is calculated as 2m–1.
Data Types: single | double

k — Message length of Hamming code
positive integer

Message length of Hamming code, returned as a positive integer. This value is calculated as n–m.
Data Types: single | double

Algorithms
hammgen uses the function gftuple to create the parity-check matrix by converting each element in
the Galois field (GF) to its polynomial representation. Unlike gftuple, which performs computations
in GF(2m) and processes one m-tuple at a time, the hammgen function generates the entire sequence
from 0 to 2m–1. The computation algorithm uses all previously computed values to generate the
computation result. If the value of m is less than 25 and the primitive polynomial is the default
primitive polynomial for GF(2m), the syntax hammgen(m) might be faster than the syntax
hammgen(m,poly).

Version History
Introduced before R2006a

See Also
Functions
encode | decode | gen2par | gftuple | gfprimdf

Topics
“Block Codes”
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hank2sys
(To be removed) Convert Hankel matrix to linear system model

Compatibility
hank2sys will be removed in a future release.

Syntax
[num,den] = hank2sys(h,ini,tol)
[num,den,sv] = hank2sys(h,ini,tol)
[a,b,c,d] = hank2sys(h,ini,tol)
[a,b,c,d,sv] = hank2sys(h,ini,tol)

Description
[num,den] = hank2sys(h,ini,tol) converts a Hankel matrix h to a linear system transfer
function with numerator num and denominator den. The vectors num and den list the coefficients of
their respective polynomials in ascending order of powers of z-1. The argument ini is the system
impulse at time zero. If tol > 1, tol is the order of the conversion. If tol < 1, tol is the tolerance
in selecting the conversion order based on the singular values. If you omit tol, its default value is
0.01. This conversion uses the singular value decomposition method.

[num,den,sv] = hank2sys(h,ini,tol) returns a vector sv that lists the singular values of h.

[a,b,c,d] = hank2sys(h,ini,tol) converts a Hankel matrix h to a corresponding linear system
state-space model. a, b, c, and d are matrices. The input parameters are the same as in the first
syntax above.

[a,b,c,d,sv] = hank2sys(h,ini,tol) is the same as the syntax above, except that sv is a
vector that lists the singular values of h.

Examples
h = hankel([1 0 1]);
[num,den,sv] = hank2sys(h,0,.01)

The output is

num =

         0    1.0000    0.0000    1.0000

den =

    1.0000    0.0000    0.0000    0.0000

sv =

 hank2sys

2-451



    1.6180
    1.0000
    0.6180

Version History
Introduced before R2006a

hank2sys will be removed in a future release.
Warns starting in R2021b

hank2sys will be removed in a future release.

See Also
hankel
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heldeintrlv
Restore ordering of symbols permuted using helintrlv

Syntax
[deintrlved,state] = heldeintrlv(data,col,ngrp,stp)
[deintrlved,state] = heldeintrlv(data,col,ngrp,stp,init_state)
deintrlved = heldeintrlv(data,col,ngrp,stp,init_state)

Description
[deintrlved,state] = heldeintrlv(data,col,ngrp,stp) restores the ordering of symbols
in data by placing them in an array row by row and then selecting groups in a helical fashion to
place in the output, deintrlved. data must have col*ngrp elements. If data is a matrix with
multiple rows and columns, it must have col*ngrp rows, and the function processes the columns
independently. state is a structure that holds the final state of the array. state.value stores input
symbols that remain in the col columns of the array and do not appear in the output.

The function uses the array internally for its computations. The array has unlimited rows indexed by
1, 2, 3,..., and col columns. The function initializes the top of the array with zeros. It then places
col*ngrp symbols from the input into the next ngrp rows of the array. The function places symbols
from the array in the output, intrlved, placing ngrp symbols at a time; the kth group of ngrp
symbols comes from the kth column of the array, starting from row 1+(k-1)*stp. Some output
symbols are default values of 0 rather than input symbols; similarly, some input symbols are left in
the array and do not appear in the output.

[deintrlved,state] = heldeintrlv(data,col,ngrp,stp,init_state) initializes the array
with the symbols contained in init_state.value instead of zeros. The structure init_state is
typically the state output from a previous call to this same function, and is unrelated to the
corresponding interleaver. In this syntax, some output symbols are default values of 0, some are input
symbols from data, and some are initialization values from init_state.value.

deintrlved = heldeintrlv(data,col,ngrp,stp,init_state) is the same as the syntax
above, except that it does not record the deinterleaver's final state. This syntax is appropriate for the
last in a series of calls to this function. However, if you plan to call this function again to continue the
deinterleaving process, the syntax above is more appropriate.

Using an Interleaver-Deinterleaver Pair

To use this function as an inverse of the helintrlv function, use the same col, ngrp, and stp
inputs in both functions. In that case, the two functions are inverses in the sense that applying
helintrlv followed by heldeintrlv leaves data unchanged, after you take their combined delay of
col*ngrp*ceil(stp*(col-1)/ngrp) into account. To learn more about delays of convolutional
interleavers, see “Delays of Convolutional Interleavers”.

Note Because the delay is an integer multiple of the number of symbols in data, you must use
heldeintrlv at least twice (possibly more times, depending on the actual delay value) before the
function returns results that represent more than just the delay.

 heldeintrlv

2-453



Examples
Recover interleaved data, taking into account the delay of the interleaver-deinterleaver pair.

col = 4; ngrp = 3; stp = 2; % Helical interleaver parameters
% Compute the delay of interleaver-deinterleaver pair.
delayval = col * ngrp * ceil(stp * (col-1)/ngrp);

len = col*ngrp; % Process this many symbols at one time.
data = randi([0 9],len,1); % Random symbols
data_padded = [data; zeros(delayval,1)]; % Pad with zeros.

% Interleave zero-padded data.
[i1,istate] = helintrlv(data_padded(1:len),col,ngrp,stp);
[i2,istate] = helintrlv(data_padded(len+1:2*len),col,ngrp, ...
              stp,istate);
i3 = helintrlv(data_padded(2*len+1:end),col,ngrp,stp,istate);

% Deinterleave.
[d1,dstate] = heldeintrlv(i1,col,ngrp,stp);
[d2,dstate] = heldeintrlv(i2,col,ngrp,stp,dstate);
d3 = heldeintrlv(i3,col,ngrp,stp,dstate);

% Check the results.
d0 = [d1; d2; d3]; % All the deinterleaved data
d0_trunc = d0(delayval+1:end); % Remove the delay.
ser = symerr(data,d0_trunc)

The output below shows that no symbol errors occurred.

ser =

     0

Version History
Introduced before R2006a

See Also
helintrlv

Topics
“Interleaving”
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helintrlv
Permute symbols using helical array

Syntax
intrlved = helintrlv(data,col,ngrp,stp)
[intrlved,state] = helintrlv(data,col,ngrp,stp)
[intrlved,state] = helintrlv(data,col,ngrp,stp,init_state)

Description
intrlved = helintrlv(data,col,ngrp,stp) permutes the symbols in data by placing them in
an unlimited-row array in helical fashion and then placing rows of the array in the output, intrlved.
data must have col*ngrp elements. If data is a matrix with multiple rows and columns, it must
have col*ngrp rows, and the function processes the columns independently.

The function uses the array internally for its computations. The array has unlimited rows indexed by
1, 2, 3,..., and col columns. The function partitions col*ngrp symbols from the input into
consecutive groups of ngrp symbols. The function places the kth group in the array along column k,
starting from row 1+(k-1)*stp. Positions in the array that do not contain input symbols have default
values of 0. The function places col*ngrp symbols from the array in the output, intrlved, by
reading the first ngrp rows sequentially. Some output symbols are default values of 0 rather than
input symbols; similarly, some input symbols are left in the array and do not appear in the output.

[intrlved,state] = helintrlv(data,col,ngrp,stp) returns a structure that holds the final
state of the array. state.value stores input symbols that remain in the col columns of the array
and do not appear in the output.

[intrlved,state] = helintrlv(data,col,ngrp,stp,init_state) initializes the array with
the symbols contained in init_state.value. The structure init_state is typically the state
output from a previous call to this same function, and is unrelated to the corresponding deinterleaver.
In this syntax, some output symbols are default values of 0, some are input symbols from data, and
some are initialization values from init_state.value.

Examples
The example below rearranges the integers from 1 to 24.

% Interleave some symbols. Record final state of array.
[i1,state] = helintrlv([1:12]',3,4,1);
% Interleave more symbols, remembering the symbols that
% were left in the array from the earlier command.
i2 = helintrlv([13:24]',3,4,1,state);

disp('Interleaved data:')
disp([i1,i2]')
disp('Values left in array after first interleaving operation:')
state.value{:}

During the successive calls to helintrlv, it internally creates the three-column arrays
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[1  0  0;
 2  5  0;
 3  6  9;
 4  7 10;
 0  8 11;
 0  0 12]

and

[13  8 11;
 14 17 12;
 15 18 21;
 16 19 22;
  0 20 23;
  0  0 24]

In the second array shown above, the 8, 11, and 12 are values left in the array from the previous call
to the function. Specifying the init_state input in the second call to the function causes it to use
those values rather than the default values of 0.

The output from this example is below. (The matrix has been transposed for display purposes.) The
interleaved data comes from the top four rows of the three-column arrays shown above. Notice that
some of the symbols in the first half of the interleaved data are default values of 0, some of the
symbols in the second half of the interleaved data were left in the array from the first call to
helintrlv, and some of the input symbols (20, 23, and 24) do not appear in the interleaved data at
all.

Interleaved data:
  Columns 1 through 10 

     1     0     0     2     5     0     3     6     9     4
    13     8    11    14    17    12    15    18    21    16

  Columns 11 through 12 

     7    10
    19    22

Values left in array after first interleaving operation:

ans =

     []

ans =

     8

ans =

    11    12

The example on the reference page for heldeintrlv also uses this function.
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Version History
Introduced before R2006a

See Also
heldeintrlv

Topics
“Interleaving”
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helscandeintrlv
Restore ordering of symbols in helical pattern

Syntax
deintrlvd = helscandeintrlv(data,Nrows,Ncols,hstep)

Description
deintrlvd = helscandeintrlv(data,Nrows,Ncols,hstep) rearranges the elements in data
by filling a temporary matrix with the elements in a helical fashion and then sending the matrix
contents to the output row by row. Nrows and Ncols are the dimensions of the temporary matrix.
hstep is the slope of the diagonal, that is, the amount by which the row index increases as the
column index increases by one. hstep must be a nonnegative integer less than Nrows.

Helical fashion means that the function places input elements along diagonals of the temporary
matrix. The number of elements in each diagonal is exactly Ncols, after the function wraps past the
edges of the matrix when necessary. The function traverses diagonals so that the row index and
column index both increase. Each diagonal after the first one begins one row below the first element
of the previous diagonal.

If data is a vector, it must have Nrows*Ncols elements. If data is a matrix with multiple rows and
columns, data must have Nrows*Ncols rows and the function processes the columns independently.

To use this function as an inverse of the helscanintrlv function, use the same Nrows, Ncols, and
hstep inputs in both functions. In that case, the two functions are inverses in the sense that applying
helscanintrlv followed by helscandeintrlv leaves data unchanged.

Examples

Apply Helical Deinterleaving to Integer Row Vector

Apply helical scan deinterleaving to the vector [1:12], rearranging the vector using a 3-by-4
temporary matrix and diagonals of slope 1.

Internally, the helscandeintrlv function creates the 3-by-4 temporary matrix using length-four
diagonals. As represented here.

[1 10  7  4;
 5  2 11  8;
 9  6  3 12]

ans = 3×4

     1    10     7     4
     5     2    11     8
     9     6     3    12

The function then sends the elements, row by row, to the output d.
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d = helscandeintrlv(1:12,3,4,1)

d = 1×12

     1    10     7     4     5     2    11     8     9     6     3    12

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
helscanintrlv

Topics
“Interleaving”
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helscanintrlv
Reorder symbols in helical pattern

Syntax
intrlvd = helscanintrlv(data,Nrows,Ncols,hstep)

Description
intrlvd = helscanintrlv(data,Nrows,Ncols,hstep) rearranges the elements in data by
filling a temporary matrix with the elements row by row and then sending the matrix contents to the
output in a helical fashion. Nrows and Ncols are the dimensions of the temporary matrix. hstep is
the slope of the diagonal, that is, the amount by which the row index increases as the column index
increases by one. hstep must be a nonnegative integer less than Nrows.

Helical fashion means that the function selects elements along diagonals of the temporary matrix.
The number of elements in each diagonal is exactly Ncols, after the function wraps past the edges of
the matrix when necessary. The function traverses diagonals so that the row index and column index
both increase. Each diagonal after the first one begins one row below the first element of the
previous diagonal.

If data is a vector, it must have Nrows*Ncols elements. If data is a matrix with multiple rows and
columns, data must have Nrows*Ncols rows and the function processes the columns independently.

Examples
The command below rearranges a vector using diagonals of two different slopes.

i1 = helscanintrlv(1:12,3,4,1) % Slope of diagonal is 1.
i2 = helscanintrlv(1:12,3,4,2) % Slope of diagonal is 2.

The output is below.

i1 =

  Columns 1 through 10 

     1     6    11     4     5    10     3     8     9     2

  Columns 11 through 12 

     7    12

i2 =

  Columns 1 through 10 

     1    10     7     4     5     2    11     8     9     6

  Columns 11 through 12 
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     3    12

In each case, the function internally creates the temporary 3-by-4 matrix

[1  2  3  4;
 5  6  7  8;
 9 10 11 12]

To form i1, the function forms each slope-one diagonal by moving one row down and one column to
the right. The first diagonal contains 1, 6, 11, and 4, while the second diagonal starts with 5 because
that is beneath 1 in the temporary matrix.

To form i2, the function forms each slope-two diagonal by moving two rows down and one column to
the right. The first diagonal contains 1, 10, 7, and 4, while the second diagonal starts with 5 because
that is beneath 1 in the temporary matrix.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
helscandeintrlv

Topics
“Interleaving”
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hex2poly
Convert hexadecimal character vector to binary coefficients

Syntax
b = hex2poly(hex)
b = hex2poly(hex,ord)

Description
b = hex2poly(hex) converts a hexadecimal character vector, hex, to a vector of binary
coefficients, b.

b = hex2poly(hex,ord) specifies the power order, ord, of the coefficients that comprise the
output. If omitted, ord is 'descending'.

Examples

Convert Hexadecimal Polynomial to Binary Vector

Convert the hexadecimal polynomial '1AF' to a vector of binary coefficients. The coefficients
represent the polynomial x8 + x7 + x5 + x3 + x2 + x + 1.

b = hex2poly('1AF')

b = 1×9

     1     1     0     1     0     1     1     1     1

Convert Hexadecimal into Ascending Order Binary Vector

Convert hexadecimal '0x82608EDB' to a vector of binary coefficients. Specify that the binary
coefficients are in ascending order.

b = hex2poly('0x82608EDB','ascending')

b = 1×32

     1     1     0     1     1     0     1     1     0     1     1     1     0     0     0     1     0     0     0     0     0     1     1     0     0     1     0     0     0     0     0     1

The binary representation corresponds to a polynomial of
x31 + x25 + x22 + x21 + x15 + x11 + x10 + x9 + x7 + x6 + x4 + x3 + x + 1.
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Input Arguments
hex — Hexadecimal number
character vector

Hexadecimal number, specified as a character vector.
Example: 'FF'
Example: '0x3FA'
Data Types: char

ord — Power order
'descending' (default) | 'ascending'

Power order of the vector of binary coefficients, specified as a character vector having a value of
'ascending' or 'descending'.
Data Types: char

Output Arguments
b — Binary coefficients
vector

Binary coefficients representing a polynomial, returned as a row vector having length equal to p + 1,
where p is the order of hexadecimal input.

Version History
Introduced in R2015b

See Also
oct2poly | dec2hex
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hilbiir
(Removed) Design Hilbert transform IIR filter

Compatibility
hilbiir has been removed. To design a Hilbert transform filter, use the fdesign.hilbert object.

Syntax
hilbiir
hilbiir(ts)
hilbiir(ts,dly)
hilbiir(ts,dly,bandwidth)
hilbiir(ts,dly,bandwidth,tol)
[num,den] = hilbiir(...)
[num,den,sv] = hilbiir(...)
[a,b,c,d] = hilbiir(...)
[a,b,c,d,sv] = hilbiir(...)

Description
The function hilbiir designs a Hilbert transform filter. The output is either

• A plot of the filter's impulse response, or
• A quantitative characterization of the filter, using either a transfer function model or a state-space

model

Background Information

An ideal Hilbert transform filter has the transfer function H(s) = -jsgn(s), where sgn(.) is the
signum function (sign in MATLAB). The impulse response of the Hilbert transform filter is

h(t) = 1
πt

Because the Hilbert transform filter is a noncausal filter, the hilbiir function introduces a group
delay, dly. A Hilbert transform filter with this delay has the impulse response

h(t) = 1
π(t − dly)

Choosing a Group Delay Parameter

The filter design is an approximation. If you provide the filter's group delay as an input argument,
these two suggestions can help improve the accuracy of the results:

• Choose the sample time ts and the filter's group delay dly so that dly is at least a few times
larger than ts and rem(dly,ts) = ts/2. For example, you can set ts to 2*dly/N, where N is a
positive integer.
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• At the point t = dly, the impulse response of the Hilbert transform filter can be interpreted as 0,
-Inf, or Inf. If hilbiir encounters this point, it sets the impulse response there to zero. To
improve accuracy, avoid the point t = dly.

Syntaxes for Plots

Each of these syntaxes produces a plot of the impulse response of the filter that the hilbiir
function designs, as well as the impulse response of a corresponding ideal Hilbert transform filter.

hilbiir plots the impulse response of a fourth-order digital Hilbert transform filter with a one-
second group delay. The sample time is 2/7 seconds. In this particular design, the tolerance index is
0.05. The plot also displays the impulse response of the ideal Hilbert transform filter with a one-
second group delay.

hilbiir(ts) plots the impulse response of a fourth-order Hilbert transform filter with a sample
time of ts seconds and a group delay of ts*7/2 seconds. The tolerance index is 0.05. The plot also
displays the impulse response of the ideal Hilbert transform filter having a sample time of ts seconds
and a group delay of ts*7/2 seconds.

hilbiir(ts,dly) is the same as the syntax above, except that the filter's group delay is dly for
both the ideal filter and the filter that hilbiir designs. See “Choosing a Group Delay Parameter” on
page 2-464 above for guidelines on choosing dly.

hilbiir(ts,dly,bandwidth) is the same as the syntax above, except that bandwidth specifies
the assumed bandwidth of the input signal and that the filter design might use a compensator for the
input signal. If bandwidth = 0 or bandwidth > 1/(2*ts), hilbiir does not use a compensator.

hilbiir(ts,dly,bandwidth,tol) is the same as the syntax above, except that tol is the
tolerance index. If tol < 1, the order of the filter is determined by

truncated‐singular‐value
maximum‐singular‐value < tol

If tol > 1, the order of the filter is tol.

Syntaxes for Transfer Function and State-Space Quantities

Each of these syntaxes produces quantitative information about the filter that hilbiir designs, but
does not produce a plot. The input arguments for these syntaxes (if you provide any) are the same as
those described in “Syntaxes for Plots” on page 2-465.

[num,den] = hilbiir(...) outputs the numerator and denominator of the IIR filter's transfer
function.

[num,den,sv] = hilbiir(...) outputs the numerator and denominator of the IIR filter's transfer
function, and the singular values of the Hankel matrix that hilbiir uses in the computation.

[a,b,c,d] = hilbiir(...) outputs the discrete-time state-space model of the designed Hilbert
transform filter. a, b, c, and d are matrices.

[a,b,c,d,sv] = hilbiir(...) outputs the discrete-time state-space model of the designed
Hilbert transform filter, and the singular values of the Hankel matrix that hilbiir uses in the
computation.
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Examples
[num,den] = hilbiir

The output is

num =

   -0.3183   -0.3041   -0.5160   -1.8453    3.3105

den =

    1.0000   -0.4459   -0.1012   -0.0479   -0.0372

Algorithms
The hilbiir function calculates the impulse response of the ideal Hilbert transform filter response
with a group delay. It fits the response curve using a singular-value decomposition method. See the
book by Kailath [1].

Version History
Introduced before R2006a

Function has been removed
Errors starting in R2022b

The hilbiir has been removed. Use fdesign.hilbert object to design Hilbert transform IIR filter.

Function issues a warning
Warns starting in R2021b

The hilbiir function will be removed in a future release. To design Hilbert transform IIR filter, use the
fdesign.hilbert object.

References

[1] Kailath, Thomas, Linear Systems, Englewood Cliffs, NJ, Prentice-Hall, 1980.

See Also
grpdelay
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huffmandeco
Decode binary code by Huffman decoding

Syntax
sig = huffmandeco(code,dict)

Description
sig = huffmandeco(code,dict) decodes the numeric Huffman code vector, code, by using the
Huffman codes described by input code dictionary dict. Input dict is an N-by-2 cell array, where N
is the number of distinct possible symbols in the original signal that encodes code. The first column
of dict represents the distinct symbols, and the second column represents the corresponding
codewords. Each codeword is represented as a numeric row vector, and no codeword in dict can be
the prefix of any other codeword in dict. You can generate dict by using the huffmandict
function and code by using the huffmanenco function. If all symbols in dict are numeric, output
sig is a vector. If any symbol in dict is alphabetic, sig is a one-dimensional cell array.

Examples

Huffman Encoding and Decoding

Create unique symbols, and assign probabilities of occurrence to them.

symbols = 1:6; 
p = [.5 .125 .125 .125 .0625 .0625];

Create a Huffman dictionary based on the symbols and their probabilities.

dict = huffmandict(symbols,p);

Generate a vector of random symbols.

inputSig = randsrc(100,1,[symbols;p]);

Encode the random symbols.

code = huffmanenco(inputSig,dict);

Decode the data. Verify that the decoded symbols match the original symbols.

sig = huffmandeco(code,dict);
isequal(inputSig,sig)

ans = logical
   1

Convert the original signal to a binary, and determine the length of the binary symbols.

binarySig = de2bi(inputSig);
seqLen = numel(binarySig)
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seqLen = 300

Convert the Huffman-encoded symbols to binary, and determine the length of the encoded binary
symbols.

binaryComp = de2bi(code);
encodedLen = numel(binaryComp)

encodedLen = 224

Huffman Encoding and Decoding with Alphanumeric Signal

Define the alphanumeric symbols in cell array form.

inputSig = {'a2',44,'a3',55,'a1'}

inputSig=1×5 cell array
    {'a2'}    {[44]}    {'a3'}    {[55]}    {'a1'}

Define a Huffman dictionary. Codes for signal letters must be numeric.

dict = {'a1',0; 'a2',[1,0]; 'a3',[1,1,0]; 44,[1,1,1,0]; 55,[1,1,1,1]}

dict=5×2 cell array
    {'a1'}    {[      0]}
    {'a2'}    {[    1 0]}
    {'a3'}    {[  1 1 0]}
    {[44]}    {[1 1 1 0]}
    {[55]}    {[1 1 1 1]}

Encode the alphanumeric symbols.

enco = huffmanenco(inputSig,dict);

Decode the data. Verify that the decoded symbols match the original symbols.

sig = huffmandeco(enco,dict)

sig=1×5 cell array
    {'a2'}    {[44]}    {'a3'}    {[55]}    {'a1'}

isequal(inputSig,sig)

ans = logical
   1

Input Arguments
code — Huffman code
numeric vector
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Huffman code, specified as a numeric vector. This value must be a Huffman code encoded using a
code dictionary produced by the huffmandict function.
Data Types: double

dict — Huffman code dictionary
N-by-2 cell array

Huffman code dictionary, specified as an N-by-2 cell array. N is the number of distinct possible
symbols for the function to encode. The first column of dict represents the distinct symbols, and the
second column represents the corresponding codewords. Each codeword is represented as a numeric
row vector, and no codeword in dict can be the prefix of any other codeword in dict. You can
generate dict by using the huffmandict function.
Data Types: double | cell

Output Arguments
sig — Decoded signal
numeric vector | numeric cell array | alphanumeric cell array

Decoded signal, returned as a numeric vector, numeric cell array, or alphanumeric cell array.

• If all symbols in input code dictionary dict are numeric, sig is a vector.
• If any symbol in input code dictionary dict is alphabetic, sig is a one-dimensional cell array.

Version History
Introduced before R2006a

References
[1] Sayood, Khalid. Introduction to Data Compression. 2nd ed. San Francisco: Morgan Kaufmann

Publishers, 2000.

See Also
Functions
huffmandict | huffmanenco

Topics
“Huffman Coding”
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huffmandict
Generate Huffman code dictionary for source with known probability model

Syntax
[dict,avglen] = huffmandict(symbols,prob)
[dict,avglen] = huffmandict(symbols,prob,N)
[dict,avglen] = huffmandict(symbols,prob,N,variance)

Description
[dict,avglen] = huffmandict(symbols,prob) generates a binary Huffman code dictionary,
dict, for the source symbols, symbols, by using the maximum variance algorithm. The input prob
specifies the probability of occurrence for each of the input symbols. The length of prob must equal
the length of symbols. The function also returns average codeword length avglen of the dictionary,
weighted according to the probabilities in the input prob.

[dict,avglen] = huffmandict(symbols,prob,N) generates an N-ary Huffman code dictionary
using maximum variance algorithm. N must not exceed the number of source symbols.

[dict,avglen] = huffmandict(symbols,prob,N,variance) generates an N-ary Huffman
code dictionary with the specified variance.

Examples

Generate Huffman Code and View Results

Generate a binary Huffman code dictionary, additionally returning the average code length.

Specify a symbol alphabet vector and a symbol probability vector.

symbols = (1:5); % Alphabet vector
prob = [.3 .3 .2 .1 .1]; % Symbol probability vector

Generate a binary Huffman code, displaying the average code length and the cell array containing the
codeword dictionary.

[dict,avglen] = huffmandict(symbols,prob)

dict=5×2 cell array
    {[1]}    {[  0 1]}
    {[2]}    {[  0 0]}
    {[3]}    {[  1 0]}
    {[4]}    {[1 1 1]}
    {[5]}    {[1 1 0]}

avglen = 2.2000

Display the fifth codeword from the dictionary.
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samplecode = dict{5,2} % Codeword for fifth signal value

samplecode = 1×3

     1     1     0

Generate Ternary Huffman Codes

Use the code dictionary generator for Huffman coder function to generate binary and ternary
Huffman codes.

Specify a symbol alphabet vector and a symbol probability vector.

symbols = (1:5); % Alphabet vector
prob = [.3 .3 .2 .1 .1]; % Symbol probability vector

Generate a binary Huffman code, displaying the cell array containing the codeword dictionary.

[dict,avglen] = huffmandict(symbols,prob);
dict(:,2) = cellfun(@num2str,dict(:,2),'UniformOutput',false)

dict=5×2 cell array
    {[1]}    {'0  1'   }
    {[2]}    {'0  0'   }
    {[3]}    {'1  0'   }
    {[4]}    {'1  1  1'}
    {[5]}    {'1  1  0'}

Generate a ternary Huffman code with minimum variance.

[dict,avglen] = huffmandict(symbols,prob,3,'min');
dict(:,2) = cellfun(@num2str,dict(:,2),'UniformOutput',false)

dict=5×2 cell array
    {[1]}    {'2'   }
    {[2]}    {'1'   }
    {[3]}    {'0  0'}
    {[4]}    {'0  2'}
    {[5]}    {'0  1'}

Input Arguments
symbols — Source symbols
vector | cell array | alphanumeric cell array

Source symbols, specified as a vector, cell array, or an alphanumeric cell array. symbols lists the
distinct signal values that the source produces. If symbols is a cell array, it must be a 1-by-S or S-
by-1 cell array, where S is the number of symbols.
Data Types: double | cell
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prob — Probability of occurrence
vector in the range [0, 1]

Probability of occurrence for each symbol, specified as a vector in the range [0, 1]. The elements of
this vector must sum to 1. The length this vector must equal the length of input symbols.
Data Types: double

N — N-ary Huffman code dictionary
scalar in the range [2, 10]

N-ary Huffman code dictionary, specified as a scalar in the range [2, 10]. This value must be less than
or equal to the length of input symbols.
Data Types: double

variance — Variance for Huffman code
'min' | 'max'

Variance for Huffman code, specified as one of these values.

• 'min' — This function generates N-ary Huffman code dictionary with the minimum variance. If
you do not specify the variance input argument, the function uses this case.

• 'max' — This function generates N-ary Huffman code dictionary with the maximum variance.

Data Types: char

Output Arguments
dict — Huffman code dictionary
two-column cell array

Huffman code dictionary, returned as a two-column cell array. The first column lists the distinct signal
values from input symbols. The second column corresponds to Huffman codewords, where each
Huffman codeword is represented as a row vector. If you specify the input argument N, the function
returns dict as an N-ary Huffman code dictionary.
Data Types: double | cell

avglen — Average codeword length
positive scalar

Average codeword length, weighted according to the probabilities in the input prob, returned as a
positive scalar.
Data Types: double

Version History
Introduced before R2006a

References
[1] Sayood, Khalid. Introduction to Data Compression. 2nd ed. San Francisco: Morgan Kaufmann

Publishers, 2000.
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See Also
Functions
huffmanenco | huffmandeco

Topics
“Huffman Coding”
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huffmanenco
Encode sequence of symbols by Huffman encoding

Syntax
code = huffmanenco(sig,dict)

Description
code = huffmanenco(sig,dict) encodes input signal sig using the Huffman codes described by
input code dictionary dict. sig can have the form of a vector, cell array, or alphanumeric cell array.
If sig is a cell array, it must be either a row or a column. dict is an N-by-2 cell array, where N is the
number of distinct possible symbols to encode. The first column of dict represents the distinct
symbols and the second column represents the corresponding codewords. Each codeword is
represented as a row vector, and no codeword in dict can be the prefix of any other codeword in
dict. You can generate dict using the huffmandict function.

Examples

Huffman Encoding and Decoding

Create unique symbols, and assign probabilities of occurrence to them.

symbols = 1:6; 
p = [.5 .125 .125 .125 .0625 .0625];

Create a Huffman dictionary based on the symbols and their probabilities.

dict = huffmandict(symbols,p);

Generate a vector of random symbols.

inputSig = randsrc(100,1,[symbols;p]);

Encode the random symbols.

code = huffmanenco(inputSig,dict);

Decode the data. Verify that the decoded symbols match the original symbols.

sig = huffmandeco(code,dict);
isequal(inputSig,sig)

ans = logical
   1

Convert the original signal to a binary, and determine the length of the binary symbols.

binarySig = de2bi(inputSig);
seqLen = numel(binarySig)
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seqLen = 300

Convert the Huffman-encoded symbols to binary, and determine the length of the encoded binary
symbols.

binaryComp = de2bi(code);
encodedLen = numel(binaryComp)

encodedLen = 224

Huffman Encoding and Decoding with Alphanumeric Signal

Define the alphanumeric symbols in cell array form.

inputSig = {'a2',44,'a3',55,'a1'}

inputSig=1×5 cell array
    {'a2'}    {[44]}    {'a3'}    {[55]}    {'a1'}

Define a Huffman dictionary. Codes for signal letters must be numeric.

dict = {'a1',0; 'a2',[1,0]; 'a3',[1,1,0]; 44,[1,1,1,0]; 55,[1,1,1,1]}

dict=5×2 cell array
    {'a1'}    {[      0]}
    {'a2'}    {[    1 0]}
    {'a3'}    {[  1 1 0]}
    {[44]}    {[1 1 1 0]}
    {[55]}    {[1 1 1 1]}

Encode the alphanumeric symbols.

enco = huffmanenco(inputSig,dict);

Decode the data. Verify that the decoded symbols match the original symbols.

sig = huffmandeco(enco,dict)

sig=1×5 cell array
    {'a2'}    {[44]}    {'a3'}    {[55]}    {'a1'}

isequal(inputSig,sig)

ans = logical
   1

Input Arguments
sig — Input signal
vector | cell array | alphanumeric cell array
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Input signal for the compression, specified as a vector, cell array, or an alphanumeric cell array. sig
can have the form of a vector, cell array, or alphanumeric cell array. If sig is a cell array, it must be a
1-by-S or S-by-1 cell array, where S is the number of symbols.
Data Types: double | cell

dict — Huffman code dictionary
N-by-2 cell array

Huffman code dictionary, specified as an N-by-2 cell array. N is the number of distinct possible
symbols for the function to encode. The first column of dict represents the distinct symbols and the
second column represents the corresponding codewords. Each codeword is represented as a row
vector, and no codeword in dict can be the prefix of any other codeword in dict. You can generate dict
by using the huffmandict function.
Data Types: double | cell

Output Arguments
code — Encoded signal
vector

Encoded signal for the input Huffman code dictionary dict, returned as a vector.

Version History
Introduced before R2006a

References
[1] Sayood, Khalid. Introduction to Data Compression. 2nd ed. San Francisco: Morgan Kaufmann

Publishers, 2000.

See Also
Functions
huffmandict | huffmandeco

Topics
“Huffman Coding”
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ifft
Inverse discrete Fourier transform of Galois array

Syntax
ifft(x)

Description
ifft(x) is the inverse discrete Fourier transform (DFT) of the Galois vector x. If x is in the Galois
field GF(2m), the length of x must be 2m-1.

Examples
For an example using ifft, see the reference page for fft.

Limitations
The Galois field over which this function works must have 256 or fewer elements. In other words, x
must be in the Galois field GF(2m), where m is an integer between 1 and 8.

Algorithms
If x is a column vector, ifft applies dftmtx to the multiplicative inverse of the primitive element of
the Galois field and multiplies the resulting matrix by x.

Version History
Introduced before R2006a

See Also
gf | fft | dftmtx

Topics
“Signal Processing Operations in Galois Fields”
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int2bit
Convert integers to bits

Syntax
Y = int2bit(X,n)
Y = int2bit(X,n,msbfirst)

Description
Y = int2bit(X,n) converts each integer element in X to n column-wise bits in Y, with the first bit
as the most significant bit (MSB).

Y = int2bit(X,n,msbfirst) indicates whether the first bits in each set of n column-wise bits
from Y is MSB or the least significant bit (LSB).

Examples

Convert Vector of Integers to Bits

Specify a row vector of integers.

X = [12 5]

X = 1×2

    12     5

Specify for four column-wise bit elements for the converted output. Then, convert the integers to bits.

n = 4;
Y = int2bit(X,n)

Y = 4×2

     1     0
     1     1
     0     0
     0     1

Convert Matrix of Integers to Bits

Specify a matrix of integers.

X = int8([10 6 14; 11 5 9])

X = 2x3 int8 matrix
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   10    6   14
   11    5    9

Specify that the first bit in each set of four column-wise bit elements for the output is LSB. Then,
convert the integers to bits.

n = 4;
msbfirst = false;
Y = int2bit(X,n,msbfirst)

Y = 8x3 int8 matrix

   0   0   0
   1   1   1
   0   1   1
   1   0   1
   1   1   1
   1   0   0
   0   1   0
   1   0   1

Convert Array of Integers to Bits

Specify an array of integers.

X = randi([0,9],4,3,2,'uint16')

X = 4x3x2 uint16 array
X(:,:,1) =

   8   6   9
   9   0   9
   1   2   1
   9   5   9

X(:,:,2) =

   9   4   6
   4   9   0
   8   7   8
   1   9   9

Specify for three column-wise bit elements for the converted output. Then, convert the integers to
bits.

n = 3;
Y = int2bit(X,n)

Y = 12x3x2 uint8 array
Y(:,:,1) =

   0   1   0
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   0   1   0
   0   0   1
   0   0   0
   0   0   0
   1   0   1
   0   0   0
   0   1   0
   1   0   1
   0   1   0
   0   0   0
   1   1   1

Y(:,:,2) =

   0   1   1
   0   0   1
   1   0   0
   1   0   0
   0   0   0
   0   1   0
   0   1   0
   0   1   0
   0   1   0
   0   0   0
   0   0   0
   1   1   1

Input Arguments
X — Integers
scalar | vector | matrix | 3-D array

Integers, specified as a scalar, vector, matrix, or 3-D array of nonnegative integer values.
Example: [10 2] specifies an input row vector of size 1-by-2.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

n — Number of bits for conversion
positive integer

The number of bits for conversion to bits, specified as a positive integer.
Data Types: double

msbfirst — Specification of MSB first
true or 1 | false or 0

Specification of MSB first, specified as a numeric or logical 1 (true) or 0 (false).

• true –– For each set of n column-wise bits in X, the first bit is the MSB.
• false –– For each set of n column-wise bits in X, the first bit is the LSB.

Data Types: logical
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Output Arguments
Y — Bit representation of input integers
column vector | matrix | 3-D array

Bit representation of input integers, returned as a column vector, matrix, or 3-D array. Y has the same
dimensions as X except that the number of rows in Y is n times the number of rows in X. The output Y
consists of n least significant bits in the specified orientation. If n is less than the number of required
bits to represent the values in X, then the output Y consists of n least significant bits.

The data type of Y depends on the data type of X.

• If X is a floating-point data type, then Y is a floating-point data type.
• If X is a built-in unsigned integer data type, then Y is of data type uint8.
• If X is a built-in signed integer data type, then Y is of data type int8.
• If X is of data type double, then Y is of data type double with n no larger than 53.
• If X is of data type single, then Y is of data type single with n no larger than 24.

Version History
Introduced in R2021b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Input values must be less than 264 for code generation when the input data type is double.

See Also
Functions
bit2int | dec2base

Blocks
Integer to Bit Converter
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intdump
Integrate and dump

Syntax
y = intdump(x,nsamp)

Description
y = intdump(x,nsamp) integrates the signal x for one symbol period, then outputs the averaged
one value into Y. nsamp is the number of samples per symbol. For two-dimensional signals, the
function treats each column as one channel.

Examples
To see this function in conjunction with modulation, see “Modulation with Pulse Shaping and Filtering
Examples”.

Processes two independent channels, each of which contain three symbols of data made up of four
samples.

s = rng;
rng(68521);
nsamp = 4; % Number of samples per symbol
ch1 = randi([0 1],3*nsamp,1); % Random binary channel
ch2 = rectpulse([1 2 3]',nsamp); % Rectangular pulses
x = [ch1 ch2]; % Two-channel signal
y = intdump(x,nsamp)
rng(s);

The output is below. Each column corresponds to one channel, and each row corresponds to one
symbol.

y =

    0.5000    1.0000
    0.5000    2.0000
    1.0000    3.0000

Version History
Introduced before R2006a

See Also
rectpulse
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intrlv
Reorder sequence of symbols

Syntax
intrlved = intrlv(data,elements)

Description
intrlved = intrlv(data,elements) rearranges the elements of data as specified by
elements.

Examples

Apply Interleaving to Reorder and Deinterleaving to Restore Vector Data Order

Use the intrlv function to rearrange the elements of a vector to a random permutation determined
by the randperm function. Use the deintrlv function to restore the element order of the initial
vector by reusing the same random permutation. This illustrates the inverse relationship between the
intrlv and deintrlv functions.

Generate an input signal, data, and a permutation vector, elements.

data = 10:10:100

data = 1×10

    10    20    30    40    50    60    70    80    90   100

elements = randperm(10) % Permutation vector

elements = 1×10

     6     3     7     8     5     1     2     4     9    10

Permute the input signal according to the permutation vector by using the intrlv function and the
restore the input signal order by using the deintrlv function.

a = intrlv(data,elements)

a = 1×10

    60    30    70    80    50    10    20    40    90   100

b = deintrlv(a,elements)

b = 1×10
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    10    20    30    40    50    60    70    80    90   100

Apply Interleaving to Reorder and Deinterleaving to Restore Matrix Data Order

Use the intrlv function to rearrange the elements in the columns of a matrix to a random
permutation vector determined by the randperm function. Use the deintrlv function to restore the
element order of the initial matrix by reusing the same random permutation. This illustrates the
inverse relationship between the intrlv and deintrlv functions.

Generate an input signal, data, and a permutation vector, elements.

data(:,1) = 10:10:100

data = 10×1

    10
    20
    30
    40
    50
    60
    70
    80
    90
   100

data(:,2) = 0.1:0.1:1

data = 10×2

   10.0000    0.1000
   20.0000    0.2000
   30.0000    0.3000
   40.0000    0.4000
   50.0000    0.5000
   60.0000    0.6000
   70.0000    0.7000
   80.0000    0.8000
   90.0000    0.9000
  100.0000    1.0000

elements = randperm(10) % Permutation vector

elements = 1×10

     6     3     7     8     5     1     2     4     9    10

Permute the input signal according to the permutation vector by using the intrlv function, and then
restore the input signal order by using the deintrlv function.

a = intrlv(data,elements)
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a = 10×2

   60.0000    0.6000
   30.0000    0.3000
   70.0000    0.7000
   80.0000    0.8000
   50.0000    0.5000
   10.0000    0.1000
   20.0000    0.2000
   40.0000    0.4000
   90.0000    0.9000
  100.0000    1.0000

b = deintrlv(a,elements)

b = 10×2

   10.0000    0.1000
   20.0000    0.2000
   30.0000    0.3000
   40.0000    0.4000
   50.0000    0.5000
   60.0000    0.6000
   70.0000    0.7000
   80.0000    0.8000
   90.0000    0.9000
  100.0000    1.0000

Input Arguments
data — Input signal
vector | matrix

Input signal, specified as a vector or matrix. If data is a matrix with multiple rows and columns, the
function processes the columns independently.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | fi
Complex Number Support: Yes

elements — Permutation vector
integer vector

Permutation vector, specified as an integer vector. The permutation vector specifies the mapping used
to permute the input signal, data. The permutation vector length must equal the input signal length
and contain for each integer k in the range [1 length(data,1)]. If data is a length-N vector or an N-
row matrix, elements must be a length-N vector and contain each integer in the range [1
length(data,1)]. The sequence in elements is the sequence in which elements from data or its
columns appear in intrlved.
Data Types: double
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Output Arguments
intrlved — Interleaved data
vector | matrix

Interleaved data, returned as a vector or matrix with the same dimension and datatype as the input
signal. The output contains elements from the input signal mapped as intrlved(k,n) =
data(elements(k),n), for each integer k in the range [1 length(data,1)].

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
deintrlv

Topics
“Interleaving”
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iqcoef2imbal
Convert compensator coefficient to amplitude and phase imbalance

Syntax
[A,P] = iqcoef2imbal(C)

Description
[A,P] = iqcoef2imbal(C) converts compensator coefficient C to its equivalent amplitude and
phase imbalance.

Examples

Estimate I/Q Imbalance from Compensator Coefficient

Use iqcoef2imbal to estimate the amplitude and phase imbalance for a given complex coefficient.
The coefficients are an output from the step function of the IQImbalanceCompensator.

Create a raised cosine transmit filter to generate a 64-QAM signal.

M = 64;
txFilt = comm.RaisedCosineTransmitFilter;

Modulate and filter random 64-ary symbols.

data = randi([0 M-1],100000,1);
dataMod = qammod(data,M);
txSig = step(txFilt,dataMod);

Specify amplitude and phase imbalance.

ampImb = 2; % dB 
phImb = 15; % degrees

Apply the specified I/Q imbalance.

gainI = 10.^(0.5*ampImb/20);
gainQ = 10.^(-0.5*ampImb/20);
imbI = real(txSig)*gainI*exp(-0.5i*phImb*pi/180);
imbQ = imag(txSig)*gainQ*exp(1i*(pi/2 + 0.5*phImb*pi/180));
rxSig = imbI + imbQ;

Normalize the power of the received signal

rxSig = rxSig/std(rxSig);

Remove the I/Q imbalance using the comm.IQImbalanceCompensator System object™. Set the
compensator object such that the complex coefficients are made available as an output argument.

hIQComp = comm.IQImbalanceCompensator('CoefficientOutputPort',true);
[compSig,coef] = step(hIQComp,rxSig);
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Estimate the imbalance from the last value of the compensator coefficient.

[ampImbEst,phImbEst] = iqcoef2imbal(coef(end));

Compare the estimated imbalance values with the specified ones. Notice that there is good
agreement.

[ampImb phImb; ampImbEst phImbEst]

ans = 2×2

    2.0000   15.0000
    2.0178   14.5740

Input Arguments
C — Compensator coefficient
complex-valued scalar or vector

Coefficient used to compensate for an I/Q imbalance, specified as a complex-valued vector.
Example: 0.4+0.6i
Example: [0.1+0.2i; 0.3+0.5i]
Data Types: single | double

Output Arguments
A — Amplitude imbalance
real-valued vector

Amplitude imbalance in dB, returned as a real-valued vector with the same dimensions as C.

P — Phase imbalance
real-valued vector

Phase imbalance in degrees, returned as a real-valued vector with the same dimensions as C.

More About
I/Q Imbalance Compensation

The function iqcoef2imbal is a supporting function for the comm.IQImbalanceCompensator
System object.

Given a scaling and rotation factor, G, compensator coefficient, C, and received signal, x, the
compensated signal, y, has the form

y = G x + Cconj(x) .

In matrix form, this can be rewritten as

Y = RX ,
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where X is a 2-by-1 vector representing the imbalanced signal [XI, XQ] and Y is a 2-by-1 vector
representing the compensator output [YI, YQ].

The matrix R is expressed as

R =
1 + Re C Im C

Im C 1 − Re C

For the compensator to perfectly remove the I/Q imbalance, R = K-1 because X = K S, where K is a 2-
by-2 matrix whose values are determined by the amplitude and phase imbalance and S is the ideal
signal. Define a matrix M with the form

M =
1 −α
α 1

Both M and M-1 can be thought of as scaling and rotation matrices that correspond to the factor G.
Because K = R-1, the product M-1 R K M is the identity matrix, where M-1 R represents the
compensator output and K M represents the I/Q imbalance. The coefficient α is chosen such that

KM = L
Igaincos(θI) Qgaincos(θQ)
Igainsin(θI) Qgainsin(θQ)

where L is a constant. From this form, we can obtain Igain, Qgain, θI, and θQ. For a given phase
imbalance, ΦImb, the in-phase and quadrature angles can be expressed as

θI = − π/2 ΦImb/180
θQ = π/2 + π/2 ΦImb/180

Hence, cos(θQ) = sin(θI) and sin(θQ) = cos(θI) so that

L
Igaincos(θI) Qgaincos(θQ)
Igainsin(θI) Qgainsin(θQ)

= L
Igaincos(θI) Qgainsin(θI)
Igainsin(θI) Qgaincos(θI)

The I/Q imbalance can be expressed as

KM =
K11 + αK12 −αK11 + K12
K21 + αK22 −αK21 + K22

= L
Igaincos(θI) Qgainsin(θI)
Igainsin(θI) Qgaincos(θI)

Therefore,

K21 + αK22 / K11 + αK12 = −αK11 + K12 / −αK21 + K22 = sin(θI)/cos(θI)

The equation can be written as a quadratic equation to solve for the variable α, that is D1α2 + D2α +
D3 = 0, where

D1 = − K11K12 + K22K21

D2 = K12
2 + K21

2 − K11
2 − K22

2

D3 = K11K12− K21K22
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When |C| ≤ 1, the quadratic equation has the following solution:

α =
−D2− D2− 4D1D3

2D1

Otherwise, when |C| > 1, the solution has the following form:

α =
−D2 + D2− 4D1D3

2D1

Finally, the amplitude imbalance, AImb, and the phase imbalance, ΦImb, are obtained.

K′ = K 1 −α
α 1

AImb = 20log10 K′11/K′22

ΦImb = − 2tan−1 K′21/K′11 180/π

Note

• If C is real and |C| ≤ 1, the phase imbalance is 0 and the amplitude imbalance is 20log10((1–C)/
(1+C))

• If C is real and |C| > 1, the phase imbalance is 180° and the amplitude imbalance is 20log10((C
+1)/(C−1)).

• If C is imaginary, AImb = 0.

Version History
Introduced in R2014b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
iqimbal | iqimbal2coef

Objects
comm.IQImbalanceCompensator
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iqimbal2coef
Convert I/Q imbalance to compensator coefficient

Syntax
C = iqimbal2coef(A,P)

Description
C = iqimbal2coef(A,P) converts an I/Q amplitude and phase imbalance to its equivalent
compensator coefficient.

Examples

Generate Coefficients for I/Q Imbalance Compensation

Generate coefficients for the I/Q imbalance compensator System object™ using iqimbal2coef. The
compensator corrects for an I/Q imbalance using the generated coefficients.

Create a raised cosine transmit filter System object.

txRCosFilt = comm.RaisedCosineTransmitFilter;

Modulate and filter random 64-ary symbols.

M= 64;
data = randi([0 M-1],100000,1);
dataMod = qammod(data,M);
txSig = txRCosFilt(dataMod);

Specify amplitude and phase imbalance.

ampImb = 2; % dB
phImb = 15; % degrees

Apply the specified I/Q imbalance.

gainI = 10.^(0.5*ampImb/20);
gainQ = 10.^(-0.5*ampImb/20);
imbI = real(txSig)*gainI*exp(-0.5i*phImb*pi/180);
imbQ = imag(txSig)*gainQ*exp(1i*(pi/2 + 0.5*phImb*pi/180));
rxSig = imbI + imbQ;

Normalize the power of the received signal.

rxSig = rxSig/std(rxSig);

Remove the I/Q imbalance by creating and applying a comm.IQImbalanceCompensator object. Set
the compensator such that the complex coefficients are made available as an output argument.

iqComp = comm.IQImbalanceCompensator('CoefficientOutputPort',true);
[compSig,coef] = iqComp(rxSig);
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Compare the final compensator coefficient to the coefficient generated by the iqimbal2coef
function. Observe that there is good agreement.

idealcoef = iqimbal2coef(ampImb,phImb);
[coef(end); idealcoef]

ans = 2×1 complex

  -0.1137 + 0.1296i
  -0.1126 + 0.1334i

Input Arguments
A — Amplitude imbalance
real-valued scalar or vector

Amplitude imbalance in dB, specified as a real-valued row or column vector.
Example: 3
Example: [0; 5]
Data Types: double

P — Phase imbalance
real-valued scalar or vector

Phase imbalance in degrees, specified as a real-valued row or column vector.
Example: 10
Example: [15; 45]
Data Types: double

Output Arguments
C — Compensator coefficient
complex-valued vector

Coefficient that perfectly compensates for the I/Q imbalance, returned as a complex-valued vector
having the same dimensions as A and P.

More About
I/Q Imbalance Compensation

The function iqimbal2coef is a supporting function for the comm.IQImbalanceCompensator
System object.

Define S and X as 2-by-1 vectors representing the I and Q components of the ideal and I/Q
imbalanced signals, respectively.

X = K ⋅ S
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where K is a 2-by-2 matrix whose values are determined by the amplitude imbalance, A, and phase
imbalance, P. A is expressed in dB and P is expressed in degrees.

The imbalance can be expressed as:

Igain = 100.5A/20

Qgain = 10−0.5A/20

θi = − P
2

π
180

θq = π
2 + P

2
π

180

Then K has the form:

K =
Igaincos(θi) Qgaincos(θq)
Igainsin(θi) Qgainsin(θq)

The vector Y is defined as the I/Q imbalance compensator output.

Y = R ⋅ X

For the compensator to perfectly remove the I/Q imbalance, R must be the matrix inversion of K,
namely:

R = K−1

Using complex notation, the vector Y can be rewritten as:

y = w1x + w2conj(x)

= w1 x + w2 w1 conj(x)

where,

Re w1 = (R11 + R22)/2
Im w1 = (R21− R12)/2
Re w2 = (R11− R22)/2
Im w2 = (R21 + R12)/2

The output of the function is w2/w1. To exactly obtain the original signal, the compensator output
needs to be scaled and rotated by the complex number w1.

Note There are cases for which the output of iqimbal2coef is unreliable.

• If the phase imbalance is ±90°, the in-phase and quadrature components will become co-linear;
consequently, the I/Q imbalance cannot be compensated.

• If the amplitude imbalance is 0 dB and the phase imbalance is 180°, w1 = 0 and w2 = 1i; therefore,
the compensator takes the form of y = 1i*conj(x).
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Version History
Introduced in R2014b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
iqimbal | iqcoef2imbal

Objects
comm.IQImbalanceCompensator
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iqimbal
Apply I/Q imbalance to input signal

Syntax
y = iqimbal(x,A)
y = iqimbal(x,A,P)

Description
y = iqimbal(x,A) applies I/Q amplitude imbalance A to input signal x.

y = iqimbal(x,A,P) applies I/Q amplitude imbalance A and phase imbalance P to input signal x.

Examples

Apply Amplitude Imbalance to 16-QAM

Generate a 16-QAM signal. Display the scatter plot.

x = qammod(randi([0 15],1000,1),16);
h = scatterplot(x);
hold on
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Apply a 10 dB amplitude imbalance. A positive amplitude imbalance causes horizontal stretching of
the constellation.

y = iqimbal(x,10);
scatterplot(y,1,0,'ro',h)
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Apply a -10 dB amplitude imbalance. A negative amplitude imbalance causes vertical stretching of the
constellation.

z = iqimbal(x,-10);
scatterplot(z,1,0,'k*',h)
hold off
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Apply Phase and Amplitude Imbalance to 16-QAM Signal

Generate a 16-QAM signal having two channels.

x = qammod(randi([0 15],1000,2),16);

Apply a 3 dB amplitude imbalance and a 10 degree phase imbalance to the first channel. Apply a –5
dB amplitude imbalance and a –15 degree phase imbalance to the second channel.

y = iqimbal(x,[3 -5],[10 -15]);

Plot the constellation diagram of both channels of the impaired signal.

h = scatterplot(y(:,1),1,0,'b*');
hold on
scatterplot(y(:,2),1,0,'ro',h)
hold off
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The first channel is stretched horizontally, and the second channel is stretched vertically.

Apply I/Q Imbalance and DC Offset to QPSK

Apply a 1 dB, 5 degree I/Q imbalance to a QPSK signal. Then apply a DC offset. Visualize the offset
using a spectrum analyzer.

Generate a QPSK sequence.

x = pskmod(randi([0 3],1e4,1),4,pi/4);

Apply a 1 dB amplitude imbalance and 5 degree phase imbalance to a QPSK signal. Apply a 0.5 + 0.3i
DC offset.

y = iqimbal(x,1,5);
z = y + complex(0.5,0.3);

Plot the spectrum of the nonimpaired and impaired signals.

sa = spectrumAnalyzer( ...
    SampleRate=1000, ...
    ChannelNames=["Nonimpaired","Impaired"], ...
    YLimits=[-50 30]);
sa(x,z)
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Display the corresponding scatter plot to see the effect of the I/Q imbalance and the DC offset.

cd = comm.ConstellationDiagram( ...
    NumInputPorts=2, ...
    ChannelNames=["Nonimpaired","Impaired"]);
cd(x,z)
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Correct I/Q Imbalance on Noisy 8-PSK Signal

Generate random data and apply 8-PSK modulation.

data = randi([0 7],2000,1);
txSig = pskmod(data,8,pi/8);

Pass the transmitted signal through an AWGN channel. Apply an I/Q imbalance.

noisySig = awgn(txSig,20);
rxSig = iqimbal(noisySig,2,20);
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Create a constellation diagram object that displays only the last 1000 symbols. Plot the constellation
diagram of the impaired signal.

cd = comm.ConstellationDiagram('ReferenceConstellation',pskmod(0:7,8,pi/8), ...
    'SymbolsToDisplaySource','Property','SymbolsToDisplay',1000);
cd(rxSig)

Correct for the I/Q imbalance by using a comm.IQImbalanceCompensator object. Plot the
constellation diagram of the signal after compensation.

iqComp = comm.IQImbalanceCompensator('StepSize',1e-3);
compSig = iqComp(rxSig);

cd(compSig)
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The compensator removes the I/Q imbalance.

Input Arguments
x — Input signal
column vector | matrix

Input signal, specified as a column vector or matrix. The function supports multichannel operations,
where the number of columns corresponds to the number of channels.
Example: pskmod(randi([0 3],100,1),4,pi/4)
Data Types: single | double
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A — Amplitude imbalance
real scalar | row vector

Amplitude imbalance in dB, specified as a real scalar or row vector.

• If A is a scalar, the function applies the same amplitude imbalance to each channel.
• If A is a vector, then each element specifies the amplitude imbalance that is applied to the

corresponding column (channel) of the input signal. The number of elements in A must equal the
number of columns in x.

Example: 3
Example: [0 5]
Data Types: single | double

P — Phase imbalance
0 (default) | real scalar | row vector

Phase imbalance in degrees, specified as a real scalar or row vector.

• If P is omitted, a phase imbalance of zero degrees is used.
• If P is a scalar, the function applies the same phase imbalance to each channel.
• If P is a vector, then each element specifies the phase imbalance that is applied to the

corresponding column (channel) of the input signal. The number of elements in P must equal the
number of columns in x.

Example: 10
Example: [2.5 7]
Data Types: single | double

Output Arguments
y — Output signal
vector | matrix

Output signal, returned as a vector or matrix having the same dimensions as x. The number of
columns in y corresponds to the number of channels.
Data Types: single | double

Algorithms
The iqimbal function applies an I/Q amplitude and phase imbalance to an input signal.

Given amplitude imbalance Ia in dB, the gain, g, resulting from the imbalance is defined as

g ≜ gr + igi = 100.5
Ia
20 + i 10−0.5

Ia
20 .

Applying the I/Q imbalance to input signal x results in output signal y such that

y = Re(x) ⋅ gre
−i0.5Ip π/180 + iIm(x) ⋅ gie

i0.5Ip π/180 ,
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where g is the imbalance gain and Ip is the phase imbalance in degrees.

Version History
Introduced in R2016b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
iqcoef2imbal | iqimbal2coef | comm.IQImbalanceCompensator | I/Q Imbalance

 iqimbal

2-505



iscatastrophic
True for trellis corresponding to catastrophic convolutional code

Syntax
iscatastrophic(s)

Description
iscatastrophic(s) returns true if the trellis s corresponds to a convolutional code that causes
catastrophic error propagation. Otherwise, it returns false.

Examples

Determine if a Convolutional Code is Catastrophic

Determine if a convolutional code causes catastrophic error propagation.

Create the trellis for the standard, rate 1/2, constraint length 7 convolutional code.

t = poly2trellis(7,[171 133]);

Verify that the code is not catastrophic.

iscatastrophic(t)

ans = logical
   0

Create a trellis for a different convolutional code using the poly2trellis function.

u = poly2trellis(7,[161 143]);

Verify that the code is catastrophic.

iscatastrophic(u)

ans = logical
   1

Version History
Introduced before R2006a
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References
[1] Stephen B. Wicker, Error Control Systems for Digital Communication and Storage, Prentice-Hall,

1995, pp. 274-275.

See Also
convenc | istrellis | poly2trellis | struct

Topics
“Convolutional Codes”
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isprimitive
True for primitive polynomial for Galois field

Syntax
isprimitive(a) 

Description
isprimitive(a) returns 1 if the polynomial that a represents is primitive for the Galois field
GF(2m), and 0 otherwise. The input a can represent the polynomial using one of these formats:

• A nonnegative integer less than 217. The binary representation of this integer indicates the
coefficients of the polynomial. In this case, m is floor(log2(a)).

• A Galois row vector in GF(2), listing the coefficients of the polynomial in order of descending
powers. In this case, m is the order of the polynomial represented by a.

Examples
The example below finds all primitive polynomials for GF(8) and then checks using isprimitive
whether specific polynomials are primitive.

a = primpoly(3,'all','nodisplay'); % All primitive polys for GF(8)

isp1 = isprimitive(13) % 13 represents a primitive polynomial.

isp2 = isprimitive(14) % 14 represents a nonprimitive polynomial.

The output is below. If you examine the vector a, notice that isp1 is true because 13 is an element in
a, while isp2 is false because 14 is not an element in a.

isp1 =

     1

isp2 =

     0

Version History
Introduced before R2006a

See Also
gf | primpoly

Topics
“Galois Field Computations”
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istrellis
True for valid trellis structure

Syntax
[isok,status] = istrellis(s)

Description
[isok,status] = istrellis(s) checks if the input s is a valid trellis structure. If the input is a
valid trellis structure, isok is 1 and status is an empty character vector. Otherwise, isok is 0 and
status indicates why s is not a valid trellis structure.

A valid trellis structure is a MATLAB structure whose fields are as in the table below.

Fields of a Valid Trellis Structure for a Rate k/n Code 

Field in Trellis Structure Dimensions Meaning
numInputSymbols Scalar Number of input symbols to the

encoder: 2k

numOutputSymbols Scalar Number of output symbols from
the encoder: 2n

numStates Scalar Number of states in the encoder
nextStates numStates-by-2k matrix Next states for all combinations

of current state and current
input

outputs numStates-by-2k matrix Outputs (in octal) for all
combinations of current state
and current input

In the nextStates matrix, each entry is an integer between 0 and numStates-1. The element in the
sth row and uth column denotes the next state when the starting state is s-1 and the input bits have
decimal representation u-1. To convert the input bits to a decimal value, use the first input bit as the
most significant bit (MSB). For example, the second column of the nextStates matrix stores the
next states when the current set of input values is {0,...,0,1}.

To convert the state to a decimal value, use this rule: If k exceeds 1, the shift register that receives
the first input stream in the encoder provides the least significant bits in the state number, and the
shift register that receives the last input stream in the encoder provides the most significant bits in
the state number.

In the outputs matrix, the element in the sth row and uth column denotes the encoder's output
when the starting state is s-1 and the input bits have decimal representation u-1. To convert to
decimal value, use the first output bit as the MSB.
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Examples
These commands assemble the fields into a very simple trellis structure, and then verify the validity
of the trellis structure.

trellis.numInputSymbols = 2;
trellis.numOutputSymbols = 2;
trellis.numStates = 2;
trellis.nextStates = [0 1;0 1];
trellis.outputs = [0 0;1 1];
[isok,status] = istrellis(trellis)

The output is below.

isok =

     1

status =

     ''

Another example of a trellis is in “Trellis Description of a Convolutional Code”.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
poly2trellis | struct | convenc | vitdec

Topics
“Convolutional Codes”
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ldpcDecode
Decode binary LDPC code

Syntax
[y,actualnumiter,finalparitychecks] = ldpcDecode(llr,decodercfg,maxnumiter)
[y,actualnumiter,finalparitychecks] = ldpcDecode(llr,decodercfg,maxnumiter,
Name,Value)

Description
The ldpcDecode function decodes the input codeword using one of four algorithms. For more
information, see “Algorithms” on page 2-516. LDPC codes are linear error control codes with sparse
parity-check matrices and long block lengths that can attain performance near the Shannon limit.

[y,actualnumiter,finalparitychecks] = ldpcDecode(llr,decodercfg,maxnumiter)
decodes the input log-likelihood ratio (LLR), llr, using the LDPC matrix specified by the input
ldpcDecoderConfig configuration object, decodercfg. A positive LLR indicates that the
corresponding bit is more likely a zero. Decoding terminates when all of the parity checks are
satisfied, up to a maximum number of iterations specified by the input maxnumiter. LDPC codes are
linear error control codes with sparse parity-check matrices and long block lengths that can attain
performance near the Shannon limit.

[y,actualnumiter,finalparitychecks] = ldpcDecode(llr,decodercfg,maxnumiter,
Name,Value) specifies options using one or more name-value arguments. For example,
DecisionType='soft' specifies soft-decision decoding and outputs LLRs.

Examples

Decode Rate 3/4 LDPC Codewords

Initialize parameters for the prototype matrix and block size to configure a rate 3/4 LDPC code
specified in IEEE® 802.11. Create the parity-check matrix by using the ldpcQuasiCyclicMatrix
function.

P = [
    16 17 22 24  9  3 14 -1  4  2  7 -1 26 -1  2 -1 21 -1  1  0 -1 -1 -1 -1
    25 12 12  3  3 26  6 21 -1 15 22 -1 15 -1  4 -1 -1 16 -1  0  0 -1 -1 -1
    25 18 26 16 22 23  9 -1  0 -1  4 -1  4 -1  8 23 11 -1 -1 -1  0  0 -1 -1
     9  7  0  1 17 -1 -1  7  3 -1  3 23 -1 16 -1 -1 21 -1  0 -1 -1  0  0 -1
    24  5 26  7  1 -1 -1 15 24 15 -1  8 -1 13 -1 13 -1 11 -1 -1 -1 -1  0  0
     2  2 19 14 24  1 15 19 -1 21 -1  2 -1 24 -1  3 -1  2  1 -1 -1 -1 -1  0
    ];
blockSize = 27;
pcmatrix = ldpcQuasiCyclicMatrix(blockSize,P);

Create LDPC encoder and decoder configuration objects, displaying their properties.

cfgLDPCEnc = ldpcEncoderConfig(pcmatrix)
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cfgLDPCEnc = 
  ldpcEncoderConfig with properties:

     ParityCheckMatrix: [162x648 logical]

   Read-only properties:
           BlockLength: 648
    NumInformationBits: 486
    NumParityCheckBits: 162
              CodeRate: 0.7500

cfgLDPCDec = ldpcDecoderConfig(pcmatrix)

cfgLDPCDec = 
  ldpcDecoderConfig with properties:

     ParityCheckMatrix: [162x648 logical]
             Algorithm: 'bp'

   Read-only properties:
           BlockLength: 648
    NumInformationBits: 486
    NumParityCheckBits: 162
              CodeRate: 0.7500

Transmit an LDPC-encoded, QPSK-modulated bit stream through an AWGN channel. Demodulate the
signal, decode the received codewords, and then count bit errors. Use nested for loops to process
multiple SNR settings and frames with and without LDPC forward error correction (FEC) coding of
the transmitted data.

M = 4;
maxnumiter = 10;
snr = [3 6 20];
numframes = 10;
qpskmod = comm.PSKModulator(M,'BitInput',true);
qpskmod2 = comm.PSKModulator(M);

ber = comm.ErrorRate;
ber2 = comm.ErrorRate;

for ii = 1:length(snr)
    qpskdemod = comm.PSKDemodulator(M,'BitOutput',true, ...
        'DecisionMethod','Approximate log-likelihood ratio', ...
        'Variance',1/10^(snr(ii)/10));
    qpskdemod2 = comm.PSKDemodulator(M);
    for counter = 1:numframes
        data = randi([0 1],cfgLDPCEnc.NumInformationBits,1,'int8');
        % Transmit and receive with LDPC coding
        encodedData = ldpcEncode(data,cfgLDPCEnc);
        modSignal = qpskmod(encodedData);
        receivedSignal = awgn(modSignal,snr(ii));
        demodSignal = qpskdemod(receivedSignal);
        receivedBits = ldpcDecode(demodSignal,cfgLDPCDec,maxnumiter);
        errStats = ber(data,receivedBits);
        % Transmit and receive with no LDPC coding
        noCoding = qpskmod2(data);
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        rxNoCoding = awgn(noCoding,snr(ii));
        rxBitsNoCoding = qpskdemod2(rxNoCoding);
        errStatsNoCoding = ber2(data,int8(rxBitsNoCoding));
    end
    fprintf(['SNR = %2d\n   Coded: Error rate = %1.2f, ' ...
        'Number of errors = %d\n'], ...
        snr(ii),errStats(1),errStats(2))
    fprintf(['Noncoded: Error rate = %1.2f, ' ...
        'Number of errors = %d\n'], ...
        errStatsNoCoding(1),errStatsNoCoding(2))
    reset(ber);
    reset(ber2);
end

SNR =  3
   Coded: Error rate = 0.07, Number of errors = 335

Noncoded: Error rate = 0.15, Number of errors = 714

SNR =  6
   Coded: Error rate = 0.00, Number of errors = 0

Noncoded: Error rate = 0.04, Number of errors = 196

SNR = 20
   Coded: Error rate = 0.00, Number of errors = 0

Noncoded: Error rate = 0.00, Number of errors = 0

Input Arguments
llr — Log-likelihood ratios
matrix

Log-likelihood ratios, specified as a matrix with the number of rows equal to the BlockLength
property of the input decodercfg. Each column of llr corresponds to a codeword. The function
decodes each column independently. A positive LLR indicates that the corresponding bit is more likely
a zero.
Data Types: single | double

decodercfg — LDPC decoder configuration
ldpcDecoderConfig object

LDPC decoder configuration, specified as an ldpcDecoderConfig object.

maxnumiter — Maximum number of decoding iterations
positive scalar

Maximum number of decoding iterations, specified as a positive scalar.
Data Types: double
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: Termination='max'

OutputFormat — Output format
'info' (default) | 'whole'

Output format, specified as one of these values:

• 'info' — Output only the decoded information bits. The number of rows that the function
outputs equals the NumInformationBitsproperty for the input decodercfg.

• 'whole' — Output all of the decoded LDPC codeword bits, including information bits and parity-
check bits. The number of rows that the function outputs equals the BlockLength property for
the input decodercfg.

Data Types: char | string

DecisionType — Decision type
'hard' (default) | 'soft'

Decision type for LDPC decoding, specified as one of these values:

• 'hard' — Perform hard-decision decoding and output decoded bits as values of int8 data type.
• 'soft' — Perform soft-decision decoding and output LLRs with the same data type as the input.

Data Types: char | string

MinSumScalingFactor — Scaling factor for normalized min-sum decoding algorithm
0.75 (default) | scalar in the range (0, 1]

Scaling factor for the normalized min-sum decoding algorithm, specified as a scalar in the range (0,
1]. For more information, see “Normalized Min-Sum Decoding” on page 2-518.
Dependencies

To enable this property, set the Algorithm property of the input decodercfg to 'norm-min-sum'.
Data Types: double

MinSumOffset — Offset for min-sum decoding algorithm
0.5 (default) | scalar

Offset for the min-sum decoding algorithm, specified as a scalar. For more information, see “Offset
Min-Sum Decoding” on page 2-518.
Dependencies

To enable this property, set the Algorithm property of the input decodercfg to 'offset-min-
sum'.
Data Types: double

Termination — Decoding termination criteria
'early' (default) | 'max'
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Decoding termination criteria, specified as one of these values:

• 'early' — Terminate decoding iterations when all of the parity checks are satisfied, up to a
maximum number of iterations specified by input maxnumiter.

• 'max' — Terminate decoding when the maximum number of iterations, maxnumiter, are
complete.

Data Types: char | string

Multithreaded — Enable multithreaded execution
true or 1 (default) | false or 0

Enable multithreaded execution, specified as a logical 1 (true) or 0 (false). When you run MATLAB
in interpreted mode and set this argument to true, the function executes the decoding algorithm
with multiple threads.

Tip

For large parity-check matrices, multithreaded execution significantly reduces the processing time
for LDPC decoding.

Dependencies

To enable this property, run MATLAB in interpreted mode.

Output Arguments
y — Decoded codewords
matrix

Decoded codewords, returned as a matrix with K rows that represent the decoded bits for llr(1:K,:).
K equals the NumInformationBits property of the input decodercfg. For the decoding operation,
each column of llr corresponds to a codeword. The function decodes each column independently.
The 'OutputFormat' name-value argument specifies whether the output contains decoded
information bits (default) or whole LDPC codeword bits. The 'DecisionType' name-value argument
specifies and determines the decoding decision type and the data type of this output.

For more information, see “Algorithms” on page 2-516.
Data Types: int8 | double | single

actualnumiter — Actual number of decoding iterations
row vector

Actual number of decoding iterations, returned as a row vector. If all of the parity checks for a
codeword are satisfied, decoding can stop before the maximum number of iterations, maxnumiter, is
reached. This output is a row vector of the actual number of iterations that the function executes for
the codewords.
Data Types: double

finalparitychecks — Final parity checks for each codeword
matrix

 ldpcDecode

2-515



Final parity checks for each codeword, returned as a matrix with the number of rows equal to the
ParityCheckBits property of input decodercfg. For the decoding operation, each column of this
output is the final parity checks for the corresponding codeword.
Data Types: double

Algorithms
LDPC decoding using one of these message-passing algorithms.

Belief Propagation Decoding

The implementation of the belief propagation algorithm is based on the decoding algorithm presented
by Gallager [2].

For transmitted LDPC-encoded codeword c = c0, c1, …, cn-1, the input to the LDPC decoder is the log-

likelihood ratio (LLR) value L(ci) = log
Pr(ci = 0 channel output for ci)
Pr(ci = 1 channel output for ci)

.

In each iteration, the key components of the algorithm are updated based on these equations:

L(r ji) = 2 atanh ∏
i′ ∈ V j\i

tanh 1
2L(qi′ j) ,

L(qi j) = L(ci) + ∑
j′ ∈ Ci\ j

L(r j′i), initialized as L(qi j) = L(ci) before the first iteration, and

L(Qi) = L(ci) + ∑
j′ ∈ Ci

L(r j′i).

At the end of each iteration, L(Qi) contains the updated estimate of the LLR value for transmitted bit
ci. The value L(Qi) is the soft-decision output for ci. If L(Qi) < 0, the hard-decision output for ci is 1.
Otherwise, the hard-decision output for ci is 0.

If decoding is configured to stop when all of the parity checks are satisfied, the algorithm verifies the
parity-check equation (H c' = 0) at the end of each iteration. When all of the parity checks are
satisfied, or if the maximum number of iterations is reached, decoding stops.

Index sets Ci\ j and V j\i are based on the parity-check matrix (PCM). Index sets Ci and Vj correspond
to all nonzero elements in column i and row j of the PCM, respectively.

This figure shows the computation of these index sets in a given PCM for i = 5 and j = 3.

2 Functions

2-516



To avoid infinite numbers in the algorithm equations, atanh(1) and atanh(–1) are set to 19.07 and –
19.07, respectively. Due to finite precision, MATLAB returns 1 for tanh(19.07) and –1 for tanh(-19.07).

Layered Belief Propagation Decoding

The implementation of the layered belief propagation algorithm is based on the decoding algorithm
presented in Hocevar [3], Section II.A. The decoding loop iterates over subsets of rows (layers) of the
PCM. For each row, m, in a layer and each bit index, j, the implementation updates the key
components of the algorithm based on these equations:

(1) L(qm j) = L(q j) − Rm j,

(2) Am j = ∑
n   ∈   N m

n ≠ j

ψ(L(qmn)),

(3) sm j = ∏
n   ∈   N m

n ≠ j

sign(L(qmn)),

(4) Rm j = − sm jψ(Am j), and

(5) L(q j) = L(qm j) + Rm j.

For each layer, the decoding equation (5) works on the combined input obtained from the current LLR
inputs L(qm j) and the previous layer updates Rm j.

Because only a subset of the nodes is updated in a layer, the layered belief propagation algorithm is
faster compared to the belief propagation algorithm. To achieve the same error rate as attained with
belief propagation decoding, use half the number of decoding iterations when you use the layered
belief propagation algorithm.
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Normalized Min-Sum Decoding

The implementation of the normalized min-sum decoding algorithm follows the layered belief
propagation algorithm with equation (2) replaced by

Am j = min
n   ∈   N m

n ≠ j

( L(qmn)   ⋅ α),

where α is in the range (0, 1] and is the scaling factor specified by the MinSumScalingFactor input
argument to the ldpcDecode function. This equation is an adaptation of equation (4) presented in
Chen [4].

Offset Min-Sum Decoding

The implementation of the offset min-sum decoding algorithm follows the layered belief propagation
algorithm with equation (2) replaced by

Am j   =     max( min
n   ∈   N m

n ≠ j

  ( L qmn −   β),   0),

where β ≥ 0 and is the offset specified by the MinSumOffset input argument to the ldpcDecode
function. This equation is an adaptation of equation (5) presented in Chen [4].

Version History
Introduced in R2021b

References
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technology — Telecommunications and information exchange between systems. Local and
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
Functions
ldpcEncode | ldpcQuasiCyclicMatrix | dvbs2ldpc

Objects
ldpcDecoderConfig | ldpcEncoderConfig | comm.gpu.LDPCDecoder
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ldpcEncode
Encode binary LDPC code

Syntax
y = ldpcEncode(informationbits,encodercfg)
y = ldpcEncode(informationbits,encodercfg,OutputFormat=fmt)

Description
y = ldpcEncode(informationbits,encodercfg) encodes the input message,
informationbits, using the LDPC matrix specified by the LDPC encoder configuration object,
encodercfg. The output LPDC codeword contains the information bits followed by the parity-check
bits. LDPC codes are linear error control codes with sparse parity-check matrices and long block
lengths that can attain performance near the Shannon limit.

y = ldpcEncode(informationbits,encodercfg,OutputFormat=fmt) specifies the output
format of the codeword.

Examples

Encode Information Bits Using Rate 3/4 LDPC Code

Initialize parameters for the prototype matrix and block size to configure a rate 3/4 LDPC code
specified in IEEE® 802.11. Create the parity-check matrix by using the ldpcQuasiCyclicMatrix
function.

P = [16 17 22 24  9  3 14 -1  4  2  7 -1 26 -1  2 -1 21 -1  1  0 -1 -1 -1 -1
     25 12 12  3  3 26  6 21 -1 15 22 -1 15 -1  4 -1 -1 16 -1  0  0 -1 -1 -1
     25 18 26 16 22 23  9 -1  0 -1  4 -1  4 -1  8 23 11 -1 -1 -1  0  0 -1 -1
      9  7  0  1 17 -1 -1  7  3 -1  3 23 -1 16 -1 -1 21 -1  0 -1 -1  0  0 -1
     24  5 26  7  1 -1 -1 15 24 15 -1  8 -1 13 -1 13 -1 11 -1 -1 -1 -1  0  0
      2  2 19 14 24  1 15 19 -1 21 -1  2 -1 24 -1  3 -1  2  1 -1 -1 -1 -1  0
    ];
blockSize = 27;
pcmatrix = ldpcQuasiCyclicMatrix(blockSize,P);

Create an LDPC encoder configuration object, displaying its properties. Generate random information
bits by using the NumInformationBits property of the configuration object to specify the number of
information bits in an LPDC codeword. Encode the information bits by the LDPC code specified by the
LDPC encoder configuration object.

cfgLDPCEnc = ldpcEncoderConfig(pcmatrix)

cfgLDPCEnc = 
  ldpcEncoderConfig with properties:

     ParityCheckMatrix: [162x648 logical]

   Read-only properties:
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           BlockLength: 648
    NumInformationBits: 486
    NumParityCheckBits: 162
              CodeRate: 0.7500

infoBits = rand(cfgLDPCEnc.NumInformationBits,1) < 0.5;
codeword = ldpcEncode(infoBits, cfgLDPCEnc);

Input Arguments
informationbits — Information bits
matrix

Information bits, specified as a matrix. The number of rows in informationbits must equal the
value of the NumInformationBits property of the input encodercfg.
Data Types: single | double | int8 | logical

encodercfg — LDPC encoder configuration
ldpcEncoderConfig object

LDPC encoder configuration, specified as an ldpcEncoderConfig object.

fmt — Output format
'whole' (default) | 'parity'

Output format, specified as one of these values:

• 'whole' — Output the whole LDPC codeword, including information bits and parity-check bits.
The number of rows that the function outputs equals the value of theBlockLength property for
the input encodercfg.

• 'parity' — Output only the parity-check bits. The number of rows that the function outputs
equals the value of the NumParityCheckBits property for the input encodercfg.

Output Arguments
y — Encoded codeword
matrix

Encoded codeword, returned as a matrix. For the encoding operation, the function encodes each
column of the input informationbits independently. The function treats nonzero values in
informationbits as ones. The encoding computes a systematic codeword matrix populated with
the original information bits in the [1:K,:] submatrix and the parity-check bits in the ((1:K + 1):end,:)
submatrix. K equals the NumInformationBits property of the input encodercfg.

• When the output format is 'whole', the output contains the whole LDPC codeword, including the
information bits and the parity-check bits. The number of rows output by the function equals the
value of the BlockLength property for the input encodercfg.

• When the output format is 'parity', the output contains only the parity-check bits. The number
of rows that the function outputs equals the NumParityCheckBits property for the input
encodercfg.

 ldpcEncode

2-521



For information about setting the output format, see the OutputFormat argument. The output has
the same data type as the input informationbits.

Version History
Introduced in R2021b

References
[1] IEEE Std 802.11-2020 (Revision of IEEE Std 802.11-2016). "Part 11: Wireless LAN Medium Access

Control (MAC) and Physical Layer (PHY) Specifications." IEEE Standard for Information
technology — Telecommunications and information exchange between systems. Local and
metropolitan area networks — Specific requirements.

[2] Gallager, Robert G. Low-Density Parity-Check Codes. Cambridge, MA: MIT Press, 1963.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
ldpcDecode | ldpcQuasiCyclicMatrix | dvbs2ldpc

Objects
ldpcEncoderConfig | ldpcDecoderConfig | comm.gpu.LDPCDecoder
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ldpcQuasiCyclicMatrix
Parity-check matrix of quasi-cyclic LDPC code

Syntax
H = ldpcQuasiCyclicMatrix(blocksize,P)

Description
H = ldpcQuasiCyclicMatrix(blocksize,P) returns parity-check matrix H for a quasi-cyclic
LDPC code based on the input block size, blocksize, and the prototype matrix, P.

Examples

Create Parity-Check Matrix of a Quasicyclic LDPC Code

Create a parity-check matrix of a quasicyclic LDPC code. Set the block size to 3 and the prototype
matrix to [0 -1 1 2; 2 1 -1 0].

blockSize = 3;
p = [0 -1 1 2; 2 1 -1 0];
pcmatrix = ldpcQuasiCyclicMatrix(blockSize,p)

pcmatrix = 6x12 sparse logical array
   (1,1)      1
   (5,1)      1
   (2,2)      1
   (6,2)      1
   (3,3)      1
   (4,3)      1
   (6,4)      1
   (4,5)      1
   (5,6)      1
   (3,7)      1
   (1,8)      1
   (2,9)      1
   (2,10)     1
   (4,10)     1
   (3,11)     1
   (5,11)     1
   (1,12)     1
   (6,12)     1

Confirm that the resulting parity-check matrix is a sparse and logical matrix.

issparse(pcmatrix) & islogical(pcmatrix)

ans = logical
   1
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Parity-check matrices can be large, and displaying them as a full matrix is generally not advisable.
Because the parity-check matrix in this example is only 6-by-12, display it as a full matrix.

full(pcmatrix)

ans = 6x12 logical array

   1   0   0   0   0   0   0   1   0   0   0   1
   0   1   0   0   0   0   0   0   1   1   0   0
   0   0   1   0   0   0   1   0   0   0   1   0
   0   0   1   0   1   0   0   0   0   1   0   0
   1   0   0   0   0   1   0   0   0   0   1   0
   0   1   0   1   0   0   0   0   0   0   0   1

Encode Information Bits Using Rate 3/4 LDPC Code

Initialize parameters for the prototype matrix and block size to configure a rate 3/4 LDPC code
specified in IEEE® 802.11. Create the parity-check matrix by using the ldpcQuasiCyclicMatrix
function.

P = [16 17 22 24  9  3 14 -1  4  2  7 -1 26 -1  2 -1 21 -1  1  0 -1 -1 -1 -1
     25 12 12  3  3 26  6 21 -1 15 22 -1 15 -1  4 -1 -1 16 -1  0  0 -1 -1 -1
     25 18 26 16 22 23  9 -1  0 -1  4 -1  4 -1  8 23 11 -1 -1 -1  0  0 -1 -1
      9  7  0  1 17 -1 -1  7  3 -1  3 23 -1 16 -1 -1 21 -1  0 -1 -1  0  0 -1
     24  5 26  7  1 -1 -1 15 24 15 -1  8 -1 13 -1 13 -1 11 -1 -1 -1 -1  0  0
      2  2 19 14 24  1 15 19 -1 21 -1  2 -1 24 -1  3 -1  2  1 -1 -1 -1 -1  0
    ];
blockSize = 27;
pcmatrix = ldpcQuasiCyclicMatrix(blockSize,P);

Create an LDPC encoder configuration object, displaying its properties. Generate random information
bits by using the NumInformationBits property of the configuration object to specify the number of
information bits in an LPDC codeword. Encode the information bits by the LDPC code specified by the
LDPC encoder configuration object.

cfgLDPCEnc = ldpcEncoderConfig(pcmatrix)

cfgLDPCEnc = 
  ldpcEncoderConfig with properties:

     ParityCheckMatrix: [162x648 logical]

   Read-only properties:
           BlockLength: 648
    NumInformationBits: 486
    NumParityCheckBits: 162
              CodeRate: 0.7500

infoBits = rand(cfgLDPCEnc.NumInformationBits,1) < 0.5;
codeword = ldpcEncode(infoBits, cfgLDPCEnc);
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Decode Rate 3/4 LDPC Codewords

Initialize parameters for the prototype matrix and block size to configure a rate 3/4 LDPC code
specified in IEEE® 802.11. Create the parity-check matrix by using the ldpcQuasiCyclicMatrix
function.

P = [
    16 17 22 24  9  3 14 -1  4  2  7 -1 26 -1  2 -1 21 -1  1  0 -1 -1 -1 -1
    25 12 12  3  3 26  6 21 -1 15 22 -1 15 -1  4 -1 -1 16 -1  0  0 -1 -1 -1
    25 18 26 16 22 23  9 -1  0 -1  4 -1  4 -1  8 23 11 -1 -1 -1  0  0 -1 -1
     9  7  0  1 17 -1 -1  7  3 -1  3 23 -1 16 -1 -1 21 -1  0 -1 -1  0  0 -1
    24  5 26  7  1 -1 -1 15 24 15 -1  8 -1 13 -1 13 -1 11 -1 -1 -1 -1  0  0
     2  2 19 14 24  1 15 19 -1 21 -1  2 -1 24 -1  3 -1  2  1 -1 -1 -1 -1  0
    ];
blockSize = 27;
pcmatrix = ldpcQuasiCyclicMatrix(blockSize,P);

Create LDPC encoder and decoder configuration objects, displaying their properties.

cfgLDPCEnc = ldpcEncoderConfig(pcmatrix)

cfgLDPCEnc = 
  ldpcEncoderConfig with properties:

     ParityCheckMatrix: [162x648 logical]

   Read-only properties:
           BlockLength: 648
    NumInformationBits: 486
    NumParityCheckBits: 162
              CodeRate: 0.7500

cfgLDPCDec = ldpcDecoderConfig(pcmatrix)

cfgLDPCDec = 
  ldpcDecoderConfig with properties:

     ParityCheckMatrix: [162x648 logical]
             Algorithm: 'bp'

   Read-only properties:
           BlockLength: 648
    NumInformationBits: 486
    NumParityCheckBits: 162
              CodeRate: 0.7500

Transmit an LDPC-encoded, QPSK-modulated bit stream through an AWGN channel. Demodulate the
signal, decode the received codewords, and then count bit errors. Use nested for loops to process
multiple SNR settings and frames with and without LDPC forward error correction (FEC) coding of
the transmitted data.

M = 4;
maxnumiter = 10;
snr = [3 6 20];
numframes = 10;
qpskmod = comm.PSKModulator(M,'BitInput',true);
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qpskmod2 = comm.PSKModulator(M);

ber = comm.ErrorRate;
ber2 = comm.ErrorRate;

for ii = 1:length(snr)
    qpskdemod = comm.PSKDemodulator(M,'BitOutput',true, ...
        'DecisionMethod','Approximate log-likelihood ratio', ...
        'Variance',1/10^(snr(ii)/10));
    qpskdemod2 = comm.PSKDemodulator(M);
    for counter = 1:numframes
        data = randi([0 1],cfgLDPCEnc.NumInformationBits,1,'int8');
        % Transmit and receive with LDPC coding
        encodedData = ldpcEncode(data,cfgLDPCEnc);
        modSignal = qpskmod(encodedData);
        receivedSignal = awgn(modSignal,snr(ii));
        demodSignal = qpskdemod(receivedSignal);
        receivedBits = ldpcDecode(demodSignal,cfgLDPCDec,maxnumiter);
        errStats = ber(data,receivedBits);
        % Transmit and receive with no LDPC coding
        noCoding = qpskmod2(data);
        rxNoCoding = awgn(noCoding,snr(ii));
        rxBitsNoCoding = qpskdemod2(rxNoCoding);
        errStatsNoCoding = ber2(data,int8(rxBitsNoCoding));
    end
    fprintf(['SNR = %2d\n   Coded: Error rate = %1.2f, ' ...
        'Number of errors = %d\n'], ...
        snr(ii),errStats(1),errStats(2))
    fprintf(['Noncoded: Error rate = %1.2f, ' ...
        'Number of errors = %d\n'], ...
        errStatsNoCoding(1),errStatsNoCoding(2))
    reset(ber);
    reset(ber2);
end

SNR =  3
   Coded: Error rate = 0.07, Number of errors = 335

Noncoded: Error rate = 0.15, Number of errors = 714

SNR =  6
   Coded: Error rate = 0.00, Number of errors = 0

Noncoded: Error rate = 0.04, Number of errors = 196

SNR = 20
   Coded: Error rate = 0.00, Number of errors = 0

Noncoded: Error rate = 0.00, Number of errors = 0

Input Arguments
blocksize — Block size
positive scalar

Block size of the quasi-cyclic LDPC code, specified as a positive scalar.
Data Types: double
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P — Prototype matrix
matrix

Prototype matrix, specified as a matrix. The number of columns in P must be greater than the number
of rows in P. All values in P must be -1, 0, or positive integers less than the input blocksize. A
value of -1 produces a zero-valued blocksize-by-blocksize submatrix. Other values indicate that
the number of columns a blocksize-by-blocksize diagonal matrix must be cyclically shifted to the
right. Each submatrix is either a zero matrix or a cyclically shifted version of a diagonal matrix.
Data Types: double

Output Arguments
H — Parity-check matrix
sparse logical matrix

Parity-check matrix, returned as a sparse logical matrix. The function expands each element of input
P to a blocksize-by-blocksize submatrix in H.
Data Types: logical

Version History
Introduced in R2021b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
ldpcDecode | ldpcEncode | ldpcQuasiCyclicMatrix

Objects
ldpcEncoderConfig | ldpcDecoderConfig | comm.gpu.LDPCDecoder

 ldpcQuasiCyclicMatrix

2-527



lloyds
Optimize quantization parameters using Lloyd algorithm

Syntax
[partition,codebook] = lloyds(training_set,initcodebook)
[partition,codebook] = lloyds(training_set,len)
[partition,codebook] = lloyds(training_set,...,tol)
[partition,codebook,distor] = lloyds(...)
[partition,codebook,distor,reldistor] = lloyds(...)

Description
[partition,codebook] = lloyds(training_set,initcodebook) optimizes the scalar
quantization parameters partition and codebook for the training data in the vector
training_set. initcodebook, a vector of length at least 2, is the initial guess of the codebook
values. The output codebook is a vector of the same length as initcodebook. The output
partition is a vector whose length is one less than the length of codebook.

See “Represent Partitions”, “Represent Codebooks”, or the reference page for quantiz in this
chapter, for a description of the formats of partition and codebook.

Note lloyds optimizes for the data in training_set. For best results, training_set should be
similar to the data that you plan to quantize.

[partition,codebook] = lloyds(training_set,len) is the same as the first syntax, except
that the scalar argument len indicates the size of the vector codebook. This syntax does not include
an initial codebook guess.

[partition,codebook] = lloyds(training_set,...,tol) is the same as the two syntaxes
above, except that tol replaces 10-7 in condition 1 of the algorithm description below.

[partition,codebook,distor] = lloyds(...) returns the final mean square distortion in the
variable distor.

[partition,codebook,distor,reldistor] = lloyds(...) returns a value reldistor that is
related to the algorithm's termination. In condition 1 of the algorithm below, reldistor is the
relative change in distortion between the last two iterations. In condition 2, reldistor is the same
as distor.

Examples
The code below optimizes the quantization parameters for a sinusoidal transmission via a three-bit
channel. Because the typical data is sinusoidal, training_set is a sampled sine wave. Because the
channel can transmit three bits at a time, lloyds prepares a codebook of length 23.
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% Generate a complete period of a sinusoidal signal.
x = sin([0:1000]*pi/500);
[partition,codebook] = lloyds(x,2^3)

The output is below.

partition =

  Columns 1 through 6 

   -0.8540   -0.5973   -0.3017    0.0031    0.3077    0.6023

  Column 7 

    0.8572

codebook =

  Columns 1 through 6 

   -0.9504   -0.7330   -0.4519   -0.1481    0.1558    0.4575

  Columns 7 through 8 

    0.7372    0.9515

Algorithms
lloyds uses an iterative process to try to minimize the mean square distortion. The optimization
processing ends when either

• The relative change in distortion between iterations is less than 10-7.
• The distortion is less than eps*max(training_set), where eps is the MATLAB floating-point

relative accuracy.

Version History
Introduced before R2006a

References

[1] Lloyd, S.P., “Least Squares Quantization in PCM,” IEEE Transactions on Information Theory, Vol.
IT-28, March, 1982, pp. 129–137.

[2] Max, J., “Quantizing for Minimum Distortion,” IRE Transactions on Information Theory, Vol. IT-6,
March, 1960, pp. 7–12.

See Also
quantiz | dpcmopt
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log
Logarithm in Galois field

Syntax
y = log(x)

Description
y = log(x) computes the logarithm of each element in the Galois array x. y is an integer array that
solves the equation A.^y = x, where A is the primitive element used to represent elements in x.
More explicitly, the base A of the logarithm is gf(2,x.m) or gf(2,x.m,x.prim_poly). All
elements in x must be nonzero because the logarithm of zero is undefined.

Examples
The code below illustrates how the logarithm operation inverts exponentiation.

m = 4; x = gf([8 1 6; 3 5 7; 4 9 2],m);
y = log(x);
primel = gf(2,m); % Primitive element in the field
z = primel .^ y; % This is now the same as x.
ck = isequal(x,z)

The output is

ck =

     1

The code below shows that the logarithm of 1 is 0 and that the logarithm of the base (primel) is 1.

m = 4; primel = gf(2,m);
yy = log([1, primel])

The output is

yy =

     0     1

Version History
Introduced before R2006a

See Also
gf
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mask2shift
Convert mask vector to shift for shift register configuration

Syntax
shift = mask2shift(prpoly,mask)

Description
shift = mask2shift(prpoly,mask) returns the shift that is equivalent to a mask, for a linear
feedback shift register whose connections are specified by the primitive polynomial prpoly. The
prpoly input can have one of these formats:

• A polynomial character vector
• A binary vector that lists the coefficients of the primitive polynomial in order of descending

powers
• An integer scalar whose binary representation gives the coefficients of the primitive polynomial,

where the least significant bit is the constant term

The mask input is a binary vector whose length is the degree of the primitive polynomial.

Note To save time, mask2shift does not check that prpoly is primitive. If it is not primitive, the
output is not meaningful. To find primitive polynomials, use primpoly or see [2].

For more information about how masks and shifts are related to pseudonoise sequence generators,
see shift2mask.

Definition of Equivalent Shift

If A is a root of the primitive polynomial and m(A) is the mask polynomial evaluated at A, the
equivalent shift s solves the equation As = m(A). To interpret the vector mask as a polynomial, treat
mask as a list of coefficients in order of descending powers.

Examples

Convert Mask to Shift

Convert masks into shifts for a linear feedback shift register.

Convert a mask of x3 + 1 into an equivalent shift for the linear feedback shift register whose
connections are specified by the primitive polynomial x4 + x3 + 1.

s1 = mask2shift([1 1 0 0 1],[1 0 0 1])

s1 = 4

Convert a mask of 1 to a shift. The mask is equivalent to a shift of 0.
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s2 = mask2shift([1 1 0 0 1],[0 0 0 1])

s2 = 0

Convert a mask of x2 into an equivalent shift for the primitive polynomial x3 + x + 1.

s3 = mask2shift('x3+x+1','x2')

s3 = 2

Version History
Introduced before R2006a

References

[1] Lee, J. S., and L. E. Miller, CDMA Systems Engineering Handbook, Boston, Artech House, 1998.

[2] Simon, Marvin K., Jim K. Omura, et al., Spread Spectrum Communications Handbook, New York,
McGraw-Hill, 1994.

See Also
shift2mask | log | isprimitive | primpoly
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matdeintrlv
Restore ordering of symbols by filling matrix by columns and emptying it by rows

Syntax
deintrlvd = matdeintrlv(data,Nrows,Ncols)

Description
deintrlvd = matdeintrlv(data,Nrows,Ncols) rearranges the elements in data by filling a
temporary matrix with the elements column by column and then sending the matrix contents, row by
row, to the output. Nrows and Ncols are the dimensions of the temporary matrix. If data is a vector,
it must have Nrows*Ncols elements. If data is a matrix with multiple rows and columns, data must
have Nrows*Ncols rows and the function processes the columns independently.

To use this function as an inverse of the matintrlv function, use the same Nrows and Ncols inputs
in both functions. In that case, the two functions are inverses in the sense that applying matintrlv
followed by matdeintrlv leaves data unchanged.

Examples
The code below illustrates the inverse relationship between matintrlv and matdeintrlv.

Nrows = 2; Ncols = 3;
data = [1 2 3 4 5 6; 2 4 6 8 10 12]';
a = matintrlv(data,Nrows,Ncols); % Interleave.
b = matdeintrlv(a,Nrows,Ncols) % Deinterleave.

The output below shows that b is the same as data.

b =

     1     2
     2     4
     3     6
     4     8
     5    10
     6    12

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
matintrlv

Topics
“Interleaving”
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matintrlv
Reorder symbols by filling matrix by rows and emptying it by columns

Syntax
intrlvd = matintrlv(data,Nrows,Ncols)

Description
intrlvd = matintrlv(data,Nrows,Ncols) rearranges the elements in data by filling a
temporary matrix with the elements row by row and then sending the matrix contents, column by
column, to the output. Nrows and Ncols are the dimensions of the temporary matrix. If data is a
vector, it must have Nrows*Ncols elements. If data is a matrix with multiple rows and columns,
data must have Nrows*Ncols rows and the function processes the columns independently.

Examples

Apply Matrix Interleaving to Reorder Input Matrix

Use the matintrlv function to reorder the elements filling matrix by rows and emptying it by
columns.

To form the first column of the output, the function creates the temporary 2-by-3 matrix [1 2 3; 4 5 6].
Then the function reads down each column of the temporary matrix to get [1 4 2 5 3 6].

b = matintrlv([1 2 3 4 5 6; 2 4 6 8 10 12]',2,3)

b = 6×2

     1     2
     4     8
     2     4
     5    10
     3     6
     6    12

To form the first column of the output, the function creates the temporary 3-by-2 matrix [1 2; 3 4; 5
6]. Then the function reads down each column of the temporary matrix to get [1 3 5 2 4 6].

b = matintrlv([1 2 3 4 5 6; 2 4 6 8 10 12]',3,2)

b = 6×2

     1     2
     3     6
     5    10
     2     4
     4     8
     6    12
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Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
matdeintrlv

Topics
“Interleaving”
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mil188qamdemod
MIL-STD-188-110 B/C standard-specific quadrature amplitude demodulation

Syntax
z = mil188qamdemod(y,M)
z = mil188qamdemod(y,M,Name,Value)

Description
z = mil188qamdemod(y,M) performs QAM demodulation on an input signal, y, that was modulated
in accordance with MIL-STD-188-110 and the modulation order, M. For a description of MIL-
STD-188-110 QAM demodulation, see “MIL-STD-188-110 QAM Hard Demodulation” on page 2-544
and “MIL-STD-188-110 QAM Soft Demodulation” on page 2-545.

z = mil188qamdemod(y,M,Name,Value) specifies options using one or more name-value pair
arguments. For example, 'OutputDataType','double' specifies the desired output data type as
double. Specify name-value pair arguments after all other input arguments.

Examples

Demodulate MIL-STD-188-110B Specific 16-QAM Signal

Demodulate a 16-QAM signal that was modulated as specified in MIL-STD-188-110B. Plot the
received constellation and verify that the output matches the input.

Set the modulation order and generate random data.

M = 16;
numSym = 20000;
x = randi([0 M-1],numSym,1);

Modulate the data and pass through a noisy channel.

txSig = mil188qammod(x,M);
rxSig = awgn(txSig,25,'measured');

Plot the transmitted and received signal.

plot(rxSig,'b*')
hold on; grid
plot(txSig,'r*')
xlim([-1.5 1.5]);
ylim([-1.5 1.5])
xlabel('In-Phase')
ylabel('Quadrature')
legend('Received constellation','Reference constellation')
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Demodulate the received signal. Compare the demodulated data to the original data.

z = mil188qamdemod(rxSig,M);
isequal(x,z)

ans = logical
   1

Demodulate MIL-STD-188-110C Specific 64-QAM Signal

Demodulate a 64-QAM signal that was modulated as specified in MIL-STD-188-110C. Compute hard
decision bit output and verify that the output matches the input.

Set the modulation order and generate random bit data.

M = 64;
numBitsPerSym = log2(M);
x = randi([0 1],1000*numBitsPerSym,1);

Modulate the data. Use name-value pairs to specify bit input data and to plot the constellation.

txSig = mil188qammod(x,M,'InputType','bit','PlotConstellation',true);
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Demodulate the received signal. Compare the demodulated data to the original data.

z = mil188qamdemod(txSig,M,'OutputType','bit');
isequal(z,x)

ans = logical
   1

Soft Bit Demodulate MIL-STD-188-110 Specific 32-QAM Signal

Demodulate a 32-QAM signal and calculate soft bits.

Set the modulation order and generate a random bit sequence.

M = 32;
numSym = 20000;
numBitsPerSym = log2(M);
x = randi([0 1], numSym*numBitsPerSym,1);

Modulate the data. Use name-value pairs to specify bit input data and unit average power, and to plot
the constellation.

txSig = mil188qammod(x,M,'InputType','bit','UnitAveragePower',true, ...
    'PlotConstellation',true);

2 Functions

2-540



Pass the transmitted data through white Gaussian noise.

rxSig = awgn(txSig,10,'measured');

View the constellation using a scatter plot.

scatterplot(rxSig) 
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Demodulate the signal, computing soft bits using the approximate LLR algorithm.

z = mil188qamdemod(rxSig,M,'OutputType','approxllr', ...
     'NoiseVariance',10^(-1));

Input Arguments
y — Modulated signal
scalar | vector | matrix

Modulated signal, specified as a complex scalar, vector, or matrix. When y is a matrix, each column is
treated as an independent channel.

y must be modulated in accordance with MIL-STD-188-110 [1].
Data Types: single | double
Complex Number Support: Yes

M — Modulation order
integer

Modulation order, specified as a power of two. The modulation order specifies the total number of
points in the signal constellation.
Example: 16
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Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: y = mil188qamdemod(x,M,'OutputType','bit','OutputDataType','single');

OutputType — Output type
'integer' (default) | 'bit' | 'llr' | 'approxllr'

Output type, specified as the comma-separated pair consisting of OutputType and 'integer',
'bit', 'llr', or 'approxllr'.
Data Types: char | string

OutputDataType — Output data type
'double' (default) | ...

Output data type, specified as the comma-separated pair consisting of OutputDataType and one of
the indicated data types. Acceptable values for OutputDataType depend on the OutputType value.

OutputType Value Acceptable OutputDataType Values
'integer' 'double', 'single', 'int8', 'int16', 'int32', 'uint8', 'uint16',

or 'uint32'
'bit' 'double', 'single', 'int8', 'int16', 'int32', 'uint8', 'uint16',

'uint32', or 'logical'

Dependencies

This name-value pair argument applies only when OutputType is set to 'integer' or 'bit'.
Data Types: char | string

UnitAveragePower — Unit average power flag
false (default) | true

Unit average power flag, specified as the comma-separated pair consisting of UnitAveragePower
and a logical scalar. When this flag is true, the function scales the constellation to an average power
of 1 watt referenced to 1 ohm. When this flag is false, the function scales the constellation based on
specifications in the relevant standard, as described in [1].
Data Types: logical

NoiseVariance — Noise variance
1 (default) | positive scalar | vector of positive values

Noise variance, specified as the comma-separated pair consisting of NoiseVariance and a positive
scalar or vector of positive values.

• When specified as a scalar, the same noise variance value is used on all input elements.

 mil188qamdemod

2-543



• When specified as a vector, the vector length must be equal to the number of columns in the input
signal.

When the noise variance or signal power result in computations involving extreme positive or
negative magnitudes, see “MIL-STD-188-110 QAM Soft Demodulation” on page 2-545 for algorithm
selection considerations.
Dependencies

This name-value pair argument applies only when OutputType is set to 'llr' or 'approxllr'.
Data Types: double

PlotConstellation — Option to plot constellation
false (default) | true

Option to plot constellation, specified as the comma-separated pair consisting of
'PlotConstellation' and a logical scalar. To plot the constellation, set PlotConstellation to
true.
Data Types: logical

Output Arguments
z — Demodulated signal
scalar | vector | matrix

Demodulated signal, returned as a scalar, vector, or matrix. The dimensions of z depend on the
specified OutputType value.

OutputType
Value

Return Value of
mil188qamdemod

Dimensions of z

'integer' Demodulated integer values
from 0 to (M – 1)

z has the same dimensions as input y.

'bit' Demodulated bits The number of rows in z is log2(sum(M)) times the
number of rows in y. Each demodulated symbol is
mapped to a group of log2(sum(M)) elements in a
column, where the first element represents the
MSB and the last element represents the LSB.

'llr' Log-likelihood ratio value for
each bit

'approxllr' Approximate log-likelihood ratio
value for each bit

More About
MIL-STD-188-110 QAM Hard Demodulation

The hard demodulation algorithm uses optimum decision region-based demodulation. Since all the
constellation points are equally probable, maximum a posteriori probability (MAP) detection reduces
to a maximum likelihood (ML) detection. The ML detection rule is equivalent to choosing the closest
constellation point to the received symbol. The decision region for each constellation point is
designed by drawing perpendicular bisectors between adjacent points. A received symbol is mapped
to the proper constellation point based on which decision region it lies in.

Since all MIL-STD constellations are quadrant-based symmetric, for each symbol the optimum
decision region-based demodulation:
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• Maps the received symbol into the first quadrant
• Chooses the decision region for the symbol
• Maps the constellation point back to its original quadrant using the sign of real and imaginary

parts of the received symbol

MIL-STD-188-110 QAM Soft Demodulation

For soft demodulation, two soft-decision log-likelihood ratio (LLR) algorithms are available: exact LLR
and approximate LLR. The exact LLR algorithm is more accurate but has slower execution speed than
the approximate LLR algorithm. For further description of these algorithms, see the “Hard- vs. Soft-
Decision Demodulation” topic.

Note The exact LLR algorithm computes exponentials using finite precision arithmetic. For
computations involving very large positive or negative magnitudes, the exact LLR algorithm yields:

• Inf or -Inf if the noise variance is a very large value
• NaN if the noise variance and signal power are both very small values

The approximate LLR algorithm does not compute exponentials. You can avoid Inf, -Inf, and NaN
results by using the approximate LLR algorithm.

Version History
Introduced in R2018a

References
[1] MIL-STD-188-110B & C: "Interoperability and Performance Standards for Data Modems."

Department of Defense Interface Standard, USA.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
mil188qammod | apskdemod | dvbsapskdemod | qamdemod | genqamdemod | pskdemod

Objects
comm.GeneralQAMDemodulator | comm.PSKDemodulator

Topics
“Hard- vs. Soft-Decision Demodulation”
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mil188qammod
MIL-STD-188-110 B/C standard-specific quadrature amplitude modulation (QAM)

Syntax
y = mil188qammod(x,M)
y = mil188qammod(x,M,Name,Value)

Description
y = mil188qammod(x,M) performs QAM modulation on the input signal, x, in accordance with
MIL-STD-188-110 and the modulation order, M. For more information, see “MIL-STD-188-110” on
page 2-551.

y = mil188qammod(x,M,Name,Value) specifies options using one or more name-value pair
arguments. For example, 'OutputDataType','double' specifies the desired output data type as
double. Specify name-value pair arguments after all other input arguments.

Examples

Apply 32-QAM to Data per MIL-STD-188-110C

Modulate data using 32-QAM as specified in the MIL-188-110C standard. Display the result using a
scatter plot.

Set M to 32 and create a data vector containing all possible symbols.

M = 32;
x = (0:M-1);

Modulate the data using QAM as specified in MIL-STD-188-110C.

y = mil188qammod(x,M);

Display the constellation as a scatter plot.

scatterplot(y)
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Normalize 16-QAM Modulated MIL-STD-188-110B Signal by Average Power

Modulate data using 16-QAM as specified in the MIL-STD-188-110B standard. Normalize the
modulator output so that it has an average signal power of 1 W.

Set M and generate random data.

M = 16;
x = randi([0 M-1],1e5,1);

Modulate the data applying 16-QAM as specified in MIL-STD-188-110B. Using name-value pairs, set
the unit average power to true and enable the constellation plot.

y = mil188qammod(x,M,'UnitAveragePower',true,'PlotConstellation',true);

 mil188qammod

2-547



Verify that the signal has approximately unit average power.

avgPow = mean(abs(y).^2)

avgPow = 1.0012

Apply 64-QAM MIL-STD-188-110B Modulation to Bit Data

Modulate a sequence of bits using 64-QAM as specified by MIL-STD188-110B. Display the
constellation.

Set the modulation order and generate a sequence of random bits.

M = 64;
numBitsPerSym = log2(M);
data = randi([0 1],1000*numBitsPerSym,1);

Modulate the data applying 64-QAM as specified by MIL-STD-188-110B, and output constellation
symbols of single data type.

y = mil188qammod(data,M,'InputType','bit','OutputDataType','single');

Plot the result constellation using a scatter plot.

scatterplot(y)
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Input Arguments
x — Input signal
scalar | vector | matrix

Input signal, specified as a scalar, vector, or matrix. The elements of x must be binary values or
integers that range from 0 to (M – 1), where M is the modulation order.

Note To process input signal as binary elements, set the 'InputType' value to 'bit'. For binary
inputs, the number of rows must be an integer multiple of log2(M). Groups of log2(M) bits in a column
are mapped onto a symbol, with the first bit representing the MSB and the last bit representing the
LSB.

Data Types: double | single | int8 | int16 | int32 | uint8 | uint16 | uint32 | logical

M — Modulation order
integer

Modulation order, specified as a power of two. The modulation order specifies the total number of
points in the signal constellation.
Example: 16
Data Types: double
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: y = mil188qammod(data,M,'InputType','bit','OutputDataType','single');

InputType — Input type
'integer' (default) | 'bit'

Input type, specified as the comma-separated pair consisting of 'InputType' and either 'integer'
or 'bit'. If you specify 'integer', the input signal must consist of integers from 0 to M – 1. If you
specify 'bit', the input signal must contain binary values, and the number of rows must be an
integer multiple of log2(M).
Data Types: char | string

OutputDataType — Output data type
'double' (default) | 'single'

Output data type, specified as the comma-separated pair consisting of OutputDataType and
'double' or 'single'.
Data Types: char | string

UnitAveragePower — Unit average power flag
false (default) | true

Unit average power flag, specified as the comma-separated pair consisting of 'UnitAveragePower'
and a logical scalar. When this flag is true, the function scales the constellation to an average power
of 1 watt referenced to 1 ohm. When this flag is false, the function scales the constellation based on
specifications in the relevant standard, as described in [1].
Data Types: logical

PlotConstellation — Option to plot constellation
false (default) | true

Option to plot constellation, specified as the comma-separated pair consisting of
'PlotConstellation' and a logical scalar. To plot the constellation, set PlotConstellation to
true.
Data Types: logical

Output Arguments
y — Modulated signal
scalar | vector | matrix

Modulated signal, returned as a complex scalar, vector, or matrix. The dimension of the output
depends on the specified InputType value.
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InputType Dimensions of Output
'integer' y has the same dimensions as input x.
'bit' The number of rows in y equals the number of rows in x divided by log2(M).

Data Types: double | single

More About
MIL-STD-188-110

MIL-STD-188-110 is a US Department of Defense standard for HF communications using serial PSK
mode of both data and voice signals.

The standard specifies physical layer modulation schemes for tactical and long-haul communications.
The modulation scheme specified by the standard is a mix of QAM and APSK. For a detailed
description of the modulation scheme, see [1].

Version History
Introduced in R2018a

References
[1] MIL-STD-188-110B & C: "Interoperability and Performance Standards for Data Modems."

Department of Defense Interface Standard, USA.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
mil188qamdemod | apskmod | dvbsapskmod | qammod | genqammod | pskmod

Objects
comm.GeneralQAMModulator | comm.PSKModulator
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minpol
Find minimal polynomial of Galois field element

Syntax
pl = minpol(x)

Description
pl = minpol(x) finds the minimal polynomial of each element in the Galois column vector, x. The
output pl is an array in GF(2). The kth row of pl lists the coefficients, in order of descending powers,
of the minimal polynomial of the kth element of x.

Note The output is in GF(2) even if the input is in a different Galois field.

Examples
The code below uses m = 4 and finds that the minimal polynomial of gf(2,m) is just the primitive
polynomial used for the field GF(2^m). This is true for any value of m, not just the value used in the
example.

m = 4;
A = gf(2,m)
pl = minpol(A)

The output is below. Notice that the row vector [1 0 0 1 1] represents the polynomial
D^4 + D + 1.

A = GF(2^4) array. Primitive polynomial = D^4+D+1 (19 decimal)

Array elements = 

     2

pl = GF(2) array. 

Array elements = 

     1     0     0     1     1

Another example is in “Minimal Polynomials”.

Version History
Introduced before R2006a

See Also
gf | cosets
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Topics
“Polynomials over Galois Fields”
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2-553



mldivide
Matrix left division \ of Galois arrays

Syntax
x = A\B

Description
x = A\B divides the Galois array A into B to produce a particular solution of the linear equation A*x
= B. In the special case when A is a nonsingular square matrix, x is the unique solution, inv(A)*B,
to the equation.

Examples
The code below shows that A \ eye(size(A)) is the inverse of the nonsingular square matrix A.

m = 4; A = gf([8 1 6; 3 5 7; 4 9 2],m);
Id = gf(eye(size(A)),m);
X = A \ Id;
ck1 = isequal(X*A, Id)
ck2 = isequal(A*X, Id)

The output is below.

ck1 =

     1

ck2 =

     1

Other examples are in “Solving Linear Equations”.

Limitations
The matrix A must be one of these types:

• A nonsingular square matrix
• A matrix, in which there are more rows than columns, such that A'*A is nonsingular
• A matrix, in which there are more columns than rows, such that A*A' is nonsingular

Algorithms
If A is an M-by-N matrix where M > N, A \ B is the same as (A'*A) \ (A'*B).

If A is an M-by-N matrix where M < N, A \ B is the same as A' * ((A*A') \ B). This solution is
not unique.
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Version History
Introduced before R2006a

See Also
gf

Topics
“Linear Algebra in Galois Fields”
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mlseeq
Equalize linearly modulated signal using MLSE

Syntax
y = mlseeq(x,chcffs,const,tblen,opmode)
y = mlseeq( ___ ,nsamp)

y = mlseeq( ___ ,nsamp,preamble,postamble)

y = mlseeq( ___ ,nsamp,init_metric,init_states,init_inputs)
[y,final_metric,final_states,final_inputs] = mlseeq( ___ )

Description
y = mlseeq(x,chcffs,const,tblen,opmode) equalizes the baseband signal vector x using the
maximum likelihood sequence estimation (MLSE). chcffs provides estimated channel coefficients.
const provides the ideal signal constellation points. tblen specifies the traceback depth. opmode
specifies the operation mode of the equalizer. MLSE is implemented using the “Viterbi Algorithm” on
page 2-563.

y = mlseeq( ___ ,nsamp) specifies the number of samples per symbol in x, in addition to
arguments in the previous syntax.

y = mlseeq( ___ ,nsamp,preamble,postamble) specifies the number of samples per symbol in
x, preamble, and postamble, in addition to arguments in the first syntax. This syntax applies when
opmode is 'rst' only. For more information, see “Preamble and Postamble in Reset Operation Mode”
on page 2-563.

y = mlseeq( ___ ,nsamp,init_metric,init_states,init_inputs)specifies the number of
samples per symbol in x, initial likelihood state metrics, initial traceback states, and initial traceback
inputs for the equalizer, in addition to arguments in the first syntax. These three inputs are typically
the final_metric, final_states, and final_inputs outputs from a previous call to this
function. This syntax applies when opmode is 'cont' only. For more information, see “Initialization
in Continuous Operation Mode” on page 2-563.

[y,final_metric,final_states,final_inputs] = mlseeq( ___ ) returns the normalized
final likelihood state metrics, final traceback states, and final traceback inputs at the end of the
traceback decoding process, using any of the previous input argument syntaxes. This syntax applies
when opmode is 'cont' only. For more information, see “Initialization in Continuous Operation
Mode” on page 2-563.

Examples

Using MLSE Equalizer Reset Operating Mode

Use the reset operating mode of the mlseeq equalizer. Demodulate the signal and check the bit error
rate.
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Specify the modulation order, equalizer traceback depth, number of samples per symbol, and
message length.

M = 2;
tblen =  10; 
nsamp = 2;
msgLen = 1000;

Generate the reference constellation.

const = pammod([0:M-1],M);

Generate a message with random data. Modulate and upsample the signal.

msgData = randi([0 M-1],msgLen,1); 
msgSym = pammod(msgData,M);
msgSymUp = upsample(msgSym,nsamp); 

Filter the data through a distortion channel and add Gaussian noise to the signal.

chanest = [0.986; 0.845; 0.237; 0.12345+0.31i]; 
msgFilt = filter(chanest,1,msgSymUp); 
msgRx = awgn(msgFilt,5,'measured');

Equalize and then demodulate the signal to recover the message. To initialize the equalizer, provide
the channel estimate, reference constellation, equalizer traceback depth, number of samples per
symbol, and set the operating mode to reset. Check the message bit error rate. Your results might
vary because this example uses random numbers.

eqSym = mlseeq(msgRx,chanest,const,tblen,'rst',nsamp);
eqMsg = pamdemod(eqSym,M);

[nerrs ber] = biterr(msgData, eqMsg)

nerrs = 1

ber = 1.0000e-03

Recover Message Containing Preamble

Recover a message that includes a preamble, equalize the signal, and check the symbol error rate.

Specify the modulation order, equalizer traceback depth, number of samples per symbol, preamble,
and message length.

M = 4; 
tblen = 16;
nsamp = 1;
preamble = [3;1];
msgLen = 500;

Generate the reference constellation.

const = pskmod(0:3,4);
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Generate a message by using random data and prepend the preamble to the message. Modulate the
random data.

msgData = randi([0 M-1],msgLen,1);
msgData = [preamble; msgData];
msgSym = pskmod(msgData,M);

Filter the data through a distortion channel and add Gaussian noise to the signal.

chcoeffs = [0.623; 0.489+0.234i; 0.398i; 0.21];
chanest = chcoeffs;
msgFilt = filter(chcoeffs,1,msgSym);
msgRx = awgn(msgFilt,9,'measured');

Equalize the received signal. To configure the equalizer, provide the channel estimate, reference
constellation, equalizer traceback depth, operating mode, number of samples per symbol, and
preamble. The same preamble symbols appear at the beginning of the message vector and in the
syntax for mlseeq. Because the system does not use a postamble, an empty vector is specified as the
last input argument in this mlseeq syntax.

Check the symbol error rate of the equalized signal. Run-to-run results vary due to use of random
numbers.

eqSym = mlseeq(msgRx,chanest,const,tblen,'rst',nsamp,preamble,[]);
[nsymerrs,ser] = symerr(msgSym,eqSym)

nsymerrs = 8

ser = 0.0159

Using MLSE Equalizer Continuous Operating Mode

Use the continuous operating mode of the mlseeq equalizer. Demodulate received signal packets and
check the symbol error statistics.

Specify the modulation order, equalizer traceback depth, number of samples per symbol, message
length, and number of packets to process.

M = 4;
tblen =  10; 
nsamp = 1;
msgLen = 1000; 
numPkts = 25;

Generate the reference constellation.

const = pskmod(0:M-1,M);

Set the initial input parameters for the metric, states, and inputs of the equalizer to empty vectors.
These initial assignments represent the parameters for the first packet transmitted.

eq_metric = [];
eq_states = [];
eq_inputs = [];

Assign variables for symbol error statistics.
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ttlSymbErrs = 0;
aggrPktSER = 0;

Send and receive multiple message packets in a simulation loop. Between the packet transmission
and reception filter each packet through a distortion channel and add Gaussian noise.

for jj = 1:numPkts

Generate a message with random data. Modulate the signal.

    msgData = randi([0 M-1],msgLen,1); 
    msgMod = pskmod(msgData,M); 

Filter the data through a distortion channel and add Gaussian noise to the signal.

    chanest = [.986; .845; .237; .12345+.31i]; 
    msgFilt = filter(chanest,1,msgMod);
    msgRx = awgn(msgFilt,10,'measured');

Equalize the received symbols. To configure the equalizer, provide the channel estimate, reference
constellation, equalizer traceback depth, operating mode, number of samples per symbol, and the
equalizer initialization information. Continuous operating mode is specified for the equalizer. In
continuous operating mode, the equalizer initialization information (metric, states, and inputs) are
returned and used as inputs in the next iteration of the for loop.

    [eqSym,eq_metric,eq_states,eq_inputs] = ...
        mlseeq(msgRx,chanest,const,tblen,'cont',nsamp, ...
        eq_metric,eq_states,eq_inputs);

Save the symbol error statistics. Update the symbol error statistics with the aggregate results.
Display the total number of errors. Your results might vary because this example uses random
numbers.

    [nsymerrs,ser] = symerr(msgMod(1:end-tblen),eqSym(tblen+1:end));
    ttlSymbErrs = ttlSymbErrs + nsymerrs;
    aggrPktSER = aggrPktSER + ser;
end
printTtlErr = 'A total of %d symbol errors over the %d packets received.\n';
fprintf(printTtlErr,ttlSymbErrs,numPkts);

A total of 172 symbol errors over the 25 packets received.

Display the aggregate symbol error rate.

printAggrSER = 'The aggregate symbol error rate was %6.5d.\n';
fprintf(printAggrSER,aggrPktSER/numPkts);

The aggregate symbol error rate was 6.94949e-03.

Input Arguments
x — Input signal
vector

Input signal, specified as a vector of modulated symbols. The vector length of x must be an integer
multiple of nsamp.
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Data Types: double
Complex Number Support: Yes

chcffs — Channel coefficients
vector

Channel coefficients, specified as a vector. The channel coefficients provide an estimate of the
channel response. When nsamp > 1, the chcffs input specifies the oversampled channel coefficients.
Data Types: double
Complex Number Support: Yes

const — Reference constellation
vector

Reference constellation, specified as a vector with M elements. M is the modulation order. const lists
the ideal signal constellation points in the sequence used by the modulator.
Data Types: double
Complex Number Support: Yes

tblen — Traceback depth
positive integer

Traceback depth, specified as a positive integer. The equalizer traces back from the likelihood state
with the maximum metric.
Data Types: double

opmode — Operation mode
'rst' | 'cont'

Operation mode, specified as 'rst' or 'cont'.

Value Usage
'rst' Run equalizer using reset operating mode. Enables you to specify a

preamble and postamble that accompany the input signal. The
function processes the input signal, x, independently of the input
signal from any other invocations of this function. This operating
mode does not incur an output delay. For more information, see
“Preamble and Postamble in Reset Operation Mode” on page 2-
563.

'cont' Run equalizer using continuous operating mode. Enables you to
save the internal state information of the equalizer for use in a
subsequent invocation of this function. Continuous operating mode
is useful if the input signal is partitioned into a stream of packets
processed within a loop. This operating mode incurs an output delay
of tblen symbols. For more information, see “Initialization in
Continuous Operation Mode” on page 2-563.

Data Types: char

nsamp — Number of samples per symbol
1 (default) | positive integer
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Number of samples per symbol, specified as a positive integer. nsamp is the oversampling factor.

Dependencies

The input signal, x, must be an integer multiple of nsamp.
Data Types: double

preamble — Input signal preamble
vector of integers

Input signal preamble, specified as a vector of integers between 0 and M–1, where M is the
modulation order. To omit a preamble, specify [].

For more information, see “Preamble and Postamble in Reset Operation Mode” on page 2-563.

Dependencies

This input argument applies only when opmode is set to 'rst'.
Data Types: double

postamble — Input signal postamble
vector of integers

Input signal postamble, specified as a vector of integers between 0 and M–1, where M is the
modulation order. To omit a postamble, specify [].

For more information, see “Preamble and Postamble in Reset Operation Mode” on page 2-563.

Dependencies

This input argument applies only when opmode is set to 'rst'.
Data Types: double

init_metric — Initial state metrics
[ ] (default) | column vector

Initial state metrics, specified as a column vector with Nstates elements. For the description of Nstates,
see “Number of Likelihood States” on page 2-564.

For more information, see “Initialization in Continuous Operation Mode” on page 2-563.

Dependencies

This input argument applies only when opmode is set to 'cont'. If specifying [] for init_metric,
you must also specify [] for init_states and init_inputs.
Data Types: double

init_states — Initial traceback states
[ ] (default) | matrix of integers

Initial traceback states, specified as an Nstates-by-tblen matrix of integers with values between 0 and
Nstates–1. For the description of Nstates, see “Number of Likelihood States” on page 2-564.

For more information, see “Initialization in Continuous Operation Mode” on page 2-563.
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Dependencies

This input argument applies only when opmode is set to 'cont'. If specifying [] for init_states,
you must also specify [] for init_metric and init_inputs.
Data Types: double

init_inputs — Initial traceback inputs
[] (default) | matrix of integers

Initial traceback inputs, specified as an Nstates-by-tblen matrix of integers with values between 0 and
M–1. For the description of Nstates, see “Number of Likelihood States” on page 2-564.

For more information, see “Initialization in Continuous Operation Mode” on page 2-563.

Dependencies

This input argument applies only when opmode is set to 'cont'. If specifying [] for init_inputs,
you must also specify [] for init_metric and init_states.
Data Types: double

Output Arguments
y — Output signal
vector

Output signal, returned as a vector of modulated symbols.

final_metric — Final normalized state metrics
vector

Final normalized state metrics, returned as a vector with Nstates elements. final_metric
corresponds to the final state metrics at the end of the traceback decoding process. For the
description of Nstates, see “Number of Likelihood States” on page 2-564.

For more information, see “Initialization in Continuous Operation Mode” on page 2-563.

final_states — Final traceback states
vector

Final traceback states, returned as a Nstates-by-tblen matrix of integers with values between 0 and
Nstates–1. final_states corresponds to the final traceback states at the end of the traceback
decoding process. For the description of Nstates, see “Number of Likelihood States” on page 2-564.

For more information, see “Initialization in Continuous Operation Mode” on page 2-563.

final_inputs — Final traceback inputs
vector

Final traceback inputs, returned as an Nstates-by-tblen matrix of integers with values between 0 and
M–1. final_inputs corresponds to the final traceback inputs at the end of the traceback decoding
process. M is the order of the modulation. For the description of Nstates, see “Number of Likelihood
States” on page 2-564.

For more information, see “Initialization in Continuous Operation Mode” on page 2-563.
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More About
Viterbi Algorithm

The Viterbi algorithm is a sequential trellis search algorithm used to perform maximum likelihood
sequence detection.

The MLSE equalizer uses the Viterbi algorithm to recursively search for the sequences that maximize
the likelihood function. Using the Viterbi algorithm reduces the number of sequences in the trellis
search by eliminating sequences as new data is received. The metric used to determine the maximum
likelihood sequence is the correlation between the received signal and an estimated signal for each
received symbol over the “Number of Likelihood States” on page 2-564.

For more information, see [1] and [2].

Preamble and Postamble in Reset Operation Mode

When operating the MLSE equalizer in reset mode, you can specify a preamble and postamble as
input arguments. Specify preamble and postamble as vectors equal to the preamble and postamble
that are prepended and appended, respectively, to the input signal. The preamble and postamble
vectors consist of integers between 0 and M-1, where M is the number of elements in const. To omit
the preamble or postamble input argument, specify [].

When the function applies the Viterbi algorithm, it initializes state metrics in a way that depends on
whether you specify a preamble, a postamble, or both:

• If preamble is nonempty, the function decodes the preamble and assigns a metric of 0 to the
decoded state. If the preamble does not decode to a unique state (that is, if the length of the
preamble is less than the channel memory), the decoder assigns a metric of 0 to all states that are
represented by the preamble. The traceback path ends at one of the states represented by the
preamble.

• If preamble is [], the decoder initializes the metrics of all states to 0.
• If postamble is nonempty, the traceback path begins at the smallest of all possible decoded states

that are represented by the postamble.
• If postamble is [], the traceback path starts at the state with the smallest metric.

Initialization in Continuous Operation Mode

When operating the MLSE equalizer in continuous mode, you can initialize the equalization based on
values returned in the previous call of the function.

At the end of the traceback decoding process, the function returns final_metric, final_states,
and final_inputs. When opmode is 'cont', assign these outputs to init_metric, init_states,
and init_inputs, respectively for the next call of the function. These assignments initialize the
equalizer to start with the final state metrics, final traceback states, and final traceback inputs from
the previous call of the function.

Each real number in init_metric represents the starting state metric of the corresponding state.
init_states and init_inputs jointly specify the initial traceback memory of the equalizer.
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Output
Argument

Input Argument Meaning Matrix Size Range of Values

final_metric init_metric State metrics 1-by-Nstates Real numbers
final_states init_states Traceback states Nstates-by-tblen Integers between 0

and Nstates–1
fianl_inputs init_inputs Traceback inputs Nstates-by-tblen Integers between 0

and M–1

To use default values for init_metric, init_states, and init_inputs, specify each as []. For
the description of Nstates, see “Number of Likelihood States” on page 2-564.

Number of Likelihood States

The number of likelihood states, Nstates, is the number of correlative phase states in the trellis. Nstates
is equal to ML-1, where M is the number of elements in const and L is the number of symbols in the
nonoversampled impulse response of the channel.

Version History
Introduced before R2006a

References
[1] Proakis, John G. Digital Communications, Fourth Edition. New York: McGraw-Hill, 2001.

[2] Steele, Raymond, Ed. Mobile Radio Communications. Chichester, England: John Wiley & Sons,
1996.

See Also
Functions
ofdmEqualize

Objects
comm.MLSEEqualizer | comm.DecisionFeedbackEqualizer | comm.LinearEqualizer

Topics
“MLSE Equalizers”
“Recover Message Containing Preamble”
“Use mlseeq to Equalize a Vector in Continuous Operation Mode”
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modnorm
Scaling factor for normalizing modulation output

Syntax
normfactor = modnorm(refconst,type,power)

Description
normfactor = modnorm(refconst,type,power) returns a scale factor for normalizing a PAM or
QAM modulator output using the specified reference constellation, normalization type, and output
power.

Examples

Normalize Power of QAM Signal

Generate a 16-QAM reference constellation.

refconst = qammod(0:15,16);

Generate random symbols and apply 16-QAM modulation.

x = randi([0 15],1000,1);
y = qammod(x,16);

Plot the constellation.

h = scatterplot(y);
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Compute the normalization factor so that the output signal has a peak power of 1 W.

nf = modnorm(refconst,'peakpow',1);
z = nf*y;

Confirm that no element of the normalized signal has a power greater than 1 W.

max(z.*conj(z))

ans = 1.0000

Add the normalized constellation to the scatter plot.

hold on
scatterplot(z,1,0,'ro',h)
hold off
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Input Arguments
refconst — Reference constellation
vector

Reference constellation, specified as a vector of complex elements that comprise the reference
constellation points.
Example: qammod(0:15,16)
Data Types: double
Complex Number Support: Yes

type — Normalization type
'avpow' | 'peakpow'

Normalization type, specified as either 'avpow' or 'peakpow'.

• If type is 'avpow', the normalization factor is calculated based on average power.
• If type is 'peakpow', the normalization factor is calculated based on peak power.

Data Types: char

power — Target power
scalar
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Target power, specified as a real scalar. The target power is the intended power of the modulated
signal multiplied by normfactor.
Data Types: double

Output Arguments
normfactor — Normalization factor
scalar

Normalization factor, returned as a real scalar. When a modulated signal is multiplied by the
normalization factor, its average or peak power matches the target power. The function assumes that
the signal you want to normalize has a minimum distance of 2.

Version History
Introduced before R2006a

See Also
pammod | pamdemod | qammod | qamdemod
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mskdemod
Minimum shift keying demodulation

Syntax
z = mskdemod(y,nsamp)
z = mskdemod(y,nsamp,dataenc)
z = mskdemod(y,nsamp,dataenc,ini_phase)
z = mskdemod(y,nsamp,dataenc,ini_phase,ini_state)
[z,phaseout] = mskdemod(...)
[z,phaseout,stateout] = mskdemod(...)

Description
z = mskdemod(y,nsamp) demodulates the complex envelope y of a signal using the differentially
encoded minimum shift keying (MSK) method. nsamp denotes the number of samples per symbol and
must be a positive integer. The initial phase of the demodulator is 0. If y is a matrix with multiple
rows and columns, the function treats the columns as independent channels and processes them
independently.

z = mskdemod(y,nsamp,dataenc) specifies the method of encoding data for MSK. dataenc can
be either 'diff' for differentially encoded MSK or 'nondiff' for nondifferentially encoded MSK.

z = mskdemod(y,nsamp,dataenc,ini_phase) specifies the initial phase of the demodulator.
ini_phase is a row vector whose length is the number of channels in y and whose values are integer
multiples of pi/2. To avoid overriding the default value of dataenc, set dataenc to [].

z = mskdemod(y,nsamp,dataenc,ini_phase,ini_state) specifies the initial state of the
demodulator. ini_state contains the last half symbol of the previously received signal. ini_state
is an nsamp-by-C matrix, where C is the number of channels in y.

[z,phaseout] = mskdemod(...) returns the final phase of y, which is important for
demodulating a future signal. The output phaseout has the same dimensions as the ini_phase
input, and assumes the values 0, pi/2, pi, and 3*pi/2.

[z,phaseout,stateout] = mskdemod(...) returns the final nsamp values of y, which is useful
for demodulating the first symbol of a future signal. stateout has the same dimensions as the
ini_state input.

Examples

MSK Demodulation

Modulate and demodulate a noisy MSK signal. Display the number of received errors.

Define the number of samples per symbol for the MSK signal.

nsamp = 16;
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Initialize the simulation parameters.

numerrs = 0; 
modPhase = zeros(1,2);    
demodPhase = zeros(1,2);  
demodState = complex(zeros(nsamp,2));

The main processing loop includes these steps:

• Generate binary data.
• MSK modulate the data.
• Pass the signal through an AWGN channel.
• Demodulate the MSK signal.
• Determine the number of bit errors.

for iRuns = 1:20
    txData = randi([0 1],100,2);
    [modSig,modPhase] = mskmod(txData,nsamp,[],modPhase);
    rxSig = awgn(modSig,20,'measured');
    [rxData,demodPhase,demodState] = mskdemod(rxSig,nsamp,[],demodPhase,demodState);
    numerrs = numerrs + biterr(txData,rxData);
end

Display the number of bit errors.

numerrs

numerrs = 0

Version History
Introduced before R2006a

References

[1] Pasupathy, S., "Minimum Shift Keying: A Spectrally Efficient Modulation". IEEE Communications
Magazine, July, 1979, pp. 14–22.

See Also
mskmod | fskmod | fskdemod | comm.MSKDemodulator

Topics
“Digital Baseband Modulation”

2 Functions

2-570



mskmod
Minimum shift keying modulation

Syntax
y = mskmod(x,nsamp)
y = mskmod(x,nsamp,dataenc)
y = mskmod(x,nsamp,dataenc,ini_phase)
[y,phaseout] = mskmod(...)

Description
y = mskmod(x,nsamp) outputs the complex envelope y of the modulation of the message signal x
using differentially encoded minimum shift keying (MSK) modulation. The elements of x must be 0 or
1. nsamp denotes the number of samples per symbol in y and must be a positive integer. The initial
phase of the MSK modulator is 0. If x is a matrix with multiple rows and columns, the function treats
the columns as independent channels and processes them independently.

y = mskmod(x,nsamp,dataenc) specifies the method of encoding data for MSK. dataenc can be
either 'diff' for differentially encoded MSK or 'nondiff' for nondifferentially encoded MSK.

y = mskmod(x,nsamp,dataenc,ini_phase) specifies the initial phase of the MSK modulator.
ini_phase is a row vector whose length is the number of channels in y and whose values are integer
multiples of pi/2. To avoid overriding the default value of dataenc, set dataenc to [].

[y,phaseout] = mskmod(...) returns the final phase of y. This is useful for maintaining phase
continuity when you are modulating a future bit stream with differentially encoded MSK. phaseout
has the same dimensions as the ini_phase input, and assumes the values 0, pi/2, pi, and 3*pi/2.

Examples

Eye Diagram of MSK Signal

Generate a random binary signal.

x = randi([0 1],100,1);

MSK modulate the data.

y = mskmod(x,8,[],pi/2);

Pass the signal through an AWGN channel. Display the eye diagram.

z = awgn(y,30,'measured');
eyediagram(z,16);
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Version History
Introduced before R2006a

References

[1] Pasupathy, S., "Minimum Shift Keying: A Spectrally Efficient Modulation". IEEE Communications
Magazine, July, 1979, pp. 14–22.

See Also
mskdemod | fskmod | fskdemod | comm.MSKModulator
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muxdeintrlv
Restore ordering of symbols using specified shift registers

Syntax
deintrlved = muxdeintrlv(data,delay)
[deintrlved,state] = muxdeintrlv(data,delay)
[deintrlved,state] = muxdeintrlv(data,delay,init_state)

Description
deintrlved = muxdeintrlv(data,delay) restores the ordering of elements in data by using a
set of internal shift registers, each with its own delay value. delay is a vector whose entries indicate
how many symbols each shift register can hold. The length of delay is the number of shift registers.
Before the function begins to process data, it initializes all shift registers with zeros. If data is a
matrix with multiple rows and columns, the function processes the columns independently.

[deintrlved,state] = muxdeintrlv(data,delay) returns a structure that holds the final
state of the shift registers. state.value stores any unshifted symbols. state.index is the index of
the next register to be shifted.

[deintrlved,state] = muxdeintrlv(data,delay,init_state) initializes the shift registers
with the symbols contained in init_state.value and directs the first input symbol to the shift
register referenced by init_state.index. The structure init_state is typically the state output
from a previous call to this same function, and is unrelated to the corresponding interleaver.

Using an Interleaver-Deinterleaver Pair

To use this function as an inverse of the muxintrlv function, use the same delay input in both
functions. In that case, the two functions are inverses in the sense that applying muxintrlv followed
by muxdeintrlv leaves data unchanged, after you take their combined delay of
length(delay)*max(delay) into account. To learn more about delays of convolutional
interleavers, see “Delays of Convolutional Interleavers”.

Examples
The example below illustrates how to use the state input and output when invoking muxdeintrlv
repeatedly. Notice that [deintrlved1; deintrlved2] is the same as deintrlved.
delay = [0 4 8 12]; % Delays in shift registers
symbols = 100; % Number of symbols to process
% Interleave random data.
intrlved = muxintrlv(randi([0 1],symbols,1),delay);

% Deinterleave some of the data, recording state for later use.
[deintrlved1,state] = muxdeintrlv(intrlved(1:symbols/2),delay);
% Deinterleave the rest of the data, using state as an input argument.
deintrlved2 = muxdeintrlv(intrlved(symbols/2+1:symbols),delay,state);

% Deinterleave all data in one step.
deintrlved = muxdeintrlv(intrlved,delay);

isequal(deintrlved,[deintrlved1; deintrlved2])
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The output is below.

ans =

     1

Another example using this function is in “Convolutional Interleaving and Deinterleaving Using a
Sequence of Consecutive Integers in MATLAB”.

Version History
Introduced before R2006a

References

[1] Heegard, Chris, and Stephen B. Wicker, Turbo Coding, Boston, Kluwer Academic Publishers,
1999.

See Also
muxintrlv

Topics
“Interleaving”
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muxintrlv
Permute symbols using shift registers with specified delays

Syntax
intrlved = muxintrlv(data,delay)
[intrlved,state] = muxintrlv(data,delay)
[intrlved,state] = muxintrlv(data,delay,init_state)

Description
intrlved = muxintrlv(data,delay) permutes the elements in data by using internal shift
registers, each with its own delay value. delay is a vector whose entries indicate how many symbols
each shift register can hold. The length of delay is the number of shift registers. Before the function
begins to process data, it initializes all shift registers with zeros. If data is a matrix with multiple
rows and columns, the function processes the columns independently.

[intrlved,state] = muxintrlv(data,delay) returns a structure that holds the final state of
the shift registers. state.value stores any unshifted symbols. state.index is the index of the
next register to be shifted.

[intrlved,state] = muxintrlv(data,delay,init_state) initializes the shift registers with
the symbols contained in init_state.value and directs the first input symbol to the shift register
referenced by init_state.index. The structure init_state is typically the state output from a
previous call to this same function, and is unrelated to the corresponding deinterleaver.

Examples
The examples in “Convolutional Interleaving and Deinterleaving Using a Sequence of Consecutive
Integers in MATLAB” and on the reference page for the convintrlv function use muxintrlv.

The example on the reference page for muxdeintrlv illustrates how to use the state output and
init_state input with that function; the process is analogous for this function.

Version History
Introduced before R2006a

References

[1] Heegard, Chris, and Stephen B. Wicker, Turbo Coding, Boston, Kluwer Academic Publishers,
1999.

See Also
muxdeintrlv | convintrlv | helintrlv
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noisebw
Equivalent noise bandwidth of digital lowpass filter

Syntax
bw = noisebw(num,den,N,Fs)

Description
bw = noisebw(num,den,N,Fs) returns the two-sided equivalent noise bandwidth of a digital
lowpass filter in Hz. Specify the filter coefficients in descending polynomial powers by numerator num
and denominator den. Input N is the number of samples of the impulse response. Fs is the sampling
rate for the filtered signal. For more information on the two-sided equivalent noise bandwidth
computation, see “Algorithms” on page 2-578.

Examples

Obtain Noise Equivalent Bandwidth of Butterworth Filter

Set the sampling rate, Nyquist frequency, and carrier frequency.

fs = 16;
fNyq = fs/2;
fc = 0.5;

Generate a Butterworth filter.

[num,den] = butter(2,fc/fNyq);

Compute the equivalent noise bandwidth of the filter over 100 samples of the impulse response.

bw = noisebw(num,den,100,fs)

bw = 1.1049

Input Arguments
num — Numerator coefficients of filter
numeric row vector

Numerator coefficients of the filter in descending polynomial powers, specified as a numeric row
vector.
Data Types: double

den — Denominator coefficients of filter
numeric row vector

Denominator coefficients of the filter in descending polynomial powers, specified as a numeric row
vector.
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Data Types: double

N — Number of samples of impulse response
positive integer

Number of samples of the impulse response to use when calculating the bandwidth, specified as a
positive integer.
Data Types: double

Fs — Sampling rate for filtered signal
positive integer

Sampling rate for the filtered signal, specified as a positive integer. The function uses this input value
as a scaling factor to convert a normalized unitless quantity into a bandwidth in Hz.
Data Types: double

Output Arguments
bw — Equivalent noise bandwidth
numeric scalar

Equivalent noise bandwidth in Hz, returned as a numeric scalar.

Algorithms
This formula specifies the two-sided equivalent noise bandwidth computation.

Fs ∑
i = 1

N
h(i) 2

∑
i = 1

N
h(i)

2

h is the impulse response of the filter and is specified by input arguments num and den.

Version History
Introduced before R2006a

References
[1] Jeruchim, Michel C., Philip Balaban, and K. Sam Shanmugan. Simulation of Communication

Systems. Second edition. Boston, MA: Springer US, 2000.

See Also
Functions
semianalytic | freqz
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Tools
FVTool
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oct2dec
Convert octal to decimal numbers

Syntax
d = oct2dec(c)

Description
d = oct2dec(c) converts an octal matrix c to a decimal matrix d, element by element. In both octal
and decimal representations, the rightmost digit is the least significant.

Examples

Convert Octal Matrix to Decimal Equivalent

Convert a 2-by-2 octal matrix its decimal equivalent.

d = oct2dec([12 144;0 25])

d = 2×2

    10   100
     0    21

The octal number 144 is equivalent to 100 because 144 = 1(82) + 4(81) + 4(80) = 100.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
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oct2poly
Convert octal number to binary coefficients

Syntax
b = oct2poly(oct)
b = oct2poly(oct,ord)

Description
b = oct2poly(oct) converts an octal number, oct, to a vector of binary coefficients, b.

b = oct2poly(oct,ord) specifies the power order, ord, of the coefficients that comprise the
output. If omitted, ord is 'descending'.

Examples

Convert Octal Number to Binary Vector

Convert the octal number 11 to a binary vector.

b = oct2poly(11)

b = 1×4

     1     0     0     1

The binary vector corresponds to the polynomial x3 + 1.

Convert Octal Number to Ascending Order Binary Vector

Convert the octal number 65 to an ascending order binary vector.

b = oct2poly(65,'ascending')

b = 1×6

     1     0     1     0     1     1

Sixty-five octal is the generator polynomial of a (15,10) Hamming code in the Bluetooth® v4.0
standard. The binary representation of 65 octal is 110101 and the GF(2) polynomial is 1 + x2 + x4 + x5

or [1 0 1 0 1 1] in ascending powers.
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Input Arguments
oct — Octal number
scalar

Octal number, specified as a positive integer scalar.
Example: 15
Example: 3177
Data Types: double

ord — Power order
'descending' (default) | 'ascending'

Power order of the binary coefficients vector, specified as a character vector having a value of
'ascending' or 'descending'.
Data Types: char

Output Arguments
b — Binary coefficients
vector

Binary coefficients representing a polynomial, returned as a row vector having length equal to p + 1,
where p is the order of octal input.

Version History
Introduced in R2015b

See Also
hex2poly | oct2dec
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ofdmdemod
Demodulate time-domain signal using orthogonal frequency division multiplexing (OFDM)

Syntax
outSym = ofdmdemod(ofdmSig,nfft,cplen)
outSym = ofdmdemod(ofdmSig,nfft,cplen,symOffset)
outSym = ofdmdemod(ofdmSig,nfft,cplen,symOffset,nullidx)
[outSym,pilots] = ofdmdemod(ofdmSig,nfft,cplen,symOffset,nullidx,pilotidx)
outSym = ofdmdemod(ofdmSig,nfft,cplen, ___ ,OvesamplingFactor=Value)

Description
outSym = ofdmdemod(ofdmSig,nfft,cplen) performs OFDM demodulation on the input time
domain signal specified in ofdmSig, using an FFT size specified by nfft and cyclic prefix length
specified by cplen. For information, see “OFDM Demodulation” on page 2-590.

outSym = ofdmdemod(ofdmSig,nfft,cplen,symOffset) applies the symbol sampling offset,
symOffset, for each OFDM symbol before demodulation of the input.

outSym = ofdmdemod(ofdmSig,nfft,cplen,symOffset,nullidx) removes null subcarriers
from the locations specified in nullidx. For this syntax, the symbol sampling offset is applied to each
OFDM symbol and the number of rows in the output is nfft – length(nullidx), which accounts
for the removal of null subcarriers. Use null subcarriers to account for guard bands and DC
subcarriers. For information, see “Subcarrier Allocation and Guard Bands” on page 2-591.

[outSym,pilots] = ofdmdemod(ofdmSig,nfft,cplen,symOffset,nullidx,pilotidx)
returns pilot subcarriers for the pilot indices specified in pilotidx. For this syntax, the symbol
sampling offset is applied to each OFDM symbol and number of rows in the output is nfft –
length(nullidx) – length(pilotidx), which accounts for the removal of null and pilot
subcarriers. The function assumes that pilot subcarrier locations are the same across each OFDM
symbol and transmit antenna.

outSym = ofdmdemod(ofdmSig,nfft,cplen, ___ ,OvesamplingFactor=Value) specifies the
optional oversampling factor name-value argument in addition to input arguments in previous
syntaxes. The oversampling factor for an upsampled input signal must be specified as a positive
scalar. Additionally, the products (OversamplingFactor×nfft) and
(OversamplingFactor×cplen) must both result in integers. The default value for
OversamplingFactor is 1.

For example, ofdmdemod(inSym,nfft,cplen,OversamplingFactor=2) demodulates assuming
the input signal was upsampled by a factor of two.

Examples

OFDM Demodulation with Different CP Lengths

OFDM-demodulate a signal with different CP lengths for different symbols.
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Initialize input parameters defining locations for null and pilot subcarriers. Generate random data
and perform OFDM modulation.

M = 16;
nfft = 64;
cplen = [16 32];
nSym = 2;
dataSym = randi([0 M-1],nfft,nSym);
qamSig = qammod(dataSym,M,UnitAveragePower=true);
y1 = ofdmmod(qamSig,nfft,cplen);

Demodulate the OFDM symbols. Compare the results to the original input data. The difference
between the signals is negligible.

x1 = ofdmdemod(y1,nfft,cplen);
rxData = qamdemod(x1,M,UnitAveragePower=true);
isequal(rxData,dataSym)

ans = logical
   1

OFDM Mod-Demod SISO Link

Apply OFDM multiplexing to a 16-QAM signal filtered by a SISO link with Rayleigh fading.

Initialize simulation variables, and create Rayleigh fading channel and constellation diagram objects.

s1 = RandStream('mt19937ar',Seed=12345);
nFFT = 64;
cpLen = 16;
nullIdx = [1:6 33 64-4:64].';
numTones = nFFT-length(nullIdx);

k = 4; % bits per symbol
M = 2^k;
constSym = qammod((0:M-1),M, ...
    UnitAveragePower=true); % reference constellation symbols

maxDopp = 1;
pathDelays = [0 4e-3 8e-3];
pathGains = [0 -2 -3];
sRate = 1000;
sampIdx = round(pathDelays/(1/sRate)) + 1;

chan = comm.RayleighChannel(PathGainsOutputPort=true, ...
    MaximumDopplerShift=maxDopp, ...
    PathDelays=pathDelays, ...
    AveragePathGains=pathGains, ...
    SampleRate=sRate, ...
    RandomStream='mt19937ar with seed');

cdScope = comm.ConstellationDiagram( ...
    ShowReferenceConstellation=true, ...
    ReferenceConstellation=constSym);
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Generate signal data and apply 16-QAM modulation.

data = randi(s1,[0 M-1],numTones,1);
modOut = qammod(data,M,UnitAveragePower=true);

Apply OFDM modulation and pass the signal through the channel.

y = ofdmmod(modOut,nFFT,cpLen,nullIdx);
[fadSig,pg] = chan(y);

Determine symbol sampling offset.

symOffset = min(max(sampIdx),cpLen)

symOffset = 9

OFDM demodulate the received signal with a time shift. Display the constellation diagram before
equalization.

x = ofdmdemod(fadSig,nFFT,cpLen,symOffset,nullIdx);
cdScope(x);
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Convert the vector of path gains, pg, to scalar tap gains that correspond to data subcarriers,
h_datasubcarr. Use the h_datasubcarr tap gains for equalization during signal recovery.

hImp = complex(zeros(nFFT,1));
hImp(sampIdx) = mean(pg,1);
hall = fftshift(fft(hImp));
dataIdx = setdiff((1:nFFT)',nullIdx);
h_datasubcarr = hall(dataIdx);

Equalize the signal. Display the constellation diagram after equalization.

eqSig = x ./ h_datasubcarr;
cdScope(eqSig);
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Demodulate the 16-QAM symbols to recover the signal. Compute the symbol error rate.

rxSym = qamdemod(eqSig,M,UnitAveragePower=true);
numErr = symerr(data,rxSym);
disp(['Number of symbol errors: ' num2str(numErr) ...
    ' out of ' num2str(length(data)) ' symbols.'])

Number of symbol errors: 2 out of 52 symbols.

OFDM Demodulation with Null and Pilot Packing

OFDM-demodulate data input that includes null and pilot packing.
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Initialize input parameters, defining locations for null and pilot subcarriers. Generate random data
and perform OFDM modulation.

Mqam = 16;
Mpsk = 4;
nfft = 64;
cplen = 16;
nSym = 10;
nullIdx = [1:6 33 64-4:64]';
pilotIdx = [12 26 40 54]';
numDataCarrs = nfft-length(nullIdx)-length(pilotIdx);
dataSym = randi([0 Mqam-1],numDataCarrs,nSym);
qamSig = qammod(dataSym,Mqam,UnitAveragePower=true);
pilotSym = repmat((0:Mpsk-1).',1,nSym);
pilots = pskmod(pilotSym,Mpsk);
y2 = ofdmmod(qamSig,nfft,cplen,nullIdx,pilotIdx,pilots);

Demodulate the OFDM symbols. Compare the results to the original input data to show that the
demodulated signal and the original data and pilot signals are equal.

symOffset = cplen;
[x2,rxPilots] = ofdmdemod(y2,nfft,cplen,symOffset,nullIdx,pilotIdx);
rxData = qamdemod(x2,Mqam,UnitAveragePower=true);
isequal(rxData,dataSym)

ans = logical
   1

rxPilotSym = pskdemod(rxPilots,Mpsk);
isequal(rxPilotSym,repmat((0:Mpsk-1).',1,nSym))

ans = logical
   1

Demodulate Oversampled OFDM Signal

Demodulate an oversampled OFDM modulation that has a sample offset. Insert nulls in the OFDM
grid and oversample the output signal.

Initialize variables for the oversampling factor, FFT size, cyclic prefix length, and sample offset.

M = 64;
osf = 4/3;
nfft = 768;
cplen = 24;
sampOffset = 5;
symOffset = cplen - (sampOffset/osf);

Generate data symbols and OFDM-modulate the data.

dataSym = randi([0 M-1],nfft,1);
qamSig = qammod(dataSym,M,UnitAveragePower=true);
y3 = ofdmmod(qamSig,nfft,cplen,OversamplingFactor=osf);
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Demodulate the signal and show the demodulated data symbols match the original input data
symbols.

x3 = ofdmdemod(y3,nfft,cplen,symOffset,OversamplingFactor=osf);
rxSym = qamdemod(x3,M,UnitAveragePower=true);
isequal(rxSym,dataSym)

ans = logical
   1

Input Arguments
ofdmSig — Modulated OFDM symbols
2-D array of complex symbols

Modulated OFDM symbols, specified as a 2-D array of complex symbols.

• If cplen is a scalar, the array size is ((nfft + cplen) × NSym)-by-NR.
• If cplen is a row vector, the array size is ((nfft × NSym) + sum(cplen))-by-NR.

NSym is the number of symbols per antenna and NR is the number of receive antennas.

Data Types: double | single
Complex Number Support: Yes

nfft — FFT length
integer greater than or equal to 8

FFT length, specified as an integer greater than or equal to 8. nfft is equivalent to the number of
subcarriers used in the demodulation process.
Data Types: double

cplen — Cyclic prefix length
scalar | row vector of length NSym

Cyclic prefix length, specified as a scalar or as a row vector of length NSym.

• When you specify cplen as a scalar, the cyclic prefix length is the same for all symbols through all
antennas.

• When you specify cplen as a row vector of length NSym, the cyclic prefix length can vary across
symbols but remains the same length through all antennas.

Data Types: double

symOffset — Symbol sampling offset
cplen (default) | scalar | row vector

Symbol sampling offset, specified as values from 0 to cplen.

• If you do not specify symOffset, the default value is an offset equal to cplen.
• If you specify symOffset as a scalar, the same offset is used for all symbols.
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• If you specify symOffset as a row vector, the offset value can be different for each symbol.

For information, see “Windowing and Symbol Offset” on page 2-592.
Data Types: double

nullidx — Indices of null subcarrier locations
column vector

Indices of null subcarrier locations, specified as a column vector with element values from 1 to nfft.
If you specify nullidx, the number of rows in outSym is (nfft-length(nullidx)). For
information, see “Subcarrier Allocation and Guard Bands” on page 2-591.
Data Types: double

pilotidx — Indices of pilot subcarrier locations
column vector

Indices of pilot subcarrier locations, specified as a column vector with element values from 1 to nfft.
If you specify pilotidx, the number of rows in outSym is (nfft-length(nullidx)-
length(pilotidx)).For information, see “Subcarrier Allocation and Guard Bands” on page 2-591.
Data Types: double

Output Arguments
outSym — Output demodulated symbols
3-D array

Output demodulated symbols, returned as an ND-by-NSym-by-NR array of symbols. ND must equal nfft
– length(nullidx) – length(pilotidx). NSym is the number of OFDM symbols per antenna. NR is
the number of receive antennas. For information, see “OFDM Demodulation” on page 2-590.

pilots — Pilot subcarriers
3-D array

Pilot subcarriers, returned as an NPilot-by-NSym-by-NR array of symbols. NPilot must equal the length of
pilotidx. NSym is the number of OFDM symbols per antenna. NR is the number of receive antennas.
The function assumes that the pilot subcarrier locations are the same across each OFDM symbol and
transmit antenna. Use the comm.OFDMDemodulator to vary pilot subcarrier locations across OFDM
symbols or antennas.

More About
OFDM Demodulation

An OFDM demodulator demultiplexes a multi-subcarrier time-domain signal using orthogonal
frequency division multiplexing.

OFDM demodulation uses an FFT operation that results in N parallel data streams. An OFDM
demodulator consists of a bank of N correlators, with one correlator assigned to each OFDM
subcarrier, followed by a parallel-to-serial conversion.
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Subcarrier Allocation and Guard Bands

Individual OFDM subcarriers are allocated as data, pilot, or null subcarriers.

As shown here, subcarriers are designated as data, DC, pilot, or guard band subcarriers.

• Data subcarriers transmit user data.
• Pilot subcarriers are used for channel estimation.
• Null subcarriers transmit no data. Subcarriers with no data are used to provide a DC null and

serve as buffers between OFDM resource blocks.

• The null DC subcarrier is the center of the frequency band with an index value of (nfft/2 + 1)
if nfft is even, or ((nfft + 1) / 2) if nfft is odd.

• The guard bands provide buffers between adjacent signals in neighboring bands to reduce
interference caused by spectral leakage.

Null subcarriers enable you to model guard bands and DC subcarrier locations for specific standards,
such as the various 802.11 formats, LTE, WiMAX, or for custom allocations. You can allocate the
location of nulls by assigning a vector of null subcarrier indices.

Similar to guard bands, guard intervals are used in OFDM to protect the integrity of transmitted
signals by reducing intersymbol interference.
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Assignment of guard intervals is analogous to the assignment of guard bands. You can model guard
intervals to provide temporal separation between OFDM symbols. The guard intervals help preserve
intersymbol orthogonality after the signal passes through time-dispersive channels. Guard intervals
are created by using cyclic prefixes. Cyclic prefix insertion copies the last part of an OFDM symbol as
the first part of the OFDM symbol.

As long as the span of the time dispersion does not exceed the duration of the cyclic prefix, the
benefit of cyclic prefix insertion is maintained.

Inserting a cyclic prefix results in a fractional reduction of user data throughput because the cyclic
prefix occupies bandwidth that could be used for data transmission.

Windowing and Symbol Offset

To reduce intersymbol interference (ISI) introduced by signal windowing applied at the transmitter,
the function applies a fractional symbol offset before demodulation of each OFDM symbol. Signal
windowing is often applied to transmitted OFDM symbols to smooth the discontinuity between
consecutive OFDM symbols. Windowing reduces intersymbol out-of-band emissions but increases ISI.

The windowed OFDM symbol consists of the cyclic prefix (CP), ODFM symbol data, plus windowing
regions at the beginning and end of the symbol. The leading and trailing windowing shoulders have
tails as shown in the figure.
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To reduce ISI, you can align signal sample timing by specifying a symbol sampling offset that gets
applied before OFDM symbol demodulation.

Specify the symbol sampling offset as a value from 0 to LCP.

• When the symbol sampling offset is a scalar from 0 to LCP, the FFT window begins at the X+1
sample of the CP length.

• When the symbol sampling offset is zero, no offset is applied and the FFT window starts at the
first sample of the symbol.

• When the symbol sampling offset is the cyclic prefix length, LCP, the FFT window begins after the
last CP sample. This offset is the default setting if symbol sampling offset is not specified.

Version History
Introduced in R2018a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
ofdmmod | qamdemod | genqamdemod

Objects
comm.OFDMDemodulator | comm.OQPSKDemodulator | comm.GeneralQAMDemodulator
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ofdmEqualize
Equalize OFDM signals

Syntax
[eqsym,csi]= ofdmEqualize(rxsym,hest,nvar)
[eqsym,csi]= ofdmEqualize(rxsym,hest)
[eqsym,csi]= ofdmEqualize( ___ ,Name=Value)

Description
[eqsym,csi]= ofdmEqualize(rxsym,hest,nvar) returns equalized symbols eqsym and soft
channel state information csi after performing minimum mean squared error (MMSE) equalization
on input OFDM symbols rxsym. hest specifies the estimated channel information. nvar specifies the
estimated noise variance.

[eqsym,csi]= ofdmEqualize(rxsym,hest) performs MMSE equalization with the estimated
noise variance equal to 0.

[eqsym,csi]= ofdmEqualize( ___ ,Name=Value) specifies options using one or more name-
value arguments in addition to the input arguments in the previous syntaxes. For example,
ofdmEqualize(rxsym,hest,Algorithm="zf") equalizes the input OFDM symbols using the
zero-forcing algorithm.

Examples

OFDM Equalization for MIMO Channel

Equalize an OFDM signal filtered through a MIMO channel.

Define variables for a 2-by-4 MIMO system transmitting a 64-QAM signal that is OFDM modulated.

numTxAntenna = 2;
numRxAntenna = 4;
fftLen = 256;
cpLen = 16;        
k = 6;              % Bits per symbol for each OFDM data subcarrier
modOrder = 2^k;     % 64-QAM for k = 6
numOFDMSymbols = 8;
SNRdB = 40;

Specify null indices for guard bands and a DC subcarrier.

ofdmNullIdx = [1:9 (fftLen/2+1) (fftLen-8+1:fftLen)]';

Apply QAM and OFDM modulation to random bit data.

numDataSubcarriers = fftLen-length(ofdmNullIdx);
srcBits = randi([0,1], ...
    [numDataSubcarriers*log2(modOrder) numOFDMSymbols numTxAntenna]);
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ofdmData = qammod(srcBits,modOrder, ...
    InputType="bit", ...
    UnitAveragePower=true);
txSignal = ofdmmod(ofdmData,fftLen,cpLen,ofdmNullIdx);

Filter the OFDM signal through a MIMO channel and add AWGN.

mimoChannel = comm.MIMOChannel( ...
    SampleRate=1e6, ...
    PathDelays=[3e-6 5e-6 8e-6], ...
    AveragePathGains=[1.2 0.5 0.1], ...
    MaximumDopplerShift=1, ...
    SpatialCorrelationSpecification="None", ...
    NumTransmitAntennas=numTxAntenna, ...
    NumReceiveAntennas=numRxAntenna, ...
    PathGainsOutputPort=true);
[channelOut,pathGains] = mimoChannel(txSignal);
rxSignal = awgn(channelOut,SNRdB,"measured");

Get a perfect channel estimate by using the channel filter coefficients and path gains from the
comm.MIMOChannel System object™.

mimoChannelInfo = info(mimoChannel);
pathFilters = mimoChannelInfo.ChannelFilterCoefficients;
maxFilterLen = size(pathFilters,2);
numPaths = size(pathGains,2);
symLen = fftLen+cpLen;
pathGainsLink = permute( ...
    pathGains((cpLen+1) + ...
    (0:(numOFDMSymbols-1))*symLen,:,:,:), ...
    [2 4 3 1]);
h = zeros(maxFilterLen,numRxAntenna,numTxAntenna,numOFDMSymbols);
for np = 1:numPaths
    h = h + ...
        bsxfun(@times,pathFilters(np,:).',pathGainsLink(np,:,:,:));
end
impulseResponse = zeros( ...
    numOFDMSymbols*symLen,numRxAntenna,numTxAntenna);
for n = 1:numOFDMSymbols
    idx = cpLen + (n-1)*symLen + (1:maxFilterLen);
    impulseResponse(idx,:,:) = impulseResponse(idx,:,:) + h(:,:,:,n);
end
H = zeros( ...
    numDataSubcarriers,numOFDMSymbols,numTxAntenna,numRxAntenna);
for nt = 1:numTxAntenna
    H(:,:,nt,:) = ofdmdemod( ...
        impulseResponse(:,:,nt),fftLen,cpLen,cpLen,ofdmNullIdx);
end
hEst = reshape(H,[],numTxAntenna,numRxAntenna);

Demodulate and equalize the OFDM symbols.

rxSym = ofdmdemod(rxSignal,fftLen,cpLen,cpLen,ofdmNullIdx);
eqSym = ofdmEqualize(rxSym,hEst,Algorithm="zf");
refConst = qammod(0:modOrder-1,modOrder,UnitAveragePower=true);
constellationDiagram = comm.ConstellationDiagram( ...
    XLimits=[-2 2], ...
    YLimits=[-2 2], ...
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    ReferenceConstellation=refConst);
constellationDiagram(eqSym(:));

Show Equivalence of 2-D and 3-D Data Format for OFDM Equalization

Initialize variables for simulation of a MIMO system and a 120-resource-element subset of the OFDM
subcarrier-symbol grid.

Nre = 120;
Nt = 4;
Nr = 8;
nvar = 0.1;
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Create random signals for a 2-D symbol array and a channel estimate.

rxsym2d = complex(randn(Nre,Nr),randn(Nre,Nr));
Hest = complex(randn(Nre,Nt,Nr),randn(Nre,Nt,Nr));

Apply OFDM equalization to the 2-D signal contained in an 120-by-8 symbol array.

[eqsym2d,csi2d] = ofdmEqualize(rxsym2d,Hest,nvar,DataFormat="2-D");

Reshape the 2-D signal to a 30-by-4-by-8 symbol array. Apply OFDM equalization to the 3-D signal.
Compare the results of OFDM equalization for the 30-by-4-by-8 symbol array with OFDM equalization
for the 120-by-8 symbol array. As the isequal function result shows, the equalized symbols and soft
channel state information returned for the 30-by-4-by-8 and 120-by-8 symbol arrays are equal.

rxsym3d = reshape(rxsym2d,30,4,Nr);
[eqsym3d,csi3d] = ofdmEqualize(rxsym3d,Hest,nvar,DataFormat="3-D");
isequal(eqsym3d,reshape(eqsym2d,30,4,Nt))

ans = logical
   1

isequal(csi3d,csi2d)

ans = logical
   1

Reshape the 2-D signal to a 60-by-2-by-8 symbol array. Apply OFDM equalization to the 3-D signal.
Compare the results of OFDM equalization for the 60-by-2-by-8 symbol array with OFDM equalization
for the 120-by-8 symbol array. As the isequal function result shows, the equalized symbols and soft
channel state information returned for the 60-by-2-by-8 and 120-by-8 symbol arrays are equal.

rxsym3d2 = reshape(rxsym2d,60,2,Nr);
[eqsym3d2,csi3d2] = ofdmEqualize(rxsym3d2,Hest,nvar,DataFormat="3-D");
isequal(eqsym3d2,reshape(eqsym2d,60,2,Nt))

ans = logical
   1

isequal(csi3d2,csi2d)

ans = logical
   1

Input Arguments
rxsym — Received symbols
3-D array | 2-D array

Received symbols, specified as a 3-D or 2-D array.

• If DataFormat is set to "3-D", the function expects rxsym to be specified as an NSC-by-NSymbols-
by-NR array. NSC represents the number of OFDM subcarriers, NSymbols represents the number of
OFDM symbols, and NR represents the number of receive antennas.
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• If DataFormat is set to "2-D", the function expects rxsym to be specified as an NRE-by-NR array.
NRE represents the number of resource elements in an irregular subset of the OFDM subcarrier
symbol grid.

Data Types: double | single
Complex Number Support: Yes

hest — Channel estimate
3-D array

Channel estimate, specified as a 3-D array.

• If DataFormat is set to "3-D", the function expects hest to be an NSC-by-NT-by-NR or an
(NSC×NSymbols)-by-NT-by-NR array.

• If hest is an NSC-by-NT-by-NR array, all OFDM symbols in rxsym are equalized by the same
channel estimate. NSC represents the number of OFDM subcarriers, NT represents the number
of transmit antennas, and NR represents the number of receive antennas.

• If hest is an (NSC×NSymbols)-by-NT-by-NR array, each OFDM symbol in rxsym is equalized by the
corresponding entry in hest. NSymbols represents the number of OFDM symbols.

• If DataFormat is set to "2-D", the function expects hest to be an NRE-by-NT-by-NR array. Each
OFDM symbol in rxsym is equalized by the corresponding entry in hest. NRE represents the
number of resource elements in an irregular subset of the OFDM subcarrier symbol grid.

Data Types: double | single
Complex Number Support: Yes

nvar — Noise variance
0 (default) | nonnegative scalar

Noise variance estimate for MMSE equalization, specified as a nonnegative scalar.

Dependencies

The noise variance setting is used only when you set Algorithm to "mmse".
Data Types: double | single

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: ofdmEqualize(rxsym,hest,DataFormat="2-D") equalizes an NRE-by-NR input OFDM
symbol array using the MMSE algorithm.

Algorithm — Equalization algorithm
"mmse" (default) | "zf"

Equalization algorithm, specified as "mmse" or "zf".

• When this argument is set to "mmse", the function equalizes using the MMSE algorithm.
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• When this argument is set to "zf", the function equalizes using the zero-forcing algorithm. When
using the zero-forcing algorithm, the nvar argument value is ignored.

DataFormat — Format of signals
"3-D" (default) | "2-D"

Format of the signals, specified as "3-D" or "2-D".

When this argument is set to "3-D", OFDM subcarriers and OFDM symbols use two separate
dimensions in the representation of rxsym and eqsym.

• The rxsym input must be an NSC-by-NSymbols-by-NR array.
• The eqsym output is returned as an NSC-by-NSymbols-by-NT array.

When this argument is set to "2-D", OFDM subcarriers and OFDM symbols use one combined
dimension in the representation of rxsym and eqsym.

• The rxsym input must be an NRE-by-NR array.
• The eqsym output is returned as an NRE-by-NT array.

NSC represents the number of OFDM subcarriers. NSymbols represents the number of symbols. NRE
represents the number of resource elements in an irregular subset of the OFDM subcarrier symbol
grid. NT represents the number of transmit antennas. NR represents the number of receive antennas.

Output Arguments
eqsym — Equalized symbols
3-D array | 2-D array

Equalized symbols, returned as a 3-D or 2-D array.

• If DataFormat is set to "3-D", the function returns an NSC-by-NSymbols-by-NT array. NSC represents
the number of OFDM subcarriers, NSymbols represents the number of OFDM symbols, and NT
represents the number of transmit antennas.

• If DataFormat is set to "2-D", the function returns an NRE-by-NT array. NRE represents the
number of resource elements in an irregular subset of the OFDM subcarrier symbol grid.

csi — Soft channel state information
matrix

Soft channel state information, returned as a matrix with size(csi,1) = size(hest,1) and
size(csi,2) = NT = size(hest,2). NT represents the number of transmit antennas.

Version History
Introduced in R2022b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
Functions
ofdmmod | ofdmdemod

Objects
comm.DecisionFeedbackEqualizer | comm.LinearEqualizer | comm.MLSEEqualizer

Blocks
OFDM Equalizer
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ofdmmod
Modulate frequency-domain signal using orthogonal frequency division multiplexing (OFDM)

Syntax
ofdmSig = ofdmmod(inSym,nfft,cplen)
ofdmSig = ofdmmod(inSym,nfft,cplen,nullidx)
ofdmSig = ofdmmod(inSym,nfft,cplen,nullidx,pilotidx,pilots)
ofdmSig = ofdmmod(inSym,nfft,cplen, ___ ,OvesamplingFactor=Value)

Description
ofdmSig = ofdmmod(inSym,nfft,cplen) performs OFDM modulation on the frequency-domain
input data subcarriers, inSym, using an FFT size specified by nfft and cyclic prefix length specified
by cplen. For information, see “OFDM Modulation” on page 2-606.

ofdmSig = ofdmmod(inSym,nfft,cplen,nullidx) inserts null subcarriers into the frequency
domain input data signal prior to performing OFDM modulation. The null subcarriers are inserted at
index locations from 1 to nfft, as specified by nullidx. For this syntax, the number of rows in the
input inSym must be nfft – length(nullidx). Use null carriers to account for guard bands and
DC subcarriers. For information, see “Subcarrier Allocation, Guard Bands and Guard Intervals” on
page 2-608.

ofdmSig = ofdmmod(inSym,nfft,cplen,nullidx,pilotidx,pilots) inserts null and pilot
subcarriers into the frequency domain input data symbols prior to performing OFDM modulation. The
null subcarriers are inserted at the index locations specified by nullidx. The pilot subcarriers,
pilots, are inserted at the index locations specified by pilotidx. For this syntax, the number of
rows in the input inSym must be nfft – length(nullidx) – length(pilotidx). The function
assumes pilot subcarrier locations are the same across each OFDM symbol and transmit antenna.

ofdmSig = ofdmmod(inSym,nfft,cplen, ___ ,OvesamplingFactor=Value) specifies the
optional oversampling factor name-value argument in addition to input arguments in previous
syntaxes. The oversampling factor for an upsampled output signal must be specified as a positive
scalar. Additionally, the products (OversamplingFactor×nfft) and
(OversamplingFactor×cplen) must both result in integers. The default value for
OversamplingFactor is 1.

For example, ofdmmod(inSym,nfft,cplen,OversamplingFactor=2) upsamples the output
signal by a factor of two.

Examples

OFDM Modulation over Two Antennas

OFDM-modulate a fully packed input over two transmit antennas.

Initialize input parameters, generate random data, and perform OFDM modulation.

M = 16;      % Modulation order for 16QAM
nfft  = 128; % Number of data carriers
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cplen = 16;  % Cyclic prefix length
nSym  = 5;   % Number of symbols per RE
nt    = 2;   % Number of transmit antennas
dataIn = randi([0 M-1],nfft,nSym,nt);
qamSig = qammod(dataIn,M,'UnitAveragePower',true);
y1 = ofdmmod(qamSig,nfft,cplen);

Apply OFDM Assigning Null Subcarriers

Apply OFDM modulation assigning null subcarriers.

Initialize input parameters and generate random data.

M = 16;     % Modulation order for 16QAM
nfft  = 64; % FFT length
cplen = 16; % Cyclic prefix length
nSym  = 10; % Number of symbols per RE

nullIdx  = [1:6 33 64-4:64]';
numDataCarrs = nfft-length(nullIdx);
inSym = randi([0 M-1],numDataCarrs,nSym);

QAM modulate data. Perform OFDM modulation.

qamSig = qammod(inSym,M,'UnitAveragePower',true);
outSig = ofdmmod(qamSig,nfft,cplen,nullIdx);

Perform OFDM Modulation Varying Cyclic Prefix per Symbol

Perform OFDM modulation to input frequency domain data signal varying cyclic prefix length applied
to each symbol.

Initialize input parameters and generate random data.

M = 16; % Modulation order for 16QAM
nfft  = 64;
cplen = [4 8 10 7 2 2 4 11 16 3];
nSym  = 10;
nullIdx  = [1:6 33 64-4:64]';
numDataCarrs = nfft-length(nullIdx);
inSym = randi([0 M-1],numDataCarrs,nSym);

QAM modulate the data symbols and perform OFDM modulation to the QAM signal.

qamSig = qammod(inSym,M,UnitAveragePower=true);
outSig = ofdmmod(qamSig,nfft,cplen,nullIdx);

Apply OFDM to QPSK Signal Spatially Multiplexed over Two Antennas

Apply OFDM modulation to a QPSK signal that is spatially multiplexed over two transmit antennas.
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Initialize input parameters and generate random data for each antenna.

M = 4;      % Modulation order for QPSK
nfft  = 64;
cplen = 16;
nSym  = 5;
nt    = 2;
nullIdx  = [1:6 33 64-4:64]';
pilotIdx = [12 26 40 54]';
numDataCarrs = nfft-length(nullIdx)-length(pilotIdx);
pilots = repmat(pskmod((0:M-1).',M),1,nSym,2);

ant1 = randi([0 M-1],numDataCarrs,nSym);
ant2 = randi([0 M-1],numDataCarrs,nSym);

QPSK modulate data individually for each antenna. Perform OFDM modulation.

qpskSig(:,:,1) = pskmod(ant1,M);
qpskSig(:,:,2) = pskmod(ant2,M);
y1 = ofdmmod(qpskSig,nfft,cplen,nullIdx,pilotIdx,pilots);

OFDM Modulation with Null and Pilot Packing

OFDM-modulate data input, specifying null and pilot packing.

Initialize input parameters, defining locations for null and pilot subcarriers. Generate random data,
apply 16-QAM to data, QSPK to pilots, and perform OFDM modulation.

M = 16;     % Modulation order
nfft = 64;  % FFT length
cplen = 16; % Cyclic prefix length
nSym  = 10; % Number of symbols per RE

nullIdx  = [1:6 33 64-4:64]';
pilotIdx = [12 26 40 54]';

numDataCarrs = nfft-length(nullIdx)-length(pilotIdx);
dataSym = randi([0 M-1],numDataCarrs,nSym);
qamSig = qammod(dataSym,M,UnitAveragePower=true);
pilots = repmat(pskmod((0:3).',4),1,nSym);

y2 = ofdmmod(qamSig,nfft,cplen,nullIdx,pilotIdx,pilots);

OFDM Modulate with Upsampling and Nulls

Apply OFDM modulation to symbols. Insert nulls in the OFDM grid and oversample the output signal.

Initialize variables for the modulation order, oversampling factor, FFT size, cyclic prefix length, and
null indices.

M = 64;      % Modulation order
osf = 3;     % Oversampling factor
nfft = 256;  % FFT length
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cplen = 16;  % Cyclic prefix length

nullidx  = [1:6 nfft/2+1 nfft-5:nfft]';
numDataCarrs = nfft-length(nullidx);

Generate data symbols, apply QAM, and OFDM-modulate the data.

x = randi([0 M-1],numDataCarrs,1);
qamSig = qammod(x,M,UnitAveragePower=true);
y = ofdmmod(qamSig,nfft,cplen,nullidx,OversamplingFactor=osf); 

Input Arguments
inSym — Input data subcarriers
3-D array

Input data subcarriers, specified as an ND-by-NSym-by-NT array of symbols. The number of data
subcarriers, ND, must equal nfft – length(nullidx) – length(pilotidx). NSym is the number of
OFDM symbols per transmit antenna, NT is the number of transmit antennas.

Input data symbols to an OFDM modulator are typically created with a baseband digital modulator,
such as qammod.
Data Types: double | single
Complex Number Support: Yes

nfft — FFT length
integer greater than or equal to 8

FFT length, specified as an integer greater than or equal to 8. nfft is equivalent to the number of
subcarriers used in the modulation process.
Data Types: double

cplen — Cyclic prefix length
scalar | row vector of length NSym

Cyclic prefix length, specified as a scalar or as a row vector of length NSym.

• When you specify cplen as a scalar, the cyclic prefix length is the same for all symbols through all
antennas.

• When you specify cplen as a row vector of length NSym, the cyclic prefix length can vary across
symbols but remains the same length through all antennas.

For more information, see “Subcarrier Allocation, Guard Bands and Guard Intervals” on page 2-608.
Data Types: double

nullidx — Indices of null subcarrier locations
column vector

Indices of null subcarrier locations, specified as a column vector with element values from 1 to nfft.
Data Types: double
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pilotidx — Indices of pilot subcarrier locations
column vector

Indices of pilot subcarrier locations, specified as a column vector with element values from 1 to nfft.
Data Types: double

pilots — Pilot subcarriers
3-D array

Pilot subcarriers, specified as an NPilot-by-NSym-by-NT array of symbols. NPilot must equal the length of
pilotidx. NSym is the number of OFDM symbols per transmit antenna. NT is the number of transmit
antennas. The function assumes pilot subcarrier locations are the same across each OFDM symbol
and transmit antenna. Use the comm.OFDMModulator to vary pilot subcarrier locations across OFDM
symbols or antennas.
Data Types: double | single

Output Arguments
ofdmSig — Modulated OFDM symbols
2-D array of complex symbols

Modulated OFDM symbols, returned as a 2-D array of complex symbols.

• If cplen is a scalar, the array size is ((nfft + cplen) × NSym)-by-NT.
• If cplen is a row vector, the array size is ((nfft × NSym) + sum(cplen))-by-NT.

NSym is the number of symbols per transmit antenna and NT is the number of transmit antennas.

Data Types: double | single

More About
OFDM Modulation

OFDM belongs to the class of multicarrier modulation schemes. Since the multiple data streams can
be transmitted simultaneously with multiple carriers, OFDM is not influenced by noise to the same
degree as single-carrier modulation.

OFDM operation divides a high-rate data stream into lower data rate substreams by decomposing the
transmission frequency band into N contiguous individually modulated subcarriers. Multiple parallel
and orthogonal subcarriers carry the samples with almost the same bandwidth as a wideband
channel. By using narrow orthogonal subcarriers, the OFDM signal gains robustness over a
frequency-selective fading channel and eliminates adjacent subcarrier interference. Intersymbol
interference (ISI) is reduced because the lower data rate substreams have symbol durations larger
than the channel delay spread.

This image shows a frequency domain representation of orthogonal subcarriers in an OFDM
waveform.
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The transmitter applies inverse fast Fourier transform (IFFT) to N symbols at a time. Typically, the
output of the IFFT is the sum of the N orthogonal sinusoids:

x(t) = ∑
k = 0

N − 1
Xke j2πkΔf t, 0 ≤ t ≤ T,

where {Xk} are data symbols, and T is the OFDM symbol time. The data symbols Xk are typically
complex and can be from any digital modulation alphabet (for example, QPSK, 16-QAM, 64-QAM, ...).

Note The MATLAB implementation of the discrete Fourier transform normalizes the output of the
IFFT by 1/N. For more information, see “Discrete Fourier Transform of Vector” on the ifft reference
page.

The subcarrier spacing is Δf = 1/T, ensuring that the subcarriers are orthogonal over each symbol
period, as shown below:

1
T∫0 T

e j2πmΔf t * e j2πnΔf t dt = 1
T∫0 T

e j2π(m− n)Δf t dt = 0 for m ≠ n .

An OFDM modulator consists of a serial-to-parallel conversion followed by a bank of N complex
modulators, individually corresponding to each OFDM subcarrier.
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Subcarrier Allocation, Guard Bands and Guard Intervals

Individual OFDM subcarriers are allocated as data, pilot, or null subcarriers.

As shown here, subcarriers are designated as data, DC, pilot, or guard band subcarriers.

• Data subcarriers transmit user data.
• Pilot subcarriers are used for channel estimation.
• Null subcarriers transmit no data. Subcarriers with no data are used to provide a DC null and

serve as buffers between OFDM resource blocks.

• The null DC subcarrier is the center of the frequency band with an index value of (nfft/2 + 1)
if nfft is even, or ((nfft + 1) / 2) if nfft is odd.

• The guard bands provide buffers between adjacent signals in neighboring bands to reduce
interference caused by spectral leakage.

Null subcarriers enable you to model guard bands and DC subcarrier locations for specific standards,
such as the various 802.11 formats, LTE, WiMAX, or for custom allocations. You can allocate the
location of nulls by assigning a vector of null subcarrier indices.

Similar to guard bands, guard intervals are used in OFDM to protect the integrity of transmitted
signals by reducing intersymbol interference.
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Assignment of guard intervals is analogous to the assignment of guard bands. You can model guard
intervals to provide temporal separation between OFDM symbols. The guard intervals help preserve
intersymbol orthogonality after the signal passes through time-dispersive channels. Guard intervals
are created by using cyclic prefixes. Cyclic prefix insertion copies the last part of an OFDM symbol as
the first part of the OFDM symbol.

As long as the span of the time dispersion does not exceed the duration of the cyclic prefix, the
benefit of cyclic prefix insertion is maintained.

Inserting a cyclic prefix results in a fractional reduction of user data throughput because the cyclic
prefix occupies bandwidth that could be used for data transmission.

Version History
Introduced in R2018a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
ofdmdemod | qammod | genqammod

Objects
comm.OFDMModulator | comm.OFDMDemodulator
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pamdemod
Pulse amplitude demodulation

Syntax
z = pamdemod(y,M)
z = pamdemod(y,M,ini_phase)
z = pamdemod(y,M,ini_phase,symbol_order)

Description
z = pamdemod(y,M) demodulates the complex envelope y of a pulse amplitude modulated signal. M
is the alphabet size. The ideal modulated signal should have a minimum Euclidean distance of 2.

z = pamdemod(y,M,ini_phase) specifies the initial phase of the modulated signal in radians.

z = pamdemod(y,M,ini_phase,symbol_order) specifies how the function assigns binary words
to corresponding integers. If symbol_order is set to 'bin' (default), the function uses a natural
binary-coded ordering. If symbol_order is set to 'gray', it uses a Gray-coded ordering.

Examples

Demodulate PAM Signal

Modulate and demodulate random integers using pulse amplitude modulation. Verify that the output
data matches the original data.

Set the modulation order and generate 100 M-ary data symbols.

M = 12;
dataIn = randi([0 M-1],100,1);

Perform modulation and demodulation operations.

modData = pammod(dataIn,M);
dataOut = pamdemod(modData,M);

Compare the first five symbols.

[dataIn(1:5) dataOut(1:5)]

ans = 5×2

     9     9
    10    10
     1     1
    10    10
     7     7

Verify that there are no symbol errors in the entire sequence.
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symErrors = symerr(dataIn,dataOut)

symErrors = 0

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
pammod | qamdemod | qammod | pskdemod | pskmod

Topics
“Digital Baseband Modulation”
“Compare Theoretical and Empirical Error Rates”
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pammod
Pulse amplitude modulation (PAM)

Syntax
y = pammod(x,M)
y = pammod(x,M,initphase)
y = pammod(x,M,initphase,symorder)

Description
y = pammod(x,M) returns the complex envelope of the modulation of the input message signal, x,
using PAM and the alphabet size, M.

y = pammod(x,M,initphase) specifies the initial phase of the modulated signal.

y = pammod(x,M,initphase,symorder) specifies natural binary-coded or Gray-coded binary
vector mapping order for the modulation symbols.

Examples

Modulate Data Symbols with PAM

Generate random data symbols and apply pulse amplitude modulation.

Set the modulation order.

M = 8;

Generate random integers and apply PAM modulation having an initial phase of π/4.

data = randi([0 M-1],100,1);
modData = pammod(data,M,pi/4);

Display the PAM constellation diagram.

scatterplot(modData)
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PAM Symbol Mapping

Plot PAM symbol mapping for Gray and natural binary encoded data.

Set the modulation order, and then create a data sequence containing a complete set of constellation
points.

M = 8;
data = [0:M-1];

Modulate and demodulate Gray and natural binary encoded data.

symgray = pammod(data,M,0,'gray');
mapgray = pamdemod(symgray,M,0,'gray');

symbin = pammod(data,M,0,'bin');
mapbin = pamdemod(symbin,M,0,'bin');

Plot the constellation points using one of the symbol sets. For each constellation point, assign a label
indicating the Gray and natural binary values for each symbol.

• For Gray binary symbol mapping, adjacent constellation points differ by a single binary bit and are
not numerically sequential.

• For natural binary symbol mapping, adjacent constellation points follow the natural binary
encoding and are sequential.
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scatterplot(symgray,1,0,'b*');
for k = 1:M
    text(real(symgray(k))-0.6,imag(symgray(k))+0.6,...
        dec2base(mapgray(k),2,4));
    text(real(symgray(k))-0.2,imag(symgray(k))+1.2,...
        num2str(mapgray(k)));
    
    text(real(symbin(k))-0.6,imag(symbin(k))-0.6,...
        dec2base(mapbin(k),2,4),'Color',[1 0 0]);
    text(real(symbin(k))-0.2,imag(symbin(k))-1.2,...
        num2str(mapbin(k)),'Color',[1 0 0]);
end
axis([-M M -2 2])

Input Arguments
x — Input signal
vector | matrix

Input signal, specified as a vector or matrix of integers in the range of [0, M – 1].
Example: randi([0 3],100,1)
Data Types: double

M — Modulation order
power of two
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Modulation order, specified as a power of two.
Example: 4
Data Types: double

initphase — Initial phase
0 (default) | real-valued scalar | []

Initial phase of the modulated signal (in radians), specified as a real scalar.
Example: pi/4
Data Types: double

symorder — Mapping order for modulation symbols
'bin' (default) | 'gray'

Mapping order for the modulation symbols, specified as 'bin' or 'gray'. This argument specifies
how the function assigns binary vectors to corresponding integers.

• If symorder is 'bin', the function uses a natural binary-coded mapping order.
• If symorder is 'gray', the function uses a Gray-coded mapping order.

Data Types: char | string

Output Arguments
y — Complex baseband representation of PAM-modulated signal
vector | matrix

Complex baseband representation of a PAM-modulated signal, returned as vector or matrix of
complex values. The modulated signal has a minimum Euclidean distance of 2. The columns of y
represent independent channels.
Data Types: double | single

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “Code Generation for Complex Data with Zero-Valued Imaginary Parts” (MATLAB Coder).

See Also
pamdemod | qammod | qamdemod | pskmod | pskdemod

Topics
“Digital Baseband Modulation”
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“Compare Theoretical and Empirical Error Rates”
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channelDelay
Channel timing delay

Syntax
[delay,mag] = channelDelay(pathGains,pathFilters)

Description
[delay,mag] = channelDelay(pathGains,pathFilters) computes the channel timing delay
by finding the peak of the channel impulse response. The function reconstructs the impulse response
from a channel path gains array and a path filter impulse response matrix. The function returns the
channel timing delay in samples, and the channel impulse response magnitude. For more information,
see “Channel Delay and Magnitude Computation” on page 2-619.

Examples

Compute Timing Delay for 2-by-2 MIMO Channel

Configure a 2-by-2 MIMO channel. Use the info object function to retrieve the path filters.

chan = comm.MIMOChannel('SampleRate',1000,'PathDelays',[0 1.5e-3], ...
    'AveragePathGains',[1 0.8],'RandomStream','mt19937ar with seed', ...
    'Seed',10,'PathGainsOutputPort',true); 
chanInfo = info(chan);
pathFilters = chanInfo.ChannelFilterCoefficients;

Compute the path gains by passing an impulse through the channel.

[~,pathGains] = chan(ones(1,2));

Compute the channel timing delay, specifying the retrieved path filters and computed path gains.

delay = channelDelay(pathGains,pathFilters)

delay = 6

Show Relative Timing Delay For Rayleigh Channel

Compute and show the relative timing delay for a Rayleigh channel over time.

Create a comm.RayleighChannel System object™ configured with three paths and impulse
response visualization enabled.

chan = comm.RayleighChannel;
chan.SampleRate = 1e3;
chan.PathDelays = [0 5.3e-3 10.1e-3];
chan.AveragePathGains = [0.1 1 0.5];

 channelDelay

2-617



chan.PathGainsOutputPort = true;
chan.RandomStream = 'mt19937ar with seed';
chan.Seed = 1;
chan.Visualization = 'Impulse response';
chan.MaximumDopplerShift = 1;

Use the info object function to retrieve the Rayleigh channel path filters. In a loop, pass a static
signal of all ones through the Rayleigh channel. The channelDelay function uses the channel path
gains array from each pass through the channel and the path filter coefficients,
chanInfo.ChannelFilterCoefficients (returned by the info function) to compute the relative
channel timing delay. The impulse response varies for each iteration. The impulse response for the
last iteration is shown here. The delay vector shows the relative channel timing delay computed for
each iteration.

chanInfo = info(chan);
numIter = 12;
delay = zeros(1,numIter);
for p=1:numIter
    [~,pg] = chan(ones(1e3,1));
    delay(p) = channelDelay(pg,chanInfo.ChannelFilterCoefficients);
end

delay

delay = 1×12

    12     7    12     2    12     7    12     7     7     7     2     2
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Input Arguments
pathGains — Channel path gains
4-D array

Channel path gains, specified as an Ncs-by-Np-by-Nt-by-Nr array, where:

• Ncs is the number of channel snapshots.
• Np is the number of paths.
• Nt is the number of transmit antennas.
• Nr is the number of receive antennas.

If any element in pathGains is NaN, the function assumes that no path exists between the
transmitter and the receiver.
Data Types: double | single
Complex Number Support: Yes

pathFilters — Path filter impulse response
matrix

Path filter impulse response, specified as an Np-by-Nh matrix. Np is the number of paths, and Nh is the
number of impulse response samples.
Data Types: double | single
Complex Number Support: Yes

Output Arguments
delay — Channel timing delay
integer

Channel timing delay in samples, returned as an integer. This value represents the number of samples
of delay relative to the first sample of the channel impulse response reconstructed from the
pathGains and pathFilters inputs. The function computes the channel timing delay by finding the
peak of the composite channel impulse response. For more information, see “Channel Delay and
Magnitude Computation” on page 2-619.

mag — Channel impulse response magnitude
matrix

Channel impulse response magnitude for each receive antenna, returned as an Nh-by-Nr matrix. Nh is
the number of impulse response samples, and Nr is the number of receive antennas. For more
information, see “Channel Delay and Magnitude Computation” on page 2-619.

More About
Channel Delay and Magnitude Computation

The computation of the channel delay and impulse response magnitudes uses the composite channel
impulse response.
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The composite channel impulse response results from averaging the impulse response across all
channel snapshots as represented in the path gains array. The input path gains array must be of the
format Ncs-by-Np-by-Nt-by-Nr , where:

• Ncs is the number of channel snapshots.
• Np is the number of paths.
• Nt is the number of transmit antennas.
• Nr is the number of receive antennas.

The channel timing delay, output as a single value, is relative to the first sample of the channel
impulse response. The function computes this value by finding the peak of the composite channel
impulse response. The composite channel impulse response is the summation of the impulse
responses across all transmit and receive antennas.

The receive impulse response magnitudes are output as an Nh-by-Nr matrix. Nh is the number of
impulse response samples, and Nr is the number of receive antennas. To compute the receive impulse
response magnitudes,

1 Path gains are summed across all channel snapshots.
2 The contribution from each path is added to the channel impulse response across all transmit

and receive antennas.
3 The transmit antenna paths are combined in the channel impulse response array, leaving a matrix

of impulse response samples versus receive antennas.

Version History
Introduced in R2020a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
comm.MIMOChannel | comm.RayleighChannel | comm.RicianChannel
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plotPhaseNoiseFilter
Plot response of phase noise filter block

Syntax
plotPhaseNoiseFilter(blockname)

Description
plotPhaseNoiseFilter(blockname) plots the response of the phase noise filter associated with
the Phase Noise block specified by the variable blockname.

Examples

View Filter Response of Phase Noise Block

This example shows how to use the plotPhaseNoiseFilter function to view the filter response of a
Phase Noise block in a Simulink® model.

Load a Simulink model that contains a Phase Noise block. The load_system (Simulink) command
loads a model into memory without making its model window visible. The function will also work with
models whose window is visible. The example, slex_phasenoise, contains a Phase Noise block.

load_system('slex_phasenoise')

Run the plotPhaseNoiseFilter function to view the filter response of the block Phase Noise.

plotPhaseNoiseFilter('slex_phasenoise/Phase Noise')
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Input Arguments
blockname — Phase noise block name
character vector

The name of a Phase Noise block in a Simulink model
Example: plotPhaseNoiseFilter('Model Name/Phase Noise')
Data Types: char

Version History
Introduced in R2014b

See Also
Phase Noise
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pmdemod
Phase demodulation

Syntax
z = pmdemod(y,Fc,Fs,phasedev)
z = pmdemod(y,Fc,Fs,phasedev,ini_phase)

Description
z = pmdemod(y,Fc,Fs,phasedev) demodulates the phase-modulated signal y at the carrier
frequency Fc (hertz). z and the carrier signal have sampling rate Fs (hertz), where Fs must be at
least 2*Fc. The phasedev argument is the phase deviation of the modulated signal, in radians.

z = pmdemod(y,Fc,Fs,phasedev,ini_phase) specifies the initial phase of the modulated signal,
in radians.

Examples

Recover Phase Modulated Signal from AWGN Channel

Set the sample rate. To plot the signals, create a time vector.

fs = 50; 
t = (0:2*fs+1)'/fs;

Create a sinusoidal input signal.

x = sin(2*pi*t) + sin(4*pi*t);

Set the carrier frequency and phase deviation.

fc = 10; 
phasedev = pi/2;

Modulate the input signal.

tx = pmmod(x,fc,fs,phasedev);

Pass the signal through an AWGN channel.

rx = awgn(tx,10,'measured');

Demodulate the noisy signal.

y = pmdemod(rx,fc,fs,phasedev);

Plot the original and recovered signals.

figure; plot(t,[x y]);
legend('Original signal','Recovered signal');
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xlabel('Time (s)')
ylabel('Amplitude (V)')

Version History
Introduced before R2006a

See Also
pmmod | fmmod | fmdemod

Topics
“Digital Baseband Modulation”
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pmmod
Phase modulation

Syntax
y = pmmod(x,Fc,Fs,phasedev)
y = pmmod(x,Fc,Fs,phasedev,ini_phase)

Description
y = pmmod(x,Fc,Fs,phasedev) modulates the message signal x using phase modulation.

y = pmmod(x,Fc,Fs,phasedev,ini_phase) specifies the initial phase of the modulated signal in
radians.

Examples

Recover Phase Modulated Signal from AWGN Channel

Set the sample rate. To plot the signals, create a time vector.

fs = 50; 
t = (0:2*fs+1)'/fs;

Create a sinusoidal input signal.

x = sin(2*pi*t) + sin(4*pi*t);

Set the carrier frequency and phase deviation.

fc = 10; 
phasedev = pi/2;

Modulate the input signal.

tx = pmmod(x,fc,fs,phasedev);

Pass the signal through an AWGN channel.

rx = awgn(tx,10,'measured');

Demodulate the noisy signal.

y = pmdemod(rx,fc,fs,phasedev);

Plot the original and recovered signals.

figure; plot(t,[x y]);
legend('Original signal','Recovered signal');
xlabel('Time (s)')
ylabel('Amplitude (V)')
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Input Arguments
x — Input signal
vector | matrix

Input signal, specified as a vector or matrix of positive integers. If x is a matrix, pmmod processes the
columns independently.
Example: sin(2*pi*t) + sin(6*pi*t)
Data Types: double

Fc — Carrier frequency
positive scalar

Carrier frequency, specified as a positive scalar.
Data Types: double

Fs — Sample rate
positive scalar

Sample rate, specified as a positive scalar. Fs must be at least 2*Fc.
Data Types: double
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ini_phase — Initial phase
0 (default) | scalar | []

Initial phase of the modulated signal (in radians), specified as a real scalar.
Example: pi/4
Data Types: double

phasedev — Phase deviation
positive scalar

Phase deviation, specified as a positive scalar in radians.
Data Types: double

Output Arguments
y — PM-modulated output signal
vector | matrix

Complex baseband representation of a PM-modulated signal, returned as vector or matrix of complex
values. The columns of y represent independent channels.
Data Types: double | single

Version History
Introduced before R2006a

See Also
pmdemod | fmmod | fmdemod

Topics
“Digital Baseband Modulation”
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poly2trellis
Convert convolutional code polynomials to trellis description

Syntax
trellis = poly2trellis(ConstraintLength,CodeGenerator)
trellis = poly2trellis(ConstraintLength,CodeGenerator,FeedbackConnection)

Description
trellis = poly2trellis(ConstraintLength,CodeGenerator) returns the trellis structure
description corresponding to the conversion for a rate K / N feedforward encoder. K is the number of
input bit streams to the encoder, and N is the number of output connections. ConstraintLength
specifies the delay for the input bit streams to the encoder. CodeGenerator specifies the output
connections for the input bit streams to the encoder.

The poly2trellis function accepts a polynomial description of a convolutional encoder and returns the
corresponding trellis structure description. This output can be used as an input to the convenc and
vitdec functions. It can also be used as a mask parameter value for the Convolutional Encoder,
Viterbi Decoder, and APP Decoder blocks.

Note When used with a feedback polynomial, poly2trellis makes a feedback connection to the input
of the trellis.

trellis = poly2trellis(ConstraintLength,CodeGenerator,FeedbackConnection)
returns the trellis structure description corresponding to the conversion for a rate K / N feedback
encoder. K is the number of input bit streams to the encoder, and N is the number of output
connections. ConstraintLength specifies the delay for the input bit streams to the encoder.
CodeGenerator specifies the output connections for the input bit streams to the encoder.
FeedbackConnection specifies the feedback connection for each of the K input bit streams to the
encoder.

Examples

Use Trellis Structure for Rate 1/2 Feedforward Convolutional Encoder

Use a trellis structure to configure the rate 1/2 feedforward convolutional code in this diagram.
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Create a trellis structure, setting the constraint length to 3 and specifying the code generator as a
vector of octal values. The diagram indicates the binary values and polynomial form, indicating the
left-most bit is the most-significant-bit (MSB). The binary vector [1 1 0] represents octal 6 and
corresponds to the upper row of binary digits in the diagram. The binary vector [1 1 1] represents
octal 7 and corresponds to the lower row of binary digits in the diagram. These binary digits indicate
connections from the outputs of the registers to the two adders in the diagram.

trellis = poly2trellis(3,[6 7])

trellis = struct with fields:
     numInputSymbols: 2
    numOutputSymbols: 4
           numStates: 4
          nextStates: [4x2 double]
             outputs: [4x2 double]

Generate random binary data. Convolutionally encode the data, by using the specified trellis
structure. Decode the coded data by using the Viterbi algorithm with the specified trellis structure,
34 for its traceback depth, truncated operation mode, and hard decisions.

data = randi([0 1],70,1);
codedData = convenc(data,trellis);
tbdepth = 34;
decodedData = vitdec(codedData,trellis,tbdepth,'trunc','hard');

Verify the decoded data has zero bit errors.

biterr(data,decodedData)

ans = 0

Trellis Structure for 2/3 Feedforward Convolutional Encoder

Create a trellis structure for a rate 2/3 feedforward convolutional code and display a portion of the
next states of the trellis. See convenc for an example using this encoder.
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The diagram shows a rate 2/3 encoder with two input streams, three output streams, and seven shift
registers.

Create a trellis structure. Set the constraint length of the upper path to 5 and the constraint length of
the lower path to 4. The octal representation of the code generator matrix corresponds to the taps
from the upper and lower shift registers.

trellis = poly2trellis([5 4],[23 35 0; 0 5 13])

trellis = struct with fields:
     numInputSymbols: 4
    numOutputSymbols: 8
           numStates: 128
          nextStates: [128x4 double]
             outputs: [128x4 double]

The structure field numInputSymbols equals 4 because two bit streams can produce four different
input symbols. The structure field numOutputSymbols equals 8 because three bit streams produce
eight different output symbols. Because the encoder has seven total shift registers, the number of
possible states is 27 = 128, as shown by the nextStates field.

Display the first five rows of the 128-by-4 trellis.nextStates matrix.

trellis.nextStates(1:5,:)

ans = 5×4

     0    64     8    72
     0    64     8    72
     1    65     9    73
     1    65     9    73
     2    66    10    74
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Use Trellis Structure for Rate 1/2 Feedback Convolutional Encoder

Create a trellis structure to represent the rate 1/2 systematic convolutional encoder with feedback
shown in this diagram.

This encoder has 5 for its constraint length, [37 33] as its generator polynomial matrix, and 37 for its
feedback connection polynomial.

The first generator polynomial is octal 37. The second generator polynomial is octal 33. The feedback
polynomial is octal 37. The first generator polynomial matches the feedback connection polynomial
because the first output corresponds to the systematic bits.

The binary vector [1 1 1 1 1] represents octal 37 and corresponds to the upper row of binary digits in
the diagram. The binary vector [1 1 0 1 1] represents octal 33 and corresponds to the lower row of
binary digits in the diagram. These binary digits indicate connections from the outputs of the
registers to the two adders in the diagram. The initial 1 corresponds to the input bit.

Convert the polynomial to a trellis structure by using the poly2trellis function. When used with a
feedback polynomial, poly2trellis makes a feedback connection to the input of the trellis.

trellis = poly2trellis(5,[37 33],37)

trellis = struct with fields:
     numInputSymbols: 2
    numOutputSymbols: 4
           numStates: 16
          nextStates: [16x2 double]
             outputs: [16x2 double]

Generate random binary data. Convolutionally encode the data by using the specified trellis
structure. Decode the coded data by using the Viterbi algorithm with the specified trellis structure,
34 for its traceback depth, truncated operation mode, and hard decisions.

data = randi([0 1],70,1);
codedData = convenc(data,trellis);
tbdepth = 34; % Traceback depth for Viterbi decoder
decodedData = vitdec(codedData,trellis,tbdepth,'trunc','hard');

Verify the decoded data has zero bit errors.

biterr(data,decodedData)

ans = 0
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Specifying Code Generators in Polynomial Form

Demonstrate alternative forms of specifying code generators for a trellis structure are equivalent.

Use a trellis structure to configure the rate 1/2 feedforward convolutional code in this diagram. The
diagram indicates the binary values and polynomial form, indicating the left-most bit is the most-
significant-bit (MSB).

Set the constraint length to 4. Use a cell array of polynomial character vectors to specify code
generators. For more information, see “Representation of Polynomials in Communications Toolbox”.
When using character representation to specify the code generator, you can specify the polynomial in
ascending or descending order, but the poly2trellis function always assigns registers in
descending order with the left-most register for the MSB.

trellis_poly = poly2trellis(4,{'x3 + x','x3 + x2 + 1'})

trellis_poly = struct with fields:
     numInputSymbols: 2
    numOutputSymbols: 4
           numStates: 8
          nextStates: [8x2 double]
             outputs: [8x2 double]

The binary vector [1 0 1 0] represents octal 12 and corresponds to the upper row of binary digits in
the diagram. The binary vector [1 1 0 1] represents octal 15 and corresponds to the lower row of
binary digits in the diagram. Use octal representation to specify the code generators for an
equivalent trellis structure.

trellis = poly2trellis(4,[12 15])

trellis = struct with fields:
     numInputSymbols: 2
    numOutputSymbols: 4
           numStates: 8
          nextStates: [8x2 double]
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             outputs: [8x2 double]

Use isequal to confirm the two trellises are equal.

isequal(trellis,trellis_poly)

ans = logical
   1

Create User Defined Trellis Structure

This example demonstrates creation of a nonstandard trellis structure for a convolutional encoder
with uncoded bits and feedback. The encoder cannot be created using poly2trellis because the
peculiar specifications for the encoder do not match the input requirements of poly2trellis.

You can manually create the trellis structure, and then use it as the input trellis structure for an
encoder and decoder. The Convolutional Encoder and Viterbi Decoder blocks used in the
“Convolutional Encoder with Uncoded Bits and Feedback” model load the trellis structure created
here using a PreLoadFcn callback.

Convolutional Encoder

Create a rate 3/4 convolutional encoder with feedback connection whose MSB bit remains uncoded.

Declare variables according to the specifications.

K = 3;
N = 4;
constraintLength = 4;

Create trellis structure

A trellis is represented by a structure with the following fields:

• numInputSymbols – Number of input symbols
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• numOutputSymbols – Number of output symbols
• numStates – Number of states
• nextStates – Next state matrix
• outputs – Output matrix

For more information about these structure fields, see istrellis.

Reset any previous occurrence of myTrellis structure.

clear myTrellis;

Define the trellis structure fields.

myTrellis.numInputSymbols = 2^K;
myTrellis.numOutputSymbols = 2^N;
myTrellis.numStates  = 2^(constraintLength-1);

Create nextStates Matrix

The nextStates matrix is a [numStates x numInputSymbols] matrix. The (i,j) element of the next
state matrix is the resulting final state index that corresponds to a transition from the initial state i
for an input equal to j.

myTrellis.nextStates = [0  1  2  3  0  1  2  3; ...
                        6  7  4  5  6  7  4  5; ...
                        1  0  3  2  1  0  3  2; ...
                        7  6  5  4  7  6  5  4; ...
                        2  3  0  1  2  3  0  1; ...
                        4  5  6  7  4  5  6  7; ...
                        3  2  1  0  3  2  1  0; ...
                        5  4  7  6  5  4  7  6]    

myTrellis = struct with fields:
     numInputSymbols: 8
    numOutputSymbols: 16
           numStates: 8
          nextStates: [8x8 double]

Plot nextStates Matrix

Use the commcnv_plotnextstates helper function to plot the nextStates matrix to illustrate the
branch transitions between different states for a given input.

commcnv_plotnextstates(myTrellis.nextStates);
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Create outputs Matrix

The outputs matrix is a [numStates x numInputSymbols] matrix. The (i,j) element of the output
matrix is the output symbol in octal format given a current state i for an input equal to j.

outputs =  [0  2  4  6  10  12  14  16; ...
            1  3  5  7  11  13  15  17; ...
            0  2  4  6  10  12  14  16; ...
            1  3  5  7  11  13  15  17; ...
            0  2  4  6  10  12  14  16; ...
            1  3  5  7  11  13  15  17; ...
            0  2  4  6  10  12  14  16; ...
            1  3  5  7  11  13  15  17]

outputs = 8×8

     0     2     4     6    10    12    14    16
     1     3     5     7    11    13    15    17
     0     2     4     6    10    12    14    16
     1     3     5     7    11    13    15    17
     0     2     4     6    10    12    14    16
     1     3     5     7    11    13    15    17
     0     2     4     6    10    12    14    16
     1     3     5     7    11    13    15    17

Use oct2dec to display these values in decimal format.
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outputs_dec = oct2dec(outputs)

outputs_dec = 8×8

     0     2     4     6     8    10    12    14
     1     3     5     7     9    11    13    15
     0     2     4     6     8    10    12    14
     1     3     5     7     9    11    13    15
     0     2     4     6     8    10    12    14
     1     3     5     7     9    11    13    15
     0     2     4     6     8    10    12    14
     1     3     5     7     9    11    13    15

Copy outputs matrix into the myTrellis structure.

myTrellis.outputs = outputs

myTrellis = struct with fields:
     numInputSymbols: 8
    numOutputSymbols: 16
           numStates: 8
          nextStates: [8x8 double]
             outputs: [8x8 double]

Plot outputs Matrix

Use the commcnv_plotoutputs helper function to plot the outputs matrix to illustrate the possible
output symbols for a given state depending on the input symbol.

commcnv_plotoutputs(myTrellis.outputs, myTrellis.numOutputSymbols);
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Check Resulting Trellis Structure

istrellis(myTrellis)

ans = logical
   1

A return value of 1 confirms the trellis structure is valid.

Implement Soft-Decision Decoding

Decode with 3-bit soft decisions partitioned so that values near 0 map to 0, and values near 1 map to
7. If your application requires better decoding performance, refine the partition to obtain finer
quantization.

The example decodes the code and computes the bit error rate. When comparing the decoded data
with the original message, the example must take the decoding delay into account. The continuous
operation mode of the Viterbi decoder causes a delay equal to the traceback length, so msg(1)
corresponds to decoded(tblen+1) rather than to decoded(1).

System Setup

Initialize runtime variables for the message data, trellis, bit error rate computations, and traceback
length.
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stream = RandStream.create('mt19937ar', 'seed',94384);
prevStream = RandStream.setGlobalStream(stream);
msg = randi([0 1],4000,1); % Random data

trellis = poly2trellis(7,[171 133]); % Define trellis

ber = zeros(3,1); % Store BER values
tblen = 48; % Traceback length

Create an AWGN channel System object™, a Viterbi decoder System object, and an error rate
calculator System object. Account for the receive delay caused by the traceback length of the Viterbi
decoder.

awgnChan = comm.AWGNChannel('NoiseMethod','Signal to noise ratio (SNR)','SNR',6);
vitDec = comm.ViterbiDecoder(trellis,'InputFormat','Soft', ...
    'SoftInputWordLength',3,'TracebackDepth',tblen,'TerminationMethod','Continuous');
errorCalc = comm.ErrorRate('ReceiveDelay', tblen);

Run Coding and Decoding

Convolutionally code the message, pass in through an AWGN filter, quantize the noisy message for
soft-decision decoding. Perform Viterbi decoding using the trellis generated using poly2trellis.

code = convenc(msg,trellis);
awgnChan.SignalPower = (code'*code)/length(code);
ncode = awgnChan(code);

Use quantiz to map the noisy data values to appropriate decision-value integers between 0 and 7.
The second argument in quantiz is a partition vector that determines which data values map to 0, 1,
2, etc.

qcode = quantiz(ncode,[0.001,0.1,0.3,0.5,0.7,0.9,0.999]);
decoded = vitDec(qcode);

Compute bit error rate.

ber = errorCalc(msg,decoded);
ratio = ber(1)

ratio = 0.0013

number = ber(2)

number = 5

RandStream.setGlobalStream(prevStream);

Input Arguments
ConstraintLength — Constraint length
row vector

Constraint length, specified as a 1-by-K row vector defining the delay for each of the K input bit
streams to the encoder.
Data Types: double
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CodeGenerator — Code generator
matrix | cell array of character vector | string array

Code generator, specified as a K-by-N matrix of octal numbers, a K-by-N cell array of polynomial
character vectors, or a K-by-N string array. CodeGenerator specifies the N output connections for
each of the K input bit streams to the encoder.

When using character representation to specify the code generator, you can specify the polynomial in
ascending or descending order, but the poly2trellis function always assigns registers in
descending order with the left-most register for the most-significant-bit (MSB). For more information,
see “Specifying Code Generators in Polynomial Form” on page 2-631.
Data Types: double | char | string

FeedbackConnection — Feedback connection
row vector

Feedback connection, specified as a 1-by-K row vector of octal numbers defining the feedback
connection for each of the K input bit streams to the encoder.
Data Types: double

Output Arguments
trellis — Trellis description
structure

Trellis description, returned as a structure with these fields. For more about this structure, see the
istrellis function.

Trellis Structure Fields for Rate K/N Code

numInputSymbols — Number of input symbols
scalar

Number of input symbols, returned as a scalar with a value of 2K. This value represents the number of
input symbols to the encoder and K represents the number of input bit streams.

numOutputSymbols — Number of output symbols
scalar

Number of output symbols, returned as a scalar with a value of 2N. This value represents the number
of output symbols from the encoder and N represents the number of output bit streams.

numStates — Number of states
scalar

Number of states in the encoder, returned as a scalar.

nextStates — Next states
matrix

Next states for all combinations of current states and current inputs, returned as a numStates-by-2K

matrix, where K represents the number of input bit streams.
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outputs — Outputs
matrix

Outputs for all combinations of current states and current inputs, returned as a numStates-by-2K

matrix, K represents the number of input bit streams. The elements of this matrix are octal numbers.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Inputs must be constants, of which there can be at most 3 (ConstraintLength, CodeGenerator,
FeedbackConnection).

See Also
Functions
istrellis | convenc | vitdec

Topics
“Convolutional Codes”
“Representation of Polynomials in Communications Toolbox”
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primpoly
Find primitive polynomials for Galois field

Syntax
pr = primpoly(m)
pr = primpoly(m,opt)
pr = primpoly(m...,'nodisplay')

Description
pr = primpoly(m) returns the primitive polynomial for GF(2^m), where m is an integer between 2
and 16. The Command Window displays the polynomial using "D" as an indeterminate quantity. The
output argument pr is an integer whose binary representation indicates the coefficients of the
polynomial.

pr = primpoly(m,opt) returns one or more primitive polynomials for GF(2^m). The output pol
depends on the argument opt as shown in the table below. Each element of the output argument pr
is an integer whose binary representation indicates the coefficients of the corresponding polynomial.
If no primitive polynomial satisfies the constraints, pr is empty.

opt Meaning of pr
'min' One primitive polynomial for GF(2^m) having the

smallest possible number of nonzero terms
'max' One primitive polynomial for GF(2^m) having the

greatest possible number of nonzero terms
'all' All primitive polynomials for GF(2^m)
Positive integer k All primitive polynomials for GF(2^m) that have k

nonzero terms

pr = primpoly(m...,'nodisplay') prevents the function from displaying the result as
polynomials in "D" in the Command Window. The output argument pr is unaffected by the
'nodisplay' option.

Examples
The first example below illustrates the formats that primpoly uses in the Command Window and in
the output argument pr. The subsequent examples illustrate the display options and the use of the
opt argument.

pr = primpoly(4)

pr1 = primpoly(5,'max','nodisplay')

pr2 = primpoly(5,'min')

pr3 = primpoly(5,2)

pr4 = primpoly(5,3);
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The output is below.

Primitive polynomial(s) = 
 
D^4+D^1+1

pr =

    19

pr1 =

    61 

Primitive polynomial(s) = 
 
D^5+D^2+1

pr2 =

    37

No primitive polynomial satisfies the given constraints.

pr3 =

     []

Primitive polynomial(s) = 
 
D^5+D^2+1
D^5+D^3+1

Version History
Introduced before R2006a

See Also
gf | isprimitive

Topics
“Galois Field Computations”
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pskdemod
Demodulate using M-ary PSK method

Syntax
z = pskdemod(y,M)
z = pskdemod(y,M,phaseoffset)
z = pskdemod(y,M,phaseoffset,symorder)
z = pskdemod(y,M,Name=Value)

Description
z = pskdemod(y,M) demodulates the input M-PSK signals y. M specifies the modulation order.

z = pskdemod(y,M,phaseoffset) specifies the phase offset of the M-PSK constellation.

z = pskdemod(y,M,phaseoffset,symorder) specifies the symbol order of the M-PSK
constellation.

z = pskdemod(y,M,Name=Value) specifies options using name-value arguments.

Examples

Compare Phase Noise Effects on PSK and PAM Signals

Compare PSK and PAM modulation schemes to demonstrate that PSK is more sensitive to phase
noise. PSK is more sensitive to phase noise because the PSK constellation is circular, while the PAM
constellation is linear.

Specify the number of symbols and the modulation order parameters. Generate random data symbols.

len = 10000;                
M = 16;                     
msg = randi([0 M-1],len,1);

Create a phase noise System object™ and show the configured settings.

phasenoise = comm.PhaseNoise(Level=[-70 -80])

phasenoise = 
  comm.PhaseNoise with properties:

              Level: [-70 -80]
    FrequencyOffset: [2000 20000]
         SampleRate: 1000000
       RandomStream: 'Global stream'

Modulate msg using both PSK and PAM to compare the two methods.
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txpsk = pskmod(msg,M);
txpam = pammod(msg,M);

Perturb the phase of the modulated signals.

rxpsk = phasenoise(txpsk);
rxpam = phasenoise(txpam);

Create scatter plots of the received signals.

scatterplot(rxpsk);
title('Noisy PSK Scatter Plot')

scatterplot(rxpam);
title('Noisy PAM Scatter Plot')
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Demodulate the received signals.

recovpsk = pskdemod(rxpsk,M);
recovpam = pamdemod(rxpam,M);

Compute the number of symbol errors for each modulation scheme. The PSK signal experiences a
much greater number of symbol errors.

numerrs_psk = symerr(msg,recovpsk);
numerrs_pam = symerr(msg,recovpam);
[numerrs_psk numerrs_pam]

ans = 1×2

   286     1

Modulate and Demodulate QPSK Signal in AWGN

Generate random symbols.

dataIn = randi([0 3],1000,1);

QPSK modulate the data.

txSig = pskmod(dataIn,4,pi/4);
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Pass the signal through an AWGN channel.

rxSig = awgn(txSig,10);

Demodulate the received signal and compute the number of symbol errors.

dataOut = pskdemod(rxSig,4,pi/4);
numErrs = symerr(dataIn,dataOut)

numErrs = 2

PSK Symbol Mapping

Set the modulation order, then create a data sequence containing a complete set of constellation
points.

M = 8;
data = (0:M-1);
phaseoffset = 0;

Visualize the plot constellations of 8-PSK symbol mapping for modulated and demodulated gray and
natural binary encoded data.

symgray = pskmod(data,M,phaseoffset,'gray',PlotConstellation=true, ...
          InputType='integer');
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mapgray = pskdemod(symgray,M,phaseoffset,'gray',OutputType='integer');
symbin = pskmod(data,M,phaseoffset,'bin');
mapbin = pskdemod(symbin,M,phaseoffset,'bin',PlotConstellation=true, ...
         OutputType='bit');

Input Arguments
y — M-PSK modulated input signal
scalar | vector | matrix

M-PSK modulated input signal, specified as a scalar, vector, or matrix. If y is a matrix, the function
processes the columns independently.
Data Types: double | single
Complex Number Support: Yes

M — Modulation order
integer value greater than 1

Modulation order, specified as an integer value greater than 1.
Data Types: double

phaseoffset — Phase offset
0 (default) | scalar
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Phase offset of the PSK constellation in radians, specified as a scalar.
Data Types: double

symorder — Symbol order
'gray' (default) | 'bin' | vector

Symbol order, specified as 'gray', 'bin' or a vector. This argument specifies how the function
assigns binary vectors to corresponding integers.

• 'gray' — Use a Gray-coded ordering.
• 'bin' — Use a natural binary-coded ordering.
• vector –– Use custom symbol ordering. The vector is of length M containing unique values in the

range [0, M– 1]. The first element correlates to the constellation point corresponding to angle
phaseoffset, with subsequent elements running counter-clockwise.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: y = pskdemod(x,M,phaseoffset,symorder,OutputType='bit')

OutputType — Type of output
'integer' (default) | 'bit' | 'llr' | 'approxllr'

Type of output, specified as 'integer', 'bit', 'llr', or 'approxllr'.

OutputDataType — Data type of the output
'double' | 'single' | ...

Output data type, specified as one of the following:

OutputType Value Acceptable OutputDataType Values
'integer' 'double', 'single', 'int8', 'int16', 'int32', 'uint8', 'uint16',

or 'uint32'
'bit' 'double', 'single', 'int8', 'int16', 'int32', 'uint8', 'uint16',

'uint32', or 'logical'

The default value is the data type of input y.

Dependencies

To enable this argument, set the OutputType argument to either 'integer' or 'bit'. Otherwise,
the output data type is same as the input data type y.

NoiseVariance — Noise variance
1 (default) | positive scalar | vector of positive values

Noise variance, specified as one of these options:
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• Positive scalar — Use the same noise variance value on all input elements.
• Vector of positive values — Use noise variance for all the elements of the input along the

corresponding last dimension, specified by each element of the vector. The vector length must be
equal to the number of elements in the last dimension of the input signal.

Tip The exact LLR algorithm computes exponentials using finite precision arithmetic. For
computations involving very large positive or negative magnitudes, the exact LLR algorithm yields:

• Inf or -Inf if the noise variance is a very large value
• NaN if the noise variance and signal power are both very small values

The approximate LLR algorithm does not compute exponentials. You can avoid Inf, -Inf, and NaN
results by using the approximate LLR algorithm.

Dependencies

To enable this argument, set the OutputType argument to either 'llr' or 'approxllr'.
Data Types: double

PlotConstellation — Option to plot constellation
false or 0 (default) | true or 1

Option to plot constellation, specified as logical 0 (false) or 1 (true). To plot the PSK constellation,
set 'PlotConstellation' to true.

Output Arguments
z — M-PSK demodulated output signal
scalar | vector | matrix

M-PSK demodulated output signal, returned as a scalar, vector or matrix with the same number of
columns as the input signal y. The value and dimension of this output vary depending on the specified
'OutputType' value, as shown in this table.

'OutputType' pskdemod Output Value Dimensions of Output
'integer' Demodulated integer values in

the range [0, M – 1]
z has the same dimensions as the input y.

'bit' Demodulated bits The number of rows in z is log2(M) times the
number of rows in y. The function maps each
demodulated symbol to a group of log2(M) bits,
where the first bit represents the most significant
bit (MSB) and the last bit represents the least
significant bit (LSB).

'llr' Log-likelihood ratio value for
each bit calculated using the
exact log-likelihood algorithm.
For details, see “Exact LLR
Algorithm”.
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'OutputType' pskdemod Output Value Dimensions of Output
'approxllr' Approximate log-likelihood ratio

value for each bit. The values
are calculated using the
approximate log-likelihood
algorithm. For details, see
“Approximate LLR Algorithm”.

Version History
Introduced before R2006a

New enhancements to the function

You can now:

• Specify a binary output using the OutputType argument.
• Specify custom symbol mapping using the symorder argument. The default now is 'gray'

symbol mapping.
• Perform soft-decision demodulation by using the bit-wise log-likelihood or approximate log-

likelihood algorithm
• Specify all built-in numeric data types using the OutputDataType argument.
• Visualize the reference constellation using the PlotConstellation argument.

References
[1] Proakis, John G. Digital Communications. 4th ed. New York: McGraw Hill, 2001.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
pskmod | qamdemod | apskdemod | dvbsapskdemod | mil188qamdemod

Topics
“Phase Modulation”
“Hard- vs. Soft-Decision Demodulation”
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pskmod
Modulate signal using M-PSK method

Syntax
y = pskmod(x,M)
y = pskmod(x,M,phaseoffset)
y = pskmod(x,M,phaseoffset,symorder)
y = pskmod(x,M,Name=Value)

Description
y = pskmod(x,M) modulates the input signal x using the M-Ary phase shift keying (M-PSK) method.
M specifies the modulation order.

y = pskmod(x,M,phaseoffset) specifies the phase offset of the M-PSK constellation.

y = pskmod(x,M,phaseoffset,symorder) specifies the symbol order of the M-PSK constellation.

y = pskmod(x,M,Name=Value) specifies options using name-value arguments.

Examples

Modulate PSK Signal

Modulate and plot the constellations of QPSK and 16-PSK signals.

QPSK

Set the modulation order to 4.

M = 4;

Generate random data symbols.

data = randi([0 M-1],1000,1);

Modulate the data symbols.

txSig = pskmod(data,M,pi/M);

Pass the signal through white noise and plot its constellation.

rxSig = awgn(txSig,20);
scatterplot(rxSig)
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16-PSK

Change the modulation order from 4 to 16.

M = 16;

Generate random data symbols.

data = randi([0 M-1],1000,1);

Modulate the data symbols.

txSig = pskmod(data,M,pi/M);

Pass the signal through white noise and plot its constellation.

rxSig = awgn(txSig,20);
scatterplot(rxSig)
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Modulate and Demodulate QPSK Signal in AWGN

Generate random symbols.

dataIn = randi([0 3],1000,1);

QPSK modulate the data.

txSig = pskmod(dataIn,4,pi/4);

Pass the signal through an AWGN channel.

rxSig = awgn(txSig,10);

Demodulate the received signal and compute the number of symbol errors.

dataOut = pskdemod(rxSig,4,pi/4);
numErrs = symerr(dataIn,dataOut)

numErrs = 2
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PSK Symbol Mapping

Set the modulation order, then create a data sequence containing a complete set of constellation
points.

M = 8;
data = (0:M-1);
phaseoffset = 0;

Visualize the plot constellations of 8-PSK symbol mapping for modulated and demodulated gray and
natural binary encoded data.

symgray = pskmod(data,M,phaseoffset,'gray',PlotConstellation=true, ...
          InputType='integer');

mapgray = pskdemod(symgray,M,phaseoffset,'gray',OutputType='integer');
symbin = pskmod(data,M,phaseoffset,'bin');
mapbin = pskdemod(symbin,M,phaseoffset,'bin',PlotConstellation=true, ...
         OutputType='bit');
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Input Arguments
x — Input signal
scalar | vector | matrix

Input signal, specified as a scalar, vector, or matrix of positive integers. The elements of x must have
binary or integer values in the range [0, M–1], where M is the modulation order.

Note To process an input signal as binary elements, set the InputType name-value argument to
'bit'. For binary inputs, the number of rows must be an integer multiple of log2(M). The function
maps groups of log2(M) bits are mapped onto a symbol, with the first bit representing the MSB and
the last bit representing the LSB.

Data Types: double | single | int8 | int16 | int32 | uint8 | uint16 | uint32 | logical

M — Modulation order
integer value greater than 1

Modulation order, specified as an integer value greater than 1.
Data Types: double

phaseoffset — Phase offset
0 (default) | scalar
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Phase offset of the PSK constellation in radians, specified as a scalar.
Data Types: double

symorder — Symbol order
'gray' (default) | 'bin' | vector

Symbol order, specified as 'gray', 'bin', or a vector. This argument specifies how the function
assigns binary vectors to corresponding integers.

• 'gray' — Use a Gray-coded ordering.
• 'bin' — Use a natural binary-coded ordering.
• vector –– Use custom symbol ordering. The vector is of length M containing unique values in the

range [0, M– 1]. The first element correlates to the constellation point corresponding to angle
phaseoffset, with subsequent elements running counter-clockwise.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: y = pskmod(x,M,phaseoffset,symorder,InputType='bit')

InputType — Input type
'integer' (default) | 'bit'

Input type, specified as either 'integer' or 'bit'.

• 'integer' –– Input signal consists of integers in the range [0, M–1].
• 'bit' –– Input signal consists of binary values and the number of rows must be an integer

multiple of log2(M).

OutputDataType — Output data type
'double' (default) | 'single'

Output data type, specified as either 'double' or 'single'.

PlotConstellation — Option to plot constellation
false or 0 (default) | true or 1

Option to plot constellation, specified as logical 0 (false) or 1 (true). To plot the PSK constellation,
set 'PlotConstellation' to true.

Output Arguments
y — M-PSK modulated baseband signal
scalar | vector | matrix

M-PSK modulated baseband signal, returned as a scalar, vector or matrix of complex values. The
columns of y represent independent channels. For integer inputs, the output y has the same
dimensions as the input signal x. For bit inputs, the number of rows in y is the number of rows in x
divided by log2(M).
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Version History
Introduced before R2006a

New enhancements to the function

You can now:

• Specify a binary input using the InputType argument.
• Specify custom symbol mapping using the symorder argument. The default now is 'gray'

symbol mapping.
• Perform soft-decision demodulation by using the bit-wise log-likelihood or approximate log-

likelihood algorithm
• Specify all built-in numeric data types using the OutputDataType argument.
• Visualize the reference constellation using the PlotConstellation argument.

References
[1] Proakis, John G. Digital Communications. 4th ed. New York: McGraw Hill, 2001.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
pskdemod | qammod | apskmod | dvbsapskmod | mil188qammod

Topics
“Phase Modulation”
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qamdemod
Quadrature amplitude demodulation

Syntax
z = qamdemod(y,M)
z = qamdemod(y,M,symOrder)
z = qamdemod( ___ ,Name,Value)

Description
z = qamdemod(y,M) returns a demodulated signal, z, given quadrature amplitude modulation
(QAM) signal y of modulation order M.

z = qamdemod(y,M,symOrder) returns a demodulated signal, z, and specifies the symbol order for
the demodulation.

z = qamdemod( ___ ,Name,Value) specifies options using one or more name-value pair
arguments. For example, 'OutputType','bit' sets the type of output signal to bits.

Examples

Demodulate 8-QAM Signal

Demodulate an 8-QAM signal and plot the points corresponding to symbols 0 and 3.

Generate random 8-ary data symbols.

data = randi([0 7],1000,1);

Modulate data by applying 8-QAM.

txSig = qammod(data,8);

Pass the modulated signal through an AWGN channel.

rxSig = awgn(txSig,18,'measured');

Demodulate the received signal using an initial phase of π/8.

rxData = qamdemod(rxSig.*exp(-1i*pi/8),8);

Generate the reference constellation points.

refpts = qammod((0:7)',8) .* exp(1i*pi/8);

Plot the received signal points corresponding to symbols 0 and 3 and overlay the reference
constellation. The received data corresponding to those symbols is displayed.

plot(rxSig(rxData==0),'g.');
hold on
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plot(rxSig(rxData==3),'c.');
plot(refpts,'r*')
text(real(refpts)+0.1,imag(refpts),num2str((0:7)'))
xlabel('In-Phase')
ylabel('Quadrature')
legend('Points corresponding to 0','Points corresponding to 3', ...
    'Reference constellation','location','nw');

QAM Demodulation with WLAN Symbol Mapping

Modulate and demodulate random data by using 16-QAM with WLAN symbol mapping. Verify that the
input data symbols match the demodulated symbols.

Generate a 3-D array of random symbols.

x = randi([0,15],20,4,2);

Create a custom symbol mapping for the 16-QAM constellation based on WLAN standards.

wlanSymMap = [2 3 1 0 6 7 5 4 14 15 13 12 10 11 9 8];

Modulate the data, and set the constellation to have unit average signal power. Plot the constellation.

y = qammod(x,16,wlanSymMap, ...
    UnitAveragePower=true, ...
    PlotConstellation=true);
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Demodulate the received signal.

z = qamdemod(y,16,wlanSymMap, ...
    UnitAveragePower=true);

Verify that the demodulated signal is equal to the original data.

isequal(x,z)

ans = logical
   1

Demodulate QAM Fixed-Point Signal

Demodulate a fixed-point QAM signal and verify that the data is recovered correctly.

Set the modulation order as 64, and determine the number of bits per symbol.

M = 64;
bitsPerSym = log2(M);

Generate random bits. When operating in bit mode, the length of the input data must be an integer
multiple of the number of bits per symbol.

x = randi([0 1],10*bitsPerSym,1);
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Modulate the input data using a binary symbol mapping. Set the modulator to output fixed-point data.
The numeric data type is signed with a 16-bit word length and a 10-bit fraction length.

y = qammod(x,M,'bin','InputType','bit','OutputDataType', ...
    numerictype(1,16,10));

Demodulate the 64-QAM signal. Verify that the demodulated data matches the input data.

z = qamdemod(y,M,'bin','OutputType','bit');
s = isequal(x,double(z))

s = logical
   1

Estimate BER for Hard and Soft Decision Viterbi Decoding

Estimate bit error rate (BER) performance for hard-decision and soft-decision Viterbi decoders in
AWGN. Compare the performance to that of an uncoded 64-QAM link.

Set the simulation parameters.

rng default
M = 64;                % Modulation order
k = log2(M);           % Bits per symbol
EbNoVec = (4:10)';     % Eb/No values (dB)
numSymPerFrame = 1000; % Number of QAM symbols per frame

Initialize the BER results vectors.

berEstSoft = zeros(size(EbNoVec)); 
berEstHard = zeros(size(EbNoVec));

Set the trellis structure and traceback depth for a rate 1/2, constraint length 7, convolutional code.

trellis = poly2trellis(7,[171 133]);
tbl = 32;
rate = 1/2;

The main processing loops perform these steps:

• Generate binary data
• Convolutionally encode the data
• Apply QAM modulation to the data symbols. Specify unit average power for the transmitted signal
• Pass the modulated signal through an AWGN channel
• Demodulate the received signal using hard decision and approximate LLR methods. Specify unit

average power for the received signal
• Viterbi decode the signals using hard and unquantized methods
• Calculate the number of bit errors

The while loop continues to process data until either 100 errors are encountered or 107 bits are
transmitted.
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for n = 1:length(EbNoVec)
    % Convert Eb/No to SNR
    snrdB = EbNoVec(n) + 10*log10(k*rate);
    % Noise variance calculation for unity average signal power
    noiseVar = 10.^(-snrdB/10);
    % Reset the error and bit counters
    [numErrsSoft,numErrsHard,numBits] = deal(0);
    
    while numErrsSoft < 100 && numBits < 1e7
        % Generate binary data and convert to symbols
        dataIn = randi([0 1],numSymPerFrame*k,1);
        
        % Convolutionally encode the data
        dataEnc = convenc(dataIn,trellis);
        
        % QAM modulate
        txSig = qammod(dataEnc,M, ...
            InputType='bit', ...
            UnitAveragePower=true);
        
        % Pass through AWGN channel
        rxSig = awgn(txSig,snrdB,'measured');
        
        % Demodulate the noisy signal using hard decision (bit) and
        % soft decision (approximate LLR) approaches.
        rxDataHard = qamdemod(rxSig,M, ...
            OutputType='bit', ...
            UnitAveragePower=true);
        rxDataSoft = qamdemod(rxSig,M, ...
            OutputType='approxllr', ...
            UnitAveragePower=true, ...
            NoiseVariance=noiseVar);
        
        % Viterbi decode the demodulated data
        dataHard = vitdec(rxDataHard,trellis,tbl,'cont','hard');
        dataSoft = vitdec(rxDataSoft,trellis,tbl,'cont','unquant');
        
        % Calculate the number of bit errors in the frame. 
        % Adjust for the decoding delay, which is equal to 
        % the traceback depth.
        numErrsInFrameHard = ...
            biterr(dataIn(1:end-tbl),dataHard(tbl+1:end));
        numErrsInFrameSoft = ...
            biterr(dataIn(1:end-tbl),dataSoft(tbl+1:end));
        
        % Increment the error and bit counters
        numErrsHard = numErrsHard + numErrsInFrameHard;
        numErrsSoft = numErrsSoft + numErrsInFrameSoft;
        numBits = numBits + numSymPerFrame*k;

    end
    
    % Estimate the BER for both methods
    berEstSoft(n) = numErrsSoft/numBits;
    berEstHard(n) = numErrsHard/numBits;
end

2 Functions

2-662



Plot the estimated hard and soft BER data. Plot the theoretical performance for an uncoded 64-QAM
channel.

semilogy(EbNoVec,[berEstSoft berEstHard],'-*')
hold on
semilogy(EbNoVec,berawgn(EbNoVec,'qam',M))
legend('Soft','Hard','Uncoded','location','best')
grid
xlabel('Eb/No (dB)')
ylabel('Bit Error Rate')

As expected, the soft decision decoding produces the best results.

Soft-Decision OQPSK Modulation-Demodulation

Use the qamdemod function to simulate soft decision output for OQPSK-modulated signals.

Generate an OQPSK modulated signal.

sps = 4;
msg = randi([0 1],1000,1);
oqpskMod = comm.OQPSKModulator('SamplesPerSymbol',sps,'BitInput',true);
oqpskSig = oqpskMod(msg);

Add noise to the generated signal.
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impairedSig = awgn(oqpskSig,15);

Perform Soft-Decision Demodulation

Create QPSK equivalent signal to align in-phase and quadrature.

impairedQPSK = complex( ...
    real(impairedSig(1+sps/2:end-sps/2)), ...
    imag(impairedSig(sps+1:end)));

Apply matched filtering to the received OQPSK signal.

halfSinePulse = sin(0:pi/sps:(sps)*pi/sps);
matchedFilter = dsp.FIRDecimator(sps,halfSinePulse, ...
    'DecimationOffset',sps/2);
filteredQPSK = matchedFilter(impairedQPSK);

To perform soft demodulation of the filtered OQPSK signal use the qamdemod function. Align symbol
mapping of qamdemod with the symbol mapping used by the comm.OQPSKModulator, then
demodulate the signal.

oqpskModSymbolMapping = [1 3 0 2];
demodulated = qamdemod(filteredQPSK,4,oqpskModSymbolMapping, ...
    'OutputType','llr');

Input Arguments
y — Input signal
scalar | vector | matrix | 3-D array

Input signal that resulted QAM, specified as a scalar, vector, matrix, or 3-D array of complex values.
Each column in the matrix and 3-D array is considered as an independent channel.
Data Types: single | double | fi
Complex Number Support: Yes

M — Modulation order
scalar integer

Modulation order, specified as a power-of-two scalar integer. The modulation order specifies the
number of points in the signal constellation.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

symOrder — Symbol order
'gray' (default) | 'bin' | vector

Symbol order, specified as one of these options:

• 'gray' — Use “Gray Code” on page 2-666 ordering.
• 'bin' — Use natural binary-coded ordering.
• Vector — Use custom symbol ordering. The vector must be of length M. Vectors must use unique

elements whose values range from 0 to M – 1. The first element corresponds to the upper left point
of the constellation, with subsequent elements running down column-wise from left to right.

Data Types: char | double
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: z = qamdemod(y,M,symOrder,'OutputType','bit')

UnitAveragePower — Unit average power flag
false or 0 (default) | true or 1

Unit average power flag, specified as the comma-separated pair consisting of 'UnitAveragePower'
and a numeric or logical 0 (false) or 1 (true). When this flag is 1 (true), the function scales the
constellation to the average power of one watt referenced to 1 ohm. When this flag is 0 (false), the
function scales the constellation so that the QAM constellation points are separated by a minimum
distance of two.

OutputType — Type of output
'integer' (default) | 'bit' | 'llr' | 'approxllr'

Type of output, specified as the comma-separated pair consisting of 'OutputType' and 'integer',
'bit', 'llr', or 'approxllr'.
Data Types: char

NoiseVariance — Noise variance
1 (default) | positive scalar | vector of positive values

Noise variance, specified as the comma-separated pair consisting of 'NoiseVariance' and one of
these options:

• Positive scalar — The same noise variance value is used on all input elements.
• Vector of positive values — The vector length must be equal to the number of elements in the last

dimension of the input signal. Each element of the vector specifies the noise variance for all the
elements of the input along the corresponding last dimension.

Tip Because the Log-Likelihood algorithm computes exponentials using finite precision arithmetic,
the computation of exponentials with large or small numbers can yield positive or negative infinity.
The approximate LLR algorithm does not compute exponentials. For more details, see “Hard- vs. Soft-
Decision Demodulation”.

When 'OutputType' is ‘llr’, any Inf or -Inf values returned by the demodulation computation
output are likely due to the specified noise variance values being smaller than the signal-to-noise
ratio (SNR).

To avoid returning output values of Inf or -Inf, set 'OutputType' to ‘approxllr’ instead of
'llr'.

Dependencies

To enable this name-value pair argument, set 'OutputType' is 'llr' or 'approxllr'.
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Data Types: double

PlotConstellation — Option to plot constellation
false or 0 (default) | true or 1

Option to plot constellation, specified as the comma-separated pair consisting of
'PlotConstellation' and a numeric or logical 0 (false) or 1 (true) To plot the QAM
constellation, set 'PlotConstellation' to true.

Output Arguments
z — Demodulated output signal
scalar | vector | matrix | 3-D array

Demodulated output signal, returned as a scalar, vector, matrix, or 3-D array. The data type is the
same as that of the input signal, y. The value and dimension of this output vary depending on the
specified 'OutputType' value, as shown in this table.

'OutputType' Return Value of qamdemod Dimensions of Output
'integer' Demodulated integer values

from 0 to (M – 1)
z has the same dimensions as input y.

'bit' Demodulated bits The number of rows in z is log2(M) times the
number of rows in y. Each demodulated symbol is
mapped to a group of log2(M) bits, where the first
bit represents the most significant bit (MSB) and
the last bit represents the least significant bit
(LSB).

'llr' Log-likelihood ratio value for
each bit calculated using the
Exact Log Likelihood algorithm.
For more details, see “Exact
LLR Algorithm”.

'approxllr' Approximate log-likelihood ratio
value for each bit. The values
are calculated using the
Approximate Log Likelihood
algorithm. For more details, see
“Approximate LLR Algorithm”.

More About
Gray Code

A Gray code, also known as a reflected binary code, is a system where the bit patterns in adjacent
constellation points differ by only one bit.

Version History
Introduced before R2006a

Initial Phase Input Removed
Errors starting in R2018b

Starting in R2018b, you can no longer offset the initial phase for the QAM constellation using the
qamdemod function.
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Instead, use the genqamdemod function to offset the initial phase of the QAM signal being
demodulated. Alternatively, you can multiply the modulated input of qamdemod by the desired initial
phase, as shown in this code

z = qamdemod(y.*exp(-1i*initPhase,M))

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
genqammod | genqamdemod | modnorm | pamdemod | qammod

Topics
“Compute Symbol Error Rate”
“Hard- vs. Soft-Decision Demodulation”
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qammod
Quadrature amplitude modulation (QAM)

Syntax
y = qammod(x,M)
y = qammod(x,M,symOrder)
y = qammod( ___ ,Name,Value)

Description
y = qammod(x,M) modulates input signal x by using QAM with the specified modulation order M.
Output y is the modulated signal.

y = qammod(x,M,symOrder) specifies the symbol order.

y = qammod( ___ ,Name,Value) specifies options using name-value pair arguments in addition to
any of the input argument combinations from previous syntaxes.

Examples

Modulate Data Using QAM

Modulate data using QAM and display the result in a scatter plot.

Set the modulation order to 16 and create a data vector containing each of the possible symbols.

M = 16;
x = (0:M-1)';

Modulate the data using the qammod function.

y = qammod(x,M);

Display the modulated signal constellation using the scatterplot function.

scatterplot(y)
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Set the modulation order to 256, and display the scatter plot of the modulated signal.

M = 256;
x = (0:M-1)';
y = qammod(x,M);
scatterplot(y)
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Normalize QAM Signal by Average Power

Modulate random data symbols using QAM. Normalize the modulator output so that it has an average
signal power of 1 W.

Set the modulation order and generate random data.

M = 64;
x = randi([0 M-1],1000,1);

Modulate the data. Use the 'UnitAveragePower' name-value pair to set the output signal to have
an average power of 1 W.

y = qammod(x,M,'UnitAveragePower',true);

Confirm that the signal has unit average power.

avgPower = mean(abs(y).^2)

avgPower = 1.0070

Plot the resulting constellation.

scatterplot(y)
title('64-QAM, Average Power = 1 W')
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QAM Symbol Ordering

Plot QAM constellations for Gray, binary, and custom symbol mappings.

Set the modulation order, and create a data sequence that includes a complete set of symbols for the
modulation scheme.

M = 16;
d = [0:M-1];

Modulate the data, and plot its constellation. The default symbol mapping uses Gray ordering. The
ordering of the points is not sequential.

y = qammod(d,M,'PlotConstellation',true);
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Repeat the modulation process with binary symbol mapping. The symbol mapping follows a natural
binary order and is sequential.

z = qammod(d,M,'bin','PlotConstellation',true);
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Create a custom symbol mapping.

smap = randperm(M)-1;

Modulate and plot the constellation.

w = qammod(d,M,smap,'PlotConstellation',true);
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Quadrature Amplitude Modulation with Bit Inputs

Modulate a sequence of bits using 64-QAM. Pass the signal through a noisy channel. Display the
resultant constellation diagram.

Set the modulation order, and determine the number of bits per symbol.

M = 64;
k = log2(M);

Create a binary data sequence. When using binary inputs, the number of rows in the input must be an
integer multiple of the number of bits per symbol.

data = randi([0 1],1000*k,1);

Modulate the signal using bit inputs, and set it to have unit average power.

txSig = qammod(data,M,'InputType','bit','UnitAveragePower',true);

Pass the signal through a noisy channel.

rxSig = awgn(txSig,25);

Plot the constellation diagram.
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cd = comm.ConstellationDiagram('ShowReferenceConstellation',false);
cd(rxSig)

Demodulate QAM Fixed-Point Signal

Demodulate a fixed-point QAM signal and verify that the data is recovered correctly.

Set the modulation order as 64, and determine the number of bits per symbol.

M = 64;
bitsPerSym = log2(M);
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Generate random bits. When operating in bit mode, the length of the input data must be an integer
multiple of the number of bits per symbol.

x = randi([0 1],10*bitsPerSym,1);

Modulate the input data using a binary symbol mapping. Set the modulator to output fixed-point data.
The numeric data type is signed with a 16-bit word length and a 10-bit fraction length.

y = qammod(x,M,'bin','InputType','bit','OutputDataType', ...
    numerictype(1,16,10));

Demodulate the 64-QAM signal. Verify that the demodulated data matches the input data.

z = qamdemod(y,M,'bin','OutputType','bit');
s = isequal(x,double(z))

s = logical
   1

Input Arguments
x — Input signal
scalar | vector | matrix | 3-D array

Input signal, specified as a scalar, vector, matrix, or 3-D array. The elements of x must be binary
values or integers that range from 0 to (M – 1), where M is the modulation order.

Note To process input signal as binary elements, set the 'InputType' name-value pair to 'bit'. For
binary inputs, the number of rows must be an integer multiple of log2(M). Groups of log2(M) bits are
mapped onto a symbol, with the first bit representing the MSB and the last bit representing the LSB.

Data Types: double | single | fi | int8 | int16 | uint8 | uint16

M — Modulation order
scalar integer

Modulation order, specified as a power-of-two scalar integer. The modulation order specifies the
number of points in the signal constellation.
Example: 16
Data Types: double

symOrder — Symbol order
'gray' (default) | 'bin' | vector

Symbol order, specified as 'gray', 'bin', or a vector.

• 'gray' — Use “Gray Code” on page 2-678 ordering
• 'bin' — Use natural binary-coded ordering
• Vector — Use custom symbol ordering
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Vectors must use unique elements whose values range from 0 to M – 1. The first element corresponds
to the upper-left point of the constellation, with subsequent elements running down column-wise from
left to right.
Example: [0 3 1 2]
Data Types: char | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: y = qammod(x,M,symOrder,'InputType','bit')

InputType — Input type
'integer' (default) | 'bit'

Input type, specified as the comma-separated pair consisting of 'InputType' and either 'integer'
or 'bit'. If you specify 'integer', the input signal must consist of integers from 0 to M – 1. If you
specify 'bit', the input signal must contain binary values, and the number of rows must be an
integer multiple of log2(M).
Data Types: char

UnitAveragePower — Unit average power flag
false or 0 (default) | true or 1

Unit average power flag, specified as the comma-separated pair consisting of 'UnitAveragePower'
and a numeric or logical 0 (false) or 1 (true). When this flag is 1 (true), the function scales the
constellation to the average power of one watt referenced to 1 ohm. When this flag is 0 (false), the
function scales the constellation so that the QAM constellation points are separated by a minimum
distance of two.

OutputDataType — Output data type
numerictype object

Output data type, specified as the comma-separated pair consisting of 'OutputDataType' and a
numerictype object.

For more information on constructing these objects, see numerictype. If you do not specify
'OutputDataType', data type is double if the input is of data type double or built-in integer and
single if the input is of data type single.

PlotConstellation — Option to plot constellation
false or 0 (default) | true or 1

Option to plot constellation, specified as the comma-separated pair consisting of
'PlotConstellation' and a numeric or logical 0 (false) or 1 (true) To plot the QAM
constellation, set 'PlotConstellation' to true.
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Output Arguments
y — Modulated signal
scalar | vector | matrix | 3-D array

Modulated signal, returned as a complex scalar, vector, matrix, or 3-D array of numeric values. For
integer inputs, output y has the same dimensions as input signal x. For bit inputs, the number of rows
in y is the number of rows in x divided by log2(M).
Data Types: double | single

More About
Gray Code

A Gray code, also known as a reflected binary code, is a system where the bit patterns in adjacent
constellation points differ by only one bit.

Version History
Introduced before R2006a

Initial Phase Input Removed
Errors starting in R2018b

Starting in R2018b, you can no longer offset the initial phase for the QAM constellation using the
qammod function.

Instead use genqammod to offset the initial phase of the data being modulated, or you can multiply
the qammod output by the desired initial phase:

y = qammod(x,M) .* exp(1i*initPhase)

to adjust the initial phase of the QAM data.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
qamdemod | genqammod | genqamdemod | pammod | pamdemod | modnorm

Topics
“Digital Baseband Modulation”
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qfunc
Q function

Syntax
y = qfunc(x)

Description
y = qfunc(x) returns the output of the Q function for each element of the real-valued input. The Q
function is (1 – f), where f is the result of the cumulative distribution function of the standardized
normal random variable. For more information, see “Algorithms” on page 2-681.

Examples

Calculate Q Function Value and Plot Results

Calculate the Q function values for a real-valued input vector.

x = -4:0.1:4;
y = qfunc(x);

Plot the results.

plot(x,y)
grid
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Calculate QPSK Error Probability Using Q Function

Calculate the QPSK error probability at an Eb/N0 setting of 7 dB by using the Q function.

Convert the Eb/N0 in dB to its linear equivalent.

ebnodB = 7;
ebno = 10^(ebnodB/10);

Using the Q function, calculate the QPSK error probability, Pb = Q 2
Eb
N0

.

Pb = qfunc(sqrt(2*ebno))

Pb = 7.7267e-04

Input Arguments
x — Input
scalar | vector | matrix | array

Input, specified as a real-valued scalar, matrix, or array.
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Data Types: double

Output Arguments
y — Q function output
scalar | vector | matrix | array

Q function output, returned as a scalar, matrix, or array. y has the same dimensions as input x.
Output values are in the range [0, 1].

Algorithms
For a scalar x, the Q function is (1 – f), where f is the result of the cumulative distribution function of
the standardized normal random variable. The Q function is defined as

Q(x) = 1
2π∫x

∞
exp( − t2/2)dt

The Q function is related to the complementary error function, erfc, according to

Q(x) = 1
2erfc x

2

Version History
Introduced before R2006a

See Also
Functions
qfuncinv | erf | erfc | erfcx | erfinv | erfcinv
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qfuncinv
Inverse Q function

Syntax
z = qfuncinv(y)

Description
z = qfuncinv(y) returns the input argument of the Q function for which the output value of the Q
function is y. For more information, see “Algorithms” on page 2-683.

Examples

Recover Argument of Q Function

Recover the Q function input argument by using the inverse Q function. Show the inverse relationship
between Q function and its inverse.

Calculate the Q function values for a real-valued input.

x1 = [0 1 2; 3 4 5];
y1 = qfunc(x1)

y1 = 2×3

    0.5000    0.1587    0.0228
    0.0013    0.0000    0.0000

Recover the Q function input argument by calculating the inverse Q function values for y1.

x1_recovered = qfuncinv(y1)

x1_recovered = 2×3

     0     1     2
     3     4     5

Confirm the original and recovered Q functions arguments are the same.

isequal (x1,x1_recovered)

ans = logical
   1

Calculate the inverse of values representing Q function output values.

y2 = 0:0.2:1;
x2 = qfuncinv(y2)
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x2 = 1×6

       Inf    0.8416    0.2533   -0.2533   -0.8416      -Inf

Recover the Q function output argument by calculating the Q function values for x2.

y2_recovered = qfunc(x2)

y2_recovered = 1×6

         0    0.2000    0.4000    0.6000    0.8000    1.0000

Confirm the original values and recovered inverse Q functions arguments are the same.

isequal (y2,y2_recovered)

ans = logical
   1

Input Arguments
y — Q function output
scalar | vector | matrix | array

Q function output, specified as a scalar, matrix, or array. Input values must be in the range [0, 1].
Data Types: double

Output Arguments
z — Q function input argument
scalar | vector | matrix | N-D array

Q function input argument, returned as a real-valued scalar, matrix, or array. z has the same
dimensions as input y.

Algorithms
For a scalar x, the Q function is (1 – f), where f is the result of the cumulative distribution function of
the standardized normal random variable. The Q function is defined as

Q(x) = 1
2π∫x

∞
exp( − t2/2)dt

The Q function is related to the complementary error function, erfc, according to

Q(x) = 1
2erfc x

2
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Version History
Introduced before R2006a

See Also
Functions
qfunc | erf | erfc | erfcx | erfinv | erfcinv
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quantiz
Produce quantization index and quantized output value

Syntax
index = quantiz(sig,partition)
[index,quants] = quantiz(sig,partition,codebook)
[index,quants,distor] = quantiz(sig,partition,codebook)

Description
index = quantiz(sig,partition) returns the quantization levels of input signal sig by using
the scalar quantization partition specified in input partition.

[index,quants] = quantiz(sig,partition,codebook) specifies codebook, which prescribes
a value for each partition in the scalar quantization. codebook is a vector whose length must exceed
the length of partition by one. The function also returns quants, which contains the scalar
quantization of sig and depends on the quantization levels and prescribed values in the codebook.

[index,quants,distor] = quantiz(sig,partition,codebook) returns an estimate of the
mean square distortion of the quantization data.

Examples

Produce Quantization Index and Quantized Output Value

Generate sample data.

samp = [-2.4, -1, -0.2, 0, 0.2, 1, 1.2, 2, 2.9, 3, 3.5, 5]

samp = 1×12

   -2.4000   -1.0000   -0.2000         0    0.2000    1.0000    1.2000    2.0000    2.9000    3.0000    3.5000    5.0000

Create the quantization partition. To specify a partition, list the distinct endpoints of the different
ranges of values.

partition = [0, 1, 3];

Specify the codebook values.

codebook = [-1, 0.5, 2, 3]; % Codebook length must be equal to the number of partition intervals

Perform quantization on the sampled data. Display the quantization index and the corresponding
quantized output value of the input data.

[index,quantized] = quantiz(samp,partition,codebook)

index = 1×12
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     0     0     0     0     1     1     2     2     2     2     3     3

quantized = 1×12

   -1.0000   -1.0000   -1.0000   -1.0000    0.5000    0.5000    2.0000    2.0000    2.0000    2.0000    3.0000    3.0000

Quantize Sampled Sine Wave

Generate a sampled sine wave.

t = [0:.1:2*pi];
sig = sin(t);

Create the quantization partition. To specify a partition, list the distinct endpoints of the different
ranges of values.

partition = [-1:.2:1];

Specify the codebook values.

codebook = [-1.2:.2:1]; % Codebook length must be equal to the number of partition intervals

Perform quantization on the sampled sine wave.

[index,quants] = quantiz(sig,partition,codebook);

Plot the quantized sine wave and the sampled sine wave.

plot(t,sig,'x',t,quants,'.')
title('Quantization of sine wave')
xlabel('Time')
ylabel('Amplitude')
legend('Original sampled sine wave','Quantized sine wave');
axis([-.2 7 -1.2 1.2])
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Input Arguments
sig — Input signal
vector

Input signal, specified as a vector. This input specifies the sampled signal for this function to perform
quantization.
Data Types: double

partition — Distinct endpoints of different ranges
row vector

Distinct endpoints of different ranges, specified as a row vector. This input defines several
contiguous, nonoverlapping ranges of values within the set of real numbers. The values present in
this input must be strictly in ascending order. The length of this vector must be one less than the
number of partition intervals.
Example: [0, 1, 3] partitions the input row vector into the four sets {X: X ≤ 0}, {X: 0 < X ≤ 1}, {X: 1
< X ≤ 3}, and {X: 3 < X}.
Data Types: double

codebook — Quantization value for each partition
row vector
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Quantization value for each partition, specified as a row vector. This input prescribes a common value
for each partition in the scalar quantization. The length of this vector must equal the number of
partition intervals, that is, the length of this vector must exceed the length of the partition input
by one.
Data Types: double

Output Arguments
index — Quantization index
nonnegative row vector

Quantization index of the input signal, returned as a nonnegative row vector. This output determines
on which partition interval, each input value is mapped. Each element in index is one of the N
integers in the range [0, N–1].

If the partition input has length N, index is a vector whose Kth entry is:

• 0 if sig(K) ≤ partition(1)
• M if partition(M) < sig(K) ≤ partition(M+1)
• N if partition(N) ≤ sig(K)

quants — Output of quantizer
row vector

Output of the quantizer, which contains the quantization values of the input signal, returned as a row
vector. The size of quants matches that of input argument sig. When codebook is not specified as
an input argument, you can define the codebook values as a vector whose length must exceed the
length of the partition by one.

quants is calculated based on the codebook and index inputs and is given by quants(i) =
codebook(index(i) + 1), where i is an integer between 1 and the length of sig.

distor — Mean square distortion
positive scalar

Mean square distortion of the quantized signal, returned as a positive scalar. You can reduce this
distortion by choosing appropriate partition and codebook values. For more information on optimizing
partition and codebook values, see the lloyds function.

Version History
Introduced before R2006a

See Also
Functions
lloyds | dpcmenco | dpcmdeco | huffmanenco | huffmandeco

2 Functions

2-688



randdeintrlv
Restore ordering of symbols using random permutation

Syntax
deintrlvd = randdeintrlv(data,state)

Description
deintrlvd = randdeintrlv(data,state) restores the original ordering of the elements in data
by inverting a random permutation. The state parameter initializes the random number generator
that the function uses to determine the permutation. state is either a scalar or a 35x1 vector, and is
described in the rand function, which is used in randintrlv. The function is predictable for a given
state, but different states produce different permutations. If data is a matrix with multiple rows and
columns, the function processes the columns independently.

To use this function as an inverse of the randintrlv function, use the same state input in both
functions. In that case, the two functions are inverses in the sense that applying randintrlv
followed by randdeintrlv leaves data unchanged.

This function uses, by default, the Mersenne Twister algorithm by Nishimura and Matsumoto.

Note Using the state parameter causes this function to switch random generators to use the
'state' algorithm of the rand function.

See rand for details on the generator algorithm.

Examples
For an example using random interleaving and deinterleaving, see “Improve Error Rate Using Block
Interleaving in MATLAB”.

Version History
Introduced before R2006a

See Also
rand | randintrlv

Topics
“Interleaving”
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randerr
Generate bit error patterns

Syntax
out = randerr(m)
out = randerr(m,n)
out = randerr(m,n,errors)
out = randerr(m,n,errors,seed)
out = randerr(m,n,errors,randstream)

Description
Use the randerr function to generate bit error patterns. For all syntaxes, randerr treats each row
of the output independently.

out = randerr(m) generates an m-by-m binary matrix, where each row has exactly one nonzero
entry in a random position. Each permutation has an equal probability.

out = randerr(m,n) generates an m-by-n binary matrix, where each row has exactly one nonzero
entry in a random position. Each permutation has an equal probability.

out = randerr(m,n,errors) uses the errors input to determine the number of nonzero entries
in each row of the output m-by-n binary matrix.

out = randerr(m,n,errors,seed) specifies a seed value for initializing the uniform random
number generator of the rand function.

out = randerr(m,n,errors,randstream) specifies a random stream object to generate uniform
random noise samples by using the rand function. Providing a random stream object or using the
reset (RandStream) function on the default random stream object enables you to generate
repeatable noise samples.

Note To generate repeatable noise samples, use the same seed input value for each call of randerr
or reset the random stream input before calling randerr. For more information on resetting the
random stream, see the RandStream object.

Examples

Generate Random Error Matrix

Generate an 8-by-7 binary matrix in which each row is equally likely to have either zero or two
nonzero elements.

out = randerr(8,7,[0 2])

out = 8×7
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     0     1     0     0     0     1     0
     0     1     0     0     0     1     0
     0     0     0     0     0     0     0
     0     0     0     0     0     1     1
     0     0     0     0     0     0     0
     0     0     0     0     0     0     0
     0     0     1     0     0     0     1
     0     0     1     0     1     0     0

Generate a matrix in which each row is three times more likely to have two nonzero elements rather
than zero nonzero elements.

out = randerr(8,7,[0 2; 0.25 0.75])

out = 8×7

     0     0     0     0     1     0     1
     0     1     0     0     0     0     1
     0     0     1     0     0     1     0
     0     1     0     0     1     0     0
     1     0     0     0     1     0     0
     0     0     0     0     0     0     0
     0     0     0     0     0     0     0
     0     0     0     0     0     0     0

Generate Repeatable Random Error Matrix

Demonstrate generation of a random error matrix without a seed input value for a nonrepeatable
output and with the seed input value for a repeatable output.

Specify input parameters for the output matrix dimensions, the number of errors, and a seed value.

m = 2;
n = 8;
errors = 2;
seed = 1234;

Use the randerr function to generate a random error binary matrix twice with the same command.
The output binary matrix values are the same for each execution of the randerr function.

out = randerr(m,n,errors,seed)

out = 2×8

     0     0     1     1     0     0     0     0
     0     1     0     1     0     0     0     0

out = randerr(m,n,errors,seed)

out = 2×8

     0     0     1     1     0     0     0     0
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     0     1     0     1     0     0     0     0

Change the seed value and call the randerr function twice. The binary matrix output values are the
same for each execution of the randerr function, but they differ from the binary matrix values
output using the previous seed value.

seed = 345;
out = randerr(m,n,errors,seed)

out = 2×8

     0     0     0     0     1     0     1     0
     1     0     0     0     1     0     0     0

out = randerr(m,n,errors,seed)

out = 2×8

     0     0     0     0     1     0     1     0
     1     0     0     0     1     0     0     0

Use the randerr function to generate a random error binary matrix twice with the same command,
not specifying a seed input value. The output matrix values change for each execution of the randerr
function.

out = randerr(m,n,errors)

out = 2×8

     0     1     0     0     0     1     0     0
     0     1     0     0     0     0     0     1

out = randerr(m,n,errors)

out = 2×8

     0     1     0     0     0     0     0     1
     0     0     0     1     0     1     0     0

Input Arguments
m — Size of random binary matrix
positive integer

Size of the random binary matrix, specified as a positive integer.

• When you specify only the input m, the random binary matrix output is of size m-by-m.
• When you specify the inputs m and n, the random binary matrix output is of size m-by-n.

Data Types: double
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n — Column size of random binary matrix
1 (default) | positive integer

Column size of the random binary matrix, specified as a positive integer.
Data Types: double

errors — Number of nonzero entries
1 (default) | nonnegative integer | nonnegative integer row vector | nonnegative two-row matrix

Number of nonzero entries, specified as one of these forms.

• If specified as a integer, errors defines the number of 1s in each row.
• If specified as a integer row vector, errors defines the number of 1s possible in each row. Every

number of 1s included in this vector occurs with equal probability.
• If specified as a two-row matrix, the first row of errors defines the integer number of 1s possible

in any given row of the output matrix. The second row specifies the probabilities of each
corresponding number of ones. The elements in the second row of errors must sum to 1.

Data Types: double

seed — Seed value
nonnegative integer value less than 232

Seed value for initializing the uniform random number generator used in the rand function, specified
as nonnegative integer value less than 232.
Data Types: double

randstream — Random stream object
RandStream object

Random stream object to generate uniform random noise samples by using the rand function,
specified as a RandStream object. Providing a random stream object or using the reset
(RandStream) function on the default random stream object enables you to generate repeatable
noise samples.

Output Arguments
out — Random binary matrix output
matrix

Random binary matrix output, returned as a matrix of binary values.

• When you specify only the input m, this output is of size m-by-m.
• When you specify the inputs m and n, this output is of size m-by-n.

Data Types: double

Version History
Introduced before R2006a
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See Also
Functions
rand | randsrc | randi

Objects
RandStream

Topics
“Sources and Sinks”
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randintrlv
Reorder symbols using random permutation

Syntax
intrlvd = randintrlv(data,state)

Description
intrlvd = randintrlv(data,state) rearranges the elements in data using a random
permutation. The state parameter initializes the random number generator that the function uses to
determine the permutation. state is either a scalar or a 35x1 vector, and is described in the rand
function, which is used in randintrlv. The function is predictable and invertible for a given state,
but different states produce different permutations. If data is a matrix with multiple rows and
columns, the function processes the columns independently.

This function uses, by default, the Mersenne Twister algorithm by Nishimura and Matsumoto.

Note Using the state parameter causes this function to switch random generators to use the
'state' algorithm of therand function.

See rand for details on the generator algorithm.

Examples
For an example using random interleaving and deinterleaving, see “Improve Error Rate Using Block
Interleaving in MATLAB”.

Version History
Introduced before R2006a

See Also
rand | randdeintrlv

Topics
“Interleaving”
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randsrc
Generate random matrix using prescribed alphabet

Syntax
out = randsrc
out = randsrc(m)
out = randsrc(m,n)
out = randsrc(m,n,alphabet)
out = randsrc(m,n,[alphabet; prob])
out = randsrc(m,n, ___ ,seed)
out = randsrc(m,n, ___ ,streamhandle)

Description
out = randsrc generates a random scalar that is either -1 or 1, with equal probability.

out = randsrc(m) generates an m-by-m random bipolar matrix. Each entry independently takes the
value -1 or 1 with equal probability.

out = randsrc(m,n) generates an m-by-n random bipolar matrix. Each entry independently takes
the value -1 or 1 with equal probability.

out = randsrc(m,n,alphabet) generates an m-by-n matrix, with each entry independently
chosen from the entries in the row vector alphabet. Each entry in alphabet occurs in out with
equal probability. Duplicate values in alphabet are ignored.

out = randsrc(m,n,[alphabet; prob]) generates an m-by-n matrix, with each entry
independently chosen from the entries in the row vector alphabet. Duplicate values in alphabet
are ignored. The row vector prob lists corresponding probabilities, so that the symbol alphabet(k)
occurs with probability prob(k), where k is any integer between one and the number of columns of
alphabet. The elements of prob must add up to 1.

out = randsrc(m,n, ___ ,seed) accepts input combinations from prior syntaxes and a seed
value, for initializing the uniform random number generator, rand.

out = randsrc(m,n, ___ ,streamhandle) accepts input combinations from prior syntaxes and a
random stream handle to generate uniform random noise samples by using rand. Providing a random
stream handle or using the reset (RandStream) function on the default random stream object
enables you to generate repeatable noise samples. If you want to generate repeatable noise samples,
then either reset the random stream input before calling randsrc or use the same seed input. For
more information, see RandStream.

Examples

Generate Random Matrix from Prescribed Alphabet

Generate a 10-by-10 matrix from the set of {-3,-1,1,3}.
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out = randsrc(10,10,[-3 -1 1 3])

out = 10×10

     3    -3     1     1    -1    -1     3     3    -1    -3
     3     3    -3    -3    -1     1    -1    -1     3    -3
    -3     3     3    -1     3     1     1     3     1     1
     3    -1     3    -3     3    -3     1    -3     1     3
     1     3     1    -3    -3    -3     3     3     3     3
    -3    -3     3     3    -1    -1     3    -1    -1    -3
    -1    -1     1     1    -1     3     1    -3     3     1
     1     3    -1    -1     1    -1    -3    -1     3    -1
     3     3     1     3     1     1    -3     1    -1    -3
     3     3    -3    -3     3    -3    -1    -1     1    -1

Plot the histogram. Each of the four possible element values occur with equal probability. Your values
might differ.

histogram(out,[-4 -2 0 2 4])

Generate a matrix in which the likelihood of a -1 or 1 is four times higher than the likelihood of a -3 or
3.

out = randsrc(10,10,[-3 -1 1 3; 0.1 0.4 0.4 0.1])

out = 10×10
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    -1    -1    -1    -1     1    -1     1    -1     1     3
     1    -3     3     3     1    -3    -1    -1    -1     1
    -1    -1    -3    -1    -1     3    -1     1     1    -1
     1     3     1    -1     1     3    -1    -3    -1    -1
    -1    -1     1    -1    -1    -1    -3    -3     1    -1
     1     1     1    -1    -3    -1    -1    -1    -1    -1
    -1     1    -3     1    -1    -1     3     1    -1     1
     1     3    -1     1    -1     3     3     1     1     1
     1    -3    -1     1    -1    -1     1     1     1     1
     1    -1     1    -1    -1    -1    -3    -1    -3     1

Plot the histogram. Values of -1 and 1 are more likely.

histogram(out,[-4 -2 0 2 4])

Input Arguments
m — Bipolar matrix size
1 (default) | scalar

Size of random bipolar matrix, specified as a scalar. If n is specified, then m is the row size of the
random bipolar matrix.
Data Types: double
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n — Bipolar matrix column size
1 (default) | scalar

Column size of random binary matrix, specified as a scalar.
Data Types: double

alphabet — Possible element values
[-1 1] (default) | vector | matrix

Possible elements of output vector or matrix. If alphabet is a row vector, the contents of alphabet
define which possible elements randsrc output. If alphabet is a two-row matrix, then the first row
is defines the possible elements, and the second row defines the probabilities for each corresponding
element in the first row. The elements of the second row must sum to one. If all entries of alphabet
are distinct, then the probability distribution is uniform.
Data Types: double

prob — Element probabilities
[0.5 0.5] (default) | vector

Row vector of probabilities that correspond to elements of the corresponding alphabet vector.
Data Types: double

seed — Seed value
scalar

Seed value for initializing the uniform random number generator, rand.
Data Types: double

streamhandle — Random stream handle
RandStream Object

Random stream handle to generate uniform random noise samples by using rand. Providing a
random stream handle or using the reset (RandStream) function on the default random stream
object enables you to generate repeatable noise samples. If you want to generate repeatable noise
samples, then either reset the random stream input before calling randsrc or use the same seed
input. For more information, see RandStream.
Data Types: double

Output Arguments
out — Random matrix output
scalar | vector | matrix

Random output, returned as a scalar, vector, or matrix. The dimensions of the output are specified by
arguments m and n, otherwise it is a 1-by-1 scalar. The possible elements of the output and their
probabilities are specified by alphabet, prob respectively, otherwise the elements of the output are
-1 and 1, with equal distribution.
Data Types: double
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Version History
Introduced before R2006a

See Also
Functions
rand | randi | randerr | RandStream
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rectpulse
Rectangular pulse shaping

Syntax
y = rectpulse(x,nsamp)

Description
y = rectpulse(x,nsamp) applies rectangular pulse shaping to x to produce an output signal
having nsamp samples per symbol. Rectangular pulse shaping means that each symbol from x is
repeated nsamp times to form the output y. If x is a matrix with multiple rows, the function treats
each column as a channel and processes the columns independently.

Note To insert zeros between successive samples of x instead of repeating the samples of x, use the
upsample function instead.

Examples
To see this function in conjunction with modulation, see “Modulation with Pulse Shaping and Filtering
Examples”.

The code below processes two independent channels, each containing three symbols of data. In the
pulse-shaped matrix y, each symbol contains four samples.

nsamp = 4; % Number of samples per symbol
nsymb = 3; % Number of symbols
s = RandStream('mt19937ar', 'Seed', 0);
ch1 = randi(s, [0 1], nsymb, 1); % Random binary channel
ch2 = [1:nsymb]';
x = [ch1 ch2] % Two-channel signal
y = rectpulse(x,nsamp)

The output is below. In y, each column corresponds to one channel and each row corresponds to one
sample. Also, the first four rows of y correspond to the first symbol, the next four rows of y
correspond to the second symbol, and the last four rows of y correspond to the last symbol.

x =

     1     1
     1     2
     0     3

y =

     1     1
     1     1
     1     1
     1     1
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     1     2
     1     2
     1     2
     1     2
     0     3
     0     3
     0     3
     0     3

Version History
Introduced before R2006a

See Also
intdump | upsample
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rsdec
Reed-Solomon decoder

Syntax
decoded = rsdec(code,n,k)
decoded = rsdec(code,n,k,genpoly)
decoded = rsdec(...,paritypos)
[decoded,cnumerr] = rsdec(...)
[decoded,cnumerr,ccode] = rsdec(...)

Description
decoded = rsdec(code,n,k) attempts to decode the received signal in code using an [n,k] Reed-
Solomon decoding process with the narrow-sense generator polynomial. code is a Galois array of
symbols having m bits each. Each n-element row of code represents a corrupted systematic
codeword, where the parity symbols are at the end and the leftmost symbol is the most significant
symbol. n is at most 2m-1. If n is not exactly 2m-1, rsdec assumes that code is a corrupted version of
a shortened code.

In the Galois array decoded, each row represents the attempt at decoding the corresponding row in
code. A decoding failure occurs if rsdec detects more than (n-k)/2 errors in a row of code. In this
case, rsdec forms the corresponding row of decoded by merely removing n-k symbols from the end
of the row of code.

decoded = rsdec(code,n,k,genpoly) is the same as the syntax above, except that a nonempty
value of genpoly specifies the generator polynomial for the code. In this case, genpoly is a Galois
row vector that lists the coefficients, in order of descending powers, of the generator polynomial. The
generator polynomial must have degree n-k. To use the default narrow-sense generator polynomial,
set genpoly to [].

decoded = rsdec(...,paritypos) specifies whether the parity symbols in code were appended
or prepended to the message in the coding operation. paritypos can be either 'end' or
'beginning'. The default is 'end'. If paritypos is 'beginning', a decoding failure causes
rsdec to remove n-k symbols from the beginning rather than the end of the row.

[decoded,cnumerr] = rsdec(...) returns a column vector cnumerr, each element of which is
the number of corrected errors in the corresponding row of code. A value of -1 in cnumerr indicates
a decoding failure in that row in code.

[decoded,cnumerr,ccode] = rsdec(...) returns ccode, the corrected version of code. The
Galois array ccode has the same format as code. If a decoding failure occurs in a certain row of
code, the corresponding row in ccode contains that row unchanged.

Examples

Reed-Solomon Decoding

Set the RS code parameters.
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m = 3;                   % Number of bits per symbol
n = 2^m-1;               % Codeword length
k = 3;                   % Message length

Generate three codewords composed of 3-bit symbols. Encode the message with a (7,3) RS code.

msg = gf([2 7 3; 4 0 6; 5 1 1],m);
code = rsenc(msg,n,k);

Introduce one error on the first codeword, two errors on the second codeword, and three errors on
the third codeword.

errors = gf([2 0 0 0 0 0 0; 3 4 0 0 0 0 0; 5 6 7 0 0 0 0],m);
noisycode = code + errors;

Decode the corrupted codeword.

[rxcode,cnumerr] = rsdec(noisycode,n,k);

Observe that the number of corrected errors matches the introduced errors for the first two rows. In
row three, the number of corrected errors is -1 because a (7,3) RS code cannot correct more than
two errors.

cnumerr

cnumerr = 3×1

     1
     2
    -1

Limitations
n and k must differ by an even integer. n must be between 3 and 65535.

Algorithms
rsdec uses the Berlekamp-Massey decoding algorithm. For information about this algorithm, see the
works listed in “References” on page 2-704 below.

Version History
Introduced before R2006a

References

[1] Wicker, S. B., Error Control Systems for Digital Communication and Storage, Upper Saddle River,
NJ, Prentice Hall, 1995.

[2] Berlekamp, E. R., Algebraic Coding Theory, New York, McGraw-Hill, 1968.
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See Also
rsenc | gf | rsgenpoly

Topics
“Block Codes”
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rsenc
Reed-Solomon encoder

Syntax
code = rsenc(msg,n,k)
code = rsenc(msg,n,k,genpoly)
code = rsenc(...,paritypos)

Description
code = rsenc(msg,n,k) encodes the message in msg using an [n,k] Reed-Solomon code with the
narrow-sense generator polynomial. msg is a Galois array of symbols having m bits each. Each k-
element row of msg represents a message word, where the leftmost symbol is the most significant
symbol. n is at most 2m-1. If n is not exactly 2m-1, rsenc uses a shortened Reed-Solomon code. Parity
symbols are at the end of each word in the output Galois array code.

code = rsenc(msg,n,k,genpoly) is the same as the syntax above, except that a nonempty value
of genpoly specifies the generator polynomial for the code. In this case, genpoly is a Galois row
vector that lists the coefficients, in order of descending powers, of the generator polynomial. The
generator polynomial must have degree n-k. To use the default narrow-sense generator polynomial,
set genpoly to [].

code = rsenc(...,paritypos) specifies whether rsenc appends or prepends the parity symbols
to the input message to form code. paritypos can be either 'end' or 'beginning'. The default is
'end'.

Examples

Reed-Solomon Code Generation

Set the code parameters.

m = 3;           % Number of bits per symbol
n = 2^m - 1;     % Codeword length 
k = 3;           % Message length

Create two messages based on GF(8).

msg = gf([2 7 3; 4 0 6],m)

 
msg = GF(2^3) array. Primitive polynomial = D^3+D+1 (11 decimal)
 
Array elements = 
 
   2   7   3
   4   0   6

Generate RS (7,3) codewords.
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code = rsenc(msg,n,k)

 
code = GF(2^3) array. Primitive polynomial = D^3+D+1 (11 decimal)
 
Array elements = 
 
   2   7   3   3   6   7   6
   4   0   6   4   2   2   0

The codes are systematic so the first three symbols of each row match the rows of msg.

Limitations
n and k must differ by an integer. n between 7 and 65535.

Version History
Introduced before R2006a

See Also
rsdec | gf | rsgenpoly

Topics
“Block Codes”
“Represent Words for Reed-Solomon Codes”
“Create and Decode Reed-Solomon Codes”
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rsgenpoly
Generator polynomial of Reed-Solomon code

Syntax
genpoly = rsgenpoly(N,K)
genpoly = rsgenpoly(N,K,prim_poly)
genpoly = rsgenpoly(N,K,prim_poly,B)
genpoly = rsgenpoly(N,K,prim_poly,B,outputFormat)
[genpoly,T] = rsgenpoly( ___ )

Description
genpoly = rsgenpoly(N,K) returns the narrow-sense generator polynomial of an [N,K] Reed-
Solomon code. The output genpoly is a Galois field array that represents the coefficients of the
generator polynomial in order of descending powers. A narrow-sense BCH code is a BCH code with B
= 1. Here, the narrow-sense generator polynomial is (X – α1)(X – α2)...(X – αN–K), where α is a root of
the default primitive polynomial for the field GF(N+1). For additional information, see Narrow-Sense
BCH Codes and “Reed-Solomon Codes”.

genpoly = rsgenpoly(N,K,prim_poly) also specifies the primitive polynomial, prim_poly, for
GF(N+1) that has α as a root.

genpoly = rsgenpoly(N,K,prim_poly,B) returns the generator polynomial, (X – αB)(X – αB+1)...
(X – αB+N–K – 1), where B is an integer.

genpoly = rsgenpoly(N,K,prim_poly,B,outputFormat) specifies the output format of
genpoly as a Galois field array or double-precision array.

[genpoly,T] = rsgenpoly( ___ ) also returns the error-correction capability of the [N,K] Reed-
Solomon code, T, using any of the preceding input argument syntaxes.

Examples

Create Narrow-Sense Generator Polynomial

Specify the codeword length, n, and message length, k.

n = 7;
k = 3;

Create the narrow-sense generator polynomial for the [n,k] Reed-Solomon code. genpoly is a Galois
field array, by default, that represents the coefficients of this generator polynomial in order of
descending powers.

genpoly = rsgenpoly(n,k)

 
genpoly = GF(2^3) array. Primitive polynomial = D^3+D+1 (11 decimal)
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Array elements = 
 
   1   3   1   2   3

Create Narrow-Sense Generator Polynomial Specifying Primitive Polynomial

Create the narrow-sense generator polynomial of a Reed-Solomon code with respect to the primitive
polynomial D3 + D2 + 1.

Specify the codeword length, n, message length, k, and primitive polynomial D3 + D2 + 1 represented
in decimal form.

n = 7;
k = 3;
prim_poly = 13;

Create the narrow-sense generator polynomial for the [n,k] Reed-Solomon code with respect to
primitive polynomial D3 + D2 + 1 for GF(8). genpoly is a Galois field array, by default, that
represents the coefficients of this generator polynomial in order of descending powers.

genpoly = rsgenpoly(n,k,prim_poly)

 
genpoly = GF(2^3) array. Primitive polynomial = D^3+D^2+1 (13 decimal)
 
Array elements = 
 
   1   4   5   1   5

Create Generator Polynomial for Specified B

Create the generator polynomial of a Reed-Solomon code with respect to the default primitive
polynomial.

Specify the codeword length, n, message length, k, and exponent of α, b.

n = 7;
k = 3;
b = 4;

Create the generator polynomial X − α4 X − α5 X − α6 X − α7 , with respect to the default
primitive polynomial. genpoly is a Galois field array that represents the coefficients of this generator
polynomial in order of descending powers. Display the error-correcting capability of the code.

[genpoly,t] = rsgenpoly(n,k,[],b)

 
genpoly = GF(2^3) array. Primitive polynomial = D^3+D+1 (11 decimal)
 
Array elements = 
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   1   5   5   3   2

t = 2

Create Generator Polynomial for DVB-S and WiMAX

Create the generator polynomial of a Reed-Solomon code with respect to the primitive polynomial
D8 + D4 + D3 + D2 + 1.

Specify the codeword length, n, message length, k, the primitive polynomial represented in decimal
form, and the exponent of α, b.

n = 255;
k = 239;
prim_poly = 285;
b = 0;

Create the generator polynomial for the [n,k] Reed-Solomon code. genpoly is a Galois field array
that represents a generator polynomial and is compliant with DVB-S and WiMAX.

genpoly = rsgenpoly(n,k,prim_poly,b)

 
genpoly = GF(2^8) array. Primitive polynomial = D^8+D^4+D^3+D^2+1 (285 decimal)
 
Array elements = 
 
  Columns 1 through 13

     1    59    13   104   189    68   209    30     8   163    65    41   229

  Columns 14 through 17

    98    50    36    59

Create Narrow-Sense Generator Polynomial with Output Format Double

Create the narrow-sense generator polynomial of a Reed-Solomon code. Specify the output data type
as a double-precision array.

Specify the codeword length, n, and message length, k.

n = 7;
k = 3;

Create the narrow-sense generator polynomial for the [n,k] Reed-Solomon code. genpoly is a
double-precision array, that represents the coefficients of this generator polynomial in order of
descending powers. Specify defaults values for the primitive polynomial and exponent of α inputs by
assigning [ ] for them.

genpoly = rsgenpoly(n,k,[],[],'double')
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genpoly = 1×5

     1     3     1     2     3

Determine Corresponding Galois Field Array Value

Use the genpoly2b function to determine the corresponding Galois field array value.

Use rsgenpoly with codeword length of 7 and message word length of 3 to create a valid Galois
field array.

n = 7;
k = 3;

genpoly = rsgenpoly(n,k)

 
genpoly = GF(2^3) array. Primitive polynomial = D^3+D+1 (11 decimal)
 
Array elements = 
 
   1   3   1   2   3

Use genpoly2b to determine the corresponding Galois field array value for the polynomial input.

b = genpoly2b(genpoly)

b = 1

Input Arguments
N — Codeword length
positive odd integer

Codeword length, specified as an integer of the form N = 2M – 1, where M is in the range [3,16]. For
more information, see “Limitations” on page 2-712.
Example: Set N to 15 for M=4.

K — Message length
positive integer

Message length, specified as a positive integer. For more information, see “Limitations” on page 2-
712.

prim_poly — Primitive polynomial
GF(N+1) (default) | positive integer

Primitive polynomial, specified as a positive integer. prim_poly is an integer whose binary
representation indicates the coefficients of the primitive polynomial. To use the default primitive
polynomial GF(N+1), set prim_poly to []. For more information, see “Default Primitive Polynomials”
on page 2-712.
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Example: 19 specifies the primitive polynomial D4+D+1 because its binary representation is 10011.

B — Exponent of α
1 (default) | positive integer

Exponent of α, specified as a positive integer. α is a root of prim_poly.

outputFormat — Output format
'gf' (default) | 'double'

Output format of genpoly, specified as:

• 'gf' — to output a Galois field array.
• 'double' — to output a double-precision array of the Galois field values.

For more information, see “Working with Galois Fields”.

Output Arguments
genpoly — Generator polynomial coefficients
Galois field array | double-precision array

Generator polynomial coefficients in descending order, returned as a Galois field array or double-
precision array. genpoly is a row vector that represents the coefficients of the narrow-sense
generator polynomial of an [N,K] Reed-Solomon code in order of descending powers.

T — Error-correction capability
positive integer

Error-correction capability of the code, returned as a positive integer equal to ⌊(N – K)/2⌋.

Limitations
• Valid values for N = 2M – 1, where M is an integer in the range [3,16]. The maximum allowable

value of N = 216 – 1 = 65,535.
• Valid values for K = [1,N – 1].

More About
Default Primitive Polynomials

This table lists the default primitive polynomial used for each Galois field array GF(2m). To use a
different primitive polynomial, specify prim_poly as an input argument. prim_poly must be in the
range [(2m + 1), (2m+1 – 1)] and must indicate an irreducible polynomial. For more information, see
“Primitive Polynomials and Element Representations”.

Value of m Default Primitive Polynomial Integer Representation
1 D + 1 3
2 D2 + D + 1 7
3 D3 + D + 1 11
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Value of m Default Primitive Polynomial Integer Representation
4 D4 + D + 1 19
5 D5 + D2 + 1 37
6 D6 + D + 1 67
7 D7 + D3 + 1 137
8 D8 + D4 + D3 + D2 + 1 285
9 D9 + D4 + 1 529
10 D10 + D3 + 1 1033
11 D11 + D2 + 1 2053
12 D12 + D6 + D4 + D + 1 4179
13 D13 + D4 + D3 + D + 1 8219
14 D14 + D10 + D6 + D + 1 17475
15 D15 + D + 1 32771
16 D16 + D12 + D3 + D + 1 69643

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

All inputs must be constants. Expressions or variables are allowed if their values do not change.

See Also
Functions
gf | gfprimfd | rsenc | rsdec

Topics
“Block Codes”
“Parameters for Reed-Solomon Codes”
“Representing Elements of Galois Fields”
“Working with Galois Fields”
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rsgenpolycoeffs
Generator polynomial coefficients of Reed-Solomon code

Syntax
x = rsgenpolycoeffs(...)
[x,t] = rsgenpolycoeffs(...)

Description
x = rsgenpolycoeffs(...) returns the coefficients for the generator polynomial of the Reed-
Solomon code. The output is identical to genpoly = rsgenpoly(...); x = genpoly.x.

[x,t] = rsgenpolycoeffs(...) returns t, the error-correction capability of the code.

Examples

Generate Polynomial Coefficients for a Reed-Solomon Code

This example shows how to generate polynomial coefficients for a (15,11) Reed-Solomon code.

Generate the coefficients using rsgenpolycoeffs.

genpoly = rsgenpolycoeffs(15,11)

genpoly = 1x5 uint32 row vector

    1   13   12    8    7

Version History
Introduced in R2010b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

For C/C++ code generation, these usage notes and limitations apply:

All inputs must be constants. Expressions or variables are allowed if their values do not change.

See Also
rsgenpoly | gf | rsenc | rsdec
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scatterplot
Display input signal in IQ-plane

Syntax
scatterplot(x)
scatterplot(x,n)
scatterplot(x,n,offset)
scatterplot(x,n,offset,plotstring)
scatterplot(x,n,offset,plotstring,scatfig)
scatfig = scatterplot( ___ )

Description
scatterplot(x) creates a scatter plot to display the input signal x in the IQ-plane. Specifically, the
IQ-plane displays the in-phase and quadrature components of a modulated signal on the real and
imaginary axis of an xy-plot.

scatterplot(x,n) specifies decimation factor n. The function plots every nth value of x, starting
from its first value.

scatterplot(x,n,offset) specifies the offset value. The function plots every nth value of x,
starting from its (offset + 1)th value.

scatterplot(x,n,offset,plotstring) specifies plot attributes for the scatter plot.

scatterplot(x,n,offset,plotstring,scatfig) generates the scatter plot in the existing
Figure object, scatfig. To plot multiple signals in the same figure, use hold on.

scatfig = scatterplot( ___ ) returns the Figure object of the scatter plot. Use scatfig to
query or modify properties of the figure after it is created. You can specify any of the input argument
combinations from the previous syntaxes.

Examples

Generate Scatter Plot of 64-QAM Signal

Create a 64-QAM signal in which each constellation point is used.

d = (0:63)';
s = qammod(d,64);

Display the scatter plot of the constellation.

scatterplot(s)
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Input Arguments
x — Input signal
vector | matrix

Input signal, specified as a vector or matrix.

The interpretation of x depends on its shape and complexity.

• If x is a real-valued two-column matrix, the function interprets the first column as in-phase
components and the second column as quadrature components.

• If x is a complex-valued vector, the function interprets the real part as in-phase components and
the imaginary part as quadrature components.

• If x is a real-valued vector, the function interprets it as a real signal.

Data Types: double | single
Complex Number Support: Yes

n — Decimation factor
1 (default) | positive integer

Decimation factor, specified as a positive integer. The function plots every nth value of input signal x,
starting from its first value.
Data Types: double
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offset — Offset value
0 (default) | nonnegative integer

Offset value, specified as a nonnegative integer. This offset value specifies the number of samples at
the beginning of input x that the function skips before generating the scatter plot.
Data Types: double

plotstring — Plot attributes
'b.' (default) | character vector | string scalar

Plot attributes, specified as a character vector or string scalar containing symbols.

This argument sets the plotting symbol, line type, and color for the scatter plot. The format and
meaning of the symbols are the same as in the plot function. For example, the default value 'b.'
produces blue dots.
Data Types: char | string

scatfig — Target scatterplot
Figure object

Target scatterplot, specified as a Figure object for a previously generated scatterplot.

Output Arguments
scatfig — Target scatterplot
Figure object

Target scatterplot, returned as a Figure object. To modify properties of this object, see Figure
Properties.

Version History
Introduced before R2006a

See Also
Functions
plot | scatter

Objects
comm.ConstellationDiagram

Topics
“Scatter Plots and Constellation Diagrams”
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semianalytic
BER using semianalytic technique

Syntax
ber = semianalytic(txsig,rxsig,modtype,M,Nsamp)
ber = semianalytic(txsig,rxsig,modtype,M,Nsamp,num,den)
ber = semianalytic( ___ ,EbNo)
[ber,avgampl,avgpower] = semianalytic( ___ )

Description
The semianalytic function computes the bit error rate (BER) of a communication system for the
specified energy per bit to noise power spectral density ratio (Eb/N0) levels by using the semianalytic
technique. The system transmits complex baseband signal txsig and receives noiseless complex
baseband signal rxsig. The function filters the received signal rxsig and determines the symbol
error probability of each received IQ symbol by analytically applying a Gaussian noise distribution to
each complex value. The function averages the error probabilities over the entire received signal to
determine the overall error probability. For each symbol error probability, the function returns a BER,
assuming a Gray-coded constellation. For more information, see “When to Use Semianalytic
Technique” on page 2-723.

ber = semianalytic(txsig,rxsig,modtype,M,Nsamp) returns the BER of the system for the
transmitted signal txsig, received noiseless signal rxsig, modulation type modtype, and
modulation order M. The function uses an ideal integrator to filter rxsig. Input Nsamp is the number
of samples per symbol for each signal. The returned BER values correspond to the default Eb/N0
levels in the range [0, 20] in dB.

ber = semianalytic(txsig,rxsig,modtype,M,Nsamp,num,den) specifies the filter
coefficients of the receiver filter in descending polynomial powers by numerator num and
denominator den. The function uses the specified receiver filter instead of an ideal integrator to filter
rxsig.

ber = semianalytic( ___ ,EbNo) specifies the Eb/N0 levels in addition to any of the input
argument combinations in the previous syntaxes. The returned BER values correspond to the
specified Eb/N0 levels.

[ber,avgampl,avgpower] = semianalytic( ___ ) returns the mean signal amplitude and the
mean power of the received signal after filtering and sampling the signal at the symbol rate.

Examples

Analyze BER Using Semianalytic Technique

Use the semianalytic technique for BER analysis using a 16-QAM modulated signal. Compare the
error rates obtained from the semianalytic technique with the theoretical error rates obtained from
published formulas and computed using the berawgn function.
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Generate a message signal. To obtain accurate results, the signal must be at least ML long. M is the
modulation order of the signal, and L is the length of the channel impulse response.

M = 16;          % Alphabet size of modulation
L = 1;           % Length of impulse response of channel
msg = [0:M-1 0]; % M-ary message sequence of length greater than M^L

Modulate the message signal using baseband modulation.

modsig = qammod(msg',M);          % Modulate data
Nsamp = 16;
modsig = rectpulse(modsig,Nsamp); % Rectangular pulse shaping

Apply a transmitter filter.

txsig = modsig;  % No filter in this example

Pass txsig through a noiseless channel, applying a static phase offset of 1 degree.

rxsig = txsig*exp(1i*pi/180);

Specify the receiver filter as a pair of input arguments. In this case, num and den represent an ideal
integrator.

num = ones(Nsamp,1)/Nsamp;
den = 1;
EbNo = 0:20;
ber = semianalytic(txsig,rxsig,'qam',M,Nsamp,num,den,EbNo);

For comparison, calculate theoretical BER.

bertheory = berawgn(EbNo,'qam',M);

Plot the computed BER and theoretical BER. The differences between the theoretical and
semianalytic error rates are due to the phase offset added to the 16-QAM signal.

semilogy(EbNo,ber,'k*');
hold on; semilogy(EbNo,bertheory,'ro');
title('Semianalytic BER Versus Theoretical BER');
xlabel('E_b/N_o (dB)');
legend('Semianalytic BER with phase offset',...
    'Theoretical BER without phase offset','Location','SouthWest');
hold off;
grid on;
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Input Arguments
txsig — Transmitted baseband signal
complex vector

Transmitted baseband signal, specified as a complex vector. txsig must contain at least ML symbols.
M is the modulation order of the signal and L is the length of the channel impulse response in
symbols. For more information on how to generate a transmitted baseband signal to use in this
function, see “Procedure for Using Semianalytic Technique” on page 2-723.
Data Types: double
Complex Number Support: Yes

rxsig — Received noiseless baseband signal
complex vector

Received noiseless baseband signal, specified as a complex vector.
Data Types: double
Complex Number Support: Yes

modtype — Modulation type
'dpsk' | 'msk/diff' | 'msk/nondiff' | 'psk/diff' | 'psk/nondiff' | 'oqpsk' | 'qam' | ...

Modulation type, specified as one of these options in this table.
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modtype Value Modulation Scheme Valid Values of Input M
'dpsk' Differential phase shift keying

(DPSK)
2 or 4

'msk/diff' Minimum shift keying (MSK)
with differential encoding,
which is equivalent to
conventional MSK

2

'msk/nondiff' Minimum shift keying (MSK)
with nondifferential encoding,
which is equivalent to precoded
MSK

2

'psk/diff' Phase shift keying (PSK) with
differential encoding

2 or 4

'psk/nondiff' Phase shift keying (PSK) with
nondifferential encoding

2, 4, 8, 16, 32, or 64

'oqpsk' Offset quadrature phase shift
keying (OQPSK)

4

'qam' Quadrature amplitude
modulation (QAM)

4, 8, 16, 32, 64, 128, 256, 512,
or 1024

Data Types: char | string

M — Modulation order
power of two

Modulation order, specified as a power of two. Valid modulation order values depend on the specified
modulation type, as described in the modtype input.
Data Types: single | double

Nsamp — Number of samples per symbol of received and transmitted signals
positive integer

Number of samples per symbol of received and transmitted signals, specified as a positive integer.
Data Types: double

num — Numerator coefficients of receiver filter
numeric row vector

Numerator coefficients of the receiver filter in descending polynomial powers, specified as a numeric
row vector. If you do not specify this input, the function sets num to a default value to model an ideal
integrator. The function bases the default value on the modtype input, as this table shows.

modtype Value Default num Value
'dpsk', 'psk/diff', 'psk/nondiff', or
'qam'

ones(Nsamp,1)/Nsamp

'oqpsk', 'msk/diff', or 'msk/nondiff' ones(2*Nsamp,1)/(2*Nsamp)

Data Types: double

 semianalytic

2-721



den — Denominator coefficients of receiver filter
1 (default) | numeric row vector

Denominator coefficients of the receiver filter in descending polynomial powers, specified as a
numeric row vector. The default value corresponds to an ideal integrator.
Data Types: double

EbNo — Eb/N0 levels
[0:20] (default) | numeric scalar | numeric vector

Eb/N0 levels in dB, specified as a numeric scalar or numeric vector.
Data Types: single | double

Output Arguments
ber — BER
numeric scalar | numeric vector

BER, returned as a numeric scalar or numeric vector. The function computes the BER for the Eb/N0
levels that you specify for the EbNo input. If EbNo is a vector, then the output ber is a vector of the
size of EbNo and consists of elements corresponding to the different Eb/N0 levels.

Note The output ber is an upper bound on the BER for these modulation schemes.

• DQPSK (that is, if you set input modtype to 'dpsk' and input M to 4)
• Cross QAM (that is, if you set input modtype to 'qam' and input M to a value that is not a perfect

square). In this case, the upper bound is slightly tighter than the upper bound used for the cross
QAM case of the berawgn function.

Data Types: double

avgampl — Mean signal amplitude of received signal
complex number

Mean signal amplitude of the I and Q components of the received signal after filtering and decimating
the signal to the symbol rate, returned as a complex number.
Data Types: double
Complex Number Support: Yes

avgpower — Mean power of received signal
numeric scalar.

Mean power of the received signal after filtering and sampling the signal at the symbol rate, returned
as a numeric scalar.
Data Types: double
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Limitations
The semianalytic function makes several assumptions about the communication system. To find
out whether your communication system is suitable for the semianalytic technique and the
semianalytic function, see “When to Use Semianalytic Technique” on page 2-723.

More About
When to Use Semianalytic Technique

The Monte-Carlo simulation described in the “Performance Results via Simulation” section effectively
calculates the BER for a variety of communication systems but can be prohibitively time-consuming
for small error rates (for example, error rates of 10-6 or less). The semianalytic technique is an
alternative way to compute error rates. This technique can produce results faster than a nonanalytic
method that uses only simulated data.

To apply the semianalytic technique, the communication system must satisfy these characteristics.

• Any effects of multipath fading, quantization, and amplifier nonlinearities must precede the effects
of noise in the modeled channel.

• The receiver is perfectly synchronized with the carrier, and timing jitter is negligible. Because
phase noise and timing jitter can be slow processes, they can reduce the applicability of the
semianalytic technique to a communication system.

• The noiseless simulation has no errors in the received signal constellation. Distortions from
sources other than noise must be mild enough to keep each signal point in its correct decision
region. For instance, if the modeled system has a phase rotation that places the received signal
points outside of their proper decision regions, then the semianalytic technique is not suitable to
predict system performance.

If the communication system does not satisfy these characteristics, the calculated BER can be lower
than expected. The semianalytic function assumes that the noise in the modeled channel is
Gaussian. For details on how to adapt the semianalytic technique for non-Gaussian noise, see the
discussion of generalized exponential distributions in [1].

Procedure for Using Semianalytic Technique

These steps describe how to implement the semianalytic technique by using the semianalytic
function.

1 Generate a message signal containing at least ML symbols. M is the modulation order, and L is the
length of the impulse response of the channel in symbols. Start with an augmented binary
pseudonoise (PN) sequence of length (log2M)ML. An augmented PN sequence is a PN sequence
with an extra zero appended to it, which makes the distribution of ones and zeros equal.

2 Modulate a carrier with the message signal by using one of the baseband modulation types that
semianalytic supports. For an overview, see the modtype input. Shape the resultant signal
with rectangular pulse shaping, using an oversampling factor that you use later for filtering the
modulated signal. Use the result of this step as txsig when you call the semianalytic
function.

3 Filter the modulated signal with a transmit filter. This filter is often a square-root raised cosine
filter, but you can also use a Butterworth, Bessel, Chebyshev type 1 or 2, elliptic, or more general
FIR or IIR filter. If you use a square-root raised cosine filter, use the filter on the nonoversampled
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modulated signal, and specify the oversampling factor in the filtering function. You can apply the
other filters to the rectangularly pulse shaped signal.

4 Pass the filtered signal through a noiseless channel. This channel can include multipath fading
effects, phase shifts, amplifier nonlinearities, quantization, and additional filtering, but it must
not include noise. Use the result of this step as the rxsig input when you call the
semianalytic function.

5 Call the semianalytic function, specifying the transmitted and received signals, txsig and
rxsig, obtained in the previous steps. Optionally, you can specify a custom receiver filter by
using the num and den inputs or custom Eb/N0 levels by using the EbNo input.

Version History
Introduced before R2006a

References
[1] Jeruchim, Michel C., Philip Balaban, and K. Sam Shanmugan. Simulation of Communication

Systems. Second edition. Boston, MA: Springer US, 2000.

[2] Pasupathy, S., "Minimum Shift Keying: A Spectrally Efficient Modulation". IEEE Communications
Magazine, July, 1979, pp. 14–22.

See Also
Functions
noisebw | qfunc

Topics
“Bit Error Rate Analysis Techniques”
“Performance Results via Simulation”
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shift2mask
Convert shift to mask vector for shift register configuration

Syntax
mask = shift2mask(prpoly,shift)

Description
mask = shift2mask(prpoly,shift) returns the mask that is equivalent to the shift (or offset)
specified by shift, for a linear feedback shift register whose connections are specified by the
primitive polynomial prpoly. The prpoly input can have one of these formats:

• A polynomial character vector
• A binary vector that lists the coefficients of the primitive polynomial in order of descending

powers
• An integer scalar whose binary representation gives the coefficients of the primitive polynomial,

where the least significant bit is the constant term

The shift input is an integer scalar.

Note To save time, shift2mask does not check that prpoly is primitive. If it is not primitive, the
output is not meaningful. To find primitive polynomials, use primpoly or see [2].

Definition of Equivalent Mask

The equivalent mask for the shift s is the remainder after dividing the polynomial xs by the primitive
polynomial. The vector mask represents the remainder polynomial by listing the coefficients in order
of descending powers.

Shifts, Masks, and Pseudonoise Sequence Generators

Linear feedback shift registers are part of an implementation of a pseudonoise sequence generator.
Below is a schematic diagram of a pseudonoise sequence generator. All adders perform addition
modulo 2.
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The primitive polynomial determines the state of each switch labeled gk, and the mask determines the
state of each switch labeled mk. The lower half of the diagram shows the implementation of the shift,
which delays the starting point of the output sequence. If the shift is zero, the m0 switch is closed
while all other mk switches are open. The table below indicates how the shift affects the shift
register's output.

T = 0 T = 1 T = 2 ... T = s T = s+1
Shift = 0 x0 x1 x2 ... xs xs+1

Shift = s > 0 xs xs+1 xs+2 ... x2s x2s+1

If you have Communications Toolbox software and want to generate a pseudonoise sequence in a
Simulink model, see the PN Sequence Generator block reference page.

Examples

Convert Shift to Mask

Convert a shift in a linear feedback shift register into an equivalent mask.

Convert a shift of 5 into the equivalent mask x3 + x + 1 for the linear feedback shift register whose
connections are specified by the primitive polynomial x4 + x3 + 1. The length of the mask is equal to
the degree of the primitive polynomial, 4.

mk = shift2mask([1 1 0 0 1],5)

mk = 1×4

     1     0     1     1

Convert a shift of 7 to a mask of x4 + x2 for the primitive polynomial x5 + x2 + 1.
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mk2 = shift2mask('x5+x2+1',7)

mk2 = 1×5

     1     0     1     0     0

Version History
Introduced before R2006a

References

[1] Lee, J. S., and L. E. Miller, CDMA Systems Engineering Handbook, Boston, Artech House, 1998.

[2] Simon, Marvin K., Jim K. Omura, et al., Spread Spectrum Communications Handbook, New York,
McGraw-Hill, 1994.

See Also
mask2shift | deconv | isprimitive | primpoly
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showcommblockdatatypetable
Communications Toolbox block characteristics

Syntax
showcommblockdatatypetable

Description
showcommblockdatatypetable shows a table of characteristics for the Communications Toolbox
blocks. The table lists capabilities and limitations about code generation, variable size, and supported
data types for each block. If a cell includes an "X", the corresponding block supports the capability
indicated by the column heading. Descriptions for numbered footnotes, "(#)", follow the table.

Examples

Show Communications Toolbox Block Characteristics

To show a table of Communications Toolbox block characteristics, enter
showcommblockdatatypetable at the MATLAB command line. The table opens in a separate
window.

showcommblockdatatypetable

Loading Communications Toolbox Library.

Version History
Introduced in R2008b

See Also
Topics
“Block Characteristics”
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srmdelay
Compute delay introduced by Sample-Rate Match block

Syntax
delay = srmdelay(inputrates,inputlengths,outputrate,outputlength)
delay = srmdelay(inputrates,inputlengths,outputrate,outputlength,mode)

Description
delay = srmdelay(inputrates,inputlengths,outputrate,outputlength) returns delay in
number of samples for the specified inputs. Use this function to compute the delay that will be
introduced by the Sample-Rate Match block.

delay = srmdelay(inputrates,inputlengths,outputrate,outputlength,mode) returns
delay in number of samples for the specified inputs. Use this function to compute the delay that will
be introduced by the Sample-Rate Match block.

Examples

Determine Delay for Rate Matched 5G and LTE Signals

Resample a 5G signal at 7.68 MHz and an LTE signal at 3.84 MHz to a higher rate of 15.36 MHz.

inpRates = [7.68 3.84]*1e6;
inpLengths = [1e3 1e3];
outRate = 15.36e6;
outLength = 1e3;

Determine delay incurred for a model configured for multitasking mode.

d = srmdelay(inpRates,inpLengths,outRate,outLength)

d = 2×1

        1024
        1048

Determine Delay for Rate Matched WLAN and 5G Signals

Resample a WLAN signal at 20 MHz and a 5g signal at 15.36 MHz to a higher rate of 30.72 MHz.

inpRates = [20 15.36]*1e6;
inpLengths = [2 1]*10;
outRate = 30.72e6;
outLength = 50;

Determine delay incurred for a model configured for single-tasking mode.
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d = srmdelay(inpRates,inpLengths,outRate,outLength,"singletasking")

d = 2×1

   145
   174

Input Arguments
inputrates — Input sample rates
2-element vector

Input sample rates in Hz, specified as a 2-element vector of positive values.
Data Types: double

inputlengths — Input lengths
2-element vector

Input lengths in samples, specified as a 2-element vector of positive integer values.
Data Types: double

outputrate — Output sample rate
positive scalar

Output sample rate in Hz, specified as a positive scalar.
Data Types: double

outputlength — Output length
positive integer

Output length in samples, specified as a positive integer.
Data Types: double

mode — Tasking mode
"multitasking" (default) | "singletasking"

Tasking mode of the model, specified as either "multitasking" or "singletasking". The Treat
each discrete rate as a separate task parameter of the Solver controls the mode of the model. For
more information on the Treat each discrete rate as a separate task and Solver parameters, see
“Solver Pane” (Simulink).

Output Arguments
delay — Sample rate match delay
column vector

Sample rate match delay in samples, returned as a 2-element column vector. The first element
corresponds to the delay introduced in the first input and the second element corresponds to the
delay introduced in the second input.
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Version History
Introduced in R2022b

See Also
Functions
rebuffer_delay

Blocks
Sample-Rate Match
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ssbdemod
Single sideband amplitude demodulation

Syntax
z = ssbdemod(y,Fc,Fs)
z = ssbdemod(y,Fc,Fs,ini_phase)
z = ssbdemod(y,Fc,Fs,ini_phase,num,den)

Description
For All Syntaxes

z = ssbdemod(y,Fc,Fs) demodulates the single sideband amplitude modulated signal y from the
carrier signal having frequency Fc (Hz). The carrier signal and y have sampling rate Fs (Hz). The
modulated signal has zero initial phase, and can be an upper- or lower-sideband signal. The
demodulation process uses the lowpass filter specified by [num,den] = butter(5,Fc*2/Fs).

Note The Fc and Fs arguments must satisfy Fs > 2(Fc + BW), where BW is the bandwidth of the
original signal that was modulated.

z = ssbdemod(y,Fc,Fs,ini_phase) specifies the initial phase of the modulated signal in radians.

z = ssbdemod(y,Fc,Fs,ini_phase,num,den) specifies the numerator and denominator of the
lowpass filter used in the demodulation.

Examples

Demodulate Sideband Signal

Define the sampling frequency and original signal.

fs = 270000;
t = (0:1/fs:0.01)';
signal = sin(2*pi*300.*t)+2*sin(2*pi*600.*t);

Convert the original signal to upper-sideband and lower-sideband modulated signals using ssbmod.
Use a cutoff frequency of 12000 and an initial phase of 0.

fc = 12000;
initialPhase = 0;
lowerSidebandSignal = ssbmod(signal,fc,fs,initialPhase);
upperSidebandSignal = ssbmod(signal,fc,fs,initialPhase,'upper');

Demodulate the lower and upper sideband signals.

s1 = ssbdemod(lowerSidebandSignal,fc,fs);
s2 = ssbdemod(upperSidebandSignal,fc,fs);
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Compare processed signals with original and verify reconstruction.

plot(t,signal,'k',t,s1,'r:',t,s2,'g-.');
legend('Original Signal','Demodulation of Lower Sideband','Demodulation of Upper Sideband');

Version History
Introduced before R2006a

See Also
ssbmod | amdemod

Topics
“Digital Baseband Modulation”
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ssbmod
Single sideband amplitude modulation

Syntax
y = ssbmod(x,Fc,Fs)
y = ssbmod(x,Fc,Fs,ini_phase)
y = ssbmod(x,fc,fs,ini_phase,'upper')

Description
y = ssbmod(x,Fc,Fs) uses the message signal x to modulate a carrier signal with frequency Fc
(Hz) using single sideband amplitude modulation in which the lower sideband is the desired sideband.
The generated output y is a single side band signal with a suppressed carrier. The carrier signal and
x have sample frequency Fs (Hz). The modulated signal has zero initial phase.

y = ssbmod(x,Fc,Fs,ini_phase) specifies the initial phase of the modulated signal in radians.

y = ssbmod(x,fc,fs,ini_phase,'upper') uses the upper sideband as the desired sideband.

Examples

Compare Double-Sideband and Single-Sideband Amplitude Modulation

Set the sample rate to 100 Hz. Create a time vector 100 seconds long.

fs = 100;
t = (0:1/fs:100)';

Set the carrier frequency to 10 Hz. Generate a sinusoidal signal.

fc = 10; 
x = sin(2*pi*t);

Modulate x using single- and double-sideband AM.

ydouble = ammod(x,fc,fs);
ysingle = ssbmod(x,fc,fs);

Create a spectrum analyzer object to plot the spectrum of the double-sideband signal.

sadsb = spectrumAnalyzer( ...
    SampleRate=fs, ...
    PlotAsTwoSidedSpectrum=false, ...
    YLimits=[-60 30]);
sadsb(ydouble)
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Create a separate spectrum analyzer object to plot the single-sideband spectrum. A separate
spectrum analyzer object is used to isolate each spectrum analyzer's signal buffers for the two
signals.

sassb = spectrumAnalyzer( ...
    SampleRate=fs, ...
    PlotAsTwoSidedSpectrum=false, ...
    YLimits=[-60 30]);
sassb(ysingle)

 ssbmod

2-735



Version History
Introduced before R2006a

See Also
ssbdemod | ammod

Topics
“Digital Baseband Modulation”
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stdchan
Construct channel System object from set of standardized channel models

Syntax
chan = stdchan(chantype,rs,fd)

Description
chan = stdchan(chantype,rs,fd) constructs a fading channel object chan according to the
specified chantype. chantype is chosen from the channel models listed in “Supported Standards”
on page 2-739. rs is the sampling rate of the input signal and fd is the maximum Doppler shift.

Examples

Filter Signal Through CDMA Channel

Set the sample rate and the maximum Doppler shift.

rs = 20e6;
fd = 3;

Create a CDMA Typical Urban channel model (TUx) channel object and turn on frequency response
visualization.

chan = stdchan('cdmaTUx',rs,fd);
chan.Visualization = 'Frequency response';

Generate random data and apply QPSK modulation.

data = randi([0 3],10000,1);
txSig = pskmod(data,4,pi/4);

Filter the QPSK signal through the CDMA channel.

y = chan(txSig);
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Input Arguments
chantype — Channel type
string | character vector

Channel type, specified as a string or character vector. Valid options are listed in “Supported
Standards” on page 2-739.
Example: stdchan('gsmRAx6c1',rs,fd), configures a channel model for the GSM typical case for
rural area (RAx), 6 taps, case 1, with a sample rate rs, and maximum Doppler shift fd
Data Types: char | string

rs — Sample rate
scalar

Sample rate in Hertz, specified as a scalar.
Data Types: double

fd — Maximum Doppler shift
scalar

Maximum Doppler shift in Hertz, specified as a scalar.
Data Types: double
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Output Arguments
chan — Channel object
System object

Channel object, returned as a comm.RayleighChannel or comm.RicianChannel System object.

More About
Supported Standards

For GSM, CDMA, and ITU-R HF standards, call stdchan to return a comm.RayleighChannel or
comm.RicianChannel System object modeling one of these profiles.

GSM/EDGE channel models (3GPP TS 45.005 V7.9.0 (2007-2), 3GPP TS 05.05 V8.20.0 (2005-11)):

Channel model Profile
gsmRAx6c1 Typical case for rural area (RAx), 6 taps, case 1
gsmRAx4c2 Typical case for rural area (RAx), 4 taps, case 2
gsmHTx12c1 Typical case for hilly terrain (HTx), 12 taps, case

1
gsmHTx12c2 Typical case for hilly terrain (HTx), 12 taps, case

2
gsmHTx6c1 Typical case for hilly terrain (HTx), 6 taps, case 1
gsmHTx6c2 Typical case for hilly terrain (HTx), 6 taps, case 2
gsmTUx12c1 Typical case for urban area (TUx), 12 taps, case 1
gsmTUx12c1 Typical case for urban area (TUx), 12 taps, case 2
gsmTUx6c1 Typical case for urban area (TUx), 6 taps, case 1
gsmTUx6c2 Typical case for urban area (TUx), 6 taps, case 2
gsmEQx6 Profile for equalization test (EQx), 6 taps
gsmTIx2 Typical case for very small cells (TIx), 2 taps

CDMA channel models for deployment evaluation (3GPP TR 25.943 V6.0.0 (2004-12)):

Channel model Profile
cdmaTUx Typical Urban channel model (TUx)
cdmaRAx Rural Area channel model (RAx)
cdmaHTx Hilly Terrain channel model (HTx)

ITU-R HF channel models (ITU-R F.1487 (2000)) (FD must be 1 to obtain the correct frequency
spreads for these models.):

Channel model Profile
iturHFLQ Low latitudes, Quiet conditions
iturHFLM Low latitudes, Moderate conditions
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Channel model Profile
iturHFLD Low latitudes, Disturbed conditions
iturHFMQ Medium latitudes, Quiet conditions
iturHFMM Medium latitudes, Moderate conditions
iturHFMD Medium latitudes, Disturbed conditions
iturHFMDV Medium latitudes, Disturbed conditions near

vertical incidence
iturHFHQ High latitudes, Quiet conditions
iturHFHM High latitudes, Moderate conditions
iturHFHD High latitudes, Disturbed conditions

Version History
Introduced in R2007b

stdchan(ts,fd,channType) syntax has been removed

stdchan(ts,fd,chanType) syntax has been removed.

Compatibility considerations for the stdchan function includes addition of a function syntax, removal
of a function syntax, and removal of configuration support for several channel models.

• The syntax chan = stdchan(ts,fd,chantype) has been removed. A System object is returned
using the new syntax.

• stdchan has removed support for configuration of several channel models by supported
standards and associated syntax, compatibility considerations are indicated here:

Standard Previous Syntax New Syntax to
Return System
Object

Notes

3GPP, CDMA stdchan(ts,fd,'3g
ppXXX')

stdchan('cdmaXXX'
,rs,fd)

Prefix changed from
'3gpp' to 'cdma'.

ts and rs are
reciprocal values.

GSM stdchan(ts,fd,'gs
mXXX')

stdchan('gsmXXX',
rs,fd)

ts and rs are
reciprocal values.

ITU-R HF stdchan(ts,fd,'it
urHFXXX')

stdchan('iturHFXX
X',rs,fd)

ts and rs are
reciprocal values.

COST207 stdchan(ts,fd,'co
st207XXX')

N/A In the future stdchan
will not configure
these channels. Use
comm.RayleighChan
nel or
comm.RicianChanne
l to configure the

ITU-R 3G stdchan(ts,fd,'it
ur3GXXX')

N/A

JTC stdchan(ts,fd,'jt
cXXX')

N/A
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HIPERLAN/2 channel models for
COST207, ITU-R 3G,
JTC, HIPERLAN/2, and
802.11a/b/g
standards.

For guidance mapping
parameters, see
“Rayleigh Channel
Compatibility
Considerations” and
“Rician Channel
Compatibility
Considerations”.

stdchan(ts,fd,'hi
perlan2XXX')

N/A

802.11a/b/g stdchan(ts,fd,'80
2.11X')

N/A

See Also
Functions
doppler

Objects
comm.RayleighChannel | comm.RicianChannel
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symerr
Compute number of symbol errors and symbol error rate

Syntax
[number,ratio] = symerr(x,y)
[number,ratio] = symerr(x,y,flg)
[number,ratio,individual] = symerr(...)

Description
[number,ratio] = symerr(x,y) compares the elements in x and y. The sizes of x and y
determine which elements are compared. The output number is a scalar or vector that indicates the
number of elements that differ. The output ratio equals number divided by the total number of
elements in the smaller input.

[number,ratio] = symerr(x,y,flg) compares the elements in x and y. Optional input flg and
the size of x, and y, determine the size of number.

[number,ratio,individual] = symerr(...) returns a binary matrix individual that
indicates which elements of x and y differ. An element of individual is zero if the corresponding
comparison yields no discrepancy, and one otherwise.

Examples

Compare Elements of Matrix

Compare Elements of Matrix with Another Matrix

x = [1,1,3,1;3,2,2,2;3,3,8,3]

x = 3×4

     1     1     3     1
     3     2     2     2
     3     3     8     3

aMatrix = [1,1,1,1;2,2,2,2;3,3,3,3]

aMatrix = 3×4

     1     1     1     1
     2     2     2     2
     3     3     3     3

[number1,ratio1] = symerr(x,aMatrix)

number1 = 3
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ratio1 = 0.2500

Compare Elements of Matrix with Row Vector

x = [1,1,3,1;3,2,2,2;3,3,8,3]

x = 3×4

     1     1     3     1
     3     2     2     2
     3     3     8     3

aRowVector = [1,2,3,1]

aRowVector = 1×4

     1     2     3     1

[number2,ratio2] = symerr(x,aRowVector)

number2 = 3×1

     1
     3
     4

ratio2 = 3×1

    0.2500
    0.7500
    1.0000

Compare Elements of Matrix with Column Vector

x = [1,1,3,1;3,2,2,2;3,3,8,3]

x = 3×4

     1     1     3     1
     3     2     2     2
     3     3     8     3

aColumnVector = [1;2;3]

aColumnVector = 3×1

     1
     2
     3

[number3,ratio3] = symerr(x,aColumnVector)
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number3 = 1×4

     1     0     2     0

ratio3 = 1×4

    0.3333         0    0.6667         0

Use Alternative Type of Comparison

You can specify alternative comparison methods used by symerr. In this example, you use a flag to
override the default row-by-row comparison. Notice that number and ratio are scalars.

format rat;
[number,ratio,loc] = symerr([1 2; 3 4],[1 3],'overall')

number = 
       3       

ratio = 
       3/4     

loc = 2x2 logical array

   0   1
   1   1

Input Arguments
x — First input to compare
scalar | vector | matrix

First input to compare, specified as a vector, or a matrix.
Data Types: double

y — Second input to compare
scalar | vector | matrix

Second input to compare, specified as a vector, or a matrix.
Data Types: double

flg — Element comparison type
'overall' | 'column-wise' | 'row-wise'

Optional argument to override the defaults that govern which elements symerr compares and how
symerr computes the outputs.

• 'overall' –– x and y are compared element by element.
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• 'column-wise' –– mth row of x vs. mth row of y.
• 'row-wise' –– mth column of x vs. mth column of y.

For more information, see the “Specifying Element Comparison” on page 2-746 section.

Output Arguments
number — Number of differing elements
scalar | vector

Number of elements that differ between x and y, returned as a scalar or vector. The size of number is
determined by the optional input flg and by the dimensions of x and y. For more information, see
the “Default Element Comparison” on page 2-745 and “Specifying Element Comparison” on page 2-
746 sections.

ratio — Ratio of differing elements
scalar

The ratio of the number of differing elements, number, and the total number of elements of the
smaller input, returned as a scalar.

individual — Results of each individual symbol comparison
matrix

Results of each individual symbol comparison, returned as a matrix of same size and dimensions as
inputs x and y. The output matrix contains zeros for all locations corresponding to the elements of x
and y that are equal, and ones where the two elements differ.
Data Types: logical

More About
Default Element Comparison

The symerr function compares binary representations of elements in x with those in y. When
optional argument flg is not specified, symerr uses the shape of the inputs x and y to determine the
element comparison method.

The schematics below illustrate how the shapes of x and y determine which elements symerr
compares:

• If x and y are matrices of the same dimensions, then symerr compares x and y element by
element. number is a scalar. See schematic (a) in the figure.
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• If one is a row (respectively, column) vector and the other is a two-dimensional matrix, then
symerr compares the vector element by element with each row (resp., column) of the matrix. The
length of the vector must equal the number of columns (resp., rows) in the matrix. number is a
column (resp., row) vector whose mth entry indicates the number of elements that differ when
comparing the vector with the mth row (resp., column) of the matrix. See schematics (b) and (c) in
the figure.

Specifying Element Comparison

Use flg to override the defaults that govern which elements symerr compares and how symerr
computes the outputs. The values of flg are 'overall', 'column-wise', and 'row-wise'. The
table below describes the differences that result from various combinations of inputs. In all cases,
ratio is number divided by the total number of elements in y.

Comparing a Two-Dimensional Matrix x with Another Input y 

Shape of y flg Type of Comparison number
Two-dim. matrix 'overall' (default) Element by element Total number of symbol

errors
'column-wise' mth column of x vs. mth

column of y
Row vector whose
entries count symbol
errors in each column

'row-wise' mth row of x vs. mth row
of y

Column vector whose
entries count symbol
errors in each row

Column vector 'overall' y vs. each column of x Total number of symbol
errors

'column-wise'
(default)

y vs. each column of x Row vector whose
entries count symbol
errors in each column of
x

Row vector 'overall' y vs. each row of x Total number of symbol
errors

'row-wise' (default) y vs. each row of x Column vector whose
entries count symbol
errors in each row of x

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
alignsignals | biterr | finddelay
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syndtable
Produce syndrome decoding table

Syntax
t = syndtable(h)

Description
t = syndtable(h) returns a decoding table for an error-correcting binary code having codeword
length n and message length k. h is an (n-k)-by-n parity-check matrix for the code. t is a 2n-k-by-n
binary matrix. The rth row of t is an error pattern for a received binary codeword whose syndrome
has decimal integer value r-1. (The syndrome of a received codeword is its product with the transpose
of the parity-check matrix.) In other words, the rows of t represent the coset leaders from the code's
standard array.

When converting between binary and decimal values, the leftmost column is interpreted as the most
significant digit.

Examples
An example is in “Use Decoding Table in MATLAB”.

Version History
Introduced before R2006a

References

[1] Clark, George C., Jr., and J. Bibb Cain, Error-Correction Coding for Digital Communications, New
York, Plenum, 1981.

See Also
decode | hammgen | gfcosets

Topics
“Block Codes”
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tpcdec
Turbo product code (TPC) decoder

Syntax
decoded = tpcdec(llr,N,K)
decoded = tpcdec(llr,N,K,S)
decoded = tpcdec(llr,N,K,S,maxnumiter)
decoded = tpcdec(llr,N,K,S,maxnumiter,earlyterm)
[decoded,actualnumiter] = tpcdec( ___ )

Description
decoded = tpcdec(llr,N,K) performs 2-D TPC decoding on input log likelihood ratios, llr,
using two linear block codes specified by codeword length N and message length K. For a description
of 2-D TPC decoding, see “Turbo Product Code Decoding” on page 2-753.

decoded = tpcdec(llr,N,K,S) performs 2-D TPC decoding on the shortened llr using a 2-D
TPC decoder specified by codeword length (N–K+S) and message length S.

decoded = tpcdec(llr,N,K,S,maxnumiter) performs 2-D TPC decoding for maxnumiter
iterations. To use maxnumiter with full-length messages, specify S as empty, [ ].

decoded = tpcdec(llr,N,K,S,maxnumiter,earlyterm) performs 2-D TPC decoding and
terminates early if the calculated syndrome or parity-check of the component code evaluates to zero
before maxnumiter decoding iterations. To use maxnumiter and earlyterm with full-length
messages, specify S as empty, [ ].

[decoded,actualnumiter] = tpcdec( ___ )also returns the actual number of decoding
iterations after performing 2-D TPC decoding using any of the prior syntaxes.

Examples

Decode Using Full-Length TPC Codes

Decode an approximate log-likelihood ratio output signal from 16-QAM demodulation.

Begin by encoding a random bit vector using 2-D turbo product coding (TPC) with extended Hamming
codes and extended BCH codes.

Specify the (N,K) code pairs to use for TPC encoding.

N = [32;16]; 
K = [21;11]; 

Generate a column vector of random message bits and TPC-encode the message. Specify the message
bits as a vector with length equal to the product of the elements in K.

msg = randi([0 1],prod(K),1);
code = tpcenc(msg,N,K);
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Apply 16-QAM modulation. Add AWGN to the signal. Demodulate the signal, outputting approximate
LLRs.

M = 16;
snr = 10;

txsig = qammod(code,M,'InputType','bit', ...
    'UnitAveragePower',true);

rxsig = awgn(txsig,snr,'measured');

llr = qamdemod(rxsig,M,'OutputType','approxllr', ...
    'UnitAveragePower',true,'NoiseVariance',10.^(-snr/10));

Perform TPC decoding using three iterations. Because the demodulator output is negative bipolar
mapped and TPC decoder expects positive bipolar mapped input, the demodulated signal output must
be negated at the decoder input. Check the number of bit errors in the decoded signal.

iterations = 3;
decoded = tpcdec(-llr,N,K,[],iterations);

numerr = biterr(msg,decoded)

numerr = 0

Decode Using Shortened TPC Codes

Decode a shortened TPC code. Apply QPSK modulation and output the approximate log-likelihood
ratio signal obtained from QPSK demodulation.

Begin by encoding a random bit vector using 2-D turbo product coding (TPC) with extended Hamming
codes and extended BCH codes.

Specify (N,K) code pairs and S for TPC encoding.

N = [32;32];
K = [21;26];
S = [19;24];

Generate a column vector of random message bits and TPC-encode the message. Specify the
shortened message bits as a vector with length equal to the product of the elements in S.

msg = randi([0 1],prod(S),1);
code = tpcenc(msg,N,K,S);

Apply QPSK modulation. Add AWGN to the signal. Demodulate the signal and output approximate
LLRs.

M = 4;
snr = 3;

txsig = qammod(code,M,'InputType','bit', ...
    'UnitAveragePower',true);

rxsig = awgn(txsig,snr,'measured');
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llr = qamdemod(rxsig,M,'OutputType','approxllr', ...
    'UnitAveragePower',true,'NoiseVariance',10.^(-snr/10));

Perform TPC decoding using two iterations. Because the demodulator output is negative bipolar
mapped and TPC decoder expects positive bipolar mapped input, the demodulated signal output must
be negated at the decoder input. Check the bit error rate of the decoded signal.

iterations = 2;
decoded = tpcdec(-llr,N,K,S,iterations);

[~,ber] = biterr(msg,decoded)

ber = 0.0066

TPC Decoding with Shortening and Early Termination

Decode a shortened TPC code and specify early termination of decoding. Apply QPSK modulation and
output the approximate log-likelihood ratio signal obtained from QPSK demodulation.

Begin by encoding a random bit vector using 2-D turbo product coding (TPC) with extended Hamming
codes and extended BCH codes. Specify (N,K) code pairs and S for TPC encoding, and a maximum of
10 decoding iterations. Perform QPSK modulation on the signal.

n = [64; 32];
k = [51; 26];
s = [49; 24];
maxnumiter = 10;
M = 4;

msg = randi([0 1],prod(s),1);  % Random bits
code = tpcenc(msg,n,k,s);

txsig = qammod(code,M,'InputType','bit', ...
    'UnitAveragePower',true);

Add noise to the transmitted signal.

snr = 5;
rxsig = awgn(txsig,snr,'measured');

Demodulate the received signal using approximate LLR demapping.

llr = qamdemod(rxsig,M,'OutputType', ...
    'approxllr','UnitAveragePower',true, ...
    'NoiseVariance',10.^(-snr/10));

Specify the maximum number of TPC decoding iterations and return the actual number of iterations
performed. Early termination of the TPC decoding is on by default. Display the number of errors and
the number of iterations performed.

[decoded,actualNumIter] = tpcdec(-llr,n,k,s,maxnumiter);
numErr = biterr(msg,decoded);
disp(['Terminated after ' num2str(actualNumIter) ' iterations.' ...
    ' Number of errors = ' num2str(numErr) '.']);
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Terminated after 4 iterations. Number of errors = 0.

Input Arguments
llr — Log likelihood ratios
column vector

Log likelihood ratios, specified as a column vector.

• For full-length codes, the length of the input column vector is the product of the elements in N.
• For shortened codes, the length of the input column vector is the product of the elements in (N–K

+S).

Data Types: double | single

N — Codeword length
two-element integer vector

Codeword length, specified as a two-element integer vector, [NR; NC]. NR represents the number of
rows in the product code matrix. NC represents the number of columns in the product code matrix.
For more information about NR and NC, see “Turbo Product Code Decoding” on page 2-753. For a
list of valid (N(i), K(i)) code pairs, see “More About” on page 2-752.
Data Types: double

K — Message length
two-element integer vector

Message length, specified as a two-element integer vector, [KR; KC]. For a full-length message, the
input column vector containing the input LLRs is arranged into a KR-by-KC matrix. KR represents the
number of rows in the message matrix. KC represents the number of columns in the message matrix.
For more information about KR and KC, see “Turbo Product Code Decoding” on page 2-753. For a list
of valid (N(i), K(i)) code pairs, see “More About” on page 2-752.
Data Types: double

S — Shortened message length
two-element integer vector

Shortened message length, specified as a two-element integer vector, [SR; SC]. For a shortened
message, the input column vector containing the input LLRs is arranged into an SR-by-SC matrix. SR
represents the number of rows in the matrix. SC represents the number of columns in the matrix. For
more information about SR and SC, see “Turbo Product Code Decoding” on page 2-753.

When you specify this parameter, specify N and K vectors for the full-length TPC codes that are
shortened to (N(i) – K(i) + S(i), S(i)) codes.
Data Types: double

maxnumiter — Maximum number of decoding iterations
4 (default) | positive integer

Maximum number of decoding iterations, specified as a positive integer.
Data Types: double
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earlyterm — Enable early termination
true (default) | false

Enable early termination of decoding, specified as a logical. When earlyterm is true the decoding
terminates early if the calculated syndrome or parity-check of the component code evaluates to zero
before maxnumiter decoding iterations.
Data Types: double

Output Arguments
decoded — TPC decoded message
column vector

TPC decoded message, returned as a column vector.

• For full-length codes, the length of the returned column vector is the product of the elements in K.
• For shortened codes, the length of the returned column vector is the product of the elements in S.

Data Types: logical

actualnumiter — Actual number of decoding iterations
positive integer

Actual number of decoding iterations performed, returned as a positive integer.
Data Types: double

More About
Component Codes

This table lists the supported component code pairs for the row (NR,KR) and column (NC,KC)
parameters.

• NR and KR represent the number of rows in the product code matrix and message matrix,
respectively.

• NC and KC represent the number of columns in the product code matrix and message matrix,
respectively.

Within each code type, any two component code pairs can form a 2-D TPC code. The table also
includes the error-correction capability for each code pair.

Code type Component Code Pairs(NR,KR)
and (NC,KC)

Error-Correction Capability
(T)

Hamming code (255,247) 1
(127,120) 1
(63,57) 1
(31,26) 1
(15,11) 1
(7,4) 1
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Extended Hamming code (256,247) 1
(128,120) 1
(64,57) 1
(32,26) 1
(16,11) 1
(8,4) 1

BCH code (255,239) 2
(127,113) 2
(63,51) 2
(31,21) 2
(15,7) 2

Extended BCH code (256,239) 2
(128,113) 2
(64,51) 2
(32,21) 2
(16,7) 2

Parity check code (256,255) -
(128,127) -
(64,63) -
(32,31) -
(16,15) -
(8,7) -
(4,3) -

Turbo Product Code Decoding

Turbo product codes (TPC) are a form of concatenated codes used as forward error correcting (FEC)
codes. Two or more component block codes, such as systematic linear block codes, are used to
construct TPCs. The TPC decoder achieves near-optimum decoding of product codes using Chase
decoding and the Pyndiah algorithm to perform iterative soft input, soft output decoding. For a
detailed description, see [1] and [2]. This decoder implements an iterative soft input, soft output 2-D
product code decoding, as described in [2], using two “Linear Block Codes”. The decoder expects the
soft bit log likelihood ratios (LLRs) obtained from digital demodulation as the input signal.

Note The TPC decoder expects a positive bipolar mapped input, specifically –1 mapped to 0 and +1
mapped to 1. The output from demodulators in the Communications Toolbox is negative bipolar
mapping, specifically +1 mapped to 0 and –1 mapped to +1. Therefore, the LLR output from
demodulators must be negated to provide the positive bipolar mapped input expected by the TPC
decoder.

The TPC decoder decodes either full-length or shortened codes.
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TPC Decoding Full-Length Messages

TPC encoded full-length input messages are decoded using specified 2-D TPC code pairs. Row-wise
decoding uses the (NC,KC) code pair and column-wise decoding uses the (NR,KR) code pair. The input
vector length must be NR × NC. To perform the 2-D TPC decoding, the column vector of the input
LLRs, composed of the message and parity bits, is arranged into an NR-by-NC matrix.

The TPC decoder achieves near-optimum decoding of product codes using Chase decoding and the
Pyndiah algorithm to perform iterative soft input, soft output decoding. Chase decoding forms a set of
possible codewords for each row or column. The Pyndiah algorithm calculates soft information
required for the next decoding step.

Iterative Soft Input, Soft Output Decoder

The iterative soft input, soft output decoding, as shown in the block diagram, carries out two
decoding steps for each iteration.
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The soft inputs for decoding are R(m) = R + α(m)W(m).

• Iteration loop counter i increments from i = 1 to the specified number of iterations.
• m = 2i – 1 is the decoding step index.
• R is the received LLR matrix.
• R(m) is the soft input for the mth decoding step.
• W(m) is the input extrinsic information for the mth decoding step.
• α(m) = [0,0.2,0.3,0.5,0.7,0.9,1,1, ...], where α is a weighting factor applied based on the decoding

step index. For higher decoding steps, α = 1.
• β(m) = [0.2,0.4,0.6,0.8,1,1, ...], where β is a reliability factor applied based on the decoding step

index. For higher decoding steps, β = 1.
• D contains the decoded message bits. The output message bits are formed from D by mapping –1

to 0 and +1 to 1, then reshaping the message block into a column vector.

The output message bits are formed after iterating through the specified number of iterations, or, if
early termination is enabled, after code convergence.

Early Termination of TPC Decoding

If early termination is enabled, a code convergence check is performed on the hard decision of the
soft input in each row-wise and column-wise decoding step. Early termination can be triggered after
either the row-wise decoding or column-wise decoding converges.

The code is converged if, for all rows or all columns,

• The syndrome evaluates to zero in the codes (Hamming codes, Extended Hamming codes, BCH
codes, or Extended BCH codes).

• The parity check is evaluated to zero in parity check codes.

The reported number of iterations evaluates to the iteration value that is currently in progress. For
example, if the code convergence check is satisfied after row-wise decoding in the third iteration
(after 2.5 decoding steps), then the number of iteration returned is 3.

TPC Decoding Shortened Messages

TPC encoded shortened input messages are decoded using specified 2-D TPC code pairs. Row-wise
decoding uses the (NC – KC + SC, SC) code pair and column-wise decoding uses the (NR – KR + SR, SR)
code pair. The input vector length must be (NR – KR + SR) × (NC– KC + SC). To perform the 2-D TPC
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decoding of shortened messages, the column vector of the input LLRs, composed of the shortened
message and parity bits, is arranged into an (NR – KR + SR)-by-(NC – KC + SC) matrix.

The TPC decoder processes the received shortened message LLRs similar to full length codes, with
these exceptions:

• The shortened bit positions in the received codeword are set to –1.
• The Chase algorithm does not consider the shortened bit positions while choosing the least

reliable bits.

Version History
Introduced in R2018a

References
[1] Chase, D. "Class of Algorithms for Decoding Block Codes with Channel Measurement

Information." IEEE Transactions on Information Theory, Volume 18, Number 1, January 1972,
pp. 170–182.

[2] Pyndiah, R. M. "Near-Optimum Decoding of Product Codes: Block Turbo Codes." IEEE
Transactions on Communications. Volume 46, Number 8, August 1998, pp. 1003–1010.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• TPC parameters N, K, and S must be constant values. If the value used for each of these
parameters does not change, then you can assign them by expression or variable.
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See Also
Functions
bchdec | tpcenc

Objects
comm.BCHDecoder

Blocks
TPC Decoder
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tpcenc
Turbo product code (TPC) encoder

Syntax
code = tpcenc(msg,N,K)
code = tpcenc(msg,N,K,S)

Description
code = tpcenc(msg,N,K) performs 2-D TPC encoding of the input message, msg, using two linear
block codes specified by codeword length N and message length K. For a description of 2-D TPC
encoding, see “Turbo Product Code Construction” on page 2-761.

code = tpcenc(msg,N,K,S) performs 2-D TPC encoding on the shortened input message of length
S, using a 2-D TPC encoder specified by codeword length (N–K+S) and message length S.

Examples

Encode Using Full-Length TPC Codes

Encode a random bit vector using 2-D turbo product coding (TPC) with extended Hamming codes and
extended BCH codes.

Specify (N,K) code pairs for TPC encoding.

N = [32;64]; 
K = [21;57]; 

Generate a column vector of random message bits. The desired length for the message bits is the
product of elements in K.

msg = randi([0 1],prod(K),1);

TPC-encode the message.

code = tpcenc(msg,N,K);

Verify that the length of the encoded codeword is the product of elements in N.

size(code)

ans = 1×2

        2048           1

prod(N)

ans = 2048
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Encode Shortened Message Using Turbo Product Coding

Encode a random bit vector using 2-D turbo product coding (TPC), applying message shortening.

Specify (N,K) code pairs and S for TPC encoding.

N = [32;64];
K = [21;57];
S = [19;24];

Generate a column vector of random message bits. The desired length for the shortened message bits
is the product of the elements in S.

msg = randi([0 1],prod(S),1);

TPC-encode the shortened message.

code = tpcenc(msg,N,K,S);

Verify that the length of the encoded codeword is the product of elements in (N-K+S).

size(code)

ans = 1×2

   930     1

prod(N-K+S)

ans = 930

Input Arguments
msg — Input message bits to encode
column vector

Input message bits to encode, specified as a column vector.

• For a full-length input messages, the length of the column vector must be the product of the
elements in K.

• For a shortened input messages, the length of the column vector must be the product of the
elements in S.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | logical

N — Codeword length
two-element integer vector

Codeword length, specified as a two-element integer vector, [NR; NC]. NR represents the number of
rows in the product code matrix. NC represents the number of columns in the product code matrix.
For more information about NR and NC, see “Turbo Product Code Construction” on page 2-761. For a
list of valid (N(i),K(i)) code pairs, see “Component Codes” on page 2-760.
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Data Types: double

K — Message length
two-element integer vector

Message length, specified as a two-element integer vector, [KR; KC]. For a full-length message, the
input column vector containing the message bits to encode is arranged into a KR-by-KC matrix. KR
represents the number of rows in the message matrix. KC represents the number of columns in the
message matrix. For more information about KR and KC, see “Turbo Product Code Construction” on
page 2-761. For a list of valid (N(i),K(i)) code pairs, see “Component Codes” on page 2-760.
Data Types: double

S — Shortened message length
two-element integer vector

Shortened message length, specified as a two-element integer vector, [SR; SC]. For a shortened
message, the input column vector containing the message bits to encode is arranged into an SR-by-SC
matrix. SR represents the number of rows in the matrix. SC represents the number of columns in the
matrix. For more information about SR and SC, see “Turbo Product Code Construction” on page 2-
761.

When you specify this parameter, specify N and K vectors for the full-length TPC codes that are
shortened to (N(i)–K(i)+S(i), S(i)) codes.
Data Types: double

Output Arguments
code — TPC-encoded message
column vector

TPC-encoded message, returned as a column vector with the same data type as the input message
bits.

• For full-length input messages, the length of the returned column vector is the product of the
elements in N.

• For shortened input messages, the length of the returned column vector is the product of the
elements in (N–K+S).

More About
Component Codes

This table lists the supported component code pairs for the row (NR,KR) and column (NC,KC)
parameters.

• NR and KR represent the number of rows in the product code matrix and message matrix,
respectively.

• NC and KC represent the number of columns in the product code matrix and message matrix,
respectively.

Within each code type, any two component code pairs can form a 2-D TPC code. The table also
includes the error-correction capability for each code pair.
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Code type Component Code Pairs(NR,KR)
and (NC,KC)

Error-Correction Capability
(T)

Hamming code (255,247) 1
(127,120) 1
(63,57) 1
(31,26) 1
(15,11) 1
(7,4) 1

Extended Hamming code (256,247) 1
(128,120) 1
(64,57) 1
(32,26) 1
(16,11) 1
(8,4) 1

BCH code (255,239) 2
(127,113) 2
(63,51) 2
(31,21) 2
(15,7) 2

Extended BCH code (256,239) 2
(128,113) 2
(64,51) 2
(32,21) 2
(16,7) 2

Parity check code (256,255) -
(128,127) -
(64,63) -
(32,31) -
(16,15) -
(8,7) -
(4,3) -

Turbo Product Code Construction

Turbo product codes (TPC) are a form of concatenated codes used as forward error-correcting (FEC)
codes. Two or more component block codes, such as systematic linear block codes, are used to
construct TPCs. This encoder implements 2-D product code encoding, as described in [1], using two
“Linear Block Codes”.

The TPC encoder accepts either full-length or shortened messages.
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Construction of Full-Length Message Product Codes

Full-length input messages are encoded using specified 2-D TPC code pairs. Row-wise encoding uses
the (NC,KC) code pair and column-wise encoding uses the (NR,KR) code pair. The input vector length
must be KR · KC. The input message bits vector is arranged into a KR-by-KC matrix.

Row-wise encoding uses an (NC,KC) systematic linear block encoder with KC bits per row. The row-
wise encoding results in a KR-by-NC matrix that includes parity bits added to each row.

Next, column-wise encoding uses an (NR,KR) systematic linear block encoder on each of the NC
columns. Applying this 2-D TPC encoding to the initial KR-by-KC matrix results in an NR-by-NC matrix
that includes parity bits added to each row and column.
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The 2-D TPC full-code matrix is reshaped into a column vector of length NR · NC and returned as the
TPC-encoded output.

Construction of Shortened Message Product Codes

Shortened input messages are encoded using specified 2-D TPC code pairs. Row-wise encoding uses
the (NC,KC) code pair and column-wise encoding uses an (NR,KR) code pair. The input vector length
must be SR · SC. The input shortened message bits vector is arranged into an SR-by-SC matrix. The
shortened message matrix prepends two dimensions by padding the beginning of the message matrix
with zeros. The resulting matrix is a KR-by-KC matrix.

Row-wise encoding uses an (NC,KC) systematic linear block encoder with KC bits per row. The row-
wise encoding results in a KR-by-NC matrix that includes parity bits added to each row.
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Next, the column-wise encoding uses an (NR,KR) systematic linear block encoder on each of the NC
columns.

Applying this 2-D TPC encoding to the initial KR-by-KC matrix and excluding the zero-padded bits from
the output results in an (NR–KR+SR)-by-(NC–KC+SC) matrix. This matrix includes parity bits added to
each row and column.
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The 2-D TPC shortened-code matrix is reshaped into a column vector of length (NR–KR+SR) · (NC–KC
+SC) and returned as the TPC-encoded output.

Version History
Introduced in R2018a

References
[1] Pyndiah, R. M. "Near-Optimum Decoding of Product Codes: Block Turbo Codes." IEEE

Transactions on Communications. Volume 46, Number 8, August 1998, pp. 1003–1010.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• TPC parameters N, K, and S must be constant values. If the value used for each of these
parameters does not change, then you can assign them by expression or variable.

See Also
Functions
tpcdec | bchenc

Objects
comm.BCHEncoder

Blocks
TPC Encoder

 tpcenc

2-765



vec2mat
(Not recommended) Change dimension

Note  is not recommended. Use reshape instead. For more information, see “Compatibility
Considerations”.

Syntax
mat = vec2mat(vec,matcol)
mat = vec2mat(vec,matcol,padding)
[mat,padded] = vec2mat( ___ )

Description
mat = vec2mat(vec,matcol) converts vector vec to matrix mat with matcol columns. The
function creates the matrix one row at a time, filling the rows with elements from vec in order. If the
length of vec is not a multiple of matcol, then the function pads the last row of mat with zeros until
the row contains matcol elements.

mat = vec2mat(vec,matcol,padding) specifies values for the function to use to pad the last row
of mat. The function uses the value from padding in order.

[mat,padded] = vec2mat( ___ ) also returns padded, the number of padded elements in the last
row of mat. You can specify any of the input argument combinations from previous syntaxes.

Examples

Change Dimensions and Add Padding

This example uses shows you how to add padding, as needed, when converting a vector to matrix.

Create a vector that will be converted to a matrix and a vector to provide padding values.

vec = [10;20;30;40;50];
padding = [1,2;3,4;5,6];
n = 4;

When using vec2mat to convert the vector to a matrix, the function determines needed padding.

[mat4,numPadded4] = vec2mat(vec,n,padding)

mat4 =
    10    20    30    40
    50     1     3     5
numPadded4 =
     3

When using reshape to convert the vector to a matrix, the needed padding must be computed and
appended to the vector before converting the vector to a matrix.
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numPadded = mod(numel(vec),n);
if numPadded > 0
    numPadded = n - numPadded
    mat = reshape([vec.' padding(1:numPadded)], n, []).'
else
    numPadded % No padding required
    mat = reshape(vec.', n, []).'
end

numPadded =
     3
mat =
    10    20    30    40
    50     1     3     5

Input Arguments
vec — Input array
vector

Input array, specified as a vector.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical
Complex Number Support: Yes

matcol — Number of columns
positive integer

Number of columns for the output matrix mat, specified as a positive integer. If the length of vec is
not a multiple of matcol, then the function pads the last row of mat with zeros until the row contains
matcol elements.
Data Types: double

padding — Padding values
vector | matrix

Padding values for the last row of mat, specified as a vector or matrix. The padding input inherits
the data type of the vec input. The function uses the values from padding in order. If padding has
fewer elements than what the function needs to complete the last row of mat, then the function
repeats the last element of padding until mat is full.

Output Arguments
mat — Output array
matrix

Output array, returned as a matrix with elements from vec and having matcol columns. The output
inherits the data type of the input. The number of rows is equal to ceil(length(vec)/matcol).

padded — Number of padded elements
positive integer

Number of padded elements in the last row of mat, returned as a positive integer.
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Version History
Introduced before R2006a

vec2mat is not recommended
Not recommended starting in R2020a

• vec2mat is not recommended. Use reshape instead.
• Given a vector input, reshape creates its corresponding matrix one column at a time (instead of

one row at a time).
• reshape requires its input and output arrays to have the same number of elements, whereas

vec2mat pads its output matrix if necessary.
• For an example comparing use of reshape to vec2mat, see “Change Dimensions and Add

Padding” on page 2-766.

See Also
reshape
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vitdec
Convolutionally decode binary data by using Viterbi algorithm

Syntax
decodedout = vitdec(codedin,trellis,tbdepth,opmode,dectype)
decodedout = vitdec(codedin,trellis,tbdepth,opmode,'soft',nsdec)
decodedout = vitdec(codedin,trellis,tbdepth,opmode,dectype,puncpat)
decodedout = vitdec(codedin,trellis,tbdepth,opmode,dectype,puncpat,eraspat)
decodedout = vitdec(codedin,trellis,tbdepth,'cont',dectype, ___ ,imetric,
istate,iinput)
[decodedout,fmetric,fstate,finput] = vitdec(codedin,trellis,tbdepth,'cont',
___ )

Description
decodedout = vitdec(codedin,trellis,tbdepth,opmode,dectype) decodes each symbol of
the codedin input by using the Viterbi algorithm. All other inputs specify the convolutional coding
trellis, traceback depth, operating mode, and decision type, respectively and collectively configure
the Viterbi algorithm at runtime.

decodedout = vitdec(codedin,trellis,tbdepth,opmode,'soft',nsdec) configures the
Viterbi algorithm for soft-decision decoding for dectype and with nsdec bits of quantization.

decodedout = vitdec(codedin,trellis,tbdepth,opmode,dectype,puncpat) decodes each
symbol of the punctured codedin input, where puncpat is the puncture pattern.

decodedout = vitdec(codedin,trellis,tbdepth,opmode,dectype,puncpat,eraspat)
specifies an erasure pattern, eraspat. To not use puncturing, specify puncpat as [].

decodedout = vitdec(codedin,trellis,tbdepth,'cont',dectype, ___ ,imetric,
istate,iinput) specifies a continuous operation mode for opmode for any of the preceding
syntaxes. The decoder starts with its initial state metrics, traceback states, and traceback inputs
specified by imetric, istate, and iinput, respectively.

Continuous operation mode enables you to save the internal state information of the decoder for use
in subsequent calls to this function. Repeated calls to this function can be useful if your data is
partitioned into a series of vectors that you process within a loop. For workflows that require
repeated calls to the Viterbi decoding algorithm, see “Tips” on page 2-778.

[decodedout,fmetric,fstate,finput] = vitdec(codedin,trellis,tbdepth,'cont',
___ ) also returns the final state metrics, traceback states, and traceback inputs at the end of the
decoding process when using a continuous operation mode for any of the preceding syntaxes. Use
fmetric, fstate, and finput as the initial settings of imetric, istate, and iinput, respectively,
in subsequent calls to this function. For workflows that require repeated calls to the Viterbi decoding
algorithm, see “Tips” on page 2-778.

Examples
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Decode Convolutional Code by Using Viterbi Decoder

Convolutionally encode a vector of 1s by using the convenc function, and decode it by using the
vitdec function.

Define a trellis structure, by using the poly2trellis function. Use the trellis structure to configure
the convenc function when encoding a vector of ones.

trellis = poly2trellis([4 3],[4 5 17;7 4 2]);
x = ones(100,1);
code = convenc(x,trellis);

When decoding the encoded message, configure the Viterbi decoder to use the trellis structure
defined previously, a traceback depth of 2, the truncated operating mode, and hard decisions.

tb = 2;
decoded = vitdec(code,trellis,tb,'trunc','hard');

Verify that the decoded message is a vector of 100 1s.

isequal(decoded,ones(100,1))

ans = logical
   1

Decode Punctured Signal Using Viterbi Algorithm

Apply Viterbi decoding to a punctured signal. The puncturing changes the code rate from 1/2 to 3/4.

Initialize parameters for the encoding and decoding operations.

trellis = poly2trellis(7,[171 133])

trellis = struct with fields:
     numInputSymbols: 2
    numOutputSymbols: 4
           numStates: 64
          nextStates: [64x2 double]
             outputs: [64x2 double]

tbdepth = 96;
opmode = 'trunc';
dectype = 'hard';
puncpat = [1;1;0;1;1;0];

Calculate the unpunctured and punctured code rates.

K = log2(trellis.numInputSymbols);  % Number of input streams
N = log2(trellis.numOutputSymbols); % Number of output streams
unpunc_coderate = K/N

unpunc_coderate = 0.5000

punc_coderate = (K/N)*(length(puncpat)/sum(puncpat))
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punc_coderate = 0.7500

Convolutionally encode an all 1s bit message with puncturing applied to the coded output.

msg = ones(100*length(puncpat),1);
puncturedcode = convenc(msg,trellis,puncpat);

Show the lengths of the message, the punctured code, and the puncture pattern.

length(msg)

ans = 600

length(puncturedcode)

ans = 800

length(puncpat)

ans = 6

Apply Viterbi decoding to the punctured coded message. Compare the decoded output to the original
message. Even with puncturing applied to the coded message, the Viterbi decoding recovered the
message with zero error.

codedin = puncturedcode;
decodedout = vitdec(codedin,trellis,tbdepth,opmode,dectype,puncpat);

isequal(msg,decodedout)

ans = logical
   1

Estimate BER for Rate 2/3 Convolutional Code

Estimate the bit error rate (BER) simulation for a link that uses a rate 2/3 convolutional code, applies
16-QAM modulation, and transmits data through an AWGN channel. This diagram shows a rate 2/3
encoder with two input streams, three output streams, and seven shift registers.
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Define the convolutional coding trellis represented by the diagram.

trellis = poly2trellis([5 4],[23 35 0; 0 5 13])

trellis = struct with fields:
     numInputSymbols: 4
    numOutputSymbols: 8
           numStates: 128
          nextStates: [128x4 double]
             outputs: [128x4 double]

K = log2(trellis.numInputSymbols); % Number of input bit streams
N = log2(trellis.numOutputSymbols); % Number of output bit streams
coderate = K/N;

fprintf('K is %d and N is %d. The code rate is %3.2f.\n', ...
    K,N,coderate)

K is 2 and N is 3. The code rate is 0.67.

Set the modulation order, and compute the number of bits per modulation symbol. Generate random
binary data. The input bit stream must be a multiple of number of the input bit streams (K) for the
coding operation and must be a multiple of the number of bits per modulation symbol (bps) for the
modulation operation.

M = 16; % Modulation order
bps = log2(M); % Bits per modulation symbol
numSymPerFrame = 5000;
dataIn = randi([0 1],K*bps*numSymPerFrame,1);

Convolutionally encode the input data.

codedout = convenc(dataIn,trellis);

Apply 16-QAM modulation to the encoded symbols.

txSig = qammod(codedout,M,'InputType','bit');

Using the number of bits per symbol (bps) and the code rate (coderate), convert the ratio of energy
per bit to noise power spectral density (EbNo) to an signal-to-noise (snr) value for use by the awgn
function. Convert a 10 dB Eb/No to an equivalent SNR ratio. Pass the signal through an AWGN
channel.

EbNo = 9;
snr = EbNo + 10*log10(bps*coderate);
rxSig = awgn(txSig,snr,'measured');

Demodulate the received signal.

demodSig = qamdemod(rxSig,M,'OutputType','bit');

Specify the traceback depth of the Viterbi decoder.

tbdepth = 16;

Decode the binary demodulated signal by using a Viterbi decoder operating in a continuous
termination mode.
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dataOut = vitdec(demodSig,trellis,tbdepth,'cont','hard');

Calculate the delay through the decoder, and account for the decoding delay when computing the
BER. Compare the coded BER with the theoretical uncoded BER to see the improved BER for the
coded data.

decDelay = K*tbdepth;
berCoded = biterr( ...
    dataIn(1:end-decDelay),dataOut(decDelay+1:end)) / ...
     length(dataOut(decDelay+1:end));
berUncoded = berawgn(EbNo,'qam',M);
fprintf('The coded BER is %6.5f.\nThe uncoded BER is %6.5f.\n', ...
    berCoded,berUncoded)

The coded BER is 0.00060.
The uncoded BER is 0.00439.

Input Arguments
codedin — Convolutionally encoded message
vector of binary values | vector of numeric values

Convolutionally encoded message, specified as a vector of binary or numeric values. Each symbol in
codedin consists of log2(trellis.numOutputSymbols) bits.

When you set dectype to 'unquant', input values outside of the range [–1012, 1012] are clipped to –
1012 and 1012, respectively.
Data Types: double | logical

trellis — Trellis description
structure

Trellis description, specified as a MATLAB structure that contains the trellis description for a rate
K/N code. K represents the number of input bit streams, and N represents the number of output bit
streams.

The trellis structure contains these fields. You can either use the poly2trellis function to create
the trellis structure or create it manually. For more about this structure, see “Trellis Description of a
Convolutional Code” and the istrellis function.

numInputSymbols — Number of symbols input to encoder
2K

Number of symbols input to the encoder, specified as an integer equal to 2K, where K is the number of
input bit streams.
Data Types: double

numOutputSymbols — Number of symbols output from encoder
2N

Number of symbols output from the encoder, specified as an integer equal to 2N, where N is the
number of output bit streams.
Data Types: double
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numStates — Number of states in encoder
power of 2

Number of states in the encoder, specified as a power of 2.
Data Types: double

nextStates — Next states
matrix of integers

Next states for all combinations of current states and current inputs, specified as a matrix of integers.
The matrix size must be numStates by 2K.
Data Types: double

outputs — Outputs
matrix of octal numbers

Outputs for all combinations of current states and current inputs, specified as a matrix of octal
numbers. The matrix size must be numStates by 2K.
Data Types: double

Data Types: struct

tbdepth — Traceback depth
positive integer

Traceback depth, specified as a positive integer. For more information, see “Traceback Depth
Estimates” on page 2-778.
Data Types: double

opmode — Operating mode
'cont' | 'term' | 'trunc'

Operating mode, specified as 'cont', 'term', or 'trunc'. This input indicates the operating mode
of the decoder and these assumptions made about the operation of the corresponding encoder.

• 'cont' — Specifies continuous operating mode. In continuous operating mode, the encoder is
assumed to have started at the all-zeros state. The decoder traces back from the state with the
best metric. A delay equal to input tbdepth symbols elapses before the first decoded symbol
appears in the output. This mode is appropriate when you call this function repeatedly and want to
preserve continuity between successive calls. For workflows that require repeated calls to the
Viterbi decoding algorithm, see “Tips” on page 2-778.

• 'term' — Specifies terminated operating mode. In terminated operating mode, the encoder is
assumed to have started and ended at the all-zeros state, which is true for the default syntax of
the convenc function. The decoder traces back from the all-zeros state. This mode incurs zero
delay.

This mode is appropriate when the message input to the convenc function has enough zeros at its
end to fill all memory registers of the encoder. The zero-valued tail bits flush all message data bits
out of the encoder. Using the polynomial description of the encoder, for an encoder with K input
bits and the constraint length vector ConstraintLength, the number of zeros required to flush
the encoder is K × max(ConstraintLength – 1) . The constraint length vector is the first input
argument to the poly2trellis function.
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• 'trunc' — Specifies truncated operating mode. In truncated operating mode, the encoder is
assumed to have started at the all-zeros state. The decoder traces back from the state with the
best metric. This mode incurs zero delay. This mode is appropriate when you cannot assume the
encoder ended at the all-zeros state and when you do not want to preserve continuity between
successive calls to this function.

For the 'term' and 'trunc' modes, the traceback depth, tbdepth, must be a positive integer, less
than or equal to the number of input symbols in input codedin.

For more information, see “Traceback and Decoding Delay” on page 2-778 and “Traceback Depth
Estimates” on page 2-778.
Data Types: char | string

dectype — Decoding type
'unquant' | 'hard' | 'soft'

Decoding type, specified as 'unquant', 'hard', or 'soft'. This parameter indicates the type of
decoding decision that the decoder makes and influences the type of data the decoder expects as
input in codedin.

• 'unquant' — The decoder expects signed numeric input values, where positive values map to a
logical 0 and negative values map to a logical 1.

• 'hard' — The decoder expects binary input values of 0 or 1.
• 'soft' — The decoder expects integer input values in the range [0, (2nsdec – 1)]. The Viterbi

algorithm decision criteria regards 0 as the most confident 0 and 2nsdec – 1 as the most confident
1.

Data Types: char | string

nsdec — Number of soft decision quantization bits
integer in the range [1, 13]

Number of soft decision quantization bits, specified as a integer in the range [1, 13]. For reference,
soft decision decoding with 3 bits of quantization improves error decoding recovery by approximately
2 dB as compared to hard decision decoding.

Dependencies

To enable this input argument set the dectype input argument to 'soft'.
Data Types: double

puncpat — Puncture pattern
vector of binary values

Puncture pattern, specified as a vector of binary values. Indicate punctured bits with 0s and
unpunctured bits with 1s. The input code length divided by the number of 1s in the puncture pattern
times the length of the puncture pattern must be an integer multiple of the number of bits in an input
symbol.
Data Types: double

eraspat — Erasure pattern
vector of binary values
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Erasure pattern, specified as a vector of binary values. Indicate erased bits with 1s and nonerased
bits with 0s. The length of the erasures pattern must be the same as the input code length.
Data Types: double

imetric — Decoder state metrics
integer | vector of integer values

Decoder state metrics, specified as an integer or a vector of integer values. Each value in imetric
represents the starting state metric of the corresponding decoder state. When you set imetric to a
vector, the length must be trellis.numStates. To use the default decoder state metrics, specify
imetric as [].

Dependencies

To enable this input argument set the opmode input argument to 'cont'.
Data Types: double

istate — Decoder initial traceback states
matrix of integer values

Decoder initial traceback states, specified as a trellis.numStates-by-tbdepth matrix of integer
values in the range [0, (trellis.numStates – 1)]. To use the default decoder initial traceback
states, specify istate as [].

Inputs istate and iinput jointly specify the initial traceback memory of the decoder. If the encoder
schematic has more than one input stream, the shift register that receives the first input stream
provides the least significant bits in istate, and the shift register that receives the last input stream
provides the most significant bits in istate.

Dependencies

To enable this input argument set the opmode input argument to 'cont'.
Data Types: double

iinput — Decoder initial traceback inputs
matrix of integer values

Decoder initial traceback inputs, specified as a trellis.numStates-by-tbdepth matrix of integer
values in the range [0, (trellis.numStates – 1)]. To use the default decoder initial traceback
inputs, specify iinput as [].

Inputs istate and iinput jointly specify the initial traceback memory of the decoder.

Dependencies

To enable this input argument set the opmode input argument to 'cont'.
Data Types: double

Output Arguments
decodedout — Decoded message
vector of binary values
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Decoded message, returned as a vector of binary values. Each symbol in the vector decodedout
consists of log2(trellis.numInputSymbols) bits.

fmetric — Decoder final state metrics
vector of integer values

Decoder final state metrics, returned as an vector of integer values with trellis.numStates
elements. Each value in fmetric represents the final state metric of the corresponding decoder
state.

When calling vitdec in continuous mode, fmetric is typically used to set imetric for subsequent
calls to the vitdec function.

Dependencies

This output applies when the opmode parameter is set to 'cont'.
Data Types: double

fstate — Decoder final traceback states
matrix of integer values

Decoder final traceback states, returned as a trellis.numStates-by-tbdepth matrix of integer
values in the range [0, (trellis.numStates – 1)].

Outputs fstate and finput jointly describe the final traceback memory of the decoder. If the
encoder schematic has more than one input stream, the shift register that receives the first input
stream provides the least significant bits in fstate, and the shift register that receives the last input
stream provides the most significant bits in fstate.

When calling vitdec in continuous mode, fstate is typically used to set istate for subsequent
calls to the vitdec function.

Dependencies

This output applies when the opmode parameter is set to 'cont'.
Data Types: double

finput — Decoder final traceback inputs
matrix of integer values

Decoder final traceback inputs, returned as a trellis.numStates-by-tbdepth matrix of integer
values in the range [0, (trellis.numStates – 1)].

Outputs fstate and finput jointly specify the final traceback memory of the decoder.

When calling vitdec in continuous mode, finput is typically used to set iinput for subsequent
calls to the vitdec function.

Dependencies

This output applies when the opmode parameter is set to 'cont'.
Data Types: double
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More About
Traceback and Decoding Delay

The traceback depth influences the decoding delay. The decoding delay is the number of zero symbols
that precede the first decoded symbol in the output.

• For the continuous operating mode, the decoding delay is equal to the number of traceback depth
symbols.

• For the truncated or terminated operating mode, the decoding delay is zero. In this case, the
traceback depth must be less than or equal to the number of symbols in each input.

Traceback Depth Estimates

As a general estimate, a typical traceback depth value is approximately two to three times
(ConstraintLength – 1) / (1 – coderate). The constraint length of the code, ConstraintLength, is equal
to (log2(trellis.numStates) + 1). The coderate is equal to (K / N) × (length(PuncturePattern) /
sum(PuncturePattern).

K is the number of input symbols, N is the number of output symbols, and PuncturePattern is the
puncture pattern vector.

For example, applying this general estimate, results in these approximate traceback depths.

• A rate 1/2 code has a traceback depth of 5(ConstraintLength – 1).
• A rate 2/3 code has a traceback depth of 7.5(ConstraintLength – 1).
• A rate 3/4 code has a traceback depth of 10(ConstraintLength – 1).
• A rate 5/6 code has a traceback depth of 15(ConstraintLength – 1).

For more information, see [7].

Tips
• Consider using the comm.ViterbiDecoder System object when successive calls to the Viterbi

algorithm are needed. The System object simplifies the required state retention operation by
inherently retaining state metrics, traceback states, and inputs between calls.

Version History
Introduced before R2006a

Version History
Behavior changed in R2022b

When you set dectype to 'unquant', input values outside of the range [–1012, 1012] are clipped to –
1012 and 1012, respectively.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

The input arguments trellis, opmode, tbdepth, dectype, and puncpat must be compile-time
constants. For more information, see coder.Constant.

See Also
Functions
convenc | poly2trellis | istrellis | distspec

Objects
comm.APPDecoder | comm.ViterbiDecoder | comm.ConvolutionalEncoder |
comm.TurboDecoder

Topics
“Convolutional Codes”
“Trellis Description of a Convolutional Code”
“Estimate BER for Hard and Soft Decision Viterbi Decoding”
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wgn
Generate white Gaussian noise samples

Syntax
noise = wgn(m,n,power)
noise = wgn(m,n,power,imp)
noise = wgn(m,n,power,imp,randobject)
noise = wgn(m,n,power,imp,seed)

noise = wgn( ___ ,powertype)
noise = wgn( ___ ,outputtype)

Description
noise = wgn(m,n,power) generates an m-by-n matrix of white Gaussian noise samples in volts.
power specifies the power of noise in dBW.

noise = wgn(m,n,power,imp) specifies the load impedance in ohms.

noise = wgn(m,n,power,imp,randobject) specifies a random number stream object to use
when generating the matrix of white Gaussian noise samples. For information about producing
repeatable noise samples, see “Tips” on page 2-782.

noise = wgn(m,n,power,imp,seed) specifies a seed value for initializing the normal random
number generator that is used when generating the matrix of white Gaussian noise samples. For
information about producing repeatable noise samples, see “Tips” on page 2-782.

noise = wgn( ___ ,powertype) specifies the units of power as 'dBW', 'dBm', or 'linear' in
addition to the input arguments in any of the previous syntaxes.

noise = wgn( ___ ,outputtype) specifies the output type as 'real' or 'complex' in addition to
the input arguments in any of the previous syntaxes.

Examples

Generate White Gaussian Noise

Generate real and complex white Gaussian noise (WGN) samples. Check the power of output WGN
matrices.

Generate a 1000-element column vector of real WGN samples and confirm that the power is
approximately 1 watt, which is 0 dBW.

y1 = wgn(1000,1,0);
var(y1)

ans = 0.9979
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Generate a 1000-element column vector of complex WGN samples and confirm that the power is
approximately 0.25 watts, which is –6 dBW.

y2 = wgn(1000,1,-6,'complex');
var(y2)

ans = 0.2521

Input Arguments
m — Number of white Gaussian noise samples
positive integer

Number of white Gaussian noise samples desired per channel, specified as a positive integer.
Data Types: double

n — Number of channels
positive integer

Number of channels of white Gaussian noise samples desired, specified as a positive integer.
Data Types: double

power — Power of noise samples
scalar

Power of noise samples, specified as a scalar. The default units for power is dBW. Use powertype to
change the units of power.
Data Types: double

imp — Load impedance
1 (default) | scalar

Load impedance in ohms, specified as a scalar.
Data Types: double

randobject — Random number stream object
RandStream object

Random number stream object, specified as a RandStream object. The state of the random stream
object determines the sequence of numbers produced by the randn function. Configure the random
stream object using the reset (RandStream) function and its properties.

wgn generates normal random noise samples using randn. The randn function uses one or more
uniform values from the RandStream object to generate each normal value.

For information about producing repeatable noise samples, see “Tips” on page 2-782.

seed — Random number generator seed
nonnegative integer

Random number generator seed, specified as a nonnegative integer. For more information on the
random number generator, see randn.
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powertype — Signal power unit
'dBW' (default) | 'dBm' | 'linear'

Signal power unit, specified as 'dBW', 'dBm', or 'linear'. Linear power is in watts.

outputtype — Output type
'real' (default) | 'complex'

Output type, specified as 'real' or 'complex'. If outputtype is 'complex', then the real and
imaginary parts of noise each have a noise power of (power / 2).

Output Arguments
noise — Output white Gaussian noise samples
scalar | vector | array

Output white Gaussian noise samples in volts, returned as an m-by-n matrix.

Note Unless the default impedance for imp is changed, a load of 1 ohm is used for power
calculations.

Tips
• To generate repeatable white Gaussian noise samples, use one of these tips:

• Provide a static seed value as an input to wgn.
• Use the reset (RandStream) function on the randobject before passing it as an input to

wgn.
• Provide randobject in a known state as an input to wgn. For more information, see

RandStream.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Code generation supported, except for syntaxes that include a RandStream object.

See Also
Functions
randn | awgn | RandStream
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Topics
“Sources and Sinks”
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winner2.AntennaArray
Create antenna array

Syntax
antArray = winner2.AntennaArray
antArray = winner2.AntennaArray(Name,Value)

Description
Download Required: To use winner2.AntennaArray, first download the WINNER II Channel Model
for Communications Toolbox add-on.

antArray = winner2.AntennaArray returns a structure representing an antenna array with one
isotropic antenna element. Both the antenna array and the single element have no rotation and are
located at the origin, [0;0;0].

antArray = winner2.AntennaArray(Name,Value) returns a structure representing an antenna
array defined using one or more Name,Value pair arguments.

For more information, see “Antenna Array Model” on page 2-788.

Examples

Create WINNER II Eight Element Uniform Circular Array

Use the winner2.AntennaArray function to create an eight element uniform circular array (UCA-8)
with a 1 cm radius.

UCA8 = winner2.AntennaArray('UCA',8,0.01);

Plot element positions.

pos = {UCA8.Element(:).Pos};
plot(cellfun(@(x) x(1),pos),cellfun(@(x) x(2),pos),'+');
xlim([-0.02 0.02]); 
ylim([-0.02 0.02]);
title('UCA-8 Element Positions');
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Create WINNER II Two Element Uniform Linear Array

Use the winner2.AntennaArray function to create a two element uniform linear array (ULA-2) with
50 cm spacing and the dipole elements slanted at +45 and -45 degrees.

az = -180:179; % 1-degree spacing
pattern = cat(1,shiftdim(winner2.dipole(az,45),-1), ...
    shiftdim(winner2.dipole(az,-45),-1));
ULA2 = winner2.AntennaArray('ULA',2,0.5, ...
    'FP-ECS',pattern,'Azimuth',az);

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Pos',[1 0 0; 0 1 0],'Rot',[0 0 0; 0 pi() 0] indicates the coordinates and
rotation angles for two antenna elements.
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Pos — Position of each antenna element
0 (default) | column vector | matrix

Position of each antenna element, specified as the comma-separated pair consisting of 'Pos' and a
column vector or an NE-by-3 matrix. The three columns represent the x-, y-, and z-coordinates in
meters from the origin. NE indicates the number of elements in the antenna array. The elements have
no rotation. When there is more than one element, the 'Element' field of antArray is a row vector
of structures representing all the elements.
Example: 'Pos',[63.1 10.2 11.5; 62 11 12] indicates the coordinates for two antenna
elements.
Data Types: double

Rot — Rotation angle of each antenna element
0 (default) | column vector | matrix | optional

Rotation angle of each antenna element, specified as the comma-separated pair consisting of 'Rot'
and a column vector or an NE-by-3 matrix. The three columns represent the RotX, RotY, and RotZ
rotation angles of each antenna element in radians. NE indicates the number of elements in the
antenna array. Rot only applies when Pos is specified. If not specified with Pos, the rotation angle is
0.
Example: 'Rot',[2 1.5 0; 0 pi() 0] indicates the rotation angles for two antenna elements.
Data Types: double

UCA — Uniform circular antenna array
N,1 (default) | N,Rad

Uniform circular antenna array, specified as the comma-separated pair consisting of 'UCA' and
N,Rad. In this argument, N indicates the number of elements (NE) and Rad indicates the radius in
meters. If Rad is not specified, the default radius is 1 meter.
Example: 'UCA',8,0.5 indicates an eight element uniform circular array with 0.5 meter radius.
Data Types: double

ULA — Uniform linear antenna array
N,1/N (default) | N,Spacing

Uniform linear antenna array, specified as the comma-separated pair consisting of 'ULA' and
N,Spacing. In this argument, N indicates the number of elements (NE) and Spacing indicates the
separation between adjacent elements in meters. If Spacing is not specified, the default separation
is 1/N meters.

ULA elements are placed along x-axis with the center of the array at [0;0;0]. For an even number of
elements, there is no antenna element at [0;0;0].
Example: 'ULA',3,0.25 indicates a three element uniform linear array with 0.25 meter spacing
between adjacent elements.
Data Types: double

FP-ECS — Field pattern of element coordinate system
4-D array
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Field pattern of element coordinate system, specified as the comma-separated pair consisting of 'FP-
ECS' and a P-by-2-by1-by-NAZ array.

• The first dimension, P, can be either 1 or any number greater than or equal to the number of
elements in the antenna array (NE). When P = 1, the same pattern applies to all elements. When
P > NE, the first NE rows apply.

• The second dimension, 2, indicates that two polarizations characterize the field pattern. The first
dimension in the field pattern stores vertical polarization, and the second one stores horizontal
polarization.

• The third dimension, 1, indicates that one elevation angle characterizes the field pattern.
• The fourth dimension, NAZ, is the number of field pattern samples taken between –180 and 180

degrees. NAZ equals the number of elements specified in Azimuth or when Azimuth is not
present it equals the number of equidistant field pattern samples taken over azimuth angle.

Data Types: double

FP-ACS — Field pattern array coordinate system
4-D array

Field pattern array coordinate system, specified as the comma-separated pair consisting of 'FP-ACS'
and a P-by-2-by1-by-NAZ array. Array format is the same as the FP-ECS syntax, except that the field
pattern is specified in the array-coordinate-system (ACS).

• The first dimension, P, can be either 1 or any number greater than or equal to the number of
elements in the antenna array (NE). When P = 1, the same pattern applies to all elements. When
P > NE, the first NE rows apply.

• The second dimension, 2, indicates that two polarizations characterize the field pattern. The first
dimension in the field pattern stores vertical polarization, and the second one stores horizontal
polarization. Missing polarization dimensions of the field pattern are substituted with zeros.

• The third dimension, 1, indicates that one elevation angle characterizes the field pattern.
• The fourth dimension, NAZ, is the number of field pattern samples taken between –180 and 180

degrees. NAZ equals the number of elements specified in Azimuth or when Azimuth is not
present it equals the number of equidistant field pattern samples taken over azimuth angle.

Data Types: double

Azimuth — Azimuth angles for 'FP-ACS' or 'FP-ECS' field patterns
row vector

Azimuth angles for FP-ACS or FP-ECS field patterns in degrees , specified as the comma-separated
pair consisting of 'Azimuth' and an 1-by-NAZ row vector. The values in the row vector indicate
azimuth angles for elements in the field patterns.

Note Azimuth applies only when FP-ACS or FP-ECS are defined. If Azimuth is not specified,
uniform spacing is used for elements in the field pattern.

Example: 'Azimuth',[0 10 20 90 180 270 340 350]
Data Types: double
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Output Arguments
antArray — Antenna array definition
structure

Antenna array definition, returned as a structure containing these fields.

Name — Antenna array name
character vector

Antenna array name, returned as a character vector.

Pos — Antenna array position
vector

Antenna array position, returned as a 3-by-1 vector, representing the x-, y-, and z-coordinates in
meters from the origin.

Rot — Antenna array rotation
vector

Antenna array rotation, returned as a 3-by-1 vector, representing the RotX, RotY, and RotZ rotation
angles of each antenna element in radians.

Element — Element definition
row vector of structures

Element definition, returned as a row vector of structures, with each structure representing one
element and containing these fields.

Pos — Antenna array position
vector

Antenna array position, returned as a 3-by-1 vector, representing the x-, y-, and z-coordinates in
meters from the origin.

Rot — Antenna array rotation
vector

Antenna array rotation, returned as a 3-by-1 vector, representing the RotX, RotY, and RotZ rotation
angles of each antenna element in radians.

Aperture — Aperture definition
structure

Aperture definition, returned as a structure representing the antenna aperture.

More About
Antenna Array Model

To create an antenna array model, you must define the geometry of array elements (positions and
rotation) and the element field patterns. The arguments provided to winner2.AntennaArray are
always processed such that the array geometry is created first, and then the field patterns are
assigned.
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For a detailed description of the antenna array specification for the WINNER channel model, see
WINNER II Channel Models [1], Section 4.1.

Version History
Introduced in R2017a

References
[1] Kyosti, Pekka, Juha Meinila, et al. WINNER II Channel Models. D1.1.2 V1.2. IST-4-027756

WINNER II, September 2007.

See Also
winner2.dipole | winner2.layoutparset
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winner2.dipole
Calculate field pattern of half-wavelength dipole

Syntax
pat = winner2.dipole(az)
pat = winner2.dipole(az,slant)

Description
Download Required: To use winner2.dipole, first download the WINNER II Channel Model for
Communications Toolbox add-on.

pat = winner2.dipole(az) returns the azimuth field pattern of a 0-degree slanted dipole at the
azimuth angles specified in az.

pat = winner2.dipole(az,slant) returns the azimuth field pattern of a slanted dipole at the
azimuth angles specified in az.

Examples

Create 45 and 90 Degree Slanted Dipoles

Create 45 and 90 degree slanted dipoles by using the winner2.dipole function.

az = -180:179; % 1 degree spacing
pattern45 = squeeze(winner2.dipole(az,45));
pattern90 = squeeze(winner2.dipole(az,90));

Display the antenna pattern by using the polarplot function.

fh = figure; 
set(fh, 'Position', [100 100 1000 500]); 
fh.Name = 'Dipole Pattern Plots';
subplot(1,2,1); 
polarplot(az/180*pi,pattern45(1,:),'r'); 
hold on;
polarplot(az/180*pi,pattern90(1,:),'b'); 
rlim([0 1.5]);
legend('45 degree','90 degree'); 
title('Vertical'); 

subplot(1,2,2); 
polarplot(az/180*pi,pattern45(2,:),'r'); 
hold on; 
polarplot(az/180*pi,pattern90(2,:),'b'); 
rlim([0 1.5]);
legend('45 degree','90 degree'); 
title('Horizontal');
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Input Arguments
az — Azimuth angles
vector

Azimuth angles, specified as a vector indicating the azimuth angles to compute the field pattern gain.
Units are in degrees.
Data Types: double

slant — Slant angle
scalar

Slant angle, specified as a scalar representing the counterclockwise angle seen from the front of the
dipole. Units are in degrees.
Data Types: double

Output Arguments
pat — Field pattern
3-D array

Field pattern, returned as a 2-by-1-by-NAZ array representing the vertical and horizontal field pattern,
where NAZ is the number of elements in the az input vector.

Version History
Introduced in R2017a

References
[1] Kyosti, Pekka, Juha Meinila, et al. WINNER II Channel Models. D1.1.2 V1.2. IST-4-027756

WINNER II, September 2007.
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See Also
winner2.AntennaArray | winner2.layoutparset
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winner2.layoutparset
WINNER II layout parameter configuration

Syntax
cfgLayout = winner2.layoutparset(msIdx,bsIdx,K,arrays)
cfgLayout = winner2.layoutparset(msIdx,bsIdx,K,arrays,rmax)
cfgLayout = winner2.layoutparset(msIdx,bsIdx,K,arrays,rmax,seed)

Description
Download Required: To use winner2.layoutparset, first download the WINNER II Channel Model for
Communications Toolbox add-on.

cfgLayout = winner2.layoutparset(msIdx,bsIdx,K,arrays) returns a structure of
randomly generated WINNER II network layout parameters given mobile station (MS) indices, base
station (BS) indices, BS to MS links, and antenna array configurations.

cfgLayout = winner2.layoutparset(msIdx,bsIdx,K,arrays,rmax) additionally specifies
the maximum layout range used when generating MS and BS positions.

cfgLayout = winner2.layoutparset(msIdx,bsIdx,K,arrays,rmax,seed) additionally
specifies a seed value for repeatability. To assign seed when not assigning rmax, specify rmax as [ ].

Examples

Create Two MS to One BS WINNER II System Layout

Create a WINNER II system layout with two mobile stations (MS) connecting to the same base station
(BS).

Define antenna arrays for one BS and two MS.

BSAA  = winner2.AntennaArray('UCA', 8, 0.02);  % UCA-8 array for BS
MSAA1 = winner2.AntennaArray('ULA', 2, 0.01);  % ULA-2 array for MS
MSAA2 = winner2.AntennaArray('ULA', 4, 0.005); % ULA-4 array for MS

Create system layout by using the winner2.layoutparset function.

MSIdx = [2 3]; 
BSIdx = {1}; 
K = 2; 
rndSeed = 5;
cfgLayout = winner2.layoutparset(MSIdx,BSIdx, ...
    K,[BSAA,MSAA1,MSAA2],[],rndSeed);

Visualize BS and MS positions.

BSPos  = cfgLayout.Stations(cfgLayout.Pairing(1,1)).Pos;
MS1Pos = cfgLayout.Stations(cfgLayout.Pairing(2,1)).Pos;
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MS2Pos = cfgLayout.Stations(cfgLayout.Pairing(2,2)).Pos;

plot3(BSPos(1),BSPos(2),BSPos(3),'bo', ...
    MS1Pos(1),MS1Pos(2),MS1Pos(3),'rs', ...
    MS2Pos(1),MS2Pos(2),MS2Pos(3),'rd');
grid on;
xlim([0 500]);
ylim([0 500]);
zlim([0 35]);
xlabel('X-position (m)');
ylabel('Y-position (m)');
zlabel('Elevation (m)');
legend('BS','MS1','MS2','Location','northeast');

Input Arguments
msIdx — Mobile station index
row vector

Mobile station index, specified as a row vector indicating the indices in arrays to serve as mobile
stations.
Data Types: double

bsIdx — Base station index
column cell array
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Base station index, specified as a column cell array, with each element representing one base station.
Each cell element is an integer-valued row vector to indicate the indices in arrays to serve as
different sectors of that base station.
Data Types: double

K — Number of links
scalar

Number of links, specified as a scalar representing the number of BS-MS links to be formulated.
Data Types: double

arrays — Antenna array configurations
vector of structures

Antenna array configurations, specified as a vector of structures defining all available arrays. All MS
and BS sectors are chosen from this vector. The array of elements is typically created using the
winner2.AntennaArray function.
Data Types: double

rmax — Maximum layout range
500 (default) | scalar

Maximum layout range, specified as a scalar representing the maximum layout range in meters used
to randomly generate the MS and BS positions.
Data Types: double

seed — Seed value
integer

Seed value used to provide repeatability, specified as an integer. When seed is not specified, the
global random number generator is used. To assign seed when not assigning rmax, specify rmax as
[].
Data Types: double

Output Arguments
cfgLayout — Configuration layout
structure

Configuration layout, returned as a structure containing these fields, which represent the location
and orientation parameters for all simulated stations.

Stations — Active stations
row vector of structures

Active stations, returned as a row vector of structures describing the antenna arrays for active
stations. Stations is created from the arrays input and adds an additional Velocity field. The
row ordering specifies base station (BS) sectors first, followed by the mobile stations (MS). The BS
sector and MS positions are randomly assigned. The BS sectors have no velocity. Each MS has a
velocity of about 1.42 m/s with a randomly assigned direction.
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NofSect — Number of sectors
vector

Number of sectors, returned as a vector indicating the number of sectors in each BS.

Pairing — BS to MS pairing
matrix

BS to MS pairing, returned as a 2-by-NL matrix, where NL specifies the number of links to be
modeled. See Stations for BS and MS row ordering.

ScenarioVector — Spatial scenario

1 (default) | vector

Spatial scenario, returned as a 1-by-NL vector of scenario numbers. The default is 1, which specifies
scenario A1.

The scenarios numbers map as {1=A1, 2=A2, 3=B1, 4=B2, 5=B3, 6=B4, 10=C1, 11=C2, 12=C3,
13=C4, 14=D1, 15=D2a}.

For more information, see WINNER II Channel Models [1], Section 2.3.

PropagConditionVector — Propagation condition
1 (default) | vector

Propagation condition, returned as a 1-by-NL vector of propagation conditions (LOS = 1 and NLOS =
0) for each link. The default is 1.

StreetWidth — Street width
20 (default) | vector

Street width, returned as a 1-by-NL vector of identical values that specify the average width (in
meters) of the streets. StreetWidth is used for the path loss model of the B1 and B2 scenarios. See
ScenarioVector for the scenario number mapping. All elements must have the same value.
StreetWidth applies only when the PathLossModelUsed field from winner2.wimparset is set to
'yes'.

Dist1 — Distances from BS to the last LOS point
NaN (default) | vector

Distances from BS to the last LOS point, returned as a 1-by-NL vector. Dist1 is used for the path loss
model of the B1 and B2 scenarios. The default value of NaN indicates that the distance is randomly
determined in path loss function. See ScenarioVector for the scenario number mapping. Dist1
applies only when the PathLossModelUsed field from winner2.wimparset is set to 'yes'.

For more information, see WINNER II Channel Models [1], Figure 4-3.

NumFloors — Floor numbers
1 (default) | vector

Floor numbers, returned as a 1-by-NL vector indicating the floor number where the indoor BS or MS
is located. The NumFloors property is used for the path loss model of the A2 and B4 scenarios only.
See ScenarioVector for the scenario number mapping. NumFloors applies only when the
PathLossModelUsed field from winner2.wimparset is set to 'yes'.
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NumPenetratedFloors — Number of floors penetrated
0 (default) | vector

Number of floors penetrated, returned as a 1-by-NL vector indicating the number of penetrated floors
between BS and MS. The NumPenetratedFloors property is used for the NLOS path loss model of
the A1 scenario. See ScenarioVector for the scenario number mapping. NumPenetratedFloors
applies only when the PathLossModelUsed field from winner2.wimparset is set to 'yes'.

For more information, see WINNER II Channel Models [1], Table 4-4.

Version History
Introduced in R2017a

References
[1] Kyosti, Pekka, Juha Meinila, et al. WINNER II Channel Models. D1.1.2 V1.2. IST-4-027756

WINNER II, September 2007.

See Also
Objects
comm.WINNER2Channel

Functions
winner2.wim | winner2.wimparset | winner2.AntennaArray
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winner2.wim
Generate channel coefficients using WINNER II channel model

Syntax
chanCoef = winner2.wim(cfgWim,cfgLayout)
[chanCoef,pathDelays] = winner2.wim(cfgWim,cfgLayout)
[chanCoef,pathDelays,finalCond] = winner2.wim(cfgWim,cfgLayout)
[chanCoef,pathDelays,finalCond] = winner2.wim(cfgWim,cfgLayout,initCond)

Description
Download Required: To use winner2.wim, first download the WINNER II Channel Model for
Communications Toolbox add-on.

chanCoef = winner2.wim(cfgWim,cfgLayout) returns channel coefficients based on the
WINNER II model parameters for all links defined in the WINNER II network layout.

[chanCoef,pathDelays] = winner2.wim(cfgWim,cfgLayout) also returns the path delays for
all links.

[chanCoef,pathDelays,finalCond] = winner2.wim(cfgWim,cfgLayout) also returns the
final condition of the system after generating the channel coefficients.

[chanCoef,pathDelays,finalCond] = winner2.wim(cfgWim,cfgLayout,initCond)
generates the channel coefficients by using the initial system conditions rather than of performing
random initialization. initCond is of the same form as finalCond and is typically the finalCond
output from the prior call of this function. Use this syntax to repeatedly generate channel coefficients
for continuous time samples.

Examples

Continuously Generate WINNER II Channel Coefficients

Continuously generate channel coefficients for each link in a two-link system layout.

Configure model parameters.

cfgWim = winner2.wimparset;
cfgWim.SampleDensity = 20;
cfgWim.RandomSeed = 10; % For repeatability

Configure layout parameters.

BSAA  = winner2.AntennaArray('UCA',8,0.02);  % UCA-8 array for BS
MSAA1 = winner2.AntennaArray('ULA',2,0.01);  % ULA-2 array for MS1
MSAA2 = winner2.AntennaArray('ULA',4,0.005); % ULA-4 array for MS2
MSIdx = [2,3];
BSIdx = {1};
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NL = 2;
rndSeed = 5;
cfgLayout = winner2.layoutparset(MSIdx,BSIdx,NL,[BSAA,MSAA1,MSAA2],[],rndSeed);

Generate channel coefficients for the first time.

[H1,~,finalCond] = winner2.wim(cfgWim,cfgLayout);

Generate a second set of channel coefficients.

[H2,~,finalCond] = winner2.wim(cfgWim,cfgLayout,finalCond);

Concatenate H1 and H2 in time domain.

H = cellfun(@(x,y) cat(4,x,y),H1,H2,'UniformOutput',false);

Plot H for the first link, 1st Tx, 1st Rx, and 1st path. The plot shows the channel continuity over the
two outputs from the winner2.wim function.

figure;
Ts = finalCond.delta_t(1);  % Sample time for the 1st link
plot(Ts*(0:2*cfgWim.NumTimeSamples-1)', ...
    abs(squeeze(H{1}(1,1,1,:))));
xlabel('Time (s)');
ylabel('Amplitude');
title('First Path Coefficient of 1st Link, 1st Tx, and 1st Rx');
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Input Arguments
cfgWim — Configuration layout
structure

Configuration model, specified as a structure containing these fields. cfgWim is typically created
using the winner2.wimparset function.

NumTimeSamples — Number of time samples
100 (default) | scalar

Number of time samples, specified as a scalar.

FixedPdpUsed — Use predefined path delays and powers for specific scenarios
'no' (default) | 'yes'

Use predefined path delays and powers for specific scenarios, specified as 'no' or 'yes'.

FixedAnglesUsed — Use predefined path angles of departure (AoDs) and angles of arrival
(AoAs) for specific scenarios
'no' (default) | 'yes'

Use predefined path angles of departure (AoDs) and angles of arrival (AoAs) for specific scenarios,
specified as 'yes' or 'no'.

IntraClusterDsUsed — Divide each of the two strongest clusters into three subclusters
per link
'yes' (default) | 'no'

Divide each of the two strongest clusters into three subclusters per link, specified as 'yes' or 'no'.

PolarisedArrays — Use dual-polarized arrays
'yes' (default) | 'no'

Use dual-polarized arrays, specified as 'yes' or 'no'.

UseManualPropCondition — Use manually defined propagation conditions
'yes' (default) | 'no'

Use manually defined propagation conditions, specified as 'yes' or 'no'. Set to 'yes' to enforce
the use of manually defined propagation conditions (LOS/NLOS) in the PropagConditionVector
structure field returned by winner2.layoutparset. Set to 'no' to draw propagation conditions
from pre-defined LOS probabilities.

CenterFrequency — Carrier frequency
5.25e9 (default) | scalar

Carrier frequency in Hz, specified as a scalar.

UniformTimeSampling — Enforce uniform time sampling
'no' (default) | 'yes'

Enforce all links to be sampled at the same time instants, specified as 'no' or 'yes'.

SampleDensity — Number of time samples per half wavelength
2e6 (default) | scalar
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Number of time samples per half wavelength, specified as a scalar.

DelaySamplingInterval — Sampling interval
5e-9 (default) | scalar

Sampling interval, specified as an scalar indicating the input signal sample time in seconds.
DelaySamplingInterval defines the sampling grid to which the path delays are rounded. A value
of 0 seconds indicates no rounding on path delays.

ShadowingModelUsed — Use shadow fading
'no' (default) | 'yes'

Use shadow fading, specified as 'no' or 'yes'.

PathLossModelUsed — Use path loss model
'no' (default) | 'yes'

Use path loss model, specified as 'no' or 'yes'.

PathLossModel — Path loss model
'pathloss' (default) | character vector

Path loss model, specified as a character vector representing a valid function name. PathLossModel
applies only when PathLossModelUsed is set to 'yes'.

PathLossOption — Wall material
'CR_light' (default) | 'CR_heavy' | 'RR_light' | 'RR_heavy'

Wall material, specified as 'CR_light', 'CR_heavy', 'RR_light', or 'RR_heavy', indicating the
wall material for the A1 scenario NLOS path loss calculation. PathLossOption applies only when
PathLossModelUsed is set to 'yes'.

RandomSeed — Seed for random number generators
[] (default) | scalar

Seed for random number generators, specified as a scalar or empty brackets. Empty brackets, [],
indicate that the global random stream is used.

cfgLayout — Configuration layout
structure

Configuration layout, specified as a structure containing these fields, which represent the location
and orientation parameters for all simulated stations. cfgLayout is typically created using the
winner2.layoutparset function.

Stations — Active stations
row vector of structures

Active stations, specified as a row vector of structures describing the antenna arrays for active
stations. Stations is created from the arrays input of winner2.layoutparset and adds an
additional Velocity field. The row ordering specifies base station (BS) sectors first, followed by the
mobile stations (MS). The BS sector and MS positions are randomly assigned. The BS sectors have no
velocity. Each MS has a velocity of about 1.42 m/s with a randomly assigned direction.

NofSect — Number of sectors
vector
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Number of sectors, specified as a vector indicating the number of sectors in each BS.

Pairing — BS to MS pairing
matrix

BS to MS pairing, specified as a 2-by-NL matrix, where NL specifies the number of links to be
modeled. See Stations for BS and MS row ordering.

ScenarioVector — Spatial scenario

1 (default) | vector

Spatial scenario, specified as a 1-by-NL vector of scenario numbers. The default is 1, which specifies
scenario A1.

The scenarios numbers map as {1=A1, 2=A2, 3=B1, 4=B2, 5=B3, 6=B4, 10=C1, 11=C2, 12=C3,
13=C4, 14=D1, 15=D2a}.

For more information, see WINNER II Channel Models [1], Section 2.3.

PropagConditionVector — Propagation condition
1 (default) | vector

Propagation condition, specified as a 1-by-NL vector of propagation conditions (LOS = 1 and NLOS =
0) for each link.

StreetWidth — Street width
20 (default) | vector

Street width, specified as a 1-by-NL vector of identical values that specify the average width (in
meters) of the streets. StreetWidth is used for the path loss model of the B1 and B2 scenarios. See
ScenarioVector for the scenario number mapping. All elements must have the same value.
StreetWidth applies only when cfgWim.PathLossModelUsed is set to 'yes'.

Dist1 — Distances from BS to the last LOS point
NaN (default) | vector

Distances from BS to the last LOS point, specified as a 1-by-NL vector. Dist1 is used for the path loss
model of the B1 and B2 scenarios. The default value of NaN indicates that the distance is randomly
determined in path loss function. See ScenarioVector for the scenario number mapping. Dist1
applies only when cfgWim.PathLossModelUsed is set to 'yes'.

For more information, see WINNER II Channel Models [1], Figure 4-3.

NumFloors — Floor numbers
1 (default) | vector

Floor numbers, specified as a 1-by-NL vector indicating the floor number where the indoor BS or MS
is located. The default value is 1. The NumFloors field is used for the path loss model of the A2 and
B4 scenarios only. See ScenarioVector for the scenario number mapping. NumFloors applies only
when cfgWim.PathLossModelUsed is set to 'yes'.

NumPenetratedFloors — Number of floors penetrated
0 (default) | vector

2 Functions

2-802



Number of floors penetrated, specified as a 1-by-NL vector indicating the number of penetrated floors
between BS and MS. The default value is 0. The NumPenetratedFloors is used for the NLOS path
loss model of the A1 scenario. See ScenarioVector for the scenario number mapping.
NumPenetratedFloors field applies only when cfgWim.PathLossModelUsed is set to 'yes'.

For more information, see WINNER II Channel Models [1], Table 4-4.

initCond — Initial system condition
structure | optional

Initial system condition, specified as a structure. initCond is of the same form as finalCond and is
typically the finalCond output from the prior call of winner2.wim.
Data Types: struct

Output Arguments
chanCoef — Channel coefficients
cell array containing 4-D arrays of complex values

Channel coefficients, returned as an NL-by-1 cell array. NL is the number of links in the system. The
ith element of chanCoef is an NR(i)-by-NT(i)-by-NP(i)-by-NS array. NR, NT, and NP are link specific. NS
is the same for all the links.

• NR(i) is the number of receive antenna elements at MS for the ith link.
• NT(i) is the number of transmit antenna elements at BS for the ith link.
• NP(i) is the number of paths for the ith link.
• NS is the number of time samples given by cfgWim.NumTimeSamples.

For more information , see “Channel Power” on page 2-804.
Data Types: cell

pathDelays — Path delays
matrix

Path delays, returned as an NL-by-maxNP matrix. NL is the number of links in the system and maxNP is
the maximum number of paths among all links. Each row of the matrix applies to each link. When a
link has fewer than maxNP paths, the corresponding row in pathDelays is NaN padded.
Data Types: double

finalCond — Final system condition
structure

Final system condition, returned as a structure. When generating channel coefficients for continuous
time samples, use finalCond as the initCond input for the next call to winner2.wim.

For more information, see WINNER II Channel Models [1], Section 5.2.
Data Types: struct
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More About
Channel Power

When path loss and shadowing are off, path gains of the computed WINNER channel are normalized.
Specifically, path gains are normalized when the ShadowingModelUsed and PathLossModelUsed
parameters are set to 'no'.

Version History
Introduced in R2017a

References
[1] Kyosti, Pekka, Juha Meinila, et al. WINNER II Channel Models. D1.1.2 V1.2. IST-4-027756

WINNER II, September 2007.

See Also
Objects
comm.WINNER2Channel

Functions
winner2.wimparset | winner2.AntennaArray | winner2.layoutparset
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winner2.wimparset
WINNER II model parameter configuration

Syntax
cfgWim = winner2.wimparset

Description
Download Required: To use winner2.wimparset, first download the WINNER II Channel Model for
Communications Toolbox add-on.

cfgWim = winner2.wimparset returns a structure of WINNER II model parameters with their
default values.

Examples

Create a WINNER II model parameter set

Use the winner2.wimparset function to create a WINNER II model parameter set.

cfgwim = winner2.wimparset;

Adjust default settings.

cfgwim.RandomSeed = 31; % Set the rng seed for repeatability
cfgwim.NumTimeSamples = 250;
cfgwim.CenterFrequency = 4e9;

Display the WINNER II model parameter settings.

cfgwim

cfgwim = struct with fields:
            NumTimeSamples: 250
              FixedPdpUsed: 'no'
           FixedAnglesUsed: 'no'
        IntraClusterDsUsed: 'yes'
           PolarisedArrays: 'yes'
    UseManualPropCondition: 'yes'
           CenterFrequency: 4.0000e+09
       UniformTimeSampling: 'no'
             SampleDensity: 2000000
     DelaySamplingInterval: 5.0000e-09
        ShadowingModelUsed: 'no'
         PathLossModelUsed: 'no'
             PathLossModel: 'pathloss'
            PathLossOption: 'CR_light'
                RandomSeed: 31
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Output Arguments
cfgWim — Configuration layout
structure

Configuration model, returned as a structure containing these fields.

NumTimeSamples — Number of time samples
100 (default) | scalar

Number of time samples, specified as a scalar.

FixedPdpUsed — Use predefined path delays and powers for specific scenarios
'no' (default) | 'yes'

Use predefined path delays and powers for specific scenarios, specified as 'no' or 'yes'.

FixedAnglesUsed — Use predefined path angles of departure (AoDs) and angles of arrival
(AoAs) for specific scenarios
'no' (default) | 'yes'

Use predefined path angles of departure (AoDs) and angles of arrival (AoAs) for specific scenarios,
specified as 'yes' or 'no'.

IntraClusterDsUsed — Divide each of the two strongest clusters into three subclusters
per link
'yes' (default) | 'no'

Divide each of the two strongest clusters into three subclusters per link, specified as 'yes' or 'no'.

PolarisedArrays — Use dual-polarized arrays
'yes' (default) | 'no'

Use dual-polarized arrays, specified as 'yes' or 'no'.

UseManualPropCondition — Use manually defined propagation conditions
'yes' (default) | 'no'

Use manually defined propagation conditions, specified as 'yes' or 'no'. Set to 'yes' to enforce
the use of manually defined propagation conditions (LOS/NLOS) in the PropagConditionVector
structure field returned by winner2.layoutparset. Set to 'no' to draw propagation conditions
from pre-defined LOS probabilities.

CenterFrequency — Carrier frequency
5.25e9 (default) | scalar

Carrier frequency in Hz, specified as a scalar.

UniformTimeSampling — Enforce uniform time sampling
'no' (default) | 'yes'

Enforce all links to be sampled at the same time instants, specified as 'no' or 'yes'.

SampleDensity — Number of time samples per half wavelength
2e6 (default) | scalar
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Number of time samples per half wavelength, specified as a scalar.

DelaySamplingInterval — Sampling interval
5e-9 (default) | scalar

Sampling interval, specified as an scalar indicating the input signal sample time in seconds.
DelaySamplingInterval defines the sampling grid to which the path delays are rounded. A value
of 0 seconds indicates no rounding on path delays.

ShadowingModelUsed — Use shadow fading
'no' (default) | 'yes'

Use shadow fading, specified as 'no' or 'yes'.

PathLossModelUsed — Use path loss model
'no' (default) | 'yes'

Use path loss model, specified as 'no' or 'yes'.

PathLossModel — Path loss model
'pathloss' (default) | character vector

Path loss model, specified as a character vector representing a valid function name. PathLossModel
applies only when PathLossModelUsed is set to 'yes'.

PathLossOption — Wall material
'CR_light' (default) | 'CR_heavy' | 'RR_light' | 'RR_heavy'

Wall material, specified as 'CR_light', 'CR_heavy', 'RR_light', or 'RR_heavy', indicating the
wall material for the A1 scenario NLOS path loss calculation. PathLossOption applies only when
PathLossModelUsed is set to 'yes'.

RandomSeed — Seed for random number generators
[] (default) | scalar

Seed for random number generators, specified as a scalar or empty brackets. Empty brackets, [],
indicate that the global random stream is used.

Version History
Introduced in R2017a

References
[1] Kyosti, Pekka, Juha Meinila, et al. WINNER II Channel Models. D1.1.2 V1.2. IST-4-027756

WINNER II, September 2007.

See Also
Objects
comm.WINNER2Channel
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Functions
winner2.wim | winner2.layoutparset
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zadoffChuSeq
Generate root Zadoff-Chu sequence

Syntax
seq = zadoffChuSeq(R,N)

Description
seq = zadoffChuSeq(R,N) generates the Rth root Zadoff-Chu sequence with length N, as defined
in 3GPP TS 36.211.

The function generates the sequence using the algorithm given by

seq(m+1) = exp(-j·π·R·m·(m+1)/N), for m = 0, ..., N-1.

The function uses a negative polarity on the argument of the exponent, that is, a clockwise sequence
of phases.

Examples

Examine Correlation Properties of Root Zadoff-Chu Sequence

Generate the 25th root Zadoff-Chu sequence with a length of 139.

Plot the absolute values of the output sequence.

seq = zadoffChuSeq(25,139);
plot(abs(xcorr(seq)./length(seq)))
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Input Arguments
R — Root of Zadoff-Chu sequence
positive integer

Root of the Zadoff-Chu sequence, specified as a positive integer.
Example: 25
Data Types: double

N — Length of Zadoff-Chu sequence
odd positive integer

Length of the Zadoff-Chu sequence, specified as an odd positive integer.
Example: 139
Data Types: double

Output Arguments
seq — Rth root Zadoff-Chu sequence
column vector of complex values

Rth root Zadoff-Chu sequence, returned as an N-by-1 vector of complex values.
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Version History
Introduced in R2012b

lteZadoffChuSeq was renamed to zadoffChuSeq

In release R2019a, the lteZadoffChuSeq function was renamed to zadoffChuSeq.

References
[1] 3GPP TS 36.211. "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and

Modulation." 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network..

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
comm.GoldSequence | comm.PNSequence
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addCustomBasemap
Add custom basemap

Syntax
addCustomBasemap(basemapName,URL)
addCustomBasemap( ___ ,Name,Value)

Description
addCustomBasemap(basemapName,URL) adds the custom basemap specified by URL to the list of
basemaps available for use with mapping functions. basemapName is the name you choose to call the
custom basemap. Added basemaps remain available for use in future MATLAB sessions.

addCustomBasemap( ___ ,Name,Value) specifies name-value arguments that set additional
parameters of the basemap.

Examples

Add and Remove a Custom Basemap

Add a custom basemap to view locations on an OpenTopoMap® basemap, then remove the custom
basemap from siteviewer.

Initialize simulation variables to:

• Define the name that you will use to specify your custom basemap.
• Specify the website that provides the map data. The first character of the URL indicates which

server to use to get the data. For load balancing, the provider has three servers that you can use:
a, b, or c.

• Create an attribution to display on the map that gives credit to the provider of the map data. Web
map providers might define specific requirements for the attribution.

• Define a display name for the custom map.

name = 'opentopomap';
url = 'a.tile.opentopomap.org';
copyright = char(uint8(169));
attribution = copyright + "OpenStreetMap contributors";
displayName = 'Open Topo Map';

Use addCustomBasemap to load the custom basemap, and then create a siteviewer object that
loads the custom basemap.

addCustomBasemap(name,url,'Attribution',attribution','DisplayName',displayName)
viewer = siteviewer('Basemap',name);
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After a custom basemap is added to siteviewer, the custom map is available for future calls to
siteviewer. Note the 'Open Topo Map' icon in the Imagery tab.

siteviewer;
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Use removeCustomBasemap to remove the custom basemap from future calls to siteviewer. Note
the 'Open Topo Map' icon is no longer available in the Imagery tab.

removeCustomBasemap(name)
siteviewer;
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Input Arguments
basemapName — Name used to identify basemap programmatically
string scalar | character vector

Name used to identify basemap programmatically, specified as a string scalar or character vector.
Example: 'openstreetmap'
Data Types: string | char

URL — Parameterized map URL
string scalar | character vector

Parameterized map URL, specified as a string scalar or character vector. A parameterized URL is an
index of the map tiles, formatted as ${z}/${x}/${y}.png or {z}/{x}/{y}.png, where:

• ${z} or {z} is the tile zoom level.
• ${x} or {x} is the tile column index.
• ${y} or {y} is the tile row index.

Example: 'https://hostname/${z}/${x}/${y}.png'
Data Types: string | char
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Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: addCustomBasemap(basemapName,URL,"Attribution",attribution)

Attribution — Attribution of custom basemap
string scalar | string array | character vector | cell array of character vectors

Attribution of the custom basemap, specified as a string scalar, string array, character vector, or cell
array of character vectors. To create a multiline attribution, specify a string array or nonscalar cell
array of character vectors.

When you create a custom basemap from a URL, the default attribution is 'Tiles courtesy of
DOMAIN_NAME_OF_URL', where DOMAIN_NAME_OF_URL is the domain name from the URL input
argument. If the host is 'localhost', or if URL contains only IP numbers, specify the attribution as
an empty string ("").
Example: "Credit: U.S. Geological Survey"
Data Types: string | char | cell

DisplayName — Display name of custom basemap
string scalar | character vector

Display name of the custom basemap, specified as a string scalar or character vector.
Example: "OpenStreetMap"
Data Types: string | char

MaxZoomLevel — Maximum zoom level of basemap
18 (default) | integer in range [0, 25]

Maximum zoom level of the basemap, specified as an integer in the range [0, 25].
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

IsDeployable — Map is deployable using MATLAB Compiler™
false or 0 (default) | true or 1

Map is deployable using MATLAB Compiler, specified as a numeric or logical 0 (false) or 1 (true).
Data Types: logical

Limitations
The addCustomBasemap function does not support adding custom basemaps from vector map tiles.

Tips
• You can find tiled web maps from various vendors, such as OpenStreetMap®, the USGS National

Map, Mapbox, DigitalGlobe, Esri® ArcGIS Online, the Geospatial Information Authority of Japan
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(GSI), and HERE Technologies. Abide by the map vendors terms-of-service agreement and include
accurate attribution with the maps you use.

• If you have Mapping Toolbox™, you can create custom basemaps from MBTiles files. For more
information, see addCustomBasemap.

• To access a list of available basemaps, press Tab before specifying the basemap in your plotting
function. This image shows a sample list of available basemaps, including several custom
basemaps from the USGS National Map.

See Also
geobasemap | geobubble | removeCustomBasemap | readBasemapImage

Topics
“Use Basemaps in Offline Environments” (Mapping Toolbox)
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removeCustomBasemap
Remove custom basemap

Syntax
removeCustomBasemap(basemapName)

Description
removeCustomBasemap(basemapName) removes the custom basemap specified by basemapName
from the list of available basemaps.

Examples

Add and Remove a Custom Basemap

Add a custom basemap to view locations on an OpenTopoMap® basemap, then remove the custom
basemap from siteviewer.

Initialize simulation variables to:

• Define the name that you will use to specify your custom basemap.
• Specify the website that provides the map data. The first character of the URL indicates which

server to use to get the data. For load balancing, the provider has three servers that you can use:
a, b, or c.

• Create an attribution to display on the map that gives credit to the provider of the map data. Web
map providers might define specific requirements for the attribution.

• Define a display name for the custom map.

name = 'opentopomap';
url = 'a.tile.opentopomap.org';
copyright = char(uint8(169));
attribution = copyright + "OpenStreetMap contributors";
displayName = 'Open Topo Map';

Use addCustomBasemap to load the custom basemap, and then create a siteviewer object that
loads the custom basemap.

addCustomBasemap(name,url,'Attribution',attribution','DisplayName',displayName)
viewer = siteviewer('Basemap',name);

2 Functions

2-818



After a custom basemap is added to siteviewer, the custom map is available for future calls to
siteviewer. Note the 'Open Topo Map' icon in the Imagery tab.

siteviewer;
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Use removeCustomBasemap to remove the custom basemap from future calls to siteviewer. Note
the 'Open Topo Map' icon is no longer available in the Imagery tab.

removeCustomBasemap(name)
siteviewer;
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Input Arguments
basemapName — Name of custom basemap
string scalar | character vector

Name of the custom basemap to remove, specified as a string scalar or character vector. You define
the basemap name when you add the basemap using the addCustomBasemap function.
Data Types: string | char

See Also
geoaxes | geobasemap | geobubble | geodensityplot | geoplot | geoscatter |
addCustomBasemap
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buildingMaterialPermittivity
Permittivity and conductivity of building materials

Syntax
[epsilon,sigma,complexepsilon] = buildingMaterialPermittivity(material,fc)

Description
[epsilon,sigma,complexepsilon] = buildingMaterialPermittivity(material,fc)
calculates the relative permittivity, conductivity, and complex relative permittivity for the specified
material at the specified frequency. The methods and equations modeled in the
buildingMaterialPermittivity function are presented in Recommendation ITU-R P.2040 [1].

Examples

Calculate Permittivity of Various Building Materials

Calculate relative permittivity and conductivity at 9 GHz for various building materials as defined by
textual classifications in ITU-R P.2040, Table 3.

material = ["vacuum";"concrete";"brick";"plasterboard";"wood"; ...
    "glass";"ceiling-board";"chipboard";"floorboard";"metal"];
fc = repmat(9e9,size(material)); % Frequency in Hz
[permittivity,conductivity] = ...
    arrayfun(@(x,y)buildingMaterialPermittivity(x,y),material,fc);

Display the results in a table.

varNames = ["Material";"Permittivity";"Conductivity"];
table(material,permittivity,conductivity,'VariableNames',varNames)

ans=10×3 table
       Material        Permittivity    Conductivity
    _______________    ____________    ____________

    "vacuum"                  1                 0  
    "concrete"             5.31           0.19305  
    "brick"                3.75             0.038  
    "plasterboard"         2.94          0.054914  
    "wood"                 1.99          0.049528  
    "glass"                6.27          0.059075  
    "ceiling-board"         1.5         0.0064437  
    "chipboard"            2.58           0.12044  
    "floorboard"           3.66          0.085726  
    "metal"                   1             1e+07  
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Plot Permittivity and Conductivity of Concrete at Various Frequencies

Calculate the relative permittivity and conductivity for concrete at frequencies specified.

fc = ((1:1:10)*10e9); % Frequency in Hz
[permittivity,conductivity] = ...
    arrayfun(@(y)buildingMaterialPermittivity("concrete",y),fc);

Plot the relative permittivity and conductivity of concrete across the range of frequencies.

figure
yyaxis left
plot(fc,permittivity)
ylabel('Relative Permittivity')
yyaxis right
plot(fc,conductivity)
ylabel('Conductivity (S/m)')
xlabel('Frequency (Hz)')
title('Permittivity and Conductivity of Concrete')

Input Arguments
material — Building material
"vacuum" | "concrete" | "brick" | "plasterboard" | ...

 buildingMaterialPermittivity

2-823



Building material, specified as vector of strings, or an equivalent character vector or cell array of
character vectors including one or more of these options:

"vacuum" "glass" "very-dry-ground"
"concrete" "ceiling-board" "medium-dry-ground"
"brick" "floorboard" "wet-ground"
"plasterboard" "chipboard"  
"wood" "metal"  

Example: ["vacuum" "brick"]
Data Types: char | string

fc — Carrier frequency
positive scalar

Carrier frequency in Hz, specified as a positive scalar.

Note fc must be in the range [1e6, 10e6] when the material is "very-dry-ground", "medium-
dry-ground" or "wet-ground".

Data Types: double

Output Arguments
epsilon — Relative permittivity
nonnegative scalar | nonnegative row vector

Relative permittivity of the building material, returned as a nonnegative scalar or row vector. The
output dimension of epsilon matches that of the input argument material. For more information
about the computation for the relative permittivity, see “ITU Building Materials” on page 2-825.

sigma — Conductivity
nonnegative scalar | nonnegative row vector

Conductivity, in Siemens/m, of the building material, returned as a nonnegative scalar or row vector.
The output dimension of sigma matches that of the input argument material. For more information
about the computation for the conductivity, see “ITU Building Materials” on page 2-825.

complexepsilon — Complex relative permittivity
complex scalar | row vector of complex values

Complex relative permittivity of the building material, returned as a complex scalar or row vector of
complex values.

The output dimension of complexepsilon matches that of the input argument material. For more
information about the computation for the complex relative permittivity, see “ITU Building Materials”
on page 2-825.
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More About
ITU Building Materials

Section 3 of ITU-R P.2040-1 [1] presents methods, equations, and values used to calculate real
relative permittivity, conductivity, and complex relative permittivity at carrier frequencies up to 100
GHz for common building materials.

The buildingMaterialPermittivity function uses equations from ITU-R P.2040-1 to compute
these values.

• The real part of the relative permittivity is calculated as
epsilon = afb.

The computation of epsilon is based on equation (58). f is the frequency in GHz. Values for a and
b are specified in Table 3 from ITU-R P.2040-1.

• The conductivity in Siemens/m is calculated as
sigma = cfd.

The computation of sigma is based on equation (59). f is the frequency in GHz. Values for c and d
are specified in Table 3 from ITU-R P.2040-1.

• The complex permittivity is calculated as
complexepsilon = epsilon – 1i sigma / (2πfcε0).

The computation of complexepsilon is based on Equations (59) and (9b). f is the frequency in
GHz. c is the velocity of light in free space. ε0 = 8.854187817e-12 Farads/m, where ε0 is the
electric constant for the permittivity of free space.

For cases where the value of b or d is zero, the corresponding value of epsilon or sigma is a or c,
respectively and independent of frequency.

The contents of Table 3 from ITU-R P.2040-1 are repeated in this table. The values a, b, c, and d are
used to calculate relative permittivity and conductivity. Except as noted for the three ground types,
the frequency ranges given in the table are not hard limits but are indicative of the measurements
used to derive the models. The buildingMaterialPermittivity function interpolates or
extrapolates relative permittivity and conductivity values for frequencies that fall outside of the noted
limits. To compute relative permittivity and conductivity for different types of ground as a function
carrier frequencies up to 1000 GHz, see the earthSurfacePermittivity function.

Material Class Real Part of Relative
Permittivity

Conductivity (S/m) Frequency
Range (GHz)

a b c d
Vacuum (~ air) 1 0 0 0 [0.001, 100]
Concrete 5.31 0 0.0326 0.8095 [1, 100]
Brick 3.75 0 0.038 0 [1, 10]
Plasterboard 2.94 0 0.0116 0.7076 [1, 100]
Wood 1.99 0 0.0047 1.0718 [0.001, 100]
Glass 6.27 0 0.0043 1.1925 [0.1, 100]
Ceiling board 1.50 0 0.0005 1.1634 [1, 100]
Chipboard 2.58 0 0.0217 0.78 [1, 100]
Floorboard 3.66 0 0.0044 1.3515 [50, 100]

 buildingMaterialPermittivity

2-825



Material Class Real Part of Relative
Permittivity

Conductivity (S/m) Frequency
Range (GHz)

a b c d
Metal 1 0 107 0 [1, 100]
Very dry ground 3 0 0.00015 2.52 [1, 10] only(a)

Medium dry
ground

15 – 0.1 0.035 1.63 [1, 10] only(a)

Wet ground 30 – 0.4 0.15 1.30 [1, 10] only(a)

Note (a): For the three ground types (very dry, medium dry, and wet), the noted frequency limits
cannot be exceeded.

Version History
Introduced in R2020a

References
[1] International Telecommunications Union Radiocommunication Sector. Effects of building materials

and structures on radiowave propagation above about 100MHz. Recommendation P.2040-1.
ITU-R, approved July 29, 2015. https://www.itu.int/rec/R-REC-P.2040-1-201507-I/en.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

When you specify multiple reflective materials, you must define each value as a character vector
(char data type) in a cell array.

See Also
Functions
earthSurfacePermittivity | raytrace | raypl | propagationModel

Objects
comm.Ray

2 Functions

2-826



earthSurfacePermittivity
Permittivity and conductivity of earth surface materials

Syntax
[epsilon,sigma,complexepsilon] = earthSurfacePermittivity('pure-water',fc,
temp)
[epsilon,sigma,complexepsilon] = earthSurfacePermittivity('dry-ice',fc,temp)
[epsilon,sigma,complexepsilon] = earthSurfacePermittivity('sea-water',fc,
temp,salinity)
[epsilon,sigma,complexepsilon] = earthSurfacePermittivity('wet-ice',fc,
liqfrac)

[epsilon,sigma,complexepsilon] = earthSurfacePermittivity('soil',fc,temp,
sandpercent,claypercent,specificgravity,vwc)
[epsilon,sigma,complexepsilon] = earthSurfacePermittivity('soil', ___ ,
bulkdensity)

[epsilon,sigma,complexepsilon] = earthSurfacePermittivity('vegetation',fc,
temp,gwc)

Description
The earthSurfacePermittivity function computes electrical characteristics (relative permittivity,
conductivity, and complex relative permittivity) of earth surface materials based on the methods and
equations presented in ITU-R P.527 [1]. The earthSurfacePermittivity function provides various
syntaxes to account for characteristics germane to the specified surface material.

[epsilon,sigma,complexepsilon] = earthSurfacePermittivity('pure-water',fc,
temp) calculates the electrical characteristics for pure water at the specified frequency and
temperature. For pure-water, the temperature setting must be greater than 0 ℃.

[epsilon,sigma,complexepsilon] = earthSurfacePermittivity('dry-ice',fc,temp)
calculates the electrical characteristics for dry-ice at the specified frequency and temperature. For
dry-ice, the temperature must be less than or equal to 0 ℃.

[epsilon,sigma,complexepsilon] = earthSurfacePermittivity('sea-water',fc,
temp,salinity) calculates the electrical characteristics for sea water at the specified frequency,
temperature, and salinity. For sea-water, the temperature must be greater than –2 ℃.

[epsilon,sigma,complexepsilon] = earthSurfacePermittivity('wet-ice',fc,
liqfrac) calculates the electrical characteristics for wet ice at the specified frequency, and liquid
water volume fraction. For wet-ice, the temperature is 0 ℃.

[epsilon,sigma,complexepsilon] = earthSurfacePermittivity('soil',fc,temp,
sandpercent,claypercent,specificgravity,vwc) calculates the electrical characteristics for
soil at the specified frequency, temperature, sand percentage, clay percentage, specific gravity, and
volumetric water content.

[epsilon,sigma,complexepsilon] = earthSurfacePermittivity('soil', ___ ,
bulkdensity) sets the soil bulk density in addition to input arguments from the previous syntax.
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[epsilon,sigma,complexepsilon] = earthSurfacePermittivity('vegetation',fc,
temp,gwc) calculates the electrical characteristics for vegetation at the specified frequency,
temperature, and gravimetric water content. For vegetation, the temperature must be greater than or
equal to –20 ℃.

Examples

Compare Permittivity and Conductivity of Salt-free Sea Water to Pure Water

Compare the relative permittivity and conductivity for salt-free (zero-salinity) sea water to pure
water.

Specify a carrier frequency of 9 GHz, temperature of 30℃, and salinity of zero.

fc = 9e9; % Carrier frequency in Hz.
temp = 30;
salinity = 0;

Compute the relative permittivity and conductivity.

[epsilon_pure_water,sigma_pure_water] = earthSurfacePermittivity('pure-water',fc,temp);
[epsilon_sea_water,sigma_sea_water] = earthSurfacePermittivity('sea-water',fc,temp,salinity);

Confirm that salt-free sea water and pure water have equal relative permittivity and conductivity.

isequal(epsilon_pure_water,epsilon_sea_water)

ans = logical
   1

isequal(sigma_pure_water,sigma_sea_water)

ans = logical
   1

Compare Permittivity and Conductivity of Wet Ice to Dry Ice

Compare the relative permittivity and conductivity for wet ice with no liquid water to dry ice at 0℃.
Confirm the results differ by a negligible amount.

Specify a carrier frequency of 12 GHz.

fc = 12e9; % Carrier frequency in Hz.

Calculate the relative permittivity and conductivity for wet ice with zero liquid water by volume.

liqfrac = 0;
[epsilon_wet_ice_0,sigma_wet_ice_0] = earthSurfacePermittivity('wet-ice',fc,liqfrac); % Set liquid water volume fraction to 0.

Calculate the relative permittivity and conductivity for dry ice at 0 ℃.
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temp = 0;
[epsilon_dry_ice_0,sigma_dry_ice_0] = earthSurfacePermittivity('dry-ice',fc,temp); % Set temperature to 0.

Compare the relative permittivity and conductivity for wet ice with no liquid to dry ice at 0℃.
Confirm that wet ice with no liquid and dry ice at 0℃ have essentially equal relative permittivity and
conductivity.

epsilon_wet_ice_0-epsilon_dry_ice_0

ans = 8.8818e-16

sigma_wet_ice_0-sigma_dry_ice_0

ans = -9.2179e-16

Plot permittivity and conductivity versus frequency for dry ice and for wet ice. For dry ice, vary the
temperature. For wet ice, vary the liquid water volume fraction. Calculate the permittivity and
conductivity values by using arrayfun to apply the earthSurfacePermittivity function to the
elements of the arrayed inputs.

freq = repmat([0.1,10,20,40,60]*1e9,6,1);
temp = repmat((-100:20:0)',1,5);
liqfrac = repmat((0:0.2:1)',1,5);
[epsilon_dry_ice, sigma_dry_ice] = arrayfun(@(x,y)earthSurfacePermittivity('dry-ice',x,y),freq,temp);
[epsilon_wet_ice, sigma_wet_ice] = arrayfun(@(x,y)earthSurfacePermittivity('wet-ice',x,y),freq,liqfrac);

Display tiled surface plots across specified ranges.

figure
tiledlayout(2,2)
nexttile
surf(temp,freq,epsilon_dry_ice,'FaceColor','interp')
title('Permittivity of Dry Ice')
xlabel('Temperature (℃)')
ylabel('Frequency (Hz)')
nexttile
surf(temp,freq,sigma_dry_ice,'FaceColor','interp')
title('Conductivity of Dry Ice')
nexttile
surf(liqfrac,freq,epsilon_wet_ice,'FaceColor','interp')
title('Permittivity of Wet Ice')
xlabel('Liquid Fraction')
ylabel('Frequency (Hz)')
nexttile
surf(liqfrac,freq,sigma_wet_ice,'FaceColor','interp')
title('Conductivity of Wet Ice')
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Calculate Permittivity and Conductivity of Various Soil Mixtures

Calculate relative permittivity and conductivity for various soil mixtures as defined by textual
classifications in ITU-R P.527, Table 1.

Initialize computation variables for constant values and arrayed values.

fc = 28e9; % Frequency in Hz
temp = 23; % Temperature in °C
vwc = 0.5; % Volumetric water content
pSand = [51.52; 41.96; 30.63; 5.02]; % Sand percentage
pClay = [13.42; 8.53; 13.48; 47.38]; % Clay percentage
sg = [2.66; 2.70; 2.59; 2.56]; % Specific gravity
bd = [1.6006; 1.5781; 1.5750; 1.4758]; % Bulk density (g/cm^3)

Calculate the relative permittivity and conductivity for these textual classifications: sandy loam, loam,
silty loam, and silty clay. Use arrayfun to apply the earthSurfacePermittivity function to the
elements of the arrayed inputs. Tabulate the results.

[Permittivity,Conductivity] = arrayfun(@(w,x,y,z)earthSurfacePermittivity( ...
    'soil',fc,temp,w,x,y,vwc,z),pSand,pClay,sg,bd);

pSilt = 100 - (pSand + pClay); % Silt percentage
soilType = ["Sandy Loam";"Loam";"Silty Loam";"Silty Clay"];
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varNames1 = ["Soil Textual Classification";"Sand";"Clay";"Silt";"Specific Gravity";"Bulk Density"];
varNames2 = ["Soil Textual Classification";"Permittivity";"Conductivity"];

ITU-R P.527, Table 1 specifies the sand percentage, clay percentage, specific gravity, and bulk density
for soil mixtures with these soil textual classifications.

table(soilType,pSand,pClay,pSilt,sg,bd,'VariableNames',varNames1)

ans=4×6 table
    Soil Textual Classification    Sand     Clay     Silt     Specific Gravity    Bulk Density
    ___________________________    _____    _____    _____    ________________    ____________

           "Sandy Loam"            51.52    13.42    35.06          2.66             1.6006   
           "Loam"                  41.96     8.53    49.51           2.7             1.5781   
           "Silty Loam"            30.63    13.48    55.89          2.59              1.575   
           "Silty Clay"             5.02    47.38     47.6          2.56             1.4758   

The relative permittivity and conductivity for these soil textual classifications are included in this
table.

table(soilType,Permittivity,Conductivity,'VariableNames',varNames2)

ans=4×3 table
    Soil Textual Classification    Permittivity    Conductivity
    ___________________________    ____________    ____________

           "Sandy Loam"               15.281            18.2   
           "Loam"                     14.563          16.998   
           "Silty Loam"               13.965          16.011   
           "Silty Clay"               12.861          14.647   

Calculate Permittivity and Conductivity of Vegetation

Calculate relative permittivity and conductivity versus frequency for vegetation, varying gravimetric
water content and temperature.

Calculate relative permittivity and conductivity for vegetation at specified settings.

fc = 10e9; % Frequency in Hz
temp  = 23; % Temperature in °C
gwc = 0.68; % Gravimetric water content
[epsilon_veg,sigma_veg] = ...
    earthSurfacePermittivity('vegetation',fc,temp,gwc)

epsilon_veg = 20.5757

sigma_veg = 4.9320

Calculate values necessary to plot permittivity and conductivity by using arrayfun to apply the
earthSurfacePermittivity function to the elements of the arrayed inputs.

For a range of temperatures, calculate values to plot permittivity and conductivity versus frequency
for vegetation at a 0.68 gravimetric water content.
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fc = repmat([0.1,10,20,40,60]*1e9,6,1);
gwc1 = 0.68;
temp1 = repmat((-20:20:80)',1,5);
[epsilon_veg_gwc,sigma_veg_gwc] = ...
    arrayfun(@(x,y)earthSurfacePermittivity('vegetation',x,y,gwc1),fc,temp1);

For a range of gravimetric water contents, calculate values to plot permittivity and conductivity
versus frequency for vegetation at 10°C.

temp2 = 10;
gwc2 = repmat((0.2:0.1:0.7)',1,5);
[epsilon_veg_tmp, sigma_veg_tmp] = ...
    arrayfun(@(x,z)earthSurfacePermittivity('vegetation',x,temp2,z),fc,gwc2);

Display tiled surface plots across specified ranges.

figure
tiledlayout(2,2)
nexttile
surf(temp1,fc,epsilon_veg_gwc,'FaceColor','interp')
title('Permittivity of Vegetation at 0.68 gwc')
xlabel('Temperature (℃)')
ylabel('Frequency (Hz)')
nexttile
surf(temp1,fc,sigma_veg_gwc,'FaceColor','interp')
title('Conductivity of Vegetation at 0.68 gwc')
nexttile
surf(gwc2,fc,epsilon_veg_tmp,'FaceColor','interp')
title('Permittivity of Vegetation at 10°C')
xlabel('Gravimetric Water Content')
ylabel('Frequency (Hz)')
nexttile
surf(gwc2,fc,sigma_veg_tmp,'FaceColor','interp')
title('Conductivity of Vegetation at 10°C')
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Input Arguments
fc — Carrier frequency
scalar in the range (0, 1e12]

Carrier frequency in Hz, specified as a scalar in the range (0, 1e12].
Data Types: double

temp — Temperature
numeric scalar

Temperature in °C, specified as a numeric scalar. Valid surfaces and associated temperature limits are
indicated in this table.

Surface Valid Temperature (℃)
pure-water greater than 0
dry-ice less than or equal to 0
sea-water greater than or equal to –2
soil any numeric
vegetation ≥ –20
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Note When the surface is wet-ice, the temperature is 0 ℃.

Data Types: double

salinity — Salinity of sea water
nonnegative scalar

Salinity of the sea water in g/Kg, specified as a nonnegative scalar.
Data Types: double

liqfrac — Liquid water volume fraction of wet ice
numeric scalar in the range [0, 1]

Liquid water volume fraction of the wet ice, specified as a numeric scalar in the range [0, 1].
Data Types: double

sandpercent — Sand percentage of soil
numeric scalar in the range [0, 100]

Sand percentage of the soil, specified as a numeric scalar in the range [0, 100]. The sum of
sandpercent and claypercent must be less than or equal to 100.
Data Types: double

claypercent — Clay percentage of soil
numeric scalar in the range [0, 100]

Clay percentage of the soil, specified as a numeric scalar in the range [0, 100]. The sum of
sandpercent and claypercent must be less than or equal to 100.
Data Types: double

specificgravity — Specific gravity of soil
nonnegative scalar

Specific gravity of the soil, specified as a nonnegative scalar. The specific gravity is the mass density
of the soil sample divided by the mass density of the amount of water in the soil sample.
Data Types: double

vwc — Volumetric water content of soil
numeric scalar in the range [0, 1]

Volumetric water content of the soil, specified as a numeric scalar in the range [0, 1]. For more
information, see “Soil Water Content” on page 2-836.
Data Types: double

bulkdensity — Bulk density of soil
nonnegative scalar

Bulk density, in g/cm3, of the soil, specified as a nonnegative scalar. For more information, see “Soil
Water Content” on page 2-836.
Data Types: double
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gwc — Gravimetric water content of vegetation
numeric scalar in the range [0, 0.7]

Gravimetric water content of the vegetation, specified as a numeric scalar in the range [0, 0.7]. For
more information, see “Soil Water Content” on page 2-836.
Data Types: double

Output Arguments
epsilon — Relative permittivity
nonnegative scalar

Relative permittivity of the earth surface, returned as a nonnegative scalar.

sigma — Conductivity
nonnegative scalar

Conductivity of the earth surface in Siemens per meter (S/m), returned as a nonnegative scalar.

complexepsilon — Complex relative permittivity
complex scalar

Complex relative permittivity of the earth surface, returned as a complex scalar calculated as
complexepsilon = epsilon – 1i sigma / (2πfcε0).

The computation of complexepsilon is based on Equations (59) and (9b) in ITU-R P.527 [1]. f is the
frequency in GHz. c is the velocity of light in free space. ε0 = 8.854187817e-12 Farads/m, where ε0 is
the electric constant for the permittivity of free space.

More About
ITU Terrain Materials

ITU-R P.527 [1] presents methods and equations to calculate complex relative permittivity at carrier
frequencies up to 1,000 GHz for these common earth surface materials.

• Water
• Sea Water
• Dry or Wet Ice
• Dry or Wet Soil (combination of sand, clay, and silt)
• Vegetation (above and below freezing)

As described in ITU-R P.527, specific textural classification applies to these mixtures of sand, clay, and
silt in soil with associated specific gravities and bulk densities.

Soil Designation
Textural Class

Sandy Loam Loam Silty Loam Silty Clay

% Sand 51.52 41.96 30.63 5.02
% Clay 13.42 8.53 13.48 47.38
% Silt 35.06 49.51 55.89 47.60
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Soil Designation
Textural Class

Sandy Loam Loam Silty Loam Silty Clay

Specific gravity
(ρs)

2.66 2.70 2.59 2.56

Bulk Density (ρb) in
g/cm3

1.6006 1.5781 1.5750 1.4758

Soil Water Content

Soil water content is expressed on a gravimetric or volumetric basis. Gravimetric water content, gwc,
is the mass of water per mass of dry soil. Volumetric water content, vwc, is the volume of liquid water
per volume of soil. The bulk density, bulkdensity, is the ratio of the dry soil weight to the volume of
the soil sample. The relationship between gwc and vwc is vwc = gwc ⨉ bulkdensity. When bulk
density is not specified, the value of bulkdensity is computed by using ITU-R P.527, Equation 36:

bulkdensity = 1.07256 + 0.078886 ln(pSand) + 0.038753 ln(pClay) + 0.032732 ln(pSilt),
where

• pSand = sandpercent
• pClay = claypercent
• pSilt = 100 – (sandpercent + claypercent)

Version History
Introduced in R2020a

References
[1] International Telecommunications Union Radiocommunication Sector. Electrical characteristics of

the surface of the Earth. Recommendation P.527-5. ITU-R, approved August 14, 2019. https://
www.itu.int/rec/R-REC-P.527-5-201908-I/en.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
buildingMaterialPermittivity | raytrace | raypl | propagationModel

Objects
comm.Ray
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raypl
Path loss and phase change for RF propagation ray

Syntax
[pl,phase] = raypl(ray)
[pl,phase] = raypl(ray,Name,Value)

Description
[pl,phase] = raypl(ray) returns the path loss pl in dB and phase shift phase in radians for the
RF propagation ray ray. The function calculates the path loss and phase shift using free space loss
and reflection loss derived from the propagation path, reflection materials, and antenna polarizations.

By default, raypl assumes the antennas are unpolarized. You can polarize the antennas by specifying
the TransmitterPolarization and ReceiverPolarization name-value arguments.

For more information about the path loss computations, see “Path Loss Computation” on page 2-
845.

[pl,phase] = raypl(ray,Name,Value) specifies options using name-value arguments. For
example, "ReflectionMaterials","brick" specifies the reflection material as brick.

Examples

Reevaluate Path Loss Changing Reflection Materials and Frequency

Change the reflection materials and frequency for a ray and reevaluate the path loss and phase shift.

Launch Site Viewer with buildings in Hong Kong. For more information about the osm file, see [1] on
page 2-841. Specify transmitter and receiver sites.

viewer = siteviewer("Buildings","hongkong.osm");

tx = txsite("Latitude",22.2789,"Longitude",114.1625, ...
    "AntennaHeight",10,"TransmitterPower",5, ...
    "TransmitterFrequency",28e9);
rx = rxsite("Latitude",22.2799,"Longitude",114.1617, ...
    "AntennaHeight",1);

Perform ray tracing between the sites.

pm = propagationModel("raytracing", ...
    "Method","image", ...
    "MaxNumReflections",2);
rays = raytrace(tx,rx,pm);

Find the first ray with 2-order reflections from the result. Display the ray characteristics. Plot the ray
to see the ray reflect off two buildings.

ray = rays{1}(find([rays{1}.NumInteractions] == 2,1))

 raypl

2-837



ray = 
  Ray with properties:

      PathSpecification: 'Locations'
       CoordinateSystem: 'Geographic'
    TransmitterLocation: [3×1 double]
       ReceiverLocation: [3×1 double]
            LineOfSight: 0
           Interactions: [1×2 struct]
              Frequency: 2.8000e+10
         PathLossSource: 'Custom'
               PathLoss: 121.8178
             PhaseShift: 4.5601

   Read-only properties:
       PropagationDelay: 8.3060e-07
    PropagationDistance: 249.0068
       AngleOfDeparture: [2×1 double]
         AngleOfArrival: [2×1 double]
        NumInteractions: 2

plot(ray)

By default, all buildings have concrete building material electrical characteristics. Change the
material to metal for the second reflection and re-evaluate path loss. Use the raypl function to
reevaluate the pathloss for the ray. Display the ray path to compare the change in path loss. Replot to
show the slight change in color due to the path loss change of the ray.

[ray.PathLoss,ray.PhaseShift] = raypl(ray, ...
    "ReflectionMaterials",["concrete","metal"])
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ray = 
  Ray with properties:

      PathSpecification: 'Locations'
       CoordinateSystem: 'Geographic'
    TransmitterLocation: [3×1 double]
       ReceiverLocation: [3×1 double]
            LineOfSight: 0
           Interactions: [1×2 struct]
              Frequency: 2.8000e+10
         PathLossSource: 'Custom'
               PathLoss: 117.1214
             PhaseShift: 4.5601

   Read-only properties:
       PropagationDelay: 8.3060e-07
    PropagationDistance: 249.0068
       AngleOfDeparture: [2×1 double]
         AngleOfArrival: [2×1 double]
        NumInteractions: 2

ray = 
  Ray with properties:

      PathSpecification: 'Locations'
       CoordinateSystem: 'Geographic'
    TransmitterLocation: [3×1 double]
       ReceiverLocation: [3×1 double]
            LineOfSight: 0
           Interactions: [1×2 struct]
              Frequency: 2.8000e+10
         PathLossSource: 'Custom'
               PathLoss: 117.1214
             PhaseShift: 4.5601

   Read-only properties:
       PropagationDelay: 8.3060e-07
    PropagationDistance: 249.0068
       AngleOfDeparture: [2×1 double]
         AngleOfArrival: [2×1 double]
        NumInteractions: 2

plot(ray)
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Change the frequency and reevaluate the path loss and phase shift. Plot the ray again and observe
the obvious color change.

ray.Frequency = 2e9;
[ray.PathLoss,ray.PhaseShift] = raypl(ray, ...
    "ReflectionMaterials",["concrete","metal"]);
plot(ray)
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Appendix

[1] The osm file is downloaded from https://www.openstreetmap.org, which provides access to crowd-
sourced map data all over the world. The data is licensed under the Open Data Commons Open
Database License (ODbL), https://opendatacommons.org/licenses/odbl/.

Input Arguments
ray — RF propagation ray
comm.Ray object

RF propagation ray, specified as one comm.Ray object. The PathSpecification property of the
object must be "Locations".
Data Types: comm.Ray

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: raypl(ray,"TransmitterPolarization","H","ReceiverPolarization","H"),
specifies the horizontal polarizations for the transmit and receive antennas for ray.

 raypl
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ReflectionMaterials — Reflection materials
"concrete" (default) | string scalar | 1-by-NR string vector | character vector | 1-by-NR cell array of
character vectors | 2-by-1 numeric vector | 2-by-NR numeric matrix

Reflection materials for a non-line-of-sight (NLOS) ray, specified as a string scalar, a 1-by-NR string
vector, a character vector, a 1-by-NR cell array of character vectors, a 2-by-1 numeric vector, or a 2-
by-NR numeric matrix. NR is the number of reflections stored in the NumReflections property of
ray.

When you specify one reflection material, the reflection material applies to all the reflections. When
you specify multiple reflection materials, each material applies to the associated reflection point in
ray.

• To use predefined reflection materials, specify ReflectionMaterials as a string scalar, a
character vector, a string vector, or a cell array of character vectors. Specify each reflection
material as one of these options: "concrete", "brick", "wood", "glass", "plasterboard",
"ceiling-board", "chipboard", "floorboard", "metal", "water", "vegetation",
"loam", or "perfect-reflector".

• To use custom reflection materials, specify a 2-by-1 numeric vector or a 2-by-NR numeric matrix.
Each column is of the form [rp; cv], where rp is the relative permittivity and cv is the
conductivity.

For more information, see “ITU Permittivity and Conductivity Values for Common Materials” on page
2-844.
Example: "ReflectionMaterials",["concrete","water"], specifies that a ray with two
reflections uses the electrical characteristics of concrete at the first reflection point and water at the
second reflection point.
Data Types: string | char | double

TransmitterPolarization — Transmit antenna polarization type
"none" (default) | "V" | "H" | "LHCP" | "RHCP" | normalized 2-by-1 Jones vector

Transmit antenna polarization type, specified as one of these values:

• "none" — Unpolarized
• "V" — Linearly polarized in the vertical (θ) direction
• "H" — Linearly polarized in the horizontal (φ) direction
• "LHCP" — Left-hand circular polarized
• "RHCP" — Right-hand circular polarized
• A normalized 2-by-1 Jones vector (also called a polarization matrix) of the form [H;V], where H is

the horizontal component and V is the vertical component.

For more information about polarization types and Jones vectors, see “Jones Vector Notation” on page
2-847.
Example: "TransmitterPolarization","RHCP" specifies right-hand circular polarization for the
transmit antenna.
Data Types: double | char | string

ReceiverPolarization — Receive antenna polarization type
"none" (default) | "V" | "H" | "LHCP" | "RHCP" | normalized 2-by-1 Jones vector
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Receive antenna polarization type, specified as one of these values:

• "none" — Unpolarized
• "V" — Linearly polarized in the vertical (θ) direction
• "H" — Linearly polarized in the horizontal (φ) direction
• "LHCP" — Left-hand circular polarized
• "RHCP" — Right-hand circular polarized
• A normalized 2-by-1 Jones vector (also called a polarization matrix) of the form [H;V], where H is

the horizontal component and V is the vertical component.

For more information about polarization types and Jones vectors, see “Jones Vector Notation” on page
2-847.
Example: "ReceiverPolarization",[1;0] specifies horizontal polarization for the receive
antenna by using Jones vector notation.
Data Types: double | char | string

TransmitterAxes — Orientation of transmit antenna axes
3-by-3 identity matrix (default) | 3-by-3 unitary matrix

Orientation of the transmit antenna axes, specified as a 3-by-3 unitary matrix indicating the rotation
from the transmitter local coordinate system (LCS) into the global coordinate system (GCS). When
the CoordinateSystem property of the comm.Ray is set to "Geographic", the GCS orientation is
the local East-North-Up (ENU) coordinate system at transmitter. For more information, see
“Coordinate System Orientation” on page 2-844.
Example: "TransmitterAxes",eye(3), specifies that the local coordinate system for the
transmitter axes is aligned with the global coordinate system. This is the default orientation.
Data Types: double

ReceiverAxes — Orientation of receive antenna axes
3-by-3 identity matrix (default) | 3-by-3 unitary matrix

Orientation of the receive antenna axes, specified as a 3-by-3 unitary matrix indicating the rotation
from the receiver local coordinate system (LCS) into the global coordinate system (GCS). The GCS
orientation is the local East-North-Up (ENU) coordinate system at receiver when
the .CoordinateSystem property of the comm.Ray is set to "Geographic". For more information,
see “Coordinate System Orientation” on page 2-844.
Example: "ReceiverAxes",[0 -1 0; 1 0 0; 0 0 1], specifies a 90° rotation around the z-axis
of the local receiver coordinate system with respect to the global coordinate system.
Data Types: double

Output Arguments
pl — Path loss
nonnegative scalar

Path loss in dB, returned as a nonnegative scalar.
Data Types: double
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phase — Phase shift
scalar

Phase shift in radians, returned as a scalar in the range [–π, π] radians. The argument uses the e-iωt

time convention.
Data Types: double

More About
ITU Permittivity and Conductivity Values for Common Materials

ITU-R P.2040-1 [2] and ITU-R P.527-5 [3] present methods, equations, and values used to calculate
real relative permittivity, conductivity, and complex relative permittivity for the common materials.

• For information about the values computed for building materials specified in ITU-R P.2040-1, see
buildingMaterialPermittivity.

• For information about the values computed for terrain materials specified in ITU-R P.527-5, see
earthSurfacePermittivity.

Coordinate System Orientation

This image shows the orientation of the electromagnetic fields in the global coordinate system (GCS)
and the local coordinate systems of the transmitter and receiver.

When the CoordinateSystem property of the comm.Ray is set to "Geographic", the GCS
orientation is the local East-North-Up (ENU) coordinate system at observer. The path loss
computation accounts for the round-earth differences between ENU coordinates at the transmitter
and receiver.
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Path Loss Computation

The ray tracing model used by the raypl function calculates reflection losses by tracking the
horizontal and vertical polarizations of signals through the propagation path. Total power loss is the
sum of free space loss and reflection loss.

This image shows a reflection path from a transmitter site tx to a receiver site rx.

The model determines polarization and reflection loss using these steps.

1 Track the propagation of the ray in 3-D space by calculating the propagation matrix P. The matrix
is a repeating product, where i is the number of reflection points.

P = ∏
i

Pi

For each reflection, calculate Pi by transforming the global coordinates of the incident
electromagnetic field into the local coordinates of the reflection plane, multiplying the result by a
reflection coefficient matrix, and transforming the coordinates back into the original global
coordinate system [1]. The equations for Pi and P0 are:

Pi = sout pout kout i

RV α 0 0
0 RH α 0
0 0 1 i

sin pin kin i
−1
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P0 =
1 0 0
0 1 0
0 0 1

where:

• s, p, and k form a basis for the plane of incidence (the plane created by the incident ray and
the surface normal of the reflection plane). s and p are perpendicular and parallel,
respectively, to the plane of incidence.

• kin and kout are the directions (in global coordinates) of the incident and exiting rays,
respectively.

• sin and sout are the directions (in global coordinates) of the horizontal polarizations for the
incident and exiting rays, respectively.

• pin and pout are the directions (in global coordinates) of the vertical polarizations for the
incident and exiting rays, respectively.

• RH and RV are the Fresnel reflection coefficients for the horizontal and vertical polarizations,
respectively. α is the incident angle of the ray and εr is the complex relative permittivity of the
material.

RH(α) =
cos(α) − (εr − sin2(α))/εr2

cos(α) + (εr − sin2(α))/εr2

RV(α) =
cos(α) − εr − sin2(α)
cos(α) + εr − sin2(α)

2 Project the propagation matrix P into a 2-by-2 polarization matrix R. The model rotates the
coordinate systems for the transmitter and receiver so that they are in global coordinates.

R =
Hin ⋅ Hrx Vin ⋅ Hrx
Hin ⋅ Vrx Vin ⋅ Vrx

Hin = P(Vtx × ktx)

Vin = PVtx

where:

• Hrx and Vrx are the directions (in global coordinates) of the horizontal (Eθ) and vertical (Eϕ)
polarizations, respectively, for the receiver.

• Hin and Vin are the directions (in global coordinates) of the propagated horizontal and vertical
polarizations, respectively.

• Vtx is the direction (in global coordinates) of the nominal vertical polarization for the ray
departing the transmitter.

• ktx is the direction (in global coordinates) of the ray departing the transmitter.
3 Specify the normalized horizontal and vertical polarizations of the electric field at the transmitter

and receiver by using the 2-by-1 Jones polarization vectors Jtx and Jrx, respectively. If either the

transmitter or receiver are unpolarized, then the model assumes Jtx = Jrx = 2
2

1
1

.
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4 Calculate the polarization and reflection loss IL by combining R, Jtx, and Jrx.

IL = − 20log10 Jrx
−1R Jtx

Jones Vector Notation

For Jones vector notation, the raypl function describes signal polarization using Jones calculus.

The orthogonal components of Jones vectors are defined for Eθ and Eφ. This table shows the Jones
vector corresponding to various antenna polarizations.

Antenna Polarization Type Corresponding Jones Vector
Linear polarized in the θ direction H

V
=

0
1

Linear polarized in the φ direction H
V

=
1
0

Left-hand circular polarized (LHCP) H
V

= 1
2

j
1

Right-hand circular polarized (RHCP) H
V

= 1
2
− j
1

Version History
Introduced in R2020a

Ray tracing models using SBR method find paths with exact geometric accuracy
Behavior changed in R2022b

When you find propagation paths using the raytrace function and a ray tracing model that uses the
shooting and bouncing rays (SBR) method, MATLAB corrects the results so that the geometric
accuracy of each path is exact, using single-precision floating-point computations. In previous
releases, the paths have approximate geometric accuracy.

As a result, when you use rays returned by the raytrace function as input to the raypl function, the
raypl function can return different results than in previous releases.

References
[1] Chipman, Russell A., Garam Young, and Wai Sze Tiffany Lam. "Fresnel Equations." In Polarized

Light and Optical Systems. Optical Sciences and Applications of Light. Boca Raton: Taylor &
Francis, CRC Press, 2019.

[2] International Telecommunications Union Radiocommunication Sector. Effects of building materials
and structures on radiowave propagation above about 100MHz. Recommendation P.2040-1.
ITU-R, approved July 29, 2015. https://www.itu.int/rec/R-REC-P.2040-1-201507-I/en.

[3] International Telecommunications Union Radiocommunication Sector. Attenuation by atmospheric
gases. Recommendation P.676-11. ITU-R, approved September 30, 2016. https://
www.itu.int/rec/R-REC-P.676-11-201609-S/en.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

When you specify multiple reflective materials, you must define each value as a character vector
(char data type) in a cell array.

See Also
Functions
raytrace | buildingMaterialPermittivity | earthSurfacePermittivity |
propagationModel

Objects
comm.Ray | siteviewer
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blkdiagbfweights
MIMO channel block diagonalized weights

Syntax
[wp,wc] = blkdiagbfweights(chanmat,ns)
[wp,wc] = blkdiagbfweights(chanmat,ns,pt)

Description
[wp,wc] = blkdiagbfweights(chanmat,ns) returns precoding weights, wp, and combining
weights, wc, derived from the channel response matrices contained in a MATLAB cell array chanmat.

• You can specify multiple user channels by putting each channel in a chanmat cell. chanmat{k}
represents the kthchannel from the transmitter to the user.

• • For a single frequency, specify the channel cell as a matrix.
• For multiple frequencies, specify the channel cell as a three-dimensional array where the rows

represent different subcarriers.
• Specify multiple subchannels per channel using the ns argument. Subchannels represent different

data streams. ns specifies the number of subchannels for each user channel. Multiply the data
streams by the precoding weights, wp.

The precoding and combining weights diagonalize the channel into independent subchannels so that
for the kthuser, the matrix wp*chanmat{k}*wc{k} is diagonal for each subcarrier.

[wp,wc] = blkdiagbfweights(chanmat,ns,pt) also specifies the total transmitted power, pt,
per subcarrier.

Examples

Spatial Multiplexing with Block Diagonal Weights

Start with a base station consisting of a uniform linear array (ULA) with 16 antennas, and two users
having receiver ULA arrays with 8 and 4 antennas, respectively. Show that using block
diagonalization-based precoding and combining weights achieves spatial multiplexing, where the
received signal at each user can be decoded without interference from the other user. Specify two
data streams for each user.

Specify the transmitter location in txpos and two user receiver locations in rxpos1 and rxpos2.
Array elements are spaced one-half wavelength apart.

txpos = (0:15)*0.5;
rxpos1 = (0:7)*0.5;
rxpos2 = (0:3)*0.5;

Create the channel matrix cell array using scatteringchanmtx and then compute the beamforming
weights wp and wc. Each channel corresponds to a user. Assume that the channels have 10 scatterers.
Each channel has two subchannels specified by the vector ns.
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chanmat = {scatteringchanmtx(txpos,rxpos1,10), ...
    scatteringchanmtx(txpos,rxpos2,10)};
ns = [2 2];
[wp,wc] = blkdiagbfweights(chanmat,ns);

The weights diagonalize the channel matrices for each user.

For channel 1:

disp(wp*chanmat{1}*wc{1})

   8.2269 - 0.0000i   0.0000 - 0.0000i
   0.0000 + 0.0000i   6.1371 - 0.0000i
   0.0000 - 0.0000i  -0.0000 + 0.0000i
   0.0000 - 0.0000i   0.0000 + 0.0000i

For channel 2:

disp(wp*chanmat{2}*wc{2})

  -0.0000 + 0.0000i  -0.0000 + 0.0000i
  -0.0000 + 0.0000i  -0.0000 + 0.0000i
   8.7543 - 0.0000i   0.0000 - 0.0000i
   0.0000 + 0.0000i   4.4372 + 0.0000i

First create four subchannels to carry the data streams: two subchannels per channel. Each data
stream contains 20 samples of ±1. Precode the input streams and combine the streams to produce
the recovered signals.

x = 2*round(rand([20,4])) - 1;
xp = x*wp;
y1 = xp*chanmat{1} + 0.1*randn(20,8);
y2 = xp*chanmat{2} + 0.1*randn(20,4);
y = [y1*wc{1},y2*wc{2}];

Overlay stem plots of the input and recovered signals to show that the received user signals are the
same as the transmitted signals.

for m = 1:4
    subplot(4,1,m)
    s = stem([x(:,m) 2*((real(y(:,m)) > 0) - 0.5)]);
    s(1).LineWidth = 2;
    s(2).MarkerEdgeColor = 'none';
    s(2).MarkerFaceColor = 'r';
    ylabel('Signal')
    title(sprintf('User %d Stream %d',ceil(m/2),rem(m-1,2) + 1))
    if m==1
        legend('Input','Recovered','Location','best')
    end
end
xlabel('Samples')
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Spatial Multiplexing with Specified Power

Start with a base station consisting of a uniform linear array (ULA) with 16 antennas, and two users
having receiver ULA arrays with 8 and 5 antennas, respectively. Show how to use three-dimensional
arrays of channel matrices to handle two subcarriers. Then, the channel matrix for the first user takes
the form 2-by-16-by-8 and the channel matrix for the second user takes the form 2-by-16-by-5. Also
assume that there are two data streams for each user.

Specify the transmitter location in txpos and two user receiver locations in rxpos1 and rxpos2.
Array elements are spaced one-half wavelength apart.

nr1 = 8;
nr2 = 5;
txpos = (0:15)*0.5;
rxpos1 = (0:(nr1-1))*0.5;
rxpos2 = (0:(nr2-1))*0.5;

Create the channel matrices using scatteringchanmtx and put them in a cell array. To create a
second subchannel for each receiver, duplicate each channel matrix. Assume 10 point scatterers in
computing the channel matrix.

smtmp1 = scatteringchanmtx(txpos,rxpos1,10);
smtmp2 = scatteringchanmtx(txpos,rxpos2,10);
sm1 = zeros(2,16,8);
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sm2 = zeros(2,16,5);
sm1(1,:,:) = smtmp1;
sm1(2,:,:) = smtmp1;
sm2(1,:,:) = smtmp2;
sm2(2,:,:) = smtmp2;
chanmat = {sm1,sm2};

Specify that there are two data streams for each user.

ns = [2 2];

Specify the transmitted powers for each subcarrier.

pt = [1.0 1.5];

Compute the beamforming weights.

[wp,wc] = blkdiagbfweights(chanmat,ns,pt);

Show that the channels are diagonalized for the first subcarrier.

ksubcr = 1;
wpx = squeeze(wp(ksubcr,:,:));
chanmat1 = squeeze(chanmat{1}(ksubcr,:,:));
chanmat2 = squeeze(chanmat{2}(ksubcr,:,:));
wc1 = squeeze(wc{1}(ksubcr,:,:));
wc2 = squeeze(wc{2}(ksubcr,:,:));
wpx*chanmat1*wc1

ans = 4×2 complex

   8.2104 + 0.0000i  -0.0000 - 0.0000i
   0.0000 - 0.0000i   5.9732 - 0.0000i
   0.0000 - 0.0000i  -0.0000 - 0.0000i
   0.0000 - 0.0000i   0.0000 - 0.0000i

wpx*chanmat2*wc2

ans = 4×2 complex

  -0.0000 + 0.0000i   0.0000 + 0.0000i
  -0.0000 + 0.0000i   0.0000 + 0.0000i
   8.8122 + 0.0000i  -0.0000 + 0.0000i
   0.0000 + 0.0000i   4.8186 - 0.0000i

Propagate the signals to each user and then decode. Generate four streams of random data
containing -1's and +1's and having two columns for each user. Each stream is a subchannel.

x = 2*(round(rand([20 4]))) - 1;

Precode the data streams.

xp = x*wpx;
y1 = xp*chanmat1 + 0.1*randn(20,8);
y2 = xp*chanmat2 + 0.1*randn(20,5);

Decode the data streams.
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y = [y1*wc1,y2*wc2];

Overlay stem plots of the input and recovered signals to show that the received user signals are the
same as the transmitted signals.

for m = 1:4
    subplot(4,1,m)
    s = stem([x(:,m) 2*((real(y(:,m)) > 0) - 0.5)]);
    s(1).LineWidth = 2;
    s(2).MarkerEdgeColor = 'none';
    s(2).MarkerFaceColor = 'r';
    ylabel('Signal')
    title(sprintf('User %d Stream %d',ceil(m/2),rem(m-1,2) + 1))
    if m==1
        legend('Input','Recovered','Location','best')
    end
end
xlabel('Samples')

Input Arguments
chanmat — Channel response matrices
Nu-element cell array

Channel response matrices, specified as an Nu-element cell array. Nu is the number of receive arrays.
Each cell corresponds to a different channel and contains a channel response matrix or a three
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dimensional MATLAB array. The cell array must contain either all matrices or all arrays. For matrices,
the number of rows for all matrices must be the same. For three-dimensional arrays, the number of
rows and columns must be the same.

• If the kth cell is a matrix, the matrix has the size Nt-by-Nr(k). Nt is the number of elements in the
transmitting array and Nr(k) is the number of elements in the kth receiving array.

• If the kth cell is an array, the array has the size L-by-Nt-by-Nr(k). L is the number of subcarriers. Nt
is the number of elements in the transmit array and Nr(k) is the number of elements in the kth

receive array.

Data Types: double
Complex Number Support: Yes

ns — Number of data streams per receive array
Nu-element row vector of positive integers

Number of data streams per receive array, specified as an Nu-element row vector of positive integers.
Nu is the number of receive arrays.
Data Types: double

pt — Total transmitted power per subcarrier
1 (default) | positive scalar | L-element vector of positive values

Total transmitted power per subcarrier, specified as a positive scalar or an L-element vector of
positive values. L is the number of subcarriers. If pt is a scalar, all subcarriers have the same
transmitted power. If pt is a vector, each vector element specifies the transmitted power for the
corresponding subcarrier. Power is in linear units.
Data Types: double

Output Arguments
wp — Precoding weights
complex-valued Nst-by-Nt matrix | complex-valued L-by-Nst-by-Nt MATLAB array

Precoding weights, returned as a complex-valued Nst-by-Nt matrix or a complex-valued L-by-Nst-by-Nt
MATLAB array.

• If chanmat contains matrices, wp is a complex-valued Nst-by-Nt matrix where Nst is the total
number of data channels (sum(ns)).

• If chanmat contains three-dimensional MATLAB arrays, wp is a complex-valued L-by-Nst-by-Nt
MATLAB array where Nst is the total number of data channels (sum(ns)).

Units are dimensionless.
Data Types: double

wc — Combining weights
Nu-element cell array

Combining weights, returned as an Nu-element cell array. Units are dimensionless.

• If chanmat contains matrices, the kth cell in wc contains a complex valued Nr(k)-by-Ns(k) matrix.
Ns(k) is the value of the argument ns for the kth receive array.
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• If chanmat contains three-dimensional MATLAB arrays, the kth cell of wc contains a complex-
valued L-by-Nr(k)-by-Ns(k) MATLAB array. Ns(k) is the value of the kth entry of the ns vector.

Data Types: double

Version History
Introduced in R2020a

References
[1] Heath, Robert W., et al. “An Overview of Signal Processing Techniques for Millimeter Wave MIMO

Systems.” IEEE Journal of Selected Topics in Signal Processing, vol. 10, no. 3, Apr. 2016, pp.
436–53. DOI.org (Crossref), doi:10.1109/JSTSP.2016.2523924. Bibliography

[2] Tse, D. and P. Viswanath, Fundamentals of Wireless Communications, Cambridge: Cambridge
University Press, 2005.

[3] Paulraj, A. Introduction to Space-Time Wireless Communications, Cambridge: Cambridge
University Press, 2003.

[4] Spencer, Q.H., et al. "Zero-Forcing Methods for Downlink Spatial Multiplexing in Multiuser MIMO
Channels." IEEE Transactions on Signal Processing, Vol. 52, No. 2, February 2004, pp.
461-471. DOI.org (Crossref), doi:10.1109/TSP.2003.821107.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Does not support variable-size inputs.

See Also
Objects
comm.MIMOChannel
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cart2sphvec
Convert vector from Cartesian components to spherical representation

Syntax
vs = cart2sphvec(vr,az,el)

Description
vs = cart2sphvec(vr,az,el) converts the components of a vector or set of vectors, vr, from
their representation in a local Cartesian coordinate system to a spherical basis representation
contained in vs. A spherical basis representation is the set of components of a vector projected into a
basis given by (eaz, eel, eR). The orientation of a spherical basis depends upon its location on the
sphere as determined by azimuth, az, and elevation, el.

Examples

Spherical Representation of Unit Z-Vector

Start with a vector in Cartesian coordinates pointing along the z-direction and located at 45° azimuth,
45° elevation. Compute its components with respect to the spherical basis at that point.

vr = [0;0;1];
vs = cart2sphvec(vr,45,45)

vs = 3×1

         0
    0.7071
    0.7071

Input Arguments
vr — Vector in Cartesian basis representation
3-by-1 column vector | 3-by-N matrix

Vector in Cartesian basis representation specified as a 3-by-1 column vector or 3-by-N matrix. Each
column of vr contains the three components of a vector in the right-handed Cartesian basis x,y,x.
Example: [4.0; -3.5; 6.3]
Data Types: double
Complex Number Support: Yes

az — Azimuth angle
scalar in range [–180,180]

Azimuth angle specified as a scalar in the closed range [–180,180]. Angle units are in degrees. To
define the azimuth angle of a point on a sphere, construct a vector from the origin to the point. The
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azimuth angle is the angle in the xy-plane from the positive x-axis to the vector's orthogonal
projection into the xy-plane. As examples, zero azimuth angle and zero elevation angle specify a point
on the x-axis while an azimuth angle of 90° and an elevation angle of zero specify a point on the y-
axis.
Example: 45
Data Types: double

el — Elevation angle
scalar in range [–90,90]

Elevation angle specified as a scalar in the closed range [–90,90]. Angle units are in degrees. To
define the elevation of a point on the sphere, construct a vector from the origin to the point. The
elevation angle is the angle from its orthogonal projection into the xy-plane to the vector itself. As
examples, zero elevation angle defines the equator of the sphere and ±90° elevation define the north
and south poles, respectively.
Example: 30
Data Types: double

Output Arguments
vs — Vector in spherical basis
3-by-1 column vector | 3-by-N matrix

Spherical representation of a vector returned as a 3-by-1 column vector or 3-by-N matrix having the
same dimensions as vs. Each column of vs contains the three components of the vector in the right-
handed (eaz, eel, eR) basis.

More About
Spherical basis representation of vectors

Spherical basis vectors are a local set of basis vectors which point along the radial and angular
directions at any point in space.

The spherical basis is a set of three mutually orthogonal unit vectors (eaz, eel, eR) defined at a point
on the sphere. The first unit vector points along lines of azimuth at constant radius and elevation. The
second points along the lines of elevation at constant azimuth and radius. Both are tangent to the
surface of the sphere. The third unit vector points radially outward.

The orientation of the basis changes from point to point on the sphere but is independent of R so as
you move out along the radius, the basis orientation stays the same. The following figure illustrates
the orientation of the spherical basis vectors as a function of azimuth and elevation:
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For any point on the sphere specified by az and el, the basis vectors are given by:

eaz = − sin(az) i + cos(az) j

eel = − sin(el)cos(az) i − sin(el)sin(az) j + cos(el)k

eR = cos(el)cos(az) i + cos(el)sin(az) j + sin(el)k   .

Any vector can be written in terms of components in this basis as v = vazeaz + veleel + vReR. The
transformations between spherical basis components and Cartesian components take the form

vx
vy
vz

=
−sin(az) −sin(el)cos(az) cos(el)cos(az)
cos(az) −sin(el)sin(az) cos(el)sin(az)

0 cos(el) sin(el)

vaz
vel
vR

.

and

vaz
vel
vR

=
−sin(az) cos(az) 0

−sin(el)cos(az) −sin(el)sin(az) cos(el)
cos(el)cos(az) cos(el)sin(az) sin(el)

vx
vy
vz

.
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Version History
Introduced in R2020a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
sph2cartvec
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cranerainpl
RF signal attenuation due to rainfall using Crane model

Syntax
L = cranerainpl(range,freq,rainrate)
L = cranerainpl(range,freq,rainrate,elev)
L = cranerainpl(range,freq,rainrate,elev,tau)

Description
L = cranerainpl(range,freq,rainrate) returns the signal attenuation, L, due to rain based on
the Crane rain model [1]. Signal attenuation is a function of the signal path length, range, the signal
frequency, freq, and the rain rate, rainrate. The rain rate is defined as the long-term statistical
rain rate. The attenuation model applies only for frequencies from 1 GHz to 1000 GHz and is valid for
ranges up to 22.5 km. The Crane model accounts for the cellular nature of rainstorms.

L = cranerainpl(range,freq,rainrate,elev) also specifies the elevation angle, elev, of the
signal path.

L = cranerainpl(range,freq,rainrate,elev,tau) also specifies the polarization tilt angle,
tau, of the signal.

Examples

Compare Attenuation for Two Rain Rates Using Crane Model

Use the Crane rain model to compute the signal attenuation caused by rain for a 20 GHz signal sent
over a distance of 10 km. Use rain rates of 10.0 and 100.0 mm/hr.

First, set the rain rate to 10 mm/hr.

rr = 10.0;
L = cranerainpl(10e3,20.0e9,rr)

L = 12.5988

Repeat the computation using a rain rate of 100.0 mm/hr.

rr = 100.0;
L = cranerainpl(10e3,20.0e9,rr)

L = 73.1912
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Rain Attenuation as a Function of Frequency Using Crane Model

Plot the signal attenuation due to rain for signals in the frequency range from 1 to 1000 GHz. Use the
Crane model to compute the attenuation for a rain rate of 30.0 mm/hr and a signal path distance of
10 km.

rr = 30.0;
freq = [1:1000]*1e9;
L = cranerainpl(10e3,freq,rr);
semilogx(freq/1e9,L)
grid
xlabel('Frequency (GHz)')
ylabel('Attenuation (dB)')

Rain Attenuation as a Function of Elevation Using Crane Model

Plot the signal attenuation due to rain as a function of elevation angle. Elevation angles vary from 0
to 90 degrees. Assume a path distance of 10 km and a signal frequency of 10 GHz. The rain rate is
100 mm/hr.

rr = 100.0;

Set the elevation angles, frequency, and path length.
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elev = [0:1:90];
freq = 10.0e9;
rng = 10e3*ones(size(elev));

Compute and plot the loss.

L = cranerainpl(rng,freq,rr,elev);
plot(elev,L)
grid
xlabel('Path Elevation (degrees)')
ylabel('Attenuation (dB)')

Rain Attenuation as a Function of Polarization Using Crane Model

Plot the signal attenuation due to rainfall as a function of the polarization tilt angle. Assume a path
distance of 10 km, a signal frequency of 10 GHz, and a path elevation angle of 0 degrees. Set the
rainfall rate to 70 mm/hour. Plot the signal attenuation against polarization tilt angle.

Set the polarization tilt angle to vary from -90 to 90 degrees.

tau = -90:90;

Set the elevation angle, frequency, path distance, and rain rate.

elev = 0;
freq = 10.0e9;
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rng = 10e3*ones(size(tau));
rr = 70.0;

Compute and plot the attenuation.

L = cranerainpl(rng,freq,rr,elev,tau);
plot(tau,L)
grid
xlabel('Tilt Angle (degrees)')
ylabel('Attenuation (dB)')

Input Arguments
range — Signal path length
positive scalar | real-valued 1-by-M vector of positive values | real-valued M-by-1 vector of positive
values

Signal path length, specified as a positive scalar, a real-valued 1-by-M vector of positive values, or
real-valued M-by-1 vector of positive values. Units are in meters.
Example: [13000.0,14000.0]

freq — Signal frequency
positive scalar | real-valued 1-by-N vector of positive values | real-valued N-by-1 vector of positive
values
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Signal frequency, specified as a positive scalar, a real-valued 1-by-N vector of positive values, or a
real-valued N-by-1 vector of positive values. Units are in Hz. Frequencies must lie in the range 1–
1000 GHz.
Example: [2.0:2:10.0]*1e9]

rainrate — Rain rate
nonnegative scalar

Rain rate, specified as a nonnegative scalar. Rain rate represents the long-term statistical rainfall rate
provided by Crane (see [1]). Units are in mm/hr.
Example: 100.5

elev — Signal path elevation angle
0.0 (default) | scalar | real-valued 1-by-M vector | real-valued M-by-1 vector

Signal path elevation angle, specified as a real-valued scalar, or real-valued M-by-1 or real-valued 1-
by-M vector. Units are in degrees between –90° and 90°.

• If elev is a scalar, all propagation paths have the same elevation angle.
• If elev is a vector, its length must match the length of range and each element in elev

corresponds to a propagation range.

Example: [0,45]

tau — Tilt angle of signal polarization ellipse
0.0 (default) | scalar | real-valued 1-by-M vector | real-valued M-by-1 vector

Tilt angle of the signal polarization ellipse, specified as a scalar, a real-valued 1-by-M vector, or a real-
valued M-by-1 vector. Tilt angle values are in the range –90° and 90°, inclusive. Units are in degrees.

• If tau is a scalar, all signals have the same tilt angle.
• If tau is a vector, its length must match the length of range. In that case, each element in tau

corresponds to a propagation path in range.

The tilt angle is defined as the angle between the semimajor axis of the polarization ellipse and the x-
axis. Because the ellipse is symmetrical, a tilt angle of 10° corresponds to the same polarization state
as a tilt angle of -80°. Thus, the tilt angle need only be specified between ±90°.
Example: [45,30]

Output Arguments
L — Signal attenuation
real-valued M-by-N matrix

Signal attenuation, returned as a real-valued M-by-N matrix. Each matrix row represents a different
path where M is the number of paths. Each column represents a different frequency where N is the
number of frequencies. Units are in dB.
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More About
Crane Rainfall Attenuation Model

The Crane model calculates the attenuation of signals that propagate through regions of rainfall. The
model was developed for use on Earth–space or terrestrial propagation paths and is a commonly-used
method for the calculation of rain attenuation. The model is based on observations of rain rate, rain
structure, and the vertical variation of temperature in the atmosphere. The Crane model (see
Electromagnetic Wave Propagation through Rain) is primarily applicable to North America. The
Crane model generally predicts losses greater than those of the ITU rain attenuation model used in
the rainpl function. However, the uncertainty of both models and the short-term variation of fade
can be large.

The ITU and Crane models are very similar but have some differences. The ITU and Crane rain
attenuation models both require statistical annual rainfall rates and utilize an effective path length
reduction factor to account for the cellular nature of storms. The 0.01% rainfall rate tables provided
by Crane and the ITU are different. The Crane rainfall zones are similar to the ITU zones but more
zones are defined in the US than in the ITU model. The ITU rainfall zones are discussed in ITU-R
P.838-3: Specific attenuation model for rain for use in prediction methods. The Crane model is more
complex consisting of a piecewise combination of path profiles composed of exponential functions.

The Crane model utilizes two exponential functions to span the distance from 0 to 22.5 km.

• For δ < D < 22.5,

L = γ eyδ− 1
y − bαezδ

z + bαezD

z

• For 0 < D < δ,

L = γ eyD− 1
y

where

• L = path attenuation (dB)
• �� = propagation distance (km)
• R = statistical 0.01% rain rate (mm/hr)
• γ = specific attenuation identical to that calculated in rainpl.

γR = kRα,

The parameters k and α depend on the frequency, the polarization state, and the elevation angle of
the signal path. These coefficients, given by both Crane Electromagnetic Wave Propagation
through Rain and the ITU-R P.838-3: Specific attenuation model for rain for use in prediction
methods, are identical and are valid from 1 GHz to 1000 GHz. The specific attenuation model is
valid for frequencies from 1–1000 GHz. Rainfall specific attenuation is computed according to the
ITU rainfall model in ITU-R P.838-3: Specific attenuation model for rain for use in prediction
methods.

The remaining parameters are empirical constants defined as:

• b = 2.3R-0.17
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• c = 0.026 - 0.03ln R
• δ = 3.8 - 0.6 ln R
• u = ln (becδ)/δ
• y = αu
• z = αc

To compute the total attenuation for narrowband signals along a path, the function multiplies the
specific attenuation by the propagation distance.

You can also apply the attenuation model to wideband signals. First, divide the wideband signal into
frequency subbands and apply attenuation to each subband. Then, sum all attenuated subband
signals into the total attenuated signal.

Version History
Introduced in R2020a

References
[1] Crane, Robert K. Electromagnetic Wave Propagation through Rain. Wiley, 1996.

[2] Radiocommunication Sector of International Telecommunication Union. Recommendation ITU-R
P.838-3: Specific attenuation model for rain for use in prediction methods. P Series,
Radiowave Propagation 2005.

[3] Radiocommunication Sector of International Telecommunication Union. Recommendation ITU-R
P.530-17: Propagation data and prediction methods required for the design of terrestrial line-
of-sight systems. 2017.

[4] Radiocommunication Sector of International Telecommunication Union. Recommendation ITU-R
P.837-7: Characteristics of precipitation for propagation modelling. 6/2017

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
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fogpl
RF signal attenuation due to fog and clouds

Syntax
L = fogpl(R,freq,T,den)

Description
L = fogpl(R,freq,T,den) returns attenuation, L, when signals propagate in fog or clouds. R
represents the signal path length. freq represents the signal carrier frequency, T is the ambient
temperature, and den specifies the liquid water density in the fog or cloud.

The fogpl function applies the International Telecommunication Union (ITU) cloud and fog
attenuation model to calculate path loss of signals propagating through clouds and fog. See [1]
(Phased Array System Toolbox). Fog and clouds are the same atmospheric phenomenon, differing only
by height above ground. Both environments are parametrized by their liquid water density. Other
model parameters include signal frequency and temperature. This function applies to cases when the
signal path is contained entirely in a uniform fog or cloud environment. The liquid water density does
not vary along the signal path. The attenuation model applies only for frequencies at 10–1000 GHz.

Examples

Attenuation in Cumulus Clouds

Compute the attenuation of signals propagating through a cloud that is 1 km long at 1000 meters
altitude. Compute the attenuation for frequencies from 15 to 1000 GHz. A typical value for the cloud
liquid water density is 0.5 g/m3. Assume the atmospheric temperature at 1000 meters is 20∘C.

R = 1000.0;
freq = [15:5:1000]*1e9;
T = 20.0;
lwd = 0.5;
L = fogpl(R,freq,T,lwd);

Plot the specific attenuation as a function of frequency. Specific attenuation is the attenuation or loss
per kilometer.

loglog(freq/1e9,L)
grid
xlabel('Frequency (GHz)')
ylabel('Specific Attenuation (dB/km)')
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Input Arguments
R — Signal path length
positive real-valued scalar | M-by-1 nonnegative real-valued vector | 1-by-M nonnegative real-valued
vector

Signal path length, specified as a scalar or as an M-by-1 or 1-by-M vector of nonnegative real-values.
Total attenuation is the specific attenuation multiplied by the path length. Units are meters.
Example: [1300.0,1400.0]

freq — Signal frequency
positive real-valued scalar | N-by-1 nonnegative real-valued column vector | 1-by-N nonnegative real-
valued row vector

Signal frequency, specified as a positive real-valued scalar or as an N-by-1 nonnegative real-valued
vector or 1-by-N nonnegative real-valued vector. Frequencies must lie in the range 10–1000 GHz.
Units are in Hz.
Example: [14.0e9,15.0e9]

T — Ambient temperature
real-valued scalar

Ambient temperature in fog or cloud, specified as a real-valued scalar. Units are in degrees Celsius.
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Example: -10.0

den — Liquid water density
nonnegative real-valued scalar

Liquid water density, specified as a nonnegative real-valued scalar. Units are g/m3. Typical values for
liquid water density in fog range from approximately 0.05 g/m3 for medium fog to approximately 0.5
g/m3 for thick fog. For medium fog, visibility is about 300 meters. For heavy fog, visibility is about 50
meters. Cumulus cloud liquid water density is typically 0.5 g/m3.
Example: 0.01

Output Arguments
L — Signal attenuation
real-valued M-by-N matrix

Signal attenuation, returned as a real-valued M-by-N matrix. Each matrix row represents a different
path where M is the number of paths. Each column represents a different frequency where N is the
number of frequencies. Units are in dB.

More About
Fog and Cloud Attenuation Model

This model calculates the attenuation of signals that propagate through fog or clouds.

Fog and cloud attenuation are the same atmospheric phenomenon. The ITU model, Recommendation
ITU-R P.840-6: Attenuation due to clouds and fog is used. The model computes the specific
attenuation (attenuation per kilometer), of a signal as a function of liquid water density, signal
frequency, and temperature. The model applies to polarized and nonpolarized fields. The formula for
specific attenuation at each frequency is

γc = Kl f M,

where M is the liquid water density in gm/m3. The quantity Kl(f) is the specific attenuation coefficient
and depends on frequency. The cloud and fog attenuation model is valid for frequencies 10–1000 GHz.
Units for the specific attenuation coefficient are (dB/km)/(g/m3).

To compute the total attenuation for narrowband signals along a path, the function multiplies the
specific attenuation by the path length R. Total attenuation is Lc = Rγc.

You can apply the attenuation model to wideband signals. First, divide the wideband signal into
frequency subbands, and apply narrowband attenuation to each subband. Then, sum all attenuated
subband signals into the total attenuated signal.

Version History
Introduced in R2017b
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[1] Radiocommunication Sector of International Telecommunication Union. Recommendation ITU-R

P.840-6: Attenuation due to clouds and fog. 2013.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
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fspl
Free space path loss

Syntax
L = fspl(R,lambda)

Description
L = fspl(R,lambda) returns the free space path loss in decibels for a waveform with wavelength
lambda propagated over a distance of R meters. The minimum value of L is zero, indicating no path
loss.

Examples

Calculate Free-Space Path Loss

Calculate the free-space path loss (in dB) of a 10 GHz radar signal over a distance of 10 km.

fc = 10.0e9;
lambda = physconst('LightSpeed')/fc;
R = 10e3;
L = fspl(R,lambda)

L = 132.4478

Input Arguments
R — Propagation distance of signal
real-valued 1-by-M or M-by-1 vector

Units are in meters.

lambda — Speed of propagation divided by the signal frequency
real-valued 1-by-N or N-by-1 vector

Wavelength units are meters.

Output Arguments
L — Path loss in decibels
M-by-N non-negative matrix. A value of zero signifies no path loss.

When lambda is a scalar, L has the same dimensions as R.
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More About
Free Space Path Loss

The free-space path loss, L, in decibels is:

L = 20log10(4πR
λ )

This formula assumes that the target is in the far-field of the transmitting element or array. In the
near-field, the free-space path loss formula is not valid and can result in a loss smaller than 0 dB,
equivalent to a signal gain. For this reason, the loss is set to 0 dB for range values R ≤ λ/4π.

Version History
Introduced in R2017b

References
[1] Proakis, J. Digital Communications. New York: McGraw-Hill, 2001.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
gaspl | fogpl | rainpl
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gaspl
RF signal attenuation due to atmospheric gases

Syntax
L = gaspl(range,freq,T,P,den)

Description
L = gaspl(range,freq,T,P,den) returns the attenuation, L, of signals propagating through the
atmosphere.

• range represents the signal path length.
• freq represents the signal carrier frequency.
• T represents the ambient temperature.
• P represents the atmospheric pressure.
• den represents the atmospheric water vapor density.

The gaspl function applies the International Telecommunication Union (ITU) atmospheric gas
attenuation model [1] to calculate path loss for signals primarily due to oxygen and water vapor. The
model computes attenuation as a function of ambient temperature, pressure, water vapor density, and
signal frequency.

The function requires that the signal path is contained entirely in a homogeneous environment –
temperature T, atmospheric pressure P, and water vapor density den do not vary along the signal
path. You can account for the variation of atmospheric parameters with height using the tropopl
and atmositu functions in the Radar Toolbox.

The attenuation model applies only for frequencies at 1–1000 GHz.

Examples

Atmospheric Gas Attenuation Spectrum

Compute the attenuation spectrum from 1 to 1000 GHz for an atmospheric pressure of 101.300 kPa
and a temperature of 15∘C. Plot the spectrum for a water vapor density of 7.5 g/m3 and then plot the
spectrum for dry air (zero water vapor density).

Set the attenuation frequencies.

freq = [1:1000]*1e9;

Assume a 1 km path distance.

R = 1000.0;

Compute the attenuation for air containing water vapor.
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T = 15;
P = 101300.0;
W = 7.5;
L = gaspl(R,freq,T,P,W);

Compute the attenuation for dry air.

L0 = gaspl(R,freq,T,P,0.0);

Plot the attenuations.

semilogy(freq/1e9,L)
hold on
semilogy(freq/1e9,L0)
grid
xlabel('Frequency (GHz)')
ylabel('Specific Attenuation (dB)')
hold off

Plot Attenuation Due to Atmospheric Gases and Free Space

First, plot the specific attenuation of atmospheric gases for frequencies from 1 GHz to 1000 GHz.
Assume a sea-level dry air pressure of 101.325e5 kPa and a water vapor density of 7.5 g/m3. The air
temperature is 20∘C. Specific attenuation is defined as dB loss per kilometer. Then, plot the actual
attenuation at 10 GHz for a span of ranges.

Plot Specific Atmospheric Gas Attenuation

Set the atmosphere temperature, pressure, water vapor density.
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T = 20.0;
Patm = 101.325e3;
rho_wv = 7.5;

Set the propagation distance, speed of light, and frequencies.

km = 1000.0;
c = physconst('LightSpeed');
freqs = [1:1000]*1e9;

Compute and plot the atmospheric gas loss.

loss = gaspl(km,freqs,T,Patm,rho_wv);
semilogy(freqs/1e9,loss)
grid on
xlabel('Frequency (GHz)')
ylabel('Specific Attenuation (dB/km)')

Plot Actual Atmospheric and Free Space Attenuation

Compute both free space loss and atmospheric gas loss at 10 GHz for ranges from 1 to 100 km. The
frequency corresponds to an X-band radar. Then, plot the free space loss and the total (atmospheric +
free space) loss.

ranges = [1:100]*1000;
freq_xband = 10e9;
loss_gas = gaspl(ranges,freq_xband,T,Patm,rho_wv);
lambda = c/freq_xband;
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loss_fsp = fspl(ranges,lambda);
semilogx(ranges/1000,loss_gas + loss_fsp.',ranges/1000,loss_fsp)
legend('Atmospheric + Free Space Loss','Free Space Loss','Location','SouthEast')
xlabel('Range (km)')
ylabel('Loss (dB)')

Input Arguments
range — Signal path length
nonnegative real-valued scalar | M-by-1 nonnegative real-valued column vector | 1-by-M nonnegative
real-valued row vector

Signal path length used to compute attenuation, specified as a nonnegative real-valued scalar or
vector. You can specify multiple path lengths simultaneously. Units are in meters.
Example: [13000.0,14000.0]

freq — Signal frequency
positive real-valued scalar | N-by-1 nonnegative real-valued column vector | 1-by-N nonnegative real-
valued row vector

Signal frequency, specified as a positive real-valued scalar, or as an N-by-1 nonnegative real-valued
vector or 1-by-N nonnegative real-valued vector. You can specify multiple frequencies simultaneously.
Frequencies must lie in the range 1–1000 GHz. Units are in hertz.
Example: [1.4e9,2.0e9]
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T — Ambient temperature
real-valued scalar

Ambient temperature, specified as a real-valued scalar. Units are in degrees Celsius.
Example: -10.0

P — Dry air pressure
positive real-valued scalar

Dry air pressure, specified as a positive real-valued scalar. Units are in Pa. One standard atmosphere
at sea level is 101325 Pa.
Example: 101300.0

den — Water vapor density
nonnegative real-valued scalar

Water vapor density or absolute humidity, specified as a nonnegative real-valued scalar. Units are
g/m3. The maximum water vapor density of air at 30° C is approximately 30.0 g/m3. The maximum
water vapor density of air at 0°C is approximately 5.0 g/m3.
Example: 4.0

Output Arguments
L — Signal attenuation
real-valued M-by-N matrix

Signal attenuation, returned as a real-valued M-by-N matrix. Each matrix row represents a different
path where M is the number of paths. Each column represents a different frequency where N is the
number of frequencies. Units are in dB.

More About
Atmospheric Gas Attenuation Model

This model calculates the attenuation of signals that propagate through atmospheric gases.

Electromagnetic signals attenuate when they propagate through the atmosphere. This effect is due
primarily to the absorption resonance lines of oxygen and water vapor, with smaller contributions
coming from nitrogen gas. The model also includes a continuous absorption spectrum below 10 GHz.
The ITU model Recommendation ITU-R P.676-10: Attenuation by atmospheric gases is used. The
model computes the specific attenuation (attenuation per kilometer) as a function of temperature,
pressure, water vapor density, and signal frequency. The atmospheric gas model is valid for
frequencies from 1–1000 GHz and applies to polarized and nonpolarized fields.

The formula for specific attenuation at each frequency is

γ = γo(f ) + γw(f ) = 0.1820f N″(f ) .

The quantity N"() is the imaginary part of the complex atmospheric refractivity and consists of a
spectral line component and a continuous component:

N″(f ) = ∑
i

SiFi + N″D(f )
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The spectral component consists of a sum of discrete spectrum terms composed of a localized
frequency bandwidth function, F(f)i, multiplied by a spectral line strength, Si. For atmospheric
oxygen, each spectral line strength is

Si = a1 × 10−7 300
T

3
exp a2(1 − 300

T P .

For atmospheric water vapor, each spectral line strength is

Si = b1 × 10−1 300
T

3.5
exp b2(1 − 300

T W .

P is the dry air pressure, W is the water vapor partial pressure, and T is the ambient temperature.
Pressure units are in hectoPascals (hPa) and temperature is in degrees Kelvin. The water vapor
partial pressure, W, is related to the water vapor density, ρ, by

W = ρT
216.7 .

The total atmospheric pressure is P + W.

For each oxygen line, Si depends on two parameters, a1 and a2. Similarly, each water vapor line
depends on two parameters, b1 and b2. The ITU documentation cited at the end of this section
contains tabulations of these parameters as functions of frequency.

The localized frequency bandwidth functions Fi(f) are complicated functions of frequency described in
the ITU references cited below. The functions depend on empirical model parameters that are also
tabulated in the reference.

To compute the total attenuation for narrowband signals along a path, the function multiplies the
specific attenuation by the path length, R. Then, the total attenuation is Lg= R(γo + γw).

You can apply the attenuation model to wideband signals. First, divide the wideband signal into
frequency subbands, and apply attenuation to each subband. Then, sum all attenuated subband
signals into the total attenuated signal.

Version History
Introduced in R2017b

References
[1] Radiocommunication Sector of International Telecommunication Union. Recommendation ITU-R

P.676-10: Attenuation by atmospheric gases 2013.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.
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See Also
fspl | fogpl | rainpl
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global2localcoord
Convert global to local coordinates

Syntax
lclCoord = global2localcoord(gCoord)
lclCoord = global2localcoord(gCoord,option)
lclCoord = global2localcoord( ___ ,localOrigin)
lclCoord = global2localcoord( ___ ,localAxes)

Description
lclCoord = global2localcoord(gCoord) converts the global rectangular coordinates gCoord
to the local rectangular coordinates lclCoord. In this syntax, the global coordinate origin is located
at (0, 0, 0) and the coordinate axes are the unit vectors in the x, y, and z directions.

lclCoord = global2localcoord(gCoord,option) converts global coordinates to local
coordinates using the coordinate transformation type option.

lclCoord = global2localcoord( ___ ,localOrigin) specifies the origin of the local
coordinate system localOrigin. Use this syntax with any of the input arguments in previous
syntaxes.

lclCoord = global2localcoord( ___ ,localAxes) specifies the axes of the local coordinate
system localAxes. Use this syntax with any of the input arguments in previous syntaxes.

Examples

Convert Global Coordinates to Local Coordinates

Convert the global rectangular coordinates, (0, 1, 0), to local rectangular coordinates. The local
coordinate origin is (1, 1, 1).

lclCoord = global2localcoord([0;1;0],"rr",[1;1;1])

lclCoord = 3×1

    -1
     0
    -1

Convert global spherical coordinates to local rectangular coordinates.

lclCoord = global2localcoord([45;45;50],"sr",[50;50;50])

lclCoord = 3×1

  -25.0000
  -25.0000
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  -14.6447

Convert Two Vectors Between Local and Global Coordinates

Convert two vectors from global to local coordinates using the global2localcoord function. Then
convert them back from local to global coordinates using the local2globalcoord function.

Start with two vectors in global coordinates, (0, 1, 0) and (1, 1, 1). The local coordinate origins are (1,
5, 2) and (-4, 5, 7), respectively.

gCoord = [0 1;1 1;0 1]

gCoord = 3×2

     0     1
     1     1
     0     1

lclOrig = [1 -4;5 5;2 7];

Construct two rotation matrices using the rotation functions.

lclAxes(:,:,1) = rotz(45)*roty(-15);
lclAxes(:,:,2) = roty(45)*rotx(35);

Convert the vectors from global coordinates to local coordinates.

lclCoord = global2localcoord(gCoord,"rr",lclOrig,lclAxes)

lclCoord = 3×2

   -3.9327    7.7782
   -2.1213   -3.6822
   -1.0168    1.7151

Convert the vectors from local coordinates back to global coordinates.

gCoord1 = local2globalcoord(lclCoord,"rr",lclOrig,lclAxes)

gCoord1 = 3×2

   -0.0000    1.0000
    1.0000    1.0000
         0    1.0000

Input Arguments
gCoord — Global coordinates in rectangular or spherical coordinate form
3-by-N matrix
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Global coordinates in rectangular or spherical coordinate form, specified as a 3-by-N matrix. Each
column represents one set of global coordinates.

If the coordinates are in rectangular form, each column contains the (x,y,z) components. Units are in
meters.

If the coordinates are in spherical form, each column contains (az,el,r) components. az is the azimuth
angle on page 2-883 in degrees, el is the elevation angle on page 2-883 in degrees, and r is the
radius in meters.

The origin of the global coordinate system is assumed to be (0, 0, 0). The global system axes are the
standard unit basis vectors in three-dimensional space, (1, 0, 0), (0, 1, 0), and (0, 0, 1).
Data Types: double

option — Type of coordinate transformation
"rr" (default) | string scalar | character vector

Type of coordinate transformation, specified as a string scalar or character vector. Specify one of the
following values.

Value Transformation
"rr" or 'rr' Global rectangular to local rectangular
"rs" or 'rs' Global rectangular to local spherical
"sr" or 'sr' Global spherical to local rectangular
"ss" or 'ss' Global spherical to local spherical

Data Types: string | char

localOrigin — Origin of local coordinate system
[0;0;0] (default) | 3-by-N matrix

Origin of the local coordinate system, specified as a 3-by-N matrix containing the rectangular
coordinates of the local coordinate system origin with respect to the global coordinate system. N
must match the number of columns of gCoord. Each column represents a separate origin.
Alternatively, you can specify localOrigin as a 3-by-1 vector. If you do so, localOrigin expands
to a 3-by-N matrix with identical columns.
Data Types: double

localAxes — Axes of local coordinate system
[1 0 0;0 1 0;0 0 1] (default) | 3-by-3-by-N array

Axes of the local coordinate system, specified as a 3-by-3-by-N array. Each page contains a 3-by-3
matrix representing axes for a different local coordinate system. The columns of the 3-by-3 matrices
specify the local x, y, and z axes in rectangular form with respect to the global coordinate system.
Alternatively, you can specify localAxes as a single 3-by-3 matrix. If you do so, localAxes expands
to a 3-by-3-by-N array with identical 3-by-3 matrices. The default value is the identity matrix.
Data Types: double
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Output Arguments
lclCoord — Local coordinates in rectangular or spherical coordinate form
3-by-N matrix

Local coordinates in rectangular or spherical coordinate form, returned as a 3-by-N matrix. The
dimensions of lclCoord match the dimensions of gCoord.
Data Types: double

More About
Azimuth and Elevation Angles

The azimuth angle of a vector is the angle between the x-axis and the orthogonal projection of the
vector onto the xy-plane. The angle is positive from the x-axis toward the y-axis. Azimuth angles lie
between –180 and 180 degrees. The elevation angle is the angle between the vector and its
orthogonal projection onto the xy-plane. The angle is positive toward the positive z-axis from the xy-
plane. By default, the boresight direction of an element or array is aligned with the positive x-axis.
The boresight direction is the direction of the main lobe of an element or array.

Note The elevation angle is sometimes defined as the angle a vector makes with the positive z-axis.
The MATLAB and Communications Toolbox products do not use this definition.

This figure illustrates the azimuth and elevation angles of a direction vector.
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Version History
Introduced in R2020a

References
[1] Foley, J. D., A. van Dam, S. K. Feiner, and J. F. Hughes. Computer Graphics: Principles and Practice

in C, 2nd Ed. Reading, MA: Addison-Wesley, 1995.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
local2globalcoord | rangeangle
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local2globalcoord
Convert local to global coordinates

Syntax
gCoord = local2globalcoord(lclCoord)
gCoord = local2globalcoord(lclCoord,option)
gCoord = local2globalcoord( ___ ,localOrigin)
gCoord = local2globalcoord( ___ ,localAxes)

Description
gCoord = local2globalcoord(lclCoord) converts the local rectangular coordinates lclCoord
to the global rectangular coordinates gCoord.

gCoord = local2globalcoord(lclCoord,option) converts local coordinates to global
coordinates using the coordinate transformation type option.

gCoord = local2globalcoord( ___ ,localOrigin) specifies the origin of the local coordinate
system localOrigin. Use this syntax with any of the input arguments in previous syntaxes.

gCoord = local2globalcoord( ___ ,localAxes) specifies the axes of the local coordinate
system localAxes. Use this syntax with any of the input arguments in previous syntaxes.

Examples

Convert Local Rectangular Coordinates to Global Rectangular Coordinates

Convert local rectangular coordinates to global rectangular coordinates. The local coordinate origin
is (1, 1, 1).

globalcoord = local2globalcoord([0;1;0],"rr",[1;1;1])

globalcoord = 3×1

     1
     2
     1

Convert Local Spherical Coordinates to Global Rectangular Coordinates

Convert local spherical coordinates to global rectangular coordinates.

globalcoord = local2globalcoord([30;45;4],"sr")

globalcoord = 3×1
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    2.4495
    1.4142
    2.8284

Convert Two Vectors Between Local and Global Coordinates

Convert two vectors from global to local coordinates using the global2localcoord function. Then
convert them back from local to global coordinates using the local2globalcoord function.

Start with two vectors in global coordinates, (0, 1, 0) and (1, 1, 1). The local coordinate origins are (1,
5, 2) and (-4, 5, 7), respectively.

gCoord = [0 1;1 1;0 1]

gCoord = 3×2

     0     1
     1     1
     0     1

lclOrig = [1 -4;5 5;2 7];

Construct two rotation matrices using the rotation functions.

lclAxes(:,:,1) = rotz(45)*roty(-15);
lclAxes(:,:,2) = roty(45)*rotx(35);

Convert the vectors from global coordinates to local coordinates.

lclCoord = global2localcoord(gCoord,"rr",lclOrig,lclAxes)

lclCoord = 3×2

   -3.9327    7.7782
   -2.1213   -3.6822
   -1.0168    1.7151

Convert the vectors from local coordinates back to global coordinates.

gCoord1 = local2globalcoord(lclCoord,"rr",lclOrig,lclAxes)

gCoord1 = 3×2

   -0.0000    1.0000
    1.0000    1.0000
         0    1.0000

Input Arguments
lclCoord — Local coordinates in rectangular or spherical coordinate form
3-by-N matrix

 local2globalcoord

2-887



Local coordinates in rectangular or spherical coordinate form, specified as a 3-by-N matrix. Each
column represents one set of local coordinates.

If the coordinates are in rectangular form, each column contains the (x,y,z) components. Units are in
meters.

If the coordinates are in spherical form, each column contains (az,el,r) components. az is the azimuth
angle on page 2-883 in degrees, el is the elevation angle on page 2-883 in degrees, and r is the radius
in meters.
Data Types: double

option — Type of coordinate transformation
"rr" (default) | string scalar | character vector

Type of coordinate transformation, specified as a string scalar or character vector. Specify one of the
following values.

Value Transformation
"rr" or 'rr' Local rectangular to global rectangular
"rs" or 'rs' Local rectangular to global spherical
"sr" or 'sr' Local spherical to global rectangular
"ss" or 'ss' Local spherical to global spherical

Data Types: string | char

localOrigin — Origin of local coordinate system
[0;0;0] (default) | 3-by-N matrix

Origin of the local coordinate system, specified as a 3-by-N matrix containing the rectangular
coordinates of the local coordinate system origin with respect to the global coordinate system. N
must match the number of columns of gCoord. Each column represents a separate origin.
Alternatively, you can specify localOrigin as a 3-by-1 vector. If you do so, localOrigin expands
to a 3-by-N matrix with identical columns.
Data Types: double

localAxes — Axes of local coordinate system
[1 0 0;0 1 0;0 0 1] (default) | 3-by-3-by-N array

Axes of the local coordinate system, specified as a 3-by-3-by-N array. Each page contains a 3-by-3
matrix representing axes for a different local coordinate system. The columns of the 3-by-3 matrices
specify the local x, y, and z axes in rectangular form with respect to the global coordinate system.
Alternatively, you can specify localAxes as a single 3-by-3 matrix. If you do so, localAxes expands
to a 3-by-3-by-N array with identical 3-by-3 matrices. The default value is the identity matrix.
Data Types: double

Output Arguments
gCoord — Global coordinates in rectangular or spherical coordinate form
3-by-N matrix
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Global coordinates in rectangular or spherical coordinate form, returned as a 3-by-N matrix. The
dimensions of gCoord match the dimensions of lclCoord. The origin of the global coordinate system
is assumed to be (0, 0, 0). The global system axes are the standard unit basis vectors in three-
dimensional space, (1, 0, 0), (0, 1, 0), and (0, 0, 1).
Data Types: double

More About
Azimuth and Elevation Angles

The azimuth angle of a vector is the angle between the x-axis and the orthogonal projection of the
vector onto the xy-plane. The angle is positive from the x-axis toward the y-axis. Azimuth angles lie
between –180 and 180 degrees. The elevation angle is the angle between the vector and its
orthogonal projection onto the xy-plane. The angle is positive toward the positive z-axis from the xy-
plane. By default, the boresight direction of an element or array is aligned with the positive x-axis.
The boresight direction is the direction of the main lobe of an element or array.

Note The elevation angle is sometimes defined as the angle a vector makes with the positive z-axis.
The MATLAB and Communications Toolbox products do not use this definition.

This figure illustrates the azimuth and elevation angles of a direction vector.
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Version History
Introduced in R2020a

References
[1] Foley, J. D., A. van Dam, S. K. Feiner, and J. F. Hughes. Computer Graphics: Principles and Practice

in C, 2nd Ed. Reading, MA: Addison-Wesley, 1995.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
rangeangle | global2localcoord
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rainpl
RF signal attenuation due to rainfall

Syntax
L = rainpl(range,freq,rainrate)
L = rainpl(range,freq,rainrate,elev)
L = rainpl(range,freq,rainrate,elev,tau)
L = rainpl(range,freq,rainrate,elev,tau,pct)

Description
L = rainpl(range,freq,rainrate) returns the signal attenuation, L, due to rainfall. In this
syntax, attenuation is a function of signal path length, range, signal frequency, freq, and rain rate,
rainrate. The path elevation angle and polarization tilt angles are assumed to zero.

The rainpl function applies the International Telecommunication Union (ITU) rainfall attenuation
model to calculate path loss of signals propagating in a region of rainfall [1]. The function applies
when the signal path is contained entirely in a uniform rainfall environment. Rain rate does not vary
along the signal path. The attenuation model applies only for frequencies at 1–1000 GHz.

L = rainpl(range,freq,rainrate,elev) also specifies the elevation angle, elev, of the
propagation path.

L = rainpl(range,freq,rainrate,elev,tau) also specifies the polarization tilt angle, tau, of
the signal.

L = rainpl(range,freq,rainrate,elev,tau,pct) also specifies the specified percentage of
time, pct. pct is a scalar in the range of 0.001–1, inclusive. The attenuation, L, is computed from a
power law using the long-term statistical 0.01% rain rate (in mm/h).

Examples

Signal Attenuation Due to Rainfall

Compute the signal attenuation due to rainfall for a 20 GHz signal over a distance of 10 km in light
and heavy rain.

Propagate the signal in a light rainfall of 1 mm/hr.

rr = 1.0;
L = rainpl(10000,20.0e9,rr)

L = 1.3009

Propagate the signal in a heavy rainfall of 10 mm/hr.

rr = 10.0;
L = rainpl(10000,20.0e9,rr)
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L = 8.1584

Signal Attenuation Due to Rainfall as Function of Frequency

Plot the signal attenuation due to a 20 mm/hr statistical rainfall for signals in the frequency range
from 1 to 1000 GHz. The path distance is 10 km.

rr = 20.0;
freq = [1:1000]*1e9;
L = rainpl(10000,freq,rr);
semilogx(freq/1e9,L)
grid
xlabel('Frequency (GHz)')
ylabel('Attenuation (dB)')

Signal Attenuation Due to Rainfall as Function of Elevation Angle

Compute the signal attenuation due to heavy rain as a function of elevation angle. Elevation angles
vary from 0 to 90 degrees. Assume a path distance of 100 km and a signal frequency of 100 GHz.

Set the rain rate to 10 mm/hr.
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rr = 10.0;

Set the elevation angles, frequency, range.

elev = [0:1:90];
freq = 100.0e9;
rng = 100000.0*ones(size(elev));

Compute and plot the loss.

L = rainpl(rng,freq,rr,elev);
plot(elev,L)
grid
xlabel('Path Elevation (degrees)')
ylabel('Attenuation (dB)')

Signal Attenuation Due to Rainfall as Function of Polarization

Compute the signal attenuation due to heavy rainfall as a function of the polarization tilt angle.
Assume a path distance of 100 km, a signal frequency of 100 GHz, and a path elevation angle of 0
degrees. Set the rainfall rate to 10 mm/hour. Plot the signal attenuation versus polarization tilt angle.

Set the polarization tilt angle to vary from -90 to 90 degrees.

tau = -90:90;
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Set the elevation angle, frequency, path distance, and rain rate.

elev = 0;
freq = 100.0e9;
rng = 100e3*ones(size(tau));
rr = 10.0;

Compute and plot the attenuation.

L = rainpl(rng,freq,rr,elev,tau);
plot(tau,L)
grid
xlabel('Tilt Angle (degrees)')
ylabel('Attenuation (dB)')

Input Arguments
range — Signal path length
nonnegative real-valued scalar | nonnegative real-valued M-by-1 column vector | nonnegative real-
valued 1-by-M row vector

Signal path length, specified as a nonnegative real-valued scalar, or as a M-by-1 or 1-by-M vector.
Units are in meters.
Example: [13000.0,14000.0]
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freq — Signal frequency
positive real-valued scalar | nonnegative real-valued N-by-1 column vector | nonnegative real-valued
1-by-N row vector

Signal frequency, specified as a positive real-valued scalar, or as a nonnegative N-by-1 or 1-by-N
vector. Frequencies must lie in the range 1–1000 GHz.
Example: [1400.0e6,2.0e9]

rainrate — Long-term statistical rain rate
nonnegative real-valued scalar

Long-term statistical rain rate, specified as a nonnegative real-valued scalar. The long-term statistical
rain rate is the rain rate that is exceeded 0.01% of the time. You can adjust the percent of time using
the pct argument. Units are in mm/hr.
Example: 1.5

elev — Signal path elevation angle
0.0 (default) | real-valued scalar | real-valued M-by-1 column vector | real-valued 1-by-M row vector

Signal path elevation angle, specified as a real-valued scalar, or as an M-by-1 or 1-by- M vector. Units
are in degrees between –90° and 90°. If elev is a scalar, all propagation paths have the same
elevation angle. If elev is a vector, its length must match the dimension of range and each element
in elev corresponds to a propagation range in range.
Example: [0,45]

tau — Tilt angle of polarization ellipse
0.0 (default) | real-valued scalar | real-valued M-by-1 column vector | real-valued 1-by-M row vector

Tilt angle of the signal polarization ellipse, specified as a real-valued scalar, or as an M-by-1 or 1-by-
M vector. Units are in degrees between –90° and 90°. If tau is a scalar, all signals have the same tilt
angle. If tau is a vector, its length must match the dimension of range. In that case, each element in
tau corresponds to a propagation path in range.

The tilt angle is defined as the angle between the semi-major axis of the polarization ellipse and the x-
axis. Because the ellipse is symmetrical, a tilt angle of 100° corresponds to the same polarization
state as a tilt angle of -80°. Thus, the tilt angle need only be specified between ±90°.
Example: [45,30]

pct — Exceedance percentage of rainfall
0.01 (default) | positive scalar between 0.001 and 1

Exceedance percentage of rainfall, specified as a positive scalar between 0.001 and 1. The long-term
statistical rain rate is the rain rate that is exceeded pct of the time. Units are dimensionless.
Data Types: double

Output Arguments
L — Signal attenuation
real-valued M-by-N matrix
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Signal attenuation, returned as a real-valued M-by-N matrix. Each matrix row represents a different
path where M is the number of paths. Each column represents a different frequency where N is the
number of frequencies. Units are in dB.

More About
Rainfall Attenuation Model

This model calculates the attenuation of signals that propagate through regions of rainfall. Rain
attenuation is a dominant fading mechanism and can vary from location-to-location and from year-to-
year.

Electromagnetic signals are attenuated when propagating through a region of rainfall. Rainfall
attenuation is computed according to the ITU rainfall model Recommendation ITU-R P.838-3: Specific
attenuation model for rain for use in prediction methods. The model computes the specific
attenuation (attenuation per kilometer) of a signal as a function of rainfall rate, signal frequency,
polarization, and path elevation angle. The specific attenuation, ɣR, is modeled as a power law with
respect to rain rate

γR = kRα,

where R is rain rate. Units are in mm/hr. The parameter k and exponent α depend on the frequency,
the polarization state, and the elevation angle of the signal path. The specific attenuation model is
valid for frequencies from 1–1000 GHz.

To compute the total attenuation for narrowband signals along a path, the function multiplies the
specific attenuation by the an effective propagation distance, deff. Then, the total attenuation is L =
deffγR.

The effective distance is the geometric distance, d, multiplied by a scale factor

r = 1
0.477d0.633R0.01

0.073αf 0.123− 10.579 1 − exp −0.024d

where f is the frequency. The article Recommendation ITU-R P.530-17 (12/2017): Propagation data
and prediction methods required for the design of terrestrial line-of-sight systems presents a
complete discussion for computing attenuation.

The rain rate, R, used in these computations is the long-term statistical rain rate, R0.01. This is the
rain rate that is exceeded 0.01% of the time. The calculation of the statistical rain rate is discussed in
Recommendation ITU-R P.837-7 (06/2017): Characteristics of precipitation for propagation modelling.
This article also explains how to compute the attenuation for other percentages from the 0.01%
value.

You can apply the attenuation model to wideband signals. First, divide the wideband signal into
frequency subbands and apply attenuation to each subband. Then, sum all attenuated subband
signals into the total attenuated signal.

Version History
Introduced in R2017b
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[1] Radiocommunication Sector of International Telecommunication Union. Recommendation ITU-R
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[2] Radiocommunication Sector of International Telecommunication Union. Recommendation ITU-R
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
fspl | gaspl | fogpl | cranerainpl
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rangeangle
Range and angle calculation

Syntax
[rng,ang] = rangeangle(pos)
[rng,ang] = rangeangle(pos,refpos)
[rng,ang] = rangeangle(pos,refpos,refaxes)
[rng,ang] = rangeangle( ___ ,model)

Description
The function rangeangle determines the propagation path length and path direction of a signal from
a source point or set of source points to a reference point. The function supports two propagation
models – the free space model and the two-ray model. The free space model is a single line-of-sight
path from a source point to a reference point. The two-ray multipath model generates two paths. The
first path follows the free-space path. The second path is a reflected path off a boundary plane at z =
0. Path directions are defined with respect to either the global coordinate system at the reference
point or a local coordinate system at the reference point. Distances and angles at the reference point
do not depend upon which direction the signal is travelling along the path.

[rng,ang] = rangeangle(pos) returns the propagation path length, rng, and direction angles,
ang, of a signal path from a source point or set of source points, pos, to the origin of the global
coordinate system. The direction angles are the azimuth and elevation with respect to the global
coordinate axes at the origin. Signals follow a line-of-sight path from the source point to the origin.
The line-of-sight path corresponds to the geometric straight line between the points.

[rng,ang] = rangeangle(pos,refpos) also specifies a reference point or set of reference
points, refpos. rng now contains the propagation path length from the source points to the
reference points. The direction angles are the azimuth and elevation with respect to the global
coordinate axes at the reference points. You can specify multiple points and multiple reference points.

[rng,ang] = rangeangle(pos,refpos,refaxes) also specifies local coordinate system axes,
refaxes, at the reference points. Direction angles are the azimuth and elevation with respect to the
local coordinate axes centered at refpos.

[rng,ang] = rangeangle( ___ ,model), also specifies a propagation model. When model is set
to "freespace", the signal propagates along a line-of-sight path from source point to reception
point. When model is set to "two-ray", the signal propagates along two paths from source point to
reception point. The first path is the line-of-sight path. The second path is the reflecting path. In this
case, the function returns the distances and angles for two paths for each source point and
corresponding reference point.

Examples

Range and Angle Computation

Compute the range and angle of a target located at (1000,2000,50) meters from the origin.
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TargetLoc = [1000;2000;50];
[tgtrng,tgtang] = rangeangle(TargetLoc)

tgtrng = 2.2366e+03

tgtang = 2×1

   63.4349
    1.2810

Range and Angle With Respect to Local Origin

Compute the range and angle of a target located at (1000,2000,50) meters with respect to a local
origin at (100,100,10) meters.

TargetLoc = [1000;2000;50];
Origin = [100;100;10];
[tgtrng,tgtang] = rangeangle(TargetLoc,Origin)

tgtrng = 2.1028e+03

tgtang = 2×1

   64.6538
    1.0900

Range and Angle With Respect to Local Coordinates

Compute the range and angle of a target located at (1000,2000,50) meters but with respect to a local
coordinate system origin at (100,100,10) meters. Choose a local coordinate reference frame that is
rotated about the z-axis by 45° from the global coordinate axes.

targetpos = [1000;2000;50];
origin = [100;100;10];
refaxes = [1/sqrt(2) -1/sqrt(2) 0; 1/sqrt(2) 1/sqrt(2) 0; 0 0 1];
[tgtrng,tgtang] = rangeangle(targetpos,origin,refaxes)

tgtrng = 2.1028e+03

tgtang = 2×1

   19.6538
    1.0900

Input Arguments
pos — Source point position
real-valued 3-by-1 vector | real-valued 3-by-N matrix
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Source point position in meters, specified as a real-valued 3-by-1 vector or a real-valued 3-by-N
matrix. A matrix represents multiple source points. The columns contain the Cartesian coordinates of
N points in the form [x;y;z].

When pos is a 3-by-N matrix, you must specify refpos as a 3-by-N matrix for N reference positions.
If all the reference points are identical, you can specify refpos by a single 3-by-1 vector.
Example: [1000;2000;50]
Data Types: double

refpos — Reference point position
[0;0;0] (default) | real-valued 3-by-1 vector | real-valued 3-by-N matrix

Reference point position in meters, specified as a real-valued 3-by-1 vector or a real-valued 3-by-N
matrix. A matrix represents multiple reference points. The columns contain the Cartesian coordinates
of N points ins the form [x;y;z].

When refpos is a 3-by-N matrix, you must specify pos as a 3-by-N matrix for N source positions. If
all the source points are identical, you can specify pos by a single 3-by-1 vector.

Position units are meters.
Example: [100;100;10]
Data Types: double

refaxes — Local coordinate system axes
[1 0 0;0 1 0;0 0 1] (default) | real-valued 3-by-3 matrix | real-valued 3-by-3-by-N array

Local coordinate system axes, specified as a real-valued 3-by-3 matrix or a 3-by-3-by-N array. For an
array, each page corresponds to a local coordinate axes at each reference point. The columns in
refaxes specify the direction of the coordinate axes for the local coordinate system in Cartesian
coordinates. N must match the number of columns in pos or refpos when these dimensions are
greater than one.
Example: rotz(45)
Data Types: double

model — Propagation model
"freespace" (default) | "two-ray"

Propagation model, specified as "freespace" or "two-ray". Choosing "freespace" invokes the
free space propagation model. Choosing "two-ray" invokes the two-ray propagation model.
Data Types: char | string

Output Arguments
rng — Propagation range
real-valued 1-by-N vector | real-valued 1-by-2N vector

Propagation range in meters, returned as a real-valued 1-by-N vector or real-valued 1-by-2N vector.

• When model is set to "freespace", the size of rng is 1-by-N. The propagation range is the
length of the direct path from the position defined in pos to the corresponding reference position
defined in refpos.
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• When model is set to "two-ray", rng contains the ranges for the direct path and the reflected
path. Alternate columns of rng refer to the line-of-sight path and reflected path, respectively for
the same source-reference point pair.

ang — Azimuth and elevation angles
real-valued 2-by-N matrix | real-valued 2-by-2N matrix

Azimuth and elevation angles in degrees, returned as a 2-by-N matrix or 2-by-2N matrix. Each column
represents a direction angle in the form [azimuth;elevation].

• When model is set to "freespace", ang is a 2-by-N matrix and represents the angle of the path
from a source point to a reference point.

• When model is set to "two-ray", ang is a 2-by-2N matrix. Alternate columns of ang refer to the
line-of-sight path and reflected path, respectively.

More About
Angles in Local and Global Coordinate Systems

The rangeangle function returns the path distance and path angles in either the global or local
coordinate systems. By default, the rangeangle function determines the angle a signal path makes
with respect to global coordinates. If you add the refaxes argument, you can compute the angles
with respect to local coordinates. As an illustration, this figure shows a 5-by-5 uniform rectangular
array (URA) rotated from the global coordinates (xyz) using refaxes. The x' axis of the local
coordinate system (x'y'z') is aligned with the main axis of the array and moves as the array moves.
The path length is independent of orientation. The global coordinate system defines the azimuth and
elevation angles (Φ,θ) and the local coordinate system defines the azimuth and elevations angles
(Φ',θ').

Local and Global Coordinate Axes
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Free Space Propagation Model

The free-space signal propagation model states that a signal propagating from one point to another in
a homogeneous, isotropic medium travels in a straight line, called the line-of-sight or direct path. The
straight line is defined by the geometric vector from the radiation source to the destination.

Two-Ray Propagation Model

A two-ray propagation channel is the next step up in complexity from a free-space channel and is the
simplest case of a multipath propagation environment. The free-space channel models a straight-line
line-of-sight path from point 1 to point 2. In a two-ray channel, the medium is specified as a
homogeneous, isotropic medium with a reflecting planar boundary. The boundary is always set at z =
0. There are at most two rays propagating from point 1 to point 2. The first ray path propagates along
the same line-of-sight path as in the free-space channel. The line-of-sight path is often called the
direct path. The second ray reflects off the boundary before propagating to point 2. According to the
Law of Reflection , the angle of reflection equals the angle of incidence. In short-range simulations
such as cellular communications systems and automotive radars, you can assume that the reflecting
surface, the ground or ocean surface, is flat.

The figure illustrates two propagation paths. From the source position, ss, and the receiver position,
sr, you can compute the arrival angles of both paths, θ′los and θ′rp. The arrival angles are the elevation
and azimuth angles of the arriving radiation with respect to a local coordinate system. In this case,
the local coordinate system coincides with the global coordinate system. You can also compute the
transmitting angles, θlos and θrp. In the global coordinates, the angle of reflection at the boundary is
the same as the angles θrp and θ′rp. The reflection angle is important to know when you use angle-
dependent reflection-loss data. You can determine the reflection angle by using the rangeangle
function and setting the reference axes to the global coordinate system. The total path length for the
line-of-sight path is shown in the figure by Rlos which is equal to the geometric distance between
source and receiver. The total path length for the reflected path is Rrp= R1 + R2. The quantity L is the
ground range between source and receiver.
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You can easily derive exact formulas for path lengths and angles in terms of the ground range and
object heights in the global coordinate system.

R = x s− x r

Rlos = R = zr − zs
2 + L2

R1 =
zr

zr + zz
zr + zs

2 + L2

R2 =
zs

zs + zr
zr + zs

2 + L2

Rrp = R1 + R2 = zr + zs
2 + L2

tanθlos =
zs− zr

L

tanθrp = −
zs + zr

L
θ′los = − θlos

θ′rp = θrp

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
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sph2cartvec
Convert vector from spherical basis components to Cartesian components

Syntax
vr = sph2cartvec(vs,az,el)

Description
vr = sph2cartvec(vs,az,el) converts the components of a vector or set of vectors, vs, from
their spherical basis representation to their representation in a local Cartesian coordinate system. A
spherical basis representation is the set of components of a vector projected into the right-handed
spherical basis given by (eaz, eel, eR). The orientation of a spherical basis depends upon its location
on the sphere as determined by azimuth, az, and elevation, el.

Examples

Cartesian Representation of Azimuthal Vector

Start with a vector in a spherical basis located at 45° azimuth, 45° elevation. The vector points along
the azimuth direction. Compute the vector components with respect to Cartesian coordinates.

vs = [1;0;0];
vr = sph2cartvec(vs,45,45)

vr = 3×1

   -0.7071
    0.7071
         0

Input Arguments
vs — Vector in spherical basis representation
3-by-1 column vector | 3-by-N matrix

Vector in spherical basis representation specified as a 3-by-1 column vector or 3-by-N matrix. Each
column of vs contains the three components of a vector in the right-handed spherical basis
(eaz, eel, eR).

Example: [4.0; -3.5; 6.3]
Data Types: double
Complex Number Support: Yes

az — Azimuth angle
scalar in range [–180,180]

 sph2cartvec

2-905



Azimuth angle specified as a scalar in the closed range [–180,180]. Angle units are in degrees. To
define the azimuth angle of a point on a sphere, construct a vector from the origin to the point. The
azimuth angle is the angle in the xy-plane from the positive x-axis to the vector's orthogonal
projection into the xy-plane. As examples, zero azimuth angle and zero elevation angle specify a point
on the x-axis while an azimuth angle of 90° and an elevation angle of zero specify a point on the y-
axis.
Example: 45
Data Types: double

el — Elevation angle
scalar in range [–90,90]

Elevation angle specified as a scalar in the closed range [–90,90]. Angle units are in degrees. To
define the elevation of a point on the sphere, construct a vector from the origin to the point. The
elevation angle is the angle from its orthogonal projection into the xy-plane to the vector itself. As
examples, zero elevation angle defines the equator of the sphere and ±90° elevation define the north
and south poles, respectively.
Example: 30
Data Types: double

Output Arguments
vr — Vector in Cartesian representation
3-by-1 column vector | 3-by-N matrix

Cartesian vector returned as a 3-by-1 column vector or 3-by-N matrix having the same dimensions as
vs. Each column of vr contains the three components of the vector in the right-handed x,y,z basis.

More About
Spherical basis representation of vectors

Spherical basis vectors are a local set of basis vectors which point along the radial and angular
directions at any point in space.

The spherical basis is a set of three mutually orthogonal unit vectors (eaz, eel, eR) defined at a point
on the sphere. The first unit vector points along lines of azimuth at constant radius and elevation. The
second points along the lines of elevation at constant azimuth and radius. Both are tangent to the
surface of the sphere. The third unit vector points radially outward.

The orientation of the basis changes from point to point on the sphere but is independent of R so as
you move out along the radius, the basis orientation stays the same. The following figure illustrates
the orientation of the spherical basis vectors as a function of azimuth and elevation:
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For any point on the sphere specified by az and el, the basis vectors are given by:

eaz = − sin(az) i + cos(az) j

eel = − sin(el)cos(az) i − sin(el)sin(az) j + cos(el)k

eR = cos(el)cos(az) i + cos(el)sin(az) j + sin(el)k   .

Any vector can be written in terms of components in this basis as v = vazeaz + veleel + vReR. The
transformations between spherical basis components and Cartesian components take the form

vx
vy
vz

=
−sin(az) −sin(el)cos(az) cos(el)cos(az)
cos(az) −sin(el)sin(az) cos(el)sin(az)

0 cos(el) sin(el)

vaz
vel
vR

.

and

vaz
vel
vR

=
−sin(az) cos(az) 0

−sin(el)cos(az) −sin(el)sin(az) cos(el)
cos(el)cos(az) cos(el)sin(az) sin(el)

vx
vy
vz

.
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Version History
Introduced in R2020a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
cart2sphvec
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tdmsinfo
Information about TDMS-file

Syntax
info = tdmsinfo(tdmsfile)

Description
info = tdmsinfo(tdmsfile) returns a TdmsInfo object with properties containing general
information about the TDMS-file, such as file name, location, description, author, version, and list of
channels.

Examples

Get Information on a TDMSFile

Get information on a TDMS-file and its channels.

info = tdmsinfo("Turbine_003.tdms")

info = 

  TdmsInfo with properties:

           Path: "C:\data\tdms\Turbine_003.tdms"
           Name: "Turbine_003"
    Description: "Test the Acceleration, Force and Torque of Turbine"
          Title: "Turbine Tests"
         Author: "xyz"
        Version: "2.0"
    ChannelList: [6×8 table]

View the channel information in the file.

>> info.ChannelList

ans =

  6×8 table

    ChannelGroupNumber    ChannelGroupName    ChannelGroupDescription      ChannelName      ChannelDescription     Unit      DataType    NumSamples
    __________________    ________________    _______________________    _______________    __________________    _______    ________    __________

            1              "Acceleration"        "CGAcceleration"        "Acceleration1"     "from Clipboard"     "m/s^2"    "Double"       3312   
            1              "Acceleration"        "CGAcceleration"        "Acceleration2"     "from Clipboard"     "m/s^2"    "Double"       3312   
            2              "Force"               "CGForce"               "Force1"            "from Clipboard"     "N"        "Double"       3312   
            2              "Force"               "CGForce"               "Force2"            "from Clipboard"     "N"        "Double"       3312   
            3              "Torque"              "CGTorque"              "Torque1"           "from Clipboard"     "Nm"       "Double"       3312   
            3              "Torque"              "CGTorque"              "Torque2"           "from Clipboard"     "Nm"       "Double"       3312

Input Arguments
tdmsfile — TDMS file name
string
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TDMS file name, specified as a string.

For local files, use a full or relative path that contains a file name and extension. You also can specify
a file on the MATLAB path.

For Internet files, specify the URL. For example, to read a remote file from the Amazon S3 cloud:

data = tdmsread("s3://bucketname/path_to_file/data.tdms");

Example: "airlinesmall.tdms"
Data Types: char | string

Output Arguments
info — TDMS-file information
TdmsInfo object

TDMS-file information, returned as a TdmsInfo object with the following properties:

Property Type Description
Path string Full path to file
Name string TDMS-file name attribute
Description string TDMS-file description attribute
Title string TDMS-file title attribute
Author string TDMS-file author attribute
Version string TDMS-file version attribute
ChannelList table TDMS channel and channel

group attributes

The ChannelList property value is a table with the following variables:

Table Variable Type Notes
ChannelGroupNumber double Internally created

representational index of
channel group

ChannelGroupName string  
ChannelGroupDescription string  
ChannelName string  
ChannelDescription string  
Unit string Unit of channel data
DataType string TDMS datatype in file
NumSamples uint64 Number of samples in channel

Limitations
• TDMS functions are supported on Windows® platforms only.
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Version History
Introduced in R2022a

See Also
Functions
tdmsread | tdmsreadprop

 tdmsinfo

2-911



tdmsread
Read data from TDMS-file

Syntax
data = tdmsread(tdmsfile)
data = tdmsread(tdmsfile,Name=Value)

Description
data = tdmsread(tdmsfile) retrieves data from the specified TDMS-file and returns a cell array
of tables. Each element of the cell array is a table corresponding to a channel group.

data = tdmsread(tdmsfile,Name=Value) uses name-value pairs to filter the data reading and
specify output format.

Examples

Read TDMS File Data

Read data from a specified TDMS-file. You can determine which channels are read, and what format
the result has.

Read all data from a TDMS-file into a table.

data = tdmsread("airlinesmall.tdms");

Read a subset of the variables in a TDMS-file into MATLAB as a timetable. Use the variable ArrTime
in the TDMS-file as the time vector of the output timetable.

data = tdmsread("airlinesmall.tdms", ...
           ChannelGroupName = "Airline", ...
           ChannelNames = ["ArrTime" "FlightNum" "ArrDelay"], ...
           RowTimes = "ArrTime");

Read the channel data into a timetable with a specified start time and step duration.

data = tdmsread("airlinesmall.tdms", ...
           ChannelGroupName = "Airline", ...
           ChannelNames = ["ArrTime" "FlightNum" "ArrDelay"], ...
           TimeStep = seconds(0.01), StartTime = seconds(30));

Input Arguments
tdmsfile — TDMS file name
string

TDMS file name, specified as a string.
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For local files, use a full or relative path that contains a file name and extension. You also can specify
a file on the MATLAB path.

For Internet files, specify the URL. For example, to read a remote file from the Amazon S3 cloud:

data = tdmsread("s3://bucketname/path_to_file/data.tdms");

Example: "airlinesmall.tdms"
Data Types: char | string

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: ChannelGroupName="Torque",ChannelNames="Torque1"

Supported name-value pairs are:

ChannelGroupName — Channel group containing the channels to read from
string | char

Channel group containing the channels to read from, specified as a string or character vector.
Example: "Torque"
Data Types: string | char

ChannelNames — Names of channels to read
char | string | cell

Names of channels to read, specified as a string, string array, character vector, or cell array of
character vectors. The channels must be in the channel group specified by ChannelGroupName.
Example: ["Torque1" "Torque2"]
Data Types: char | string | cell

RowTimes — Times associated with rows of table
datetime | duration | channel name

Times associated with rows of the table, specified as a selected time channel name, a datetime vector,
or a duration vector. Specifying this option causes the function to output a cell array of timetables.
Each time element labels a row in the output timetable.
Example: duration(seconds([1:1000]/1000))
Data Types: datetime | duration | string

StartTime — Start time of output timetable
datetime | duration

Start time of the output timetable, specified as a scalar datetime or duration indicating the time of
the first data record in the timetable.
Example: StartTime=seconds(60)
Data Types: datetime | duration
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SampleRate — Sample rate of output timetable
double

Sample rate of the output timetable, specified as a positive scalar double indicating samples per
second.
Example: SampleRate=1000
Data Types: double

TimeStep — Step time of output timetable
duration | calendarDuration

Time step of the output timetable, specified as a scalar duration or calendarDuration indicating the
time span between data records.
Example: TimeStep=seconds(0.01)
Data Types: duration | calendarDuration

Output Arguments
data — Output data
cell array of tables

Output data, returned as a cell array of tables or timetables with data records from the TDMS-file.
Each element of the cell array is a table or timetable for a channel group. The cell array index
corresponds to the channel group number.

When the start time for the first sample is 0 and the sample times are relative to that (duration), the
sample times returned to the timetable are based on seconds since the epoch in the local time zone
equivalent to 01/01/1904 00:00:00.00 UTC (using the Gregorian calendar and ignoring leap seconds).
For more information, see TDMS File Format Internal Structure.

Limitations
• TDMS functions are supported on Windows platforms only.

Version History
Introduced in R2022a

See Also
Functions
tdmsinfo | tdmsreadprop
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tdmsreadprop
Read properties as single row table from TDMS-file

Syntax
props = tdmsreadprop(tdmsfile)
props = tdmsreadprop(tdmsfile,Name=Value)

Description
props = tdmsreadprop(tdmsfile) returns a table of properties from the specified TDMS-file.

props = tdmsreadprop(tdmsfile,Name=Value) uses name-value pairs to filter the information
to get specific properties.

Examples

Read Properties from TDMS-File

Read the high level properties of a TDMS-file.

props = tdmsreadprop("Turbine_003.tdms")

props =

  1×7 table

        name              title         author                        description                                   datetime                datestring     timestring
    _____________    _______________    ______    ____________________________________________________    _____________________________    ____________    __________

    "Turbine_003"    "Turbine Tests"    "xyz"     "Test the Acceleration, Force and Torque of Turbine"    2021-10-18 01:57:17.000000000    "10/18/2021"    "11:27:17"

Read the properties of one channel group.

props = tdmsreadprop("Turbine_003.tdms",ChannelGroupName="Torque")

props =

  1×2 table

      name      description
    ________    ___________

    "Torque"    "CGTorque"

Narrow the scope to a single channel.
props = tdmsreadprop("Turbine_003.tdms",ChannelGroupName="Torque",ChannelName="Torque2")

props =

  1×19 table
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      name        datatype     ...
    _________    ___________   ...

    "Torque2"    "DT_DOUBLE"   ...

Filter on specific properties.
props = tdmsreadprop("Turbine_003.tdms",PropertyNames=["title" "datetime" "datestring"])

props =

  1×3 table

         title                   datetime                datestring 
    _______________    _____________________________    ____________

    "Turbine Tests"    2021-10-18 01:57:17.000000000    "10/18/2021"

Input Arguments
tdmsfile — TDMS file name
string

TDMS file name, specified as a string.

For local files, use a full or relative path that contains a file name and extension. You also can specify
a file on the MATLAB path.

For Internet files, specify the URL. For example, to read a remote file from the Amazon S3 cloud:

data = tdmsread("s3://bucketname/path_to_file/data.tdms");

Example: "airlinesmall.tdms"
Data Types: char | string

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: ChannelGroupName="Torque",ChannelName="Torque2"

Supported name-value pairs are:

ChannelGroupName — Channel group containing the channels to read from
string | char

Channel group containing the channels to read from, specified as a string or character vector.
Example: "Torque"
Data Types: string | char

ChannelName — Name of channel to read
char | string
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Name of channel to read, specified as a string or character vector. The channel must be in the
channel group specified by ChannelGroupName.
Example: "Torque2"
Data Types: char | string

PropertyNames — Property names to read
string | char | cell

Property names to read, specified as a string, string array, character vector, or cell array of character
vectors.
Example: ["Torque1" "Torque2"]
Data Types: char | string | cell

Output Arguments
props — Table of properties from TDMS-file
table

Properties in the TDMS-file, returned as a table.

Limitations
• TDMS functions are supported on Windows platforms only.

Version History
Introduced in R2022a

See Also
Functions
tdmsread | tdmsinfo
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tdmswrite
Write data to TDMS-file

Syntax
tdmswrite(tdmsfile,tdmsdata)
tdmswrite(tdmsfile,tdmsdata,ChannelGroupNames=chGrpName)
tdmswrite( ___ ,TimeChannel=timeChan)

Description
With the tdmswrite function you can write table or timetable data to a new or existing TDMS-file.

tdmswrite(tdmsfile,tdmsdata) writes data to the specified TDMS-file from a table, timetable, or
cell array of tables or timetables. Each table is written to the file as a new channel group,
automatically incrementing the channel group name with each write.

tdmswrite(tdmsfile,tdmsdata,ChannelGroupNames=chGrpName) specifies an existing
channel group to write the data to. When specifying data as a cell array, use a cell array of strings to
identify the corresponding channel group names, sequentially mapped by elements.

tdmswrite( ___ ,TimeChannel=timeChan) specifies how measurement time is included in the file
when writing data from a timetable. A TimeChannel value of "none" adds the start time and step
time to the channel properties. A value of "single" adds a single channel with a timestamp for
every measurement. If you are writing data from a regular table, the TimeChannel setting is
ignored.

Examples

Read TDMS File Data

Write data to a specified TDMS-file. You can use default channel groups or specify channel group
names.

Write a table or timetable of data, T, to a new channel group in the TDMS-file named
sinewave.tdms.

tdmswrite("sinewave.tdms",T)

Write table or timetable of data, T, to a specific channel group in a TDMS-file. If the channel group
does not exist, it is added to the file.

tdmswrite("sinewave.tdms", T, ChannelGroupNames="MeasuredData")

Write two tables of data to multiple channel groups in a TDMS-file.

2 Functions

2-918



tdmswrite("sinewave.tdms", {T1,T2}, ChannelGroupNames=["Measurement1" "Measurement2"])

Input Arguments
tdmsfile — TDMS file name
string

TDMS file name, specified as a string.

For local files, use a full or relative path that contains a file name and extension. You also can specify
a file on the MATLAB path.
Example: "sample332.tdms"
Data Types: char | string

tdmsdata — TDMS data
table | timetable | cell array of tables and timetables

TDMS data, specified as table, timetable, or cell array of tables and timetables. Alternatively, you can
specify several tables or timetables as a series of arguments, such as T1,T2,T3.

For a duration timetable, the written start time is 0. When reading this file with tdmsread, the start
time is the epoch in the local time zone equivalent to 01/01/1904 00:00:00.00 UTC (using the
Gregorian calendar and ignoring leap seconds). For more information, see TDMS File Format Internal
Structure.
Data Types: table | timetable | cell

chGrpName — Channel group name
string | char

Channel group name, specified as a string or character vector. Use an array of channel group names
when writing multiple tables.

• If the channel group does not exist in the TDMS-file, a new channel group is created.
• If the channel group exists, data is appended to channels with names matching the table variables.

New channels are added to the channel group for table variables not already represented by
existing channel names.

Example: "ChannelGroup1"
Data Types: char | string | cell

timeChan — Time channel format
"single" (default) | "none"

Time channel format layout, specified as a string or character vector with value "single" or
"none":

• A value of "single" (default) adds a single channel with a timestamp for every measurement.
This is appropriate for timetables with irregular timing, when each measurement has a unique
datetime or duration, shared across the channels in the channel group. This Time channel is
derived from the Time variable of the input timetable.
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• A value of "none" adds only the start time and step time to the channel properties
wf_start_time and wf_increment, respectively. Appropriate for regular timetables with fixed
sample rates, this option can reduce the size of the TDMS-file.

Example: "none"
Data Types: char | string

Limitations
• TDMS functions are supported on Windows platforms only.

Version History
Introduced in R2022b

See Also
Functions
tdmsinfo | tdmsread | tdmsreadprop

External Websites
TDMS Fragmentation: Why Your TDMS Files Use Too Much Memory
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tdmswriteprop
Write properties to TDMS-file

Syntax
tdmswriteprop(tdmsfile,propname,propvalue)
tdmswriteprop(tdmsfile,propname,propvalue,ChannelGroupName=chGrpName)
tdmswriteprop(tdmsfile,propname,propvalue,ChannelGroupName=
chGrpName,ChannelName=chName)

Description
With the tdmswriteprop function you can write file properties, channel properties and channel
group properties to a TDMS-file.

tdmswriteprop(tdmsfile,propname,propvalue) writes file property names and corresponding
values to the specified TDMS-file. You can set a single property or multiple properties. To set multiple
properties, use arrays to specify property names and values. With tdmswriteprop you can specify
and modify existing properties, or add new properties.

tdmswriteprop(tdmsfile,propname,propvalue,ChannelGroupName=chGrpName) and
tdmswriteprop(tdmsfile,propname,propvalue,ChannelGroupName=
chGrpName,ChannelName=chName) specify the existing channel group or channel that the property
is assigned to. You can set the properties of only one channel or channel group at a time.

Examples

Write Properties to TDMS-File

Write the title file property of a TDMS-file.

tdmswriteprop("sinewave.tdms","title","Measurement Data")

Write a channel group description property of a TDMS-file.
tdmswriteprop("sinewave.tdms","description","Amplitude and Phase Sweep",...
    ChannelGroupName="ChannelGroup1")

Write a channel property of a TDMS-file.
tdmswriteprop("sinewave.tdms","max_value", max(data), ...
    ChannelGroupName="ChannelGroup1", ChannelName="Amplitude Sweep")

Write two properties of a channel.
tdmswriteprop("sinewave.tdms",["max_value" "min_value"],[max(data),min(data)] ...
    ChannelGroupName="ChannelGroup1", ChannelName="Amplitude Sweep")

Input Arguments
tdmsfile — TDMS file name
string | char
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TDMS file name, specified as a string or character vector.

For local files, use a full or relative path that contains a file name and extension. You also can specify
a file on the MATLAB path.
Example: "sinewave.tdms"
Data Types: char | string

propname — Property name
string | char

Property name, specified as a string or character vector. When writing multiple properties, use an
array of strings to identify them. To create custom properties, specify a name that does not already
exist.
Example: "title"
Data Types: char | string

propvalue — Property value
property-dependent

Property value, specified as a supported type for its property. To set multiple properties, use an array
of values. If the values are different types, for example numeric and string, use a cell array.
Example: {"Input Channel",2.0,"mV"}

chGrpName — Channel group name
string | char

Channel group name, specified as a string or character vector.
Example: "ChannelGroup1"
Data Types: char | string

chName — Channel name
string | char

Channel name, specified as a string or character vector.
Example: "Amplitude sweep"
Data Types: char | string

Limitations
• TDMS functions are supported on Windows platforms only.

Version History
Introduced in R2022b
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See Also
Functions
tdmsread | tdmsinfo

 tdmswriteprop

2-923





System Objects

3



comm.ACPR
Package: comm

Measure adjacent channel power ratio (ACPR)

Description
The comm.ACPR System object measures the ACPR of an input signal.

To measure the ACPR of an input signal:

1 Create the comm.ACPR object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
acpr = comm.ACPR
acpr = comm.ACPR(Name,Value)

Description

acpr = comm.ACPR creates an ACPR measurement System object.

acpr = comm.ACPR(Name,Value) sets properties on page 3-2 using one or more name-value
arguments. For example, comm.ACPR('NormalizedFrequency',true) creates an ACPR
measurement object with normalized frequency values.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

NormalizedFrequency — Normalized frequency values
0 or false (default) | 1 or true

Normalized frequency values, specified as one of these logical values.

• 0 (false) — Frequency values are measured in Hz.
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• 1 (true) — Frequency values are normalized in the range [-1, 1].

Data Types: logical | double

SampleRate — Sample rate of input signal
1000000 (default) | positive scalar

Sample rate of input signal in Hz, specified as a positive scalar.

Dependencies

To enable this property, set the NormalizedFrequency property to false.
Data Types: double

MainChannelFrequency — Main channel center frequency
0 (default) | numeric scalar

Main channel center frequency, specified as a numeric scalar.

• If you set the NormalizedFrequency property to true, specify the center frequency as a
normalized value in the range [−1, 1].

• If you set the NormalizedFrequency property to false, specify the center frequency in Hz.

This property specifies where the object measures the main channel power in the bandwidth specified
by the MainMeasurementBandwidth property. For more details on how to set these two properties,
see “Algorithms” on page 3-10.
Data Types: double

MainMeasurementBandwidth — Main channel measurement bandwidth
50000 (default) | positive scalar

Main channel measurement bandwidth, specified as a positive scalar.

• If you set the NormalizedFrequency property to true, specify the measurement bandwidth as a
normalized value in the range [0, 1].

• If you set the NormalizedFrequency property to false, specify the measurement bandwidth in
Hz.

This property specifies the bandwidth in which the object measures the main channel power. The
measurement is taken at the center of the frequency, specified by the MainChannelFrequency
property. For more details on how to set these two properties, see “Algorithms” on page 3-10.
Data Types: double

AdjacentChannelOffset — Adjacent channel frequency offsets
[-100000 100000] (default) | numeric scalar | numeric row vector

Adjacent channel frequency offsets, specified as a numeric scalar or row vector comprising
frequencies that define the location of adjacent channels of interest.
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• If you set the NormalizedFrequency property to true, specify the adjacent channel frequency
offsets as normalized values in the range [−1, 1].

• If you set the NormalizedFrequency property to false, specify the adjacent channel frequency
offsets in Hz.

The offset values indicate the distance between the main channel center frequency and adjacent
channel center frequencies. Positive offsets indicate adjacent channels to the right of the main
channel center frequency. Negative offsets indicate adjacent channels to the left of the main channel
center frequency. For more details on how to set properties of the adjacent channels, see
“Algorithms” on page 3-10.
Data Types: double

AdjacentMeasurementBandwidth — Measurement bandwidth for each adjacent channel
50000 (default) | numeric scalar or row vector

Measurement bandwidth for each adjacent channel, specified as one of these options.

• Numeric scalar — The object obtains all adjacent channel power measurements within equal
measurement bandwidths.

• Numeric row vector of length equal to the number of offsets specified in the
AdjacentChannelOffset property — The object obtains each adjacent channel power
measurement based on its specific bandwidth that is centered at the frequency defined by the
corresponding frequency offset. The AdjacentChannelOffset property defines this frequency
offset.

Set the values of this property with respect to the NormalizedFrequency property.

• If you set the NormalizedFrequency property to true, specify the measurement bandwidth
values as normalized values in the range [0, 1].

• If you set the NormalizedFrequency property to false, specify the measurement bandwidth
values in Hz.

For more details on how to set properties of the adjacent channels, see “Algorithms” on page 3-10.
Data Types: double

MeasurementFilterSource — Source of measurement filter
'None' (default) | 'Property'

Source of the measurement filter, specified as one of these values.

• 'None' — The object does not apply filtering to obtain ACPR measurements.
• 'Property' — The object applies a measurement filter to the main channel before measuring the

average power. Specify the measurement filter coefficients by using the MeasurementFilter
property. Each of the adjacent channel bands also receives a measurement filter.

Data Types: char | string

MeasurementFilter — Measurement filter coefficients
1 (default) | numeric row vector
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Measurement filter coefficients, specified as a numeric row vector containing the coefficients of an
FIR filter in descending polynomial powers. Center the response of the filter at DC. The object
automatically shifts and applies the filter response at each of the main and adjacent channel center
frequencies before obtaining the average power measurements. The internal filter states persist
between calls to the object. To clear the states, call the reset object function.

The default value specifies an all-pass filter that has no effect on the measurements.
Dependencies

To enable this property, set the MeasurementFilterSource property to 'Property'.
Data Types: double

SpectralEstimation — Spectral estimation control
'Auto' (default) | 'Specify frequency resolution' | 'Specify window parameters'

Spectral estimation control, specified as one of these values.

• 'Auto' — The object obtains power measurements with a Welch spectral estimator with zero-
percent overlap, a Hamming window, and a segment length equal to the length of the input data
vector. The spectral estimator set can achieve the maximum frequency resolution that is attainable
with the input data length.

• 'Specify frequency resolution' — The object uses the value specified by the
FrequencyResolution property to automatically compute the size of the spectral estimator data
window.

• 'Specify window parameters' — The object obtains power measurements with a Welch
spectral estimator determined by the SegmentLength, OverlapPercentage, Window, and
SidelobeAttenuation properties. In this setting, the FrequencyResolution property does
not apply, but you can use these properties to control also the resolution.

Data Types: char | string

SegmentLength — Segment length for spectral estimator
64 (default) | positive integer

Segment length for the spectral estimator in samples, specified as a positive integer. The segment
length enables you to make tradeoffs between frequency resolution and variance in the spectral
estimates. A long segment length results in better resolution. A short segment length results in more
averaging and a decrease in variance.
Dependencies

To enable this property, set the SpectralEstimation property to 'Specify window
parameters'.
Data Types: double

OverlapPercentage — Overlap percentage between segments
0 (default) | numeric scalar in the range [0, 100]

Overlap percentage between segments in the spectral estimator, specified as a numeric scalar in the
range [0, 100].
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Dependencies

To enable this property, set the SpectralEstimation property to 'Specify window
parameters'.
Data Types: double

Window — Window function for spectral estimator
'Hamming' (default) | 'Bartlett' | 'Bartlett-Hanning' | 'Blackman' | 'Blackman-Harris'
| 'Bohman' | 'Chebyshev' | 'Flat Top' | 'Hann' | 'Nuttall' | 'Parzen' | 'Rectangular' |
'Triangular'

Window function for the spectral estimator, specified as 'Hamming', 'Bartlett', 'Bartlett-
Hanning', 'Blackman', 'Blackman-Harris', 'Bohman', 'Chebyshev', 'Flat Top', 'Hann',
'Nuttall', 'Parzen', 'Rectangular', or 'Triangular'.

The default Hamming window has a sidelobe attenuation of 42.5 dB. This attenuation can mask
spectral content below this value, relative to the peak spectral content. Choosing different windows
enables you to make tradeoffs between resolution and sidelobe attenuation.

Dependencies

To enable this property, set the SpectralEstimation property to 'Specify window
parameters'.
Data Types: char | string

SidelobeAttenuation — Sidelobe attenuation for Chebyshev window
100 (default) | nonnegative scalar

Sidelobe attenuation for the Chebyshev window function in dB, specified as a nonnegative scalar.

Dependencies

To enable this property, set the SpectralEstimation property to 'Specify window
parameters' and the Window property to 'Chebyshev'.
Data Types: double

FrequencyResolution — Frequency resolution of spectral estimator
10625 (default) | numeric scalar

Frequency resolution of the spectral estimator, specified as a numeric scalar.

• If you set the NormalizedFrequency property to true, specify the frequency resolution as a
normalized value in the range [0, 1].

• If you set the NormalizedFrequency property to false, specify the frequency resolution in Hz.

Dependencies

To enable this property, set the SpectralEstimation property to 'Specify frequency
resolution'.
Data Types: double
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FFTLength — Number of FFT points
'Next power of 2' (default) | 'Same as segment length' | 'Custom'

Number of fast Fourier transform (FFT) points that the spectral estimator uses, specified as one of
these values.

• 'Next power of 2' — The object sets the number of FFT points to the next power of 2 that is
greater than max(SegmentLength,256).

• 'Same as segment length' — The object sets the number of FFT points to the value of the
SegmentLength property.

• 'Custom' — The object sets the number of FFT points to the value of the CustomFFTLength
property.

Data Types: char | string

CustomFFTLength — Custom number of FFT points
256 (default) | positive integer

Custom number of FFT points, specified as a positive integer.

Dependencies

To enable this property, set the FFTLength property to 'Custom'.
Data Types: double

MaxHold — Maximum-hold setting control
0 or false (default) | 1 or true

Maximum-hold setting control, specified as one of these logical values.

• 0 (false) — The object obtains power measurements by using instantaneous power spectral
density estimates.

• 1 (true) — The object obtains power measurements by comparing two vectors. One vector is the
current estimated power spectral density vector (obtained with the current input data frame). The
object checks this vector against the previous maximum-hold accumulated power spectral density
vector (obtained at the previous call of the object). The object stores the maximum values at each
frequency bin and uses these values to compute average power measurements. To clear the
maximum-hold spectrum, use the reset object function.

Tunable: Yes
Data Types: logical | double

PowerUnits — Power measurement units
'dBm' (default) | 'dBW' | 'Watts'

Power measurement units, specified as one of these values.

• 'dBm' or 'dBW' — The object returns ACPR measurements in a dBc scale (the adjacent channel
power referenced to the main channel power).
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• 'Watts' — The object returns ACPR measurements in a linear scale.

Data Types: char | string

MainChannelPowerOutputPort — Option to enable main channel power measurement
output
0 or false (default) | 1 or true

Option to enable main channel power measurement output, specified as a logical 0 (false) or 1
(true). When you set this property to true, the object returns the main channel power
measurement. The main channel power is the power of the input signal measured in the band
specified by the MainChannelFrequency and MainMeasurementBandwidth properties. The object
returns the power measurements in the unit specified by the PowerUnits property.
Data Types: logical | double

AdjacentChannelPowerOutputPort — Option to enable adjacent channel power
measurements output
0 or false (default) | 1 or true

Option to enable adjacent channel power measurements output, specified as a logical 0 (false) or 1
(true). When you set this property to true, the object returns a vector containing adjacent channel
power measurements. The adjacent channel powers correspond to the power of the input measured
in the bands specified by the AdjacentChannelOffset and AdjacentMeasurementBandwidth
properties. The object returns the power measurements in the unit specified by the PowerUnits
property.
Data Types: logical | double

Usage

Syntax
adjChPowRatio = acpr(signal)
[adjChPowRatio,mainChPow] = acpr(signal)
[adjChPowRatio,adjChPow] = acpr(signal)
[adjChPowRatio,mainChPow,adjChPow] = acpr(signal)

Description

adjChPowRatio = acpr(signal) measures the ACPR in input data signal. The measurements
are at the frequency bands specified by the MainChannelFrequency,
MainMeasurementBandwidth, AdjacentChannelOffset, and
AdjacentMeasurementBandwidth properties.

[adjChPowRatio,mainChPow] = acpr(signal) measures the main channel power, mainChPow.
To use this syntax, set the MainChannelPowerOutputPort property to true. The main channel
power is measured within the main channel frequency band specified by the
MainChannelFrequency and MainMeasurementBandwidth properties.

[adjChPowRatio,adjChPow] = acpr(signal) measures the adjacent channel powers,
adjChPow. To use this syntax, set the AdjacentChannelPowerOutputPort property to true. The
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adjacent channel powers are measured at the adjacent frequency bands specified by the
AdjacentChannelOffset and AdjacentMeasurementBandwidth properties.

[adjChPowRatio,mainChPow,adjChPow] = acpr(signal) measures the ACPR, the main
channel power, and adjacent channel powers. To use this syntax, set the
MainChannelPowerOutputPort and AdjacentChannelPowerOutputPort properties to true.

Input Arguments

signal — Input signal
column vector of complex numbers

Input signal, specified as a column vector of complex numbers.
Data Types: double
Complex Number Support: Yes

Output Arguments

adjChPowRatio — ACPR measurements
numeric row vector

ACPR measurements, returned as a numeric row vector. The length of the vector equals the number
of adjacent channels specified by the AdjacentChannelOffset property.
Data Types: double

mainChPow — Main channel power measurements
numeric scalar

Main channel power measurements, returned as a numeric scalar. The PowerUnits property
specifies the units used for the returned value.
Data Types: double

adjChPow — Adjacent channel power measurements
numeric row vector

Adjacent channel power measurements, returned as a numeric row vector. The length of the vector
equals the number of adjacent channels specified by the AdjacentChannelOffset property. The
PowerUnits property specifies the units used for the returned value.
Data Types: double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
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reset Reset internal states of System object

Examples

Measure ACPR of 16-QAM Signal

Generate data with an alphabet size of 16, and then modulate the data.

x = randi([0 15],5000,1);
y = qammod(x,16);

Upsample the data by using a rectangular pulse shape.

L = 8;
yPulse = rectpulse(y,L);

Create an ACPR measurement object.

acpr = comm.ACPR(...
    'SampleRate',3.84e6*8, ...
    'MainChannelFrequency',0, ...
    'MainMeasurementBandwidth',3.84e6, ...
    'AdjacentChannelOffset',[-5e6 5e6], ...
    'AdjacentMeasurementBandwidth',3.84e6, ...
    'MainChannelPowerOutputPort',true, ...
    'AdjacentChannelPowerOutputPort',true);

Measure the ACPR, main channel power, and adjacent channel powers of the modulated signal.

[adjChPowRatio,mainChPow,adjChPow] = acpr(yPulse)

adjChPowRatio = 1×2

  -14.3659  -14.3681

mainChPow = 38.8668

adjChPow = 1×2

   24.5010   24.4988

Algorithms
To comply with the Nyquist sampling theorem, these conditions must be satisfied when you set the
frequencies and measurement bandwidths of the main and adjacent channels.

MainChannelFrequency± MainMeasurementBandwidth
2 < Fmax

(MainChannelFrequency + AdjacentChannelOffset) ± AdjacentMeasurementBandwidth
2 < Fmax

If you set the NormalizedFrequency property to false, Fmax = Fs/2, where Fs is the sampling
frequency specified by the SampleRate property.

3 System Objects

3-10



If you set the NormalizedFrequency property to true, Fmax = 1.

Version History
Introduced in R2012a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Supports MEX code generation. Does not support code generation for standalone applications.
• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
comm.CCDF | comm.EVM | comm.MER
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comm.AGC
Package: comm

Adaptively adjust gain for constant signal level output

Description
The comm.AGC System object creates an automatic gain controller (AGC) that adaptively adjusts its
gain to achieve a constant signal level at the output. For more information, see “Logarithmic-Loop
AGC” on page 3-27. This object is designed for streaming applications. For more information, see
“Tips” on page 3-29.

To adaptively adjust gain for a constant signal level at the output:

1 Create the comm.AGC object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
agc = comm.AGC
agc = comm.AGC(Name,Value)

Description

agc = comm.AGC creates an AGC System object that adaptively adjusts its gain to achieve a
constant signal level at the output.

agc = comm.AGC(Name,Value) set properties using one or more name-value pairs. Enclose each
name in quotes. For example, 'AdaptationStepSize',0.05 sets the step size for gain updates to
0.05.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

AdaptationStepSize — Step size for gain updates
0.01 (default) | positive scalar
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Step size for gain updates, specified as a positive scalar. Increasing the step size enables the AGC to
respond more quickly to changes in the input signal level but increases variation in the output signal
level after reaching steady-state operation. For more information, see “AGC Performance Criteria” on
page 3-29, and the “Vary AGC Step Size” on page 3-19, and “Plot Effect of Step Size on AGC
Performance” on page 3-22 examples.

Tunable: Yes
Data Types: double

DesiredOutputPower — Target output power level
1 W (default) | positive scalar

Target output power level, specified as a positive scalar. The power is measured in Watts referenced
to 1 ohm. For more information, see the “Adaptively Adjust Received Signal Amplitude Using AGC” on
page 3-21 example.
Data Types: double

AveragingLength — Length of averaging window
100 samples (default) | positive integer

Length of the averaging window in samples, specified as a positive integer. For more information on
how the averaging length influences the variance of the AGC output signal in steady-state operation
and the execution speed, see “Tips” on page 3-29 and the “Vary AGC Averaging Length” on page 3-
14 example.
Data Types: double

MaxPowerGain — Maximum power gain
60 dB (default) | positive scalar

Maximum power gain in decibels, specified as a positive scalar. Large gain adjustments can cause
clipping when a small input signal power suddenly increases. Use this property to avoid large gain
adjustments by limiting the gain that the AGC applies to the input signal. For more information, see
the “Vary AGC Maximum Gain” on page 3-16 and “Demonstrate Effect of Maximum AGC Gain on
Packet Data” on page 3-25 examples.
Data Types: double

Usage

Syntax
y = agc(x)
[y,powerlevel] = agc(x)

Description

y = agc(x) adaptively adjusts the gain to the input signal to achieve a reference signal level at the
output. The AGC System object uses a square law detector to determine the output signal level. For
more information, see “AGC Detector” on page 3-28.
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[y,powerlevel] = agc(x) returns powerlevel, the power level estimate of the input signal. You
can use powerlevel as an energy detector output.

Input Arguments

x — Input signal
column vector

Input signal, specified as a column vector.
Data Types: single | double

Output Arguments

y — Output signal
column vector

Output signal, returned as a column vector. The output signal is the same data type as the input
signal, x.

powerlevel — Power level estimate
NS-element column vector

Power level estimate, returned as an NS-element column vector. NS is the length of the input signal, x.
You can use powerlevel as an energy detector output.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Vary AGC Averaging Length

Apply different AGC averaging lengths to QAM-modulated signals. Compare the variance and plot of
the signals after AGC is applied.

Create three AGC System objects with their average window lengths set to 10, 100, and 1000
samples, respectively.

agc1 = comm.AGC('AveragingLength',10);
agc2 = comm.AGC('AveragingLength',100);
agc3 = comm.AGC('AveragingLength',1000);
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Generate 16-QAM modulated and raised cosine pulse shaped packetized data.

M = 16;
d = randi([0 M-1],1000,1);
s = qammod(d,M);
x = 0.1*s;
pulseShaper = comm.RaisedCosineTransmitFilter;
y = awgn(pulseShaper(x),inf);

Apply AGC to the data capturing separate outputs for each AGC object.

r1 = agc1(y);
r2 = agc2(y);
r3 = agc3(y);

Plot and compare the signals. As the averaging length increases, the variance at the output of AGC
decreases.

figure(1)
subplot(4,1,1)
plot(abs(y))
title('AGC Input')
subplot(4,1,2)
plot(abs(r1))
axis([0 8000 0 10])
title('AGC Output (Averaging Length is 10 Samples)')
text(4000,5,sprintf('Variance is %f',var(r1(3000:end))))
subplot(4,1,3)
plot(abs(r2))
axis([0 8000 0 10])
title('AGC Output (Averaging Length is 100 Samples)')
text(4000,5,sprintf('Variance is %f',var(r2(3000:end))))
subplot(4,1,4)
plot(abs(r3))
axis([0 8000 0 10])
title('AGC Output (Averaging Length is 1000 Samples)')
text(4000,5,sprintf('Variance is %f',var(r3(3000:end))))
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Vary AGC Maximum Gain

Apply different AGC maximum gain levels to QPSK-modulated signals. Compare the plot of the signals
after AGC is applied.

Create three AGC System objects with their maximum gain values set to 10, 20, and 30 dB,
respectively.

agc1 = comm.AGC('MaxPowerGain',10);
agc2 = comm.AGC('MaxPowerGain',20);
agc3 = comm.AGC('MaxPowerGain',30);

Generate QPSK-modulated data. Pass the data through raised cosine pulse shaped filtering and an
AWGN channel.

M = 4;
pktLen = 10000;
d = randi([0 M-1],pktLen,1);
s = pskmod(d,M,pi/4);
x = repmat([zeros(pktLen,1); 0.3*s],3,1);
pulseShaper = comm.RaisedCosineTransmitFilter;
y = awgn(pulseShaper(x),50);

Apply AGC to the data capturing separate outputs for each AGC object.
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r1 = agc1(y);
r2 = agc2(y);
r3 = agc3(y);

Plot the input signal and the AGC-adjusted signal with various maximum gain levels. Compare the
results for the conditions in this example.

• A maximum gain setting of 10 dB is too small, and the AGC output does not reach the desired
output signal level risking data loss due to decreased signal dynamic range.

• A maximum gain setting of 20 dB is optimal, and the AGC output reaches the desired level without
signal loss due to saturation.

• A maximum gain setting of 30 dB is too large, and the AGC output overshoots the desired signal
level risking signal saturation and data loss at the start of received packets.

• Between packets the input signal contains only noise.

As shown in the plots, the packet transmissions have extended periods when no data is received. The
extended periods with no data received results in AGC increasing to the maximum gain setting. If a
packet arrives when the AGC gain is too high, the output power overshoots the desired signal level
until the AGC can respond to the change in the input power level and reduce its gain.

limits = [0 3];
figure(1)
subplot(4,1,1)
plot(abs(y))
ylim(limits)
title('AGC Input')
subplot(4,1,2)
plot(abs(r1))
ylim(limits)
title('AGC Output (Maximum Power Gain is 10 dB)')
subplot(4,1,3)
plot(abs(r2))
ylim(limits)
title('AGC Output (Maximum Power Gain is 20 dB)')
subplot(4,1,4)
plot(abs(r3))
ylim(limits)
title('AGC Output (Maximum Power Gain is 30 dB)')

 comm.AGC

3-17



Show Power Level Estimate Output from AGC

Plot a signal and the power level estimate. Compare the results. The power level estimate can serve
as a power detector, indicating exactly when the received packet has arrived.

Create an AGC System object with its maximum gain value set to 20 dB.

agc20 = comm.AGC('MaxPowerGain',20);

Generate QPSK-modulated data. Pass the data through raised cosine pulse shaped filtering and an
AWGN channel.

modOrd = 4; % Modulation order
pktLen = 10000; % Packet length
d = randi([0 modOrd-1],pktLen,1);
s = pskmod(d,modOrd,pi/4);
x = repmat([zeros(pktLen,1); 0.3*s],3,1);
pulseShaper = comm.RaisedCosineTransmitFilter;
y = awgn(pulseShaper(x),50);

Apply AGC to the data capturing separate outputs for each AGC object.

[r2,p2] = agc20(y);

Plot the input signal and the received signal power level estimate. Compare the results. Reception of
packetized data with extended periods when no data is received results in the detected power level
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estimate decreasing to nearly zero. While an input signal is detected, the output power level estimate,
p2, serves as a power detector, indicating exactly when the received packet has arrived.

limits = [0 3];
figure(1)
subplot(4,1,1)
plot(abs(y))
ylim(limits)
title('AGC Input')
subplot(4,1,2)
plot(abs(p2))
title('Power Level')

Vary AGC Step Size

Apply different AGC step sizes to QPSK-modulated signals. Compare the signals after applying AGC.

Create three AGC System objects with their step sizes set to 1e-1, 1e-3, and 1e-4, respectively.

agc1 = comm.AGC('AdaptationStepSize',1e-1);
agc2 = comm.AGC('AdaptationStepSize',1e-3);
agc3 = comm.AGC('AdaptationStepSize',1e-4);

Generate QPSK-modulated data with raised cosine pulse shaping.
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d = randi([0 3],500,1);
s = pskmod(d,4,pi/4);
x = 0.1*s;
pulseShaper = comm.RaisedCosineTransmitFilter;
y = pulseShaper(x);

Apply AGC to the data capturing separate outputs for each AGC object.

r1 = agc1(y);
r2 = agc2(y);
r3 = agc3(y);

Plot the input and output signal after the various AGC step sizes.

• With the step size set to 1e-1, the AGC output signal overshoot is evident. The output signal
converges very quickly.

• With the step size set to 1e-3, the AGC output signal overshoot disappears. The output signal
gradually converges.

• With the step size set to 1e-4, the AGC output signal takes 2 to 3 times longer to converge than a
step size of 1e-3.

figure
subplot(4,1,1)
plot(abs(y))
title('AGC Input')
subplot(4,1,2)
plot(abs(r1))
title('AGC Output (Adaption Step Size is 1e-1)')
subplot(4,1,3)
plot(abs(r2))
title('AGC Output (Adaption Step Size is 1e-3)')
subplot(4,1,4)
plot(abs(r3))
title('AGC Output (Adaption Step Size is 1e-4)')
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Adaptively Adjust Received Signal Amplitude Using AGC

Modulate and amplify a QPSK signal. Set the received signal amplitude to approximately 1 volt by
using an AGC. Plot the output.

Create a QPSK-modulated signal by using the QPSK System object.

data = randi([0 3],1000,1);
qpsk = comm.QPSKModulator;
modData = qpsk(data);

Attenuate the modulated signal.

txSig = 0.1*modData;

Create an AGC System object and pass the transmitted signal through it. The AGC adjusts the
received signal power to approximately 1 W.

agc = comm.AGC;
rxSig = agc(txSig);

Plot the signal constellations of the transmit and received signals after the AGC reaches steady-state.

h = scatterplot(txSig(200:end),1,0,'*');
hold on
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scatterplot(rxSig(200:end),1,0,'or',h);
legend('Input of AGC','Output of AGC')

Measure and compare the power of the transmitted and received signals after the AGC reaches a
steady state. The power of the transmitted signal is 100 times smaller than the power of the received
signal.

txPower = var(txSig(200:end));
rxPower = var(rxSig(200:end));
[txPower rxPower]

ans = 1×2

    0.0100    0.9970

Plot Effect of Step Size on AGC Performance

Create two AGC System objects™ to adjust the level of the received signal using two different step
sizes with identical update periods.

Generate an 8-PSK signal such that its power is 10 W.

data = randi([0 7],200,1);
modData = sqrt(10)*pskmod(data,8,pi/8,'gray');
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Create a pair of raised cosine matched filters with their Gain property set so that they have unity
output power.

txfilter = comm.RaisedCosineTransmitFilter('Gain',sqrt(8));
rxfilter = comm.RaisedCosineReceiveFilter('Gain',sqrt(1/8));

Filter the modulated signal through the raised cosine transmit filter.

txSig = txfilter(modData);

Create two AGC System objects to adjust the received signal level. Set a step size of 0.01 and 0.1,
respectively.

agc1 = comm.AGC('AdaptationStepSize',0.01);
agc2 = comm.AGC('AdaptationStepSize',0.1);

Apply AGC to the modulated signal capturing separate outputs for each AGC object.

agcOut1 = agc1(txSig);
agcOut2 = agc2(txSig);

Filter the AGC output signals by using the raised cosine receive filter.

rxSig1 = rxfilter(agcOut1);
rxSig2 = rxfilter(agcOut2);

Plot the power of the filtered AGC responses while accounting for the 10 symbol delay through the
transmit-receive filter pair.

plot([abs(rxSig1(11:110)).^2 abs(rxSig2(11:110)).^2])
grid on
xlabel('Symbols')
ylabel('Power (W)')
legend('Step size 0.01','Step size 0.1')
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The signal with the larger step size converges faster to the AGC target power level of 1 W.

Plot the power of the steady-state filtered AGC signals by including only the last 100 symbols. The
larger AGC step size results in less accurate gain correction. Larger AGC step size values result in
faster convergence at the expense of less accurate gain control.

plot((101:200),[abs(rxSig1(101:200)).^2 abs(rxSig2(101:200)).^2])
grid on
xlabel('Symbols')
ylabel('Power (W)')
legend('Step size 0.01','Step size 0.1')
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Demonstrate Effect of Maximum AGC Gain on Packet Data

Pass attenuated QPSK packet data to two AGCs with different maximum gains. Plot the results.

Create two, 200-symbol QSPK data packets. Transmit the packets over a 1200-symbol frame.

modData1 = pskmod(randi([0 3],200,1),4,pi/4);
modData2 = pskmod(randi([0 3],200,1),4,pi/4);
txSig = [modData1; zeros(400,1); modData2; zeros(400,1)];

Attenuate the transmitted burst signal by 20 dB and plot its power.

rxSig = 0.1*txSig;
rxSigPwr = abs(rxSig).^2;
plot(rxSigPwr)
grid
xlabel('Symbols')
ylabel('Power (W)')
title('Signal Power Before Applying AGC')
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Create two AGCs with maximum power gains of 30 dB and 24 dB, respectively.

agc1 = comm.AGC('MaxPowerGain',30,'AdaptationStepSize',0.02);

agc2 = comm.AGC('MaxPowerGain',24,'AdaptationStepSize',0.02);

Apply AGC to the attenuated signal capturing separate outputs for each AGC object. Calculate the
output power for each case.

rxAGC1 = agc1(rxSig);
rxAGC2 = agc2(rxSig);

pwrAGC1 = abs(rxAGC1).^2;
pwrAGC2 = abs(rxAGC2).^2;

Plot the output powers. Initially, for the second packet, the agc1 output signal power is too high
because the AGC applied its maximum gain during the period when no data was transmitted. The
corresponding agc2 output signal power (2.5 W) overshoots the target power level of 1 W by
significantly less than the agc1 output signal power (10 W). The convergence time for agc2 is
shorter than the convergence time for agc1, because the signal input to agc2 applies a smaller
maximum gain than agc1.

plot([pwrAGC1 pwrAGC2])
legend('AGC1','AGC2')
grid
xlabel('Symbols')
ylabel('Power (W)')
title('Signal Power After Applying AGC')
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More About
Logarithmic-Loop AGC

The AGC implementation uses a logarithmic feedback loop. As this figure of the logarithmic-loop AGC
algorithm shows, the output signal is the product of the input signal and the exponential of the loop
gain. The error signal is the difference between the reference level and the product of the logarithm
of the detector output and the exponential of the loop gain. After multiplying by the step size, the
AGC passes the error signal to an integrator.
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The logarithmic-loop AGC performs well for a variety of signal types, including amplitude modulation.
The “AGC Detector” on page 3-28 is applied to the input signal, which improves convergence times,
but increases signal power variation at the detector input. Large signal variation at the detector input
is acceptable for floating-point systems.

Mathematically, the algorithm is summarized as

y(n) = x(n) ⋅ exp(g(n− 1)),
z(n) = D(x(n)) ⋅ exp(2g(n− 1)),
e(n) = A− ln(z(n)), and
g(n) = g(n− 1) + K ⋅ e(n),

where:

• x is the input signal.
• y is the output signal.
• g is the loop gain.
• D(•) is the detector function.
• z is the detector output.
• A is the reference value.
• e is the error signal.
• K is the step size.

AGC Detector

The AGC detector output, z, computes a square law detector given by

z(m) = 1
N∑n = mN

(m + 1)N − 1 y(n) 2 ,
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where N is the update period. The square law detector produces an output proportional to the square
of the input signal y.

AGC Performance Criteria

Increasing the step size decreases the attack time and decay times, but it also increases gain
pumping.

• Attack time — The duration taken for the AGC to respond to an increase in the input amplitude
• Decay time — The duration taken for the AGC to respond to a decrease in the input amplitude
• Gain pumping — The variation in the gain value during steady-state operation

Tips
• This System object is designed for streaming applications.
• If the signal amplitude does not change within the frame, you can simulate an ideal AGC by

calculating the average gain desired for a frame of samples. Then, apply the gain to each sample
in the frame.

• If you use the AGC with higher order QAM signals, you might need to reduce the variation in the
gain during steady-state operation. Inspect the constellation diagram at the output of the AGC
during steady-state operation. You can increase the averaging length to avoid frequent gain
adjustments. An increase in averaging length reduces execution speed.

Version History
Introduced in R2013a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Blocks
AGC
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comm.APPDecoder
Package: comm

Decode convolutional code by using APP method

Description
The APPDecoder System object performs a posteriori probability (APP) decoding of a convolutional
code.

To decode convolutional code by using APP method:

1 Create the comm.APPDecoder object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation
Syntax
appDec = comm.APPDecoder
appDec = comm.APPDecoder(Name,Value)
appDec = comm.APPDecoder(trellis,Name,Value)

Description

appDec = comm.APPDecoder creates an APP decoder System object, appDec, that decodes a
convolutional code using the APP method.

appDec = comm.APPDecoder(Name,Value) sets properties using one or more name-value pairs.
For example, comm.APPDecoder('Algorithm','True APP') configures the System object,
appDec, to implement true a posteriori probability decoding. Enclose each property name in quotes.

appDec = comm.APPDecoder(trellis,Name,Value) creates an APP decoder object, appDec,
with the TrellisStructure property set to trellis.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

TrellisStructure — Trellis description of constituent convolutional code
poly2trellis(7,[171 133],171) (default) | structure
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Trellis description, specified as a MATLAB structure that contains the trellis description for a rate
K/N code. K represents the number of input bit streams, and N represents the number of output bit
streams.

You can either use the poly2trellis function to create the trellis structure or create it manually.
For more about this structure, see “Trellis Description of a Convolutional Code” and the istrellis
function.

The trellis structure contains these fields.

numInputSymbols — Number of symbols input to encoder
2K

Number of symbols input to the encoder, specified as an integer equal to 2K, where K is the number of
input bit streams.
Data Types: double

numOutputSymbols — Number of symbols output from encoder
2N

Number of symbols output from the encoder, specified as an integer equal to 2N, where N is the
number of output bit streams.
Data Types: double

numStates — Number of states in encoder
power of 2

Number of states in the encoder, specified as a power of 2.
Data Types: double

nextStates — Next states
matrix of integers

Next states for all combinations of current states and current inputs, specified as a matrix of integers.
The matrix size must be numStates by 2K.
Data Types: double

outputs — Outputs
matrix of octal numbers

Outputs for all combinations of current states and current inputs, specified as a matrix of octal
numbers. The matrix size must be numStates by 2K.
Data Types: double

Data Types: struct

TerminationMethod — Termination method of encoded frame
'Truncated' (default) | 'Terminated'
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Termination method of encoded frame, specified as 'Truncated' or 'Terminated'. When you set
this property to 'Truncated', this System object assumes that the encoder stops after encoding the
last symbol in the input frame. When you set this property to 'Terminated', this System object
assumes that the encoder forces the trellis to end each frame in the all-zeros state by encoding
additional symbols. If you use the comm.ConvolutionalEncoder System object to generate the
encoded frame, this property value must match the property value of the convolutional encoder and
this System object.
Data Types: char | string

Algorithm — Decoding algorithm
'Max*' (default) | 'True APP' | 'Max'

Decoding algorithm, specified as 'Max*', 'True APP', or 'Max'. When you set this property to
'True APP', this System object implements true APP decoding. When you set this property to any
other value, this System object uses approximations to increase the speed of the computations. For
more information, see “Algorithms” on page 3-39.
Data Types: char | string

NumScalingBits — Number of scaling bits
3 (default) | integer in the range [0, 8]

Number of scaling bits, specified as an integer in the range [0, 8]. This property specifies the number
of bits the decoder uses to scale the input data to avoid losing precision during the computations.

Dependencies

To enable this property, set the “Algorithm” on page 3-0  property to 'Max*'.
Data Types: double

CodedBitLLROutputPort — Option to enable coded-bit log-likelihood ratio output
true or 1 (default) | false or 0

Option to enable coded-bit log-likelihood ratio (LLR) output, specified as a numeric or logical 1
(true) or 0 (false). To disable the second output when you call this System object, set this property
to 0 (false).
Data Types: logical

Usage

Syntax
[LUD,LCD] = appDec(LU,LC)
LUD = appDec(LU,LC)

Description

[LUD,LCD] = appDec(LU,LC) performs APP decoding on the sequence of LLRs of encoder input
bits, LU, and the sequence of LLRs of encoded bits, LC. The System object returns LUD and LCD.
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These output values are the updated versions of LU and LC, respectively, and are obtained based on
the encoder information.

LUD = appDec(LU,LC) performs APP decoding with the LCD output disabled. To disable the LCD
output, set the “CodedBitLLROutputPort” on page 3-0  property to 0 (false).

Input Arguments

LU — Sequence of LLRs of encoder input data
real-valued column vector

Sequence of LLRs of encoder input data, specified as a real-valued column vector. A positive soft
input is interpreted as a logical 1, and a negative soft input is interpreted as a logical 0.
Data Types: single | double

LC — Sequence of LLRs of encoded data
real-valued column vector

Sequence of LLRs of encoded data, specified as a real-valued column vector of. A positive soft input is
interpreted as a logical 1, and a negative soft input is interpreted as a logical 0.
Data Types: single | double

Output Arguments

LUD — Updated value of LU
real-valued column vector

Updated value of LU, returned as a real-valued column vector.
Data Types: single | double

LCD — Updated value of LC
real-valued column vector

Updated value of LC, returned as a real-valued column vector.
Data Types: single | double

Note  If the convolutional code uses an alphabet of 2n possible symbols, where n is the number of
bits per input symbol, then the LC and LCD vector lengths are L × n for some positive integer L.
Similarly, if the decoded data uses an alphabet of 2k output symbols, where k is the number of bits per
output symbol, then the LU and LUD vector lengths are L × k .

This System object accepts a column vector input signal with any positive integer value for L. For
variable-sized inputs, L can vary during multiple calls.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

 comm.APPDecoder

3-33



Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Decode Convolutional Code Using the APP Decoder

Specify noise variance and the frame length in bits. Create convolutional encoder, PSK modulator,
and AWGN channel System objects.

noiseVar = 2e-1;
frameLength = 300;
convEncoder = comm.ConvolutionalEncoder( ...
    'TerminationMethod','Truncated');
pskMod = comm.PSKModulator('BitInput',true,'PhaseOffset',0);
awgnChan = comm.AWGNChannel('NoiseMethod','Variance', ...
    'Variance',noiseVar);

Create convolutional APP decoder, PSK demodulator, and error rate System objects.

appDecoder = comm.APPDecoder(...
    'TrellisStructure',poly2trellis(7,[171 133]), ...
    'Algorithm','True APP', ...
    'CodedBitLLROutputPort',false);
pskDemod = comm.PSKDemodulator( ...
    'BitOutput',true, ...
    'PhaseOffset',0, ...
    'DecisionMethod','Approximate log-likelihood ratio', ...
    'Variance',noiseVar);     
errRate = comm.ErrorRate;

Transmit a convolutionally encoded 8-PSK-modulated bit stream through an AWGN channel.
Demodulate the received signal using soft-decision. Decode the demodulated signal using the APP
decoder.

for counter = 1:5
     data = randi([0 1],frameLength,1);
     encodedData = convEncoder(data);
     modSignal = pskMod(encodedData);
     receivedSignal = awgnChan(modSignal);
     demodSignal = pskDemod(receivedSignal);
     % The APP decoder assumes a polarization of the soft
     % inputs that is inverse to that of the demodulator 
     % soft outputs. Change the sign of demodulated signal.
     receivedSoftBits = appDecoder( ...
         zeros(frameLength,1),-demodSignal);
     % Convert from soft-decision to hard-decision.
     receivedBits = double(receivedSoftBits > 0);
     % Count errors
     errorStats = errRate(data,receivedBits);
end

Display the error rate information.
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fprintf('Error rate = %f\nNumber of errors = %d\n', ...
     errorStats(1), errorStats(2))

Error rate = 0.000000
Number of errors = 0

High Rate Convolutional Codes for Turbo Coding

Concatenated convolutional codes offer high reliability and have gained in prominence and usage as
turbo codes. The comm.TurboEncoder and comm.TurboDecoder System objects support rate 1/n
convolutional codes only. This example shows the parallel concatenation of two rate 2/3 convolutional
codes to achieve an effective rate 1/3 turbo code by using comm.ConvolutionalEncoder and
comm.APPDecoder System objects.

System Parameters

blkLength = 1024;   % Block length
EbNo = 0:5;         % Eb/No values to loop over
numIter = 3;        % Number of decoding iterations
maxNumBlks = 1e2;   % Maximum number of blocks per Eb/No value

Convolutional Encoder/Decoder Parameters

trellis = poly2trellis([5 4],[23 35 0; 0 5 13]);
k = log2(trellis.numInputSymbols);      % number of input bits
n = log2(trellis.numOutputSymbols);     % number of output bits
intrIndices = randperm(blkLength/k)';   % Random interleaving
decAlg = 'True App';                    % Decoding algorithm
modOrder = 2;                           % PSK-modulation order

Initialize System Objects

Initialize Systems object™ for convolutional encoding, APP Decoding, BPSK modulation and
demodulation, AGWN channel, and error rate computation. The demodulation output soft bits using a
log-likelihood ratio method.

cEnc1 = comm.ConvolutionalEncoder( ...
    'TrellisStructure',trellis, ...
    'TerminationMethod','Truncated');
cEnc2 = comm.ConvolutionalEncoder( ...
    'TrellisStructure',trellis, ...
    'TerminationMethod','Truncated');
cAPPDec1 = comm.APPDecoder( ...
    'TrellisStructure',trellis, ...
    'TerminationMethod','Truncated', ...
    'Algorithm',decAlg);
cAPPDec2 = comm.APPDecoder( ...
    'TrellisStructure',trellis, ...
    'TerminationMethod','Truncated', ...
    'Algorithm',decAlg);

bpskMod = comm.BPSKModulator;
bpskDemod = comm.BPSKDemodulator( ...
    'DecisionMethod','Log-likelihood ratio', ...
    'VarianceSource','Input port');
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awgnChan = comm.AWGNChannel( ...
    'NoiseMethod','Variance', ...
    'VarianceSource','Input port');

bitError = comm.ErrorRate; % BER measurement

Frame Processing Loop

Loop through a range of Eb/N0 values to generate results for BER performance. The
helperTurboEnc and helperTurboDec helper functions on page 3-37 perform the turbo encoding
and decoding.

ber = zeros(length(EbNo),1); 
bitsPerSymbol = log2(modOrder);
turboEncRate = k/(2*n);

for ebNoIdx = 1:length(EbNo)
    % Calculate the noise variance from EbNo
    EsNo = EbNo(ebNoIdx) + 10*log10(bitsPerSymbol);
    SNRdB = EsNo + 10*log10(turboEncRate); % Account for code rate
    noiseVar = 10^(-SNRdB/10);

    for  numBlks = 1:maxNumBlks 
        % Generate binary data
        data = randi([0 1],blkLength,1);

        % Turbo encode the data
        [encodedData,outIndices] = helperTurboEnc( ...
            data,cEnc1,cEnc2, ...
            trellis,blkLength,intrIndices);

        % Modulate the encoded data
        modSignal = bpskMod(encodedData);

        % Pass the modulated signal through an AWGN channel
        receivedSignal = awgnChan(modSignal,noiseVar);

        % Demodulate the noisy signal using LLR to output soft bits
        demodSignal = bpskDemod(receivedSignal,noiseVar);

        % Turbo decode the demodulated data
        receivedBits = helperTurboDec( ...
            -demodSignal,cAPPDec1,cAPPDec2, ...
            trellis,blkLength,intrIndices,outIndices,numIter); 
        
        % Calculate the error statistics
        errorStats = bitError(data,receivedBits);        
    end
    
    ber(ebNoIdx) = errorStats(1);
    reset(bitError);
end
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Display Results

While the practical wireless systems, such as LTE and CCSDS, specify base rate-1/n convolutional
codes for turbo codes, the results show use of higher rate convolutional codes as turbo codes is
viable.

figure; 
semilogy(EbNo, ber, '*-');
grid on; 
xlabel('E_b/N_0 (dB)'); 
ylabel('BER'); 
title('High Rate Convolutional Codes for Turbo Coding'); 
legend(['N = ' num2str(blkLength) ', ' num2str(numIter) ' iterations']);

Helper Functions
function [yEnc,outIndices] = helperTurboEnc( ...
    data,hCEnc1,hCEnc2,trellis,blkLength,intrIndices)
% Turbo encoding using two parallel convolutional encoders.
% No tail bits handling and assumes no output stream puncturing.

    % Trellis parameters
    k = log2(trellis.numInputSymbols);
    n = log2(trellis.numOutputSymbols);
    cLen = blkLength*n/k;

    punctrVec = [0;0;0;0;0;0];      % assumes all streams are output
    N = length(find(punctrVec==0));
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    % Encode random data bits
    y1 = hCEnc1(data);
    y2 = hCEnc2( ...
        reshape(intrlv(reshape(data,k,[])',intrIndices)',[],1));
    y1D = reshape(y1(1:cLen),n,[]);
    y2D = reshape(y2(1:cLen),n,[]);
    yDTemp = [y1D; y2D];
    y = yDTemp(:);

    % Generate output indices vector using puncturing vector
    idx = 0 : 2*n : (blkLength - 1)*2*(n/k);
    punctrVecIdx = find(punctrVec==0);
    dIdx = repmat(idx, N, 1) + punctrVecIdx;
    outIndices = dIdx(:);
    yEnc = y(outIndices);
end

function yDec = helperTurboDec( ...
    yEnc,cAPPDec1,cAPPDec2,trellis, ...
    blkLength,intrIndices,inIndices,numIter)
% Turbo decoding using two a-posteriori probability (APP) decoders

    % Trellis parameters
    k = log2(trellis.numInputSymbols);
    n = log2(trellis.numOutputSymbols);
    rCodLen = 2*(n/k)*blkLength;
    typeyEnc = class(yEnc);

    % Re-order encoded bits according to outIndices
    x = zeros(rCodLen,1);
    x(inIndices) = yEnc;

    % Generate output of first encoder
    yD = reshape(x(1:rCodLen),2*n,[]);
    lc1D = yD(1:n, :);
    Lc1_in = lc1D(:);

    % Generate output of second encoder
    lc2D   = yD(n+1:2*n, :);
    Lc2_in = lc2D(:);

    % Initialize unencoded data input
    Lu1_in = zeros(blkLength,1,typeyEnc);

    % Turbo Decode
    out1 = zeros(blkLength/k,k,typeyEnc);
    for iterIdx = 1 : numIter
        [Lu1_out, ~] = cAPPDec1(Lu1_in,Lc1_in);
        tmp = Lu1_out(1:blkLength);
        Lu2_in = reshape(tmp,k,[])';
        [Lu2_out, ~] = cAPPDec2( ...
            reshape(Lu2_in(intrIndices, :)',[],1),Lc2_in);
        out1(intrIndices, :) = reshape(Lu2_out(1:blkLength),k,[])';
        Lu1_in = reshape(out1',[],1);
    end
    % Calculate llr and decoded bits for the final iteration
    llr = reshape(out1', [], 1) + Lu1_out(1:blkLength);
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    yDec = cast((llr>=0), typeyEnc);
end

Algorithms
This System object implements the soft-input-soft-output APP decoding algorithm according to [1]
and [2].

The 'True APP' option of the Algorithm property implements APP decoding as per equations 20–
23 in section V of [1]. To gain speed, the 'Max*' and 'Max' values of the Algorithm property
approximate expressions like log∑

i
exp(ai) by other quantities. The 'Max' option uses max(ai) as the

approximation. The 'Max*' option uses max(ai) plus a correction term given by the expression
ln(1 + exp( − ai− 1− ai )).

Setting the Algorithm property to 'Max*' enables the NumScalingBits property of this System
object. This property denotes the number of bits by which this System object scales the data it
processes (multiplies the input by 2NumScalingBits and divides the pre-output by the same factor). Use
this property to avoid losing precision during computations.

Version History
Introduced in R2012a

References
[1] Benedetto, S., G. Montorsi, D. Divsalar, and F. Pollara. "A Soft-Input Soft-Output Maximum A

Posterior (MAP) Module to Decode Parallel and Serial Concatenated Codes." Jet Propulsion
Lab TDA Progress Report, 42–127, (November 1996).

[2] Viterbi, A.J. “An Intuitive Justification and a Simplified Implementation of the MAP Decoder for
Convolutional Codes.” IEEE Journal on Selected Areas in Communications 16, no. 2 (February
1998): 260–64. https://doi.org/10.1109/49.661114.

[3] Benedetto, S., and G. Montorsi. “Performance of Continuous and Blockwise Decoded Turbo
Codes.” IEEE Communications Letters 1, no. 3 (May 1997): 77–79. https://doi.org/
10.1109/4234.585802.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Functions
convenc | poly2trellis
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Objects
comm.ConvolutionalEncoder | comm.ViterbiDecoder | comm.TurboDecoder

Blocks
Convolutional Encoder | APP Decoder
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arrayConfig
Create phased array configuration

Description
The arrayConfig object sets phased array configuration properties. Use an arrayConfig object to
configure a uniform rectangular array (URA) with isotropic antenna elements, a uniform linear array
(ULA) with isotropic antenna elements, or a single isotropic antenna element.

Creation

Syntax
cfgArray = arrayConfig
cfgArray = arrayConfig(Name,Value)

Description

cfgArray = arrayConfig creates a configuration object with default property values. The x-axis is
normal to the plane on which the elements are placed. The default array is a 2-by-2 URA with an
element spacing of 0.5 meter.

cfgArray = arrayConfig(Name,Value) sets properties using one or more name-value pair
arguments. Enclose each property name in quotes. For example, arrayConfig('Size',[8
1],'ElementSpacing',0.1) specifies an eight-element ULA along the z-axis with an element
spacing of 0.1 meter.

Properties
Element — Array element
'isotropic' (default)

This property is read-only.

Array element, returned as 'isotropic'. Array elements are isotropic radiators.
Data Types: char | string

Size — Antenna array size
[2 2] (default) | two-element row vector of positive integers

Antenna array size, specified as a two-element row vector of positive integers. The first element
specifies the number of rows of the antenna array and the second element specifies the number of
columns of the antenna array. The rows of the array are along the z-axis. The columns of the array are
along the y-axis.

• When both elements of this vector are greater than 1, the array is a URA.
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• When one element of this vector is 1, the array is a ULA.
• When both elements of this vector are 1, the array is a single isotropic element.

Array elements are indexed from top to bottom along a column, continuing to the next column from
left to right. For more information, see “Array Alignment” on page 3-43.
Data Types: double

ElementSpacing — Antenna array element spacing
0.5 (default) | positive scalar | two-element row vector

Antenna array element spacing in meters, specified as one of these values.

• A positive scalar — This value specifies the spacing between rows and the spacing between
columns of the antenna array.

• A two-element vector of positive values — The first element of the vector specifies the spacing
between rows of the antenna array. The second element specifies the spacing between columns of
the antenna array.

The rows of the array are along the z-axis, and the columns of the array are along the y-axis. For
more information, see “Array Alignment” on page 3-43.
Dependencies

To enable this property, set at least one element in the Size property vector to a value greater than
1.
Data Types: double

Examples

Configure 4-by-4 URA

Configure a 4-by-4 URA with an element spacing of 0.1 meter along rows and 0.2 meter along
columns.

cfgArray = arrayConfig("Size",[4 4],"ElementSpacing",[0.1 0.2])

cfgArray = 
  arrayConfig with properties:

              Size: [4 4]
    ElementSpacing: [0.1000 0.2000]

   Constant properties:
           Element: 'isotropic'

Configure Eight-Element ULA for Transmitter Site

Configure an eight-element ULA along the z-axis with an element spacing of 0.1 meter.

cfgArray = arrayConfig("Size",[8 1],"ElementSpacing",0.1);
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Assign the array to a transmitter site and display the antenna pattern.

tx = txsite("Antenna",cfgArray);
pattern(tx,'Size',6);

More About
Array Alignment

Array elements are indexed from top to bottom along a column, continuing to the next column from
left to right. The spacing between columns is the distance between adjacent elements in the same
row. The spacing between rows is the distance between elements in the same column.

This illustration shows orientation and spacing between rows and columns for a URA of size 3-by-2.
The array has three rows and two columns.
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Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
siteviewer | rxsite | txsite | comm.Ray | comm.RayTracingChannel |
phased.IsotropicAntennaElement | phased.ULA | phased.URA | phased.ConformalArray |
phased.CustomAntennaElement
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comm.AWGNChannel
Package: comm

Add white Gaussian noise to input signal

Description
comm.AWGNChannel adds white Gaussian noise to the input signal.

When applicable, if inputs to the object have a variable number of channels, the EbNo, EsNo, SNR,
BitsPerSymbol, SignalPower, SamplesPerSymbol, and Variance properties must be scalars.

To add white Gaussian noise to an input signal:

1 Create the comm.AWGNChannel object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
awgnchan = comm.AWGNChannel
awgnchan = comm.AWGNChannel(Name,Value)

Description

awgnchan = comm.AWGNChannel creates an additive white Gaussian noise (AWGN) channel System
object, awgnchan. This object then adds white Gaussian noise to a real or complex input signal.

awgnchan = comm.AWGNChannel(Name,Value) creates a AWGN channel object, awgnchan, with
the specified property Name set to the specified Value. You can specify additional name-value pair
arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

NoiseMethod — Noise level method
'Signal to noise ratio (Eb/No)' (default) | 'Signal to noise ratio (Es/No)' |
'Signal to noise ratio (SNR)' | 'Variance'
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Noise level method, specified as 'Signal to noise ratio (Eb/No)', 'Signal to noise
ratio (Es/No)', 'Signal to noise ratio (SNR)', or 'Variance'. For more information, see
“Relationship Between Eb/No, Es/No, and SNR Modes” on page 3-63 and “Specifying Variance
Directly or Indirectly” on page 3-64.
Data Types: char

EbNo — Ratio of energy per bit to noise power spectral density
10 (default) | scalar | row vector

Ratio of energy per bit to noise power spectral density (Eb/No) in decibels, specified as a scalar or 1-
by-NC vector. NC is the number of channels.

Tunable: Yes

Dependencies

This property applies when NoiseMethod is set to 'Signal to noise ratio (Eb/No)'.
Data Types: double

EsNo — Ratio of energy per symbol to noise power spectral density
10 (default) | scalar | row vector

Ratio of energy per symbol to noise power spectral density (Es/No) in decibels, specified as a scalar
or 1-by-NC vector. NC is the number of channels.

Tunable: Yes

Dependencies

This property applies when NoiseMethod is set to 'Signal to noise ratio (Es/No)'.
Data Types: double

SNR — Ratio of signal power to noise power
10 (default) | scalar | row vector

Ratio of signal power to noise power in decibels, specified as a scalar or 1-by-NC vector. NC is the
number of channels.

Tunable: Yes

Dependencies

This property applies when NoiseMethod is set to 'Signal to noise ratio (SNR)'.
Data Types: double

BitsPerSymbol — Number of bits per symbol
1 (default) | positive integer

Number of bits per symbol, specified as a positive integer.

Dependencies

This property applies when NoiseMethod is set to 'Signal to noise ratio (Eb/No)'.
Data Types: double
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SignalPower — Input signal power
1 (default) | positive scalar | row vector

Input signal power in watts, specified as a positive scalar or 1-by-NC vector. NC is the number of
channels. The object assumes a nominal impedance of 1 Ω.

Tunable: Yes

Dependencies

This property applies when NoiseMethod is set to 'Signal to noise ratio (Eb/No)', 'Signal
to noise ratio (Es/No)', or 'Signal to noise ratio (SNR)'.
Data Types: double

SamplesPerSymbol — Number of samples per symbol
1 (default) | positive integer | row vector

Number of samples per symbol, specified as a positive integer or 1-by-NC vector. NC is the number of
channels.

Dependencies

This property applies when NoiseMethod is set to 'Signal to noise ratio (Eb/No)' or
'Signal to noise ratio (Es/No)'.
Data Types: double

VarianceSource — Source of noise variance
'Property' (default) | 'Input port'

Source of noise variance, specified as 'Property' or 'Input port'.

• Set VarianceSource to 'Property' to specify the noise variance value using the Variance
property.

• Set VarianceSource to 'Input port' to specify the noise variance value using an input to the
object, when you call it as a function.

For more information, see “Specifying Variance Directly or Indirectly” on page 3-64.

Dependencies

This property applies when NoiseMethod is 'Variance'.
Data Types: char

Variance — White Gaussian noise variance
1 (default) | positive scalar | row vector

White Gaussian noise variance, specified as a positive scalar or 1-by-NC vector. NC is the number of
channels.

Tunable: Yes

Dependencies

This property applies when NoiseMethod is set to 'Variance' and VarianceSource is set to
'Property'.
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Data Types: double

RandomStream — Source of random number stream
'Global stream' (default) | 'mt19937ar with seed'

Source of random number stream, specified as 'Global stream' or 'mt19937ar with seed'.

• When you set RandomStream to 'Global stream', the object uses the MATLAB default random
stream to generate random numbers. To generate reproducible numbers using this object, you can
reset the MATLAB default random stream. For example
reset(RandStream.getGlobalStream). For more information, see RandStream.

• When you set RandomStream to 'mt19937ar with seed', the object uses the mt19937ar
algorithm for normally distributed random number generation. In this scenario, when you call the
reset function, the object reinitializes the random number stream to the value of the Seed
property. You can generate reproducible numbers by resetting the object.

For a complex input signal, the object creates the random data as follows:

noise = randn(NS,NC)+1i(randn(NS,NC))

NS is the number of samples and NC is the number of channels.
Dependencies

This property applies when NoiseMethod is set to 'Variance'.
Data Types: char

Seed — Initial seed
67 (default) | nonnegative integer

Initial seed of the mt19937ar random number stream, specified as a nonnegative integer. For each
call to the reset function, the object reinitializes the mt19937ar random number stream to the Seed
value.
Dependencies

This property applies when RandomStream is set to 'mt19937ar with seed'.
Data Types: double

Usage

Syntax
outsignal = awgnchan(insignal)
outsignal = awgnchan(insignal,var)

Description

outsignal = awgnchan(insignal) adds white Gaussian noise, as specified by awgnchan, to the
input signal. The result is returned in outsignal.

outsignal = awgnchan(insignal,var) specifies the variance of the white Gaussian noise. This
syntax applies when you set the NoiseMethod to 'Variance' and VarianceSource to 'Input
port'.
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For example:

awgnchan = comm.AWGNChannel('NoiseMethod','Variance', ...
     'VarianceSource','Input port');
var = 12;
...
outsignal = awgnchan(insignal,var);

Input Arguments

insignal — Input signal
scalar | vector | matrix

Input signal, specified as a scalar, an NS-element vector, or an NS-by-NC matrix. NS is the number of
samples and NC is the number of channels.
Data Types: double
Complex Number Support: Yes

var — Variance of additive white Gaussian noise
positive scalar | row vector

Variance of additive white Gaussian noise, specified as a positive scalar or 1-by-NC vector. NC is the
number of channels, as determined by the number of columns in the input signal matrix.

Output Arguments

outsignal — Output signal
matrix

Output signal, returned with the same dimensions as insignal.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Create Default AWGN Channel System Object

Create an AWGN channel System object with the default configuration. Pass signal data through this
channel.

Create an AWGN channel object and signal data.
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awgnchan = comm.AWGNChannel;
insignal = randi([0 1],100,1);

Send the input signal through the channel.

outsignal = awgnchan(insignal);

Add White Gaussian Noise to 8-PSK Signal

Modulate an 8-PSK signal, add white Gaussian noise, and plot the signal to visualize the effects of the
noise.

Create a M-PSK modulator System object™. The default modulation order for the object is 8.

pskModulator = comm.PSKModulator;

Modulate the signal.

modData = pskModulator(randi([0 7],2000,1));

Add white Gaussian noise to the modulated signal by passing the signal through an additive white
Gaussian noise (AWGN) channel.

channel = comm.AWGNChannel('EbNo',20,'BitsPerSymbol',3);

Transmit the signal through the AWGN channel.

channelOutput = channel(modData);

Plot the noiseless and noisy data by using scatter plots to visualize the effects of the noise.

scatterplot(modData)
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scatterplot(channelOutput)
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Change the EbNo property to 10 dB to increase the noise.

channel.EbNo = 10;

Pass the modulated data through the AWGN channel.

channelOutput = channel(modData);

Plot the channel output. You can see the effects of increased noise.

scatterplot(channelOutput)
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Process Signals When Number of Channels Changes

Pass a single-channel and multichannel signal through an AWGN channel System object™.

Create an AWGN channel System object with the Eb/No ratio set for a single channel input. In this
case, the EbNo property is a scalar.

channel = comm.AWGNChannel('EbNo',15);

Generate random data and apply QPSK modulation.

data = randi([0 3],1000,1);
modData = pskmod(data,4,pi/4);

Pass the modulated data through the AWGN channel.

rxSig = channel(modData);

Plot the noisy constellation.

scatterplot(rxSig)
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Generate two-channel input data and apply QPSK modulation.

data = randi([0 3],2000,2);
modData = pskmod(data,4,pi/4);

Pass the modulated data through the AWGN channel.

rxSig = channel(modData);

Plot the noisy constellations. Each channel is represented as a single column in rxSig. The plots are
nearly identical, because the same Eb/No value is applied to both channels.

scatterplot(rxSig(:,1))
title('First Channel')

3 System Objects

3-54



scatterplot(rxSig(:,2))
title('Second Channel')
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Modify the AWGN channel object to apply a different Eb/No value to each channel. To apply different
values, set the EbNo property to a 1-by-2 vector. When changing the dimension of the EbNo property,
you must release the AWGN channel object.

release(channel)
channel.EbNo = [10 20];

Pass the data through the AWGN channel.

rxSig = channel(modData);

Plot the noisy constellations. The first channel has significantly more noise due to its lower Eb/No
value.

scatterplot(rxSig(:,1))
title('First Channel')
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scatterplot(rxSig(:,2))
title('Second Channel')
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Add AWGN Using Noise Variance Input Port

Apply the noise variance input as a scalar or a row vector, with a length equal to the number of
channels of the current signal input.

Create an AWGN channel System object™ with the NoiseMethod property set to 'Variance' and
the VarianceSource property set to 'Input port'.

channel = comm.AWGNChannel('NoiseMethod','Variance', ...
'VarianceSource','Input port');

Generate random data for two channels and apply 16-QAM modulation.

data = randi([0 15],10000,2);
txSig = qammod(data,16);

Pass the modulated data through the AWGN channel. The AWGN channel object processes data from
two channels. The variance input is a 1-by-2 vector.

rxSig = channel(txSig,[0.01 0.1]);

Plot the constellation diagrams for the two channels. The second signal is noisier because its variance
is ten times larger.

scatterplot(rxSig(:,1))
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scatterplot(rxSig(:,2))
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Repeat the process where the noise variance input is a scalar. The same variance is applied to both
channels. The constellation diagrams are nearly identical.

rxSig = channel(txSig,0.2);
scatterplot(rxSig(:,1))
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scatterplot(rxSig(:,2))
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Set Random Number Seed for Repeatability

Specify a seed to produce the same outputs when using a random stream in which you specify the
seed.

Create an AWGN channel System object™. Set the NoiseMethod property to 'Variance', the
RandomStream property to 'mt19937ar with seed', and the Seed property to 99.

channel = comm.AWGNChannel( ...
    'NoiseMethod','Variance', ...
    'RandomStream','mt19937ar with seed', ...
    'Seed',99);

Pass data through the AWGN channel.

y1 = channel(zeros(8,1));

Pass another all-zeros vector through the channel.

y2 = channel(zeros(8,1));

Because the seed changes between function calls, the output is different.

isequal(y1,y2)
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ans = logical
   0

Reset the AWGN channel object by calling the reset function. The random data stream is reset to
the initial seed of 99.

reset(channel);

Pass the all-zeros vector through the AWGN channel.

y3 = channel(zeros(8,1));

Confirm that the two signals are identical.

isequal(y1,y3)

ans = logical
   1

Algorithms
Relationship Between Eb/No, Es/No, and SNR Modes

For uncoded complex input signals, comm.AWGNChannel relates Eb/N0, Es/N0, and SNR according to
these equations:

Es/N0 = Nsps × SNR
Es/N0 = Eb/N0 + 10log10(k) in dB

where

• Es represents the signal energy in joules.
• Eb represents the bit energy in joules.
• N0 represents the noise power spectral density in watts/Hz.
• Nsps represents the number of samples per symbol, SamplesPerSymbol.
• k represents the number of information bits per input symbol, BitsPerSymbol.

For real signal inputs, the comm.AWGNChannel relates Es/N0 and SNR according to this equation:
Es/N0 = 0.5 (Nsps) × SNR

Note

• All values of power assume a nominal impedance of 1 ohm.
• The equation for the real case differs from the corresponding equation for the complex case by a

factor of 2. Specifically, the object uses a noise power spectral density of N0/2 watts/Hz for real
input signals, versus N0 watts/Hz for complex signals.

For more information, see AWGN Channel Noise Level.
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Specifying Variance Directly or Indirectly

To directly specify the variance of the noise generated by comm.AWGNChannel, specify
VarianceSource as:

• "Property", then set NoiseMethod to "Variance" and specify the variance with the Variance
property.

• "Input port", then specify the variance level for the object as an input with an input argument,
var.

To specify variance indirectly, that is, to have it calculated by comm.AWGNChannel, specify
VarianceSource as "Property" and the NoiseMethod as:

• "Signal to noise ratio (Eb/No)", where the object uses these properties to calculate the
variance:

• EbNo, the ratio of bit energy to noise power spectral density
• BitsPerSymbol
• SignalPower, the actual power of the input signal samples
• SamplesPerSymbol

• "Signal to noise ratio (Es/No)", where the object uses these properties to calculate the
variance:

• EsNo, the ratio of signal energy to noise power spectral density
• SignalPower, the actual power of the input signal samples
• SamplesPerSymbol

• "Signal to noise ratio (SNR)", where the object uses these properties to calculate the
variance:

• SNR, the ratio of signal power to noise power
• SignalPower, the actual power of the input signal samples

Changing the number of samples per symbol (SamplesPerSymbol) affects the variance of the noise
added per sample, which also causes a change in the final error rate.

NoiseVariance = SignalPower × SamplesPerSymbol / 10(EsNo/10)

Tip Select the number of samples per symbol based on what constitutes a symbol and the
oversampling applied to it. For example, a symbol could have 3 bits and be oversampled by 4. For
more information, see AWGN Channel Noise Level.

Version History
Introduced in R2012a

References
[1] Proakis, John G. Digital Communications. 4th Ed. McGraw-Hill, 2001.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Blocks
AWGN Channel | MIMO Fading Channel

Objects
comm.MIMOChannel | comm.RayleighChannel | comm.RicianChannel

Functions
bsc

Topics
AWGN Channel
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comm.BarkerCode
Package: comm

Generate bipolar Barker code

Description
The comm.BarkerCode System object generates a bipolar Barker code. Barker codes have low
autocorrelation properties. The short length and low correlation sidelobes make Barker codes useful
for frame synchronization in digital communications systems. For more information, see “Barker
Codes” on page 3-69.

To generate a Barker code:

1 Create the comm.BarkerCode object and set its properties.
2 Call the object, as if it were a function.

To learn more about how System objects work, see What Are System Objects?.

Creation

Syntax
barkerCode = comm.BarkerCode
barkerCode = comm.BarkerCode(Name,Value)

Description

barkerCode = comm.BarkerCode creates a bipolar Barker code generator System object to
generate a Barker code.

barkerCode = comm.BarkerCode(Name,Value) sets properties using one or more name-value
pairs. For example, comm.BarkerCode('Length',11,'SamplesPerFrame','11') configures a
bipolar Barker code generator System object to output a length 11 Barker code in an 11-sample
frame. Enclose each property name in quotes.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Length — Length of generated code
7 (default) | 1 | 2 | 3 | 4 | 5 | 11 | 13
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Length of the generated code, specified as 1, 2, 3, 4, 5, 7, 11, or 13. For more information, see
“Barker Codes” on page 3-69.
Example: 'Length',2 outputs the Barker code [–1;1].
Data Types: double

SamplesPerFrame — Samples per output frame
1 (default) | positive integer

Samples per output frame, specified as a positive integer. If SamplesPerFrame is M, the object
outputs a frame containing M samples comprised of length N Barker code sequences. If necessary,
the object repeats the code sequence to reach M samples. N is the length of the generated code,
which is set by the Length property.
Data Types: double

OutputDataType — Output data type
double (default) | int8

Output data type, specified as double or int8.
Data Types: char | string

Usage

Note For versions earlier than R2016b, use the step function to run the System object™ algorithm.
The arguments to step are the object you created, followed by the arguments shown in this section.

For example, y = step(obj,x) and y = obj(x) perform equivalent operations.

Syntax
y = barkerCode

Description

y = barkerCode outputs a Barker code frame, as a column vector. If the frame length exceeds the
Barker code length, the object fills the frame by repeating the Barker code.

Set the data type of the output with the OutputDataType property.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)
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Specific to comm.BarkerCode
clone Create duplicate System object
isLocked Determine if System object is in use

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Generate Barker Code Sequence

Create a Barker code System object with 10 samples per frame.

  barker = comm.BarkerCode('SamplesPerFrame',10)

barker = 
  comm.BarkerCode with properties:

             Length: 7
    SamplesPerFrame: 10
     OutputDataType: 'double'

Generate multiple frames by using the default Barker code sequence of length 7. The code wraps
within the frame and continues in the next frame.

  for ii = 1:2
      seq = barker()
  end

seq = 10×1

    -1
    -1
    -1
     1
     1
    -1
     1
    -1
    -1
    -1

seq = 10×1

     1
     1
    -1
     1
    -1
    -1
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    -1
     1
     1
    -1

Compute Barker Code Sidelobe Level

Compute the peak sidelobe level for each Barker code.

CodeLength = [1 2 3 4 5 7 11 13]';
psl = zeros(length(CodeLength),1);
barker = comm.BarkerCode;
for ii=1:length(CodeLength)
    spf = CodeLength(ii);
    barker.Length = CodeLength(ii);
    barker.SamplesPerFrame = spf;
    seq = barker();
    sll_dB = 20*log10(abs(xcorr(seq)));
    psl(ii) = -(max(sll_dB));
    release(barker);
end
Sidelobe_dB = psl;
T = table(CodeLength,Sidelobe_dB)

T=8×2 table
    CodeLength    Sidelobe_dB
    __________    ___________

         1                0  
         2          -6.0206  
         3          -9.5424  
         4          -12.041  
         5          -13.979  
         7          -16.902  
        11          -20.828  
        13          -22.279  

More About
Barker Codes

Barker codes have a maximum autocorrelation sequence, which has off-peak autocorrelations no
larger than 1.

A correlation sidelobe is the correlation of a codeword with a time-shifted version of itself. The
correlation sidelobe, Ck, for a k-symbol shift of an N-bit code sequence, {Xj}, is

Ck = ∑
j = 1

N − k
X jX j + k
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For j=1, 2, 3,..., N, Xj is an individual code symbol that is equal to +1 or –1. The adjacent symbols are
assumed to be 0.

The output code is in a bipolar format with 0 and 1 mapped to 1 and –1. The maximum known Barker
code length is 13. The short length and low correlation sidelobes make Barker codes useful for frame
synchronization in digital communications systems. The Barker code generator outputs the Barker
codes listed in this table.

Barker
Code
Length

Barker Code Sidelobe Level

1 [–1] 0 dB
2 [–1; 1] –6 dB
3 [–1; –1; 1] –9.5 dB
4 [–1; –1; 1; –1] –12 dB
5 [–1; –1; –1; 1; –1] –14 dB
7 [–1; –1; –1; 1; 1; –1; 1] –16.9 dB
11 [–1; –1; –1; 1; 1; 1; –1; 1; 1; –1; 1] –20.8 dB
13 [–1; –1; –1; –1; –1; 1; 1; –1; –1; 1; –1; 1; –1] –22.3 dB

Version History
Introduced in R2012a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
comm.HadamardCode | comm.OVSFCode | comm.WalshCode

Blocks
Barker Code Generator

Topics
“Correct Phase and Frequency Offset for 16-QAM Using Coarse and Fine Synchronization”
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comm.BasebandFileReader
Package: comm

Read baseband signal from file

Description
The comm.BasebandFileReader System object reads a baseband signal from a specific type of
binary file written by the comm.BasebandFileWriter System object. Baseband signals are typically
downconverted from a nonzero center frequency to 0 Hz. The SampleRate and CenterFrequency
properties are saved when the file is created. The comm.BasebandFileReader object automatically
reads the sample rate, center frequency, number of channels, and any descriptive data and saves
them to its read-only properties.

To read a baseband file from a file:

1 Create the comm.BasebandFileReader object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation
Syntax
bbr = comm.BasebandFileReader
bbr = comm.BasebandFileReader(fname)
bbr = comm.BasebandFileReader(fname,spf)
bbr = comm.BasebandFileReader( ___ ,Name=Value)

Description

bbr = comm.BasebandFileReader creates a baseband file reader System object to read a
baseband signal from a specific type of binary file written by the comm.BasebandFileWriter
System object.

bbr = comm.BasebandFileReader(fname) sets the Filename property to fname.

bbr = comm.BasebandFileReader(fname,spf) also sets the SamplesPerFrame property to
spf.

bbr = comm.BasebandFileReader( ___ ,Name=Value) sets properties using one or more name-
value arguments in addition to an input argument combination from any of the previous syntaxes. For
example, SampleRate=2 sets the sample rate of the baseband file reader to 2.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.
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If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Filename — Name of baseband file to read
'example.bb' (default) | string scalar | character vector

Name of the baseband file to read, specified as a string scalar or character vector. The object saved
and displays the absolute path.
Tips

If the file is not on the MATLAB path, specify the absolute path.
Data Types: string | char

SampleRate — Sample rate of saved baseband signal
1 (default) | positive scalar

This property is read-only.

Sample rate of the saved baseband signal in Hz, returned as a positive scalar.
Data Types: double

CenterFrequency — Center frequency of saved baseband signal
100000000 (default) | positive scalar | row vector

This property is read-only.

Center frequency of the saved baseband signal in Hz, returned as a positive scalar or row vector.
When this property is a row vector, each element is the center frequency of a channel in a
multichannel signal.
Data Types: double

NumChannels — Number of channels in saved baseband signal
1 (default) | positive integer

This property is read-only.

Number of channels in the saved baseband signal, returned as a positive integer.
Data Types: double

Metadata — Data describing baseband signal
struct() (default) | structure

This property is read-only.

Data describing the baseband signal, returned as a structure of fields defined when creating the
baseband file writer. If the file has no descriptive data, this property is an empty structure.
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Data Types: struct

SamplesPerFrame — Number of samples per output frame
100 (default) | positive integer

Number of samples per output frame, specified as a positive integer or Inf. When this property is
Inf, the output frame contains all of the samples in the baseband file.
Data Types: double

CyclicRepetition — Option to repeatedly read baseband file
false or 0 (default) | true or 1

Option to repeatedly read the baseband file, specified as a logical 0 (false) or 1 (true).

• When this property is false, the object appends zeros to the last frame if it is partially filled.
Then, the object returns all-zero frames.

• When this property is true, the object repeatedly reads the file, starting from the first sample.

Data Types: logical

Usage

Syntax
samples = bbr()

Description

samples = bbr() reads the baseband signal file from the file specified by the Filename property.

Output Arguments

samples — Baseband samples
matrix

Baseband samples read from the file, returned as an SamplesPerFrame-by-NumChannels matrix of
complex values read from the baseband signal file specified by Filename. When the
SamplesPerFrame property is Inf, the output matrix contains all of the samples in the baseband
signal file.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to comm.BasebandFileReader
info Characteristic information about baseband file reader
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isDone End-of-data status

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Reading Data with Single Call to Baseband File Reader Object

Read a baseband signal from file using a single call to the comm.BasebandFileReader System
object. To read all samples from the file in one call to the object, you can set the samples per frame
equal to inf or to the number of samples in the data file.

Create a baseband file reader object setting the samples per frame to inf. Use the info method to
gain additional information about bbr. The file contains 10,000 samples of type 'double'. No
samples have been read.

bbr1 = comm.BasebandFileReader('baseband_samples_1ghz.bb',SamplesPerFrame=inf)

bbr1 = 
  comm.BasebandFileReader with properties:

            Filename: 'C:\TEMP\Bdoc22b_2054784_6060\ibB18F8B\28\tpc33da15b\comm-ex94749964\baseband_samples_1ghz.bb'
          SampleRate: 1
     CenterFrequency: 100000000
         NumChannels: 1
            Metadata: [1x1 struct]
     SamplesPerFrame: Inf
    CyclicRepetition: false

info(bbr1)

ans = struct with fields:
    NumSamplesInData: 10000
            DataType: 'double'
      NumSamplesRead: 0

Now read the entire contents of the baseband_samples_1ghz.bb file with a single call to the bbr
object. Confirm that all the samples have been read.

samples1 = bbr1();
info(bbr1)

ans = struct with fields:
    NumSamplesInData: 10000
            DataType: 'double'
      NumSamplesRead: 10000

Release the baseband file reader resources.
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release(bbr1)

Alternatively, to read all samples from the file in one call to the object, you can set the samples per
frame equal to the number of samples in the data file. To do this you must updates the samples per
frame setting (bbr.SamplesPerFrame) to the value of NumSamplesInData returned by the info
object function.

Create a baseband file reader object and display the structure retuned by the info object function.

bbr2 = comm.BasebandFileReader('baseband_samples_1ghz.bb')

bbr2 = 
  comm.BasebandFileReader with properties:

            Filename: 'C:\TEMP\Bdoc22b_2054784_6060\ibB18F8B\28\tpc33da15b\comm-ex94749964\baseband_samples_1ghz.bb'
          SampleRate: 1
     CenterFrequency: 100000000
         NumChannels: 1
            Metadata: [1x1 struct]
     SamplesPerFrame: 100
    CyclicRepetition: false

bbrinfo = info(bbr2)

bbrinfo = struct with fields:
    NumSamplesInData: 10000
            DataType: 'double'
      NumSamplesRead: 0

bbr2.SamplesPerFrame = bbrinfo.NumSamplesInData

bbr2 = 
  comm.BasebandFileReader with properties:

            Filename: 'C:\TEMP\Bdoc22b_2054784_6060\ibB18F8B\28\tpc33da15b\comm-ex94749964\baseband_samples_1ghz.bb'
          SampleRate: 1
     CenterFrequency: 100000000
         NumChannels: 1
            Metadata: [1x1 struct]
     SamplesPerFrame: 10000
    CyclicRepetition: false

Now read the entire contents of the baseband_samples_1ghz.bb file with a single call to the bbr
object. Confirm that all the samples have been read and compare the samples read by bbr1 and
bbr2.

samples2 = bbr2();
info(bbr2)

ans = struct with fields:
    NumSamplesInData: 10000
            DataType: 'double'
      NumSamplesRead: 10000

isequal(samples1,samples2)
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ans = logical
   1

Release the baseband file reader resources.

release(bbr2)

Read Data with Multiple Calls to Baseband File Reader

Read a baseband signal from a file by using multiple calls to the baseband file reader System
object™.

Create a baseband file reader object.

bbr = comm.BasebandFileReader('baseband_samples_1ghz.bb')

bbr = 
  comm.BasebandFileReader with properties:

            Filename: 'C:\TEMP\Bdoc22b_2054784_6060\ibB18F8B\28\tpc33da15b\comm-ex87872352\baseband_samples_1ghz.bb'
          SampleRate: 1
     CenterFrequency: 100000000
         NumChannels: 1
            Metadata: [1x1 struct]
     SamplesPerFrame: 100
    CyclicRepetition: false

Use the info object function to gain additional information about the baseband file reader. The file
contains 10,000 samples of data type double. No samples have been read.

info(bbr)

ans = struct with fields:
    NumSamplesInData: 10000
            DataType: 'double'
      NumSamplesRead: 0

The baseband file (baseband_samples_1ghz.bb) contains 10,000 samples. Because the number of
samples per frame is set to 100 in the baseband file reader object, reading the entire contents of the
baseband file requires multiple calls to the object. To read all of the samples from the file, use the
isDone object function to terminate a while loop.

y = [];
while ~isDone(bbr)
    x = bbr();
    y = cat(1,y,x);
end

Use the info obejct function to confirm that all of the samples have been read from the file. The total
number of samples and the number of samples read are the same.

info(bbr)
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ans = struct with fields:
    NumSamplesInData: 10000
            DataType: 'double'
      NumSamplesRead: 10000

Plot the absolute magnitude of the baseband data.

plot(abs(y))
title('Baseband Signal Read From File')
xlabel('Samples')
ylabel('Amplitude')

Release the baseband file reader resources.

release(bbr)

Version History
Introduced in R2016b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.BasebandFileWriter
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comm.BasebandFileWriter
Package: comm

Write baseband signal to file

Description
The comm.BasebandFileWriter System object writes a specific type of binary file to store
baseband signal data. Baseband signals are typically down-converted from a nonzero center
frequency to 0 Hz. The SampleRate and CenterFrequency properties are saved when the file is
created.

To write a baseband signal to a file:

1 Create the comm.BasebandFileWriter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
bbw = comm.BasebandFileWriter
bbw = comm.BasebandFileWriter(fname)
bbw = comm.BasebandFileWriter(fname,fs)
bbw = comm.BasebandFileWriter(fname,fs,fc)
bbw = comm.BasebandFileWriter(fname,fs,fc,md)
bbw = comm.BasebandFileWriter( ___ ,Name=Value)

Description

bbw = comm.BasebandFileWriter creates a baseband file writer System object to write a
baseband signal to a specific type of binary file.

bbw = comm.BasebandFileWriter(fname) sets the Filename property to fname.

bbw = comm.BasebandFileWriter(fname,fs) also sets the SampleRate property to fs.

bbw = comm.BasebandFileWriter(fname,fs,fc) also sets the CenterFrequency property to
fc.

bbw = comm.BasebandFileWriter(fname,fs,fc,md) also sets the Metadata property to md.

bbw = comm.BasebandFileWriter( ___ ,Name=Value) sets properties using one or more name-
value arguments in addition to an input argument combination from any of the previous syntaxes. For
example, SampleRate=2 sets the sample rate of the baseband file writer to 2.
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Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Filename — Name of baseband file to write
'untitled.bb' (default) | string scalar | character vector

Name of the baseband file to write, specified as a string scalar or character vector. The filename can
include a relative or absolute path.
Data Types: string | char

SampleRate — Sample rate of output baseband signal
1 (default) | positive scalar

Sample rate of the output baseband signal in Hz, specified as a positive scalar.
Data Types: double

CenterFrequency — Center frequency of baseband signal
100000000 (default) | positive scalar | row vector

Center frequency of the baseband signal in Hz, specified as a positive scalar or row vector. When this
property is a row vector, each element is the center frequency of a channel in a multichannel signal.
Data Types: double

Metadata — Data describing baseband signal
empty structure (default) | structure

Data describing the baseband signal, specified as a structure. The structure can have any number of
fields and any field name. The field values can be of any numeric, logical, or character data type and
have any number of dimensions.
Data Types: struct

NumSamplesToWrite — Number of samples to save
Inf (default) | positive integer

Number of samples to save, specified as a positive integer or Inf.

• To write all of the baseband signal samples to a file, set this property to Inf.
• To write only the last NumSamplesToWrite samples to a file, set this property to a positive

integer.

Data Types: double
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Usage

Syntax
bbw(samples)

Description

bbw(samples) writes one frame of baseband samples to the file specified by the Filename property.
The number of samples written to the file is determined by the NumSamplesToWrite property.

Input Arguments

samples — Baseband signal to write
matrix

Baseband signal to write to the file, specified as an Nsample-by-Nchannel matrix of numeric values. Nsample
is the number of baseband samples and Nchannel is the number of channels in the input signal. If
NumSamplesToWrite is Inf, the object writes all of the samples in the input signal to the file.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to comm.BasebandFileWriter
info Characteristic information about baseband file writer

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Write Baseband Signal to File

Create a baseband file writer object specifying a sample rate of 1 kHz and a 0 Hz center frequency.

bbw = comm.BasebandFileWriter('baseband_data.bb',1000,0);

Save the date for today in the Metadata structure.

bbw.Metadata = struct('Date',date);

Generate two channels of QPSK-modulated data.
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d = randi([0 3],1000,2);
x = pskmod(d,4,pi/4,'gray');

Write the baseband data to file baseband_data.bb.

bbw(x)

Display information about the baseband file writer. Then, release the object.

info(bbw)

ans = struct with fields:
             Filename: 'C:\TEMP\Bdoc22b_2054784_6060\ibB18F8B\29\tp337054fe\comm-ex66490302\baseband_data.bb'
      SamplesPerFrame: 1000
          NumChannels: 2
             DataType: 'double'
    NumSamplesWritten: 1000

release(bbw)

Create a baseband file reader object to read the saved data. Display the metadata from the file.

bbr = comm.BasebandFileReader('baseband_data.bb', ...
    'SamplesPerFrame',100);
bbr.Metadata

ans = struct with fields:
    Date: '31-Aug-2022'

Read the data from the file.

z = [];

while ~isDone(bbr)
    y = bbr();
    z = cat(1,z,y);
end

Display information about the baseband file reader. Then, release object.

info(bbr)

ans = struct with fields:
    NumSamplesInData: 1000
            DataType: 'double'
      NumSamplesRead: 1000

release(bbr)

Confirm that the original modulated data x, matches the data z, read from file baseband_data.bb.

isequal(x,z)

ans = logical
   1
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Tips
• comm.BasebandFileWriter writes baseband signals to uncompressed binary files. To share

these files, you can compress them to a zip file using the zip function. For more information, see
“Create and Extract from Zip Archives”.

Version History
Introduced in R2016b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.BasebandFileReader
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comm.BCHDecoder
Package: comm

Decode data using BCH decoder

Description
The BCHDecoder object recovers a binary message vector from a binary BCH codeword vector. For
proper decoding, the codeword and message length values in this object must match the properties in
the corresponding comm.BCHEncoder System object.

To decode a binary message from a BCH codeword:

1 Define and set up your BCH decoder object. See “Construction” on page 3-84.
2 Call step to recover a binary message vector from a binary BCH codeword vector according to

the properties of comm.BCHDecoder. The behavior of step is specific to each object in the
toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
dec = comm.BCHDecoder creates a BCH decoder System object, dec, that performs BCH decoding.

dec = comm.BCHDecoder(N,K) creates a BCH decoder object, dec, with the CodewordLength
property set to N and the MessageLength property set to K.

dec = comm.BCHDecoder(N,K,GP) creates a BCH decoder object, dec, with the
CodewordLength property set to N, the MessageLength property set to K, and the
GeneratorPolynomial property set to GP.

dec = comm.BCHDecoder(N,K,GP,S) creates a BCH decoder object, dec, with the
CodewordLength property set to N, the MessageLength property set to K, the
GeneratorPolynomial property set to GP, and the ShortMessageLength property set to S.

dec = comm.BCHDecoder(N,K,GP,S,Name,Value) creates a BCH decoder object, dec, with the
CodewordLength property set to N, the MessageLength property set to K, the
GeneratorPolynomial property set to GP, the ShortMessageLength property set to S, and each
specified property Name set to the specified Value.

dec = comm.BCHDecoder(Name,Value) creates a BCH decoder object, dec, with each specified
property set to the specified value. You can specify additional name-value pair arguments in any order
as (Name1,Value1,...,NameN,ValueN).
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Properties
CodewordLength

Codeword length

Specify the codeword length of the BCH code as a double-precision positive integer scalar. The
default is 15. The values of the CodewordLength and MessageLength on page 3-0  properties
must produce a valid narrow-sense BCH code. For a full-length BCH code, the value of this property
must take the form 2M − 1, where M is an integer such that 3 ≤ M ≤ 16. The default is 15.

MessageLength

Message length

Specify the message length as a double-precision positive integer scalar. The values of the
CodewordLength on page 3-0  and MessageLength properties must produce a valid narrow-sense
BCH code. The default is 5.

ShortMessageLengthSource

Short message length source

Specify the source of the shortened message as either Auto or Property. When this property is set
to Auto, the BCH code is defined by the CodewordLength on page 3-0 , MessageLength on page
3-0 , GeneratorPolynomial on page 3-0 , and PrimitivePolynomial on page 3-0
properties. When ShortMessageLengthSource is set to Property, you must specify the
ShortMessageLength on page 3-0  property, which is used with the other properties to define the
BCH code. The default is Auto.

ShortMessageLength

Shortened message length

Specify the length of the shortened message as a double-precision positive integer scalar whose value
must be less than or equal to MessageLength on page 3-0 . When
ShortMessageLength < MessageLength, the BCH code is shortened. The default is 5.

GeneratorPolynomialSource

Source of generator polynomial

Specify the source of the generator polynomial as either Auto or Property. Set this property
to Auto to create the generator polynomial automatically. Set GeneratorPolynomialSource
to Property to specify a generator polynomial using the GeneratorPolynomial on page 3-0
 property. The default is Auto.

GeneratorPolynomial
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Generator polynomial

Specify the generator polynomial as a binary double-precision row vector, a binary Galois field row
vector that represents the coefficients of the generator polynomial in order of descending powers, or
as a polynomial character vector. The length of the generator polynomial requires a value of
CodewordLength on page 3-0 –MessageLength on page 3-0 +1. This property applies when you
set GeneratorPolynomialSource on page 3-0  to Property. The default is 'X^10 + X^8 +
X^5 + X^4 + X^2 + X + 1', which is the result of bchgenpoly(15,5,[],'double') and
corresponds to a 15,5 code.

CheckGeneratorPolynomial

Enable generator polynomial checking

Set this property to true to perform a generator polynomial check the first time you call the step
method. The default is true. This check verifies that the specified generator polynomial is valid. For
larger codes, disabling the check reduces processing time. As a best practice, perform the check at
least once before setting this property to false. This property applies when you set
GeneratorPolynomialSource on page 3-0  to Property. The default is true.

PrimitivePolynomialSource

Source of primitive polynomial

Specify the source of the primitive polynomial as Auto or Property. Set this property to Auto to
create a primitive polynomial of degree M=ceil(log2(CodewordLength on page 3-0 +1)).
Set PrimitivePolynomialSource to Property to specify a polynomial using the
PrimitivePolynomial on page 3-0  property. The default is Auto.

PrimitivePolynomial

Primitive polynomial

Specify the primitive polynomial of order M, that defines the finite Galois field GF(2). Use a double-
precision, binary row vector with the coefficients of the polynomial in order of descending powers or
a polynomial character vector. This property applies when you set the
PrimitivePolynomialSource on page 3-0  property to Property. The default is 'X^4 + X +
1', which is the result of int2bit(primpoly(4),5)'.

PuncturePatternSource

Source of puncture pattern

Specify the source of the puncture pattern as None or Property. Set this property to None to disable
puncturing. Set it to Property to decode punctured codewords. This decoding is based on a
puncture pattern vector you specify in the PuncturePattern on page 3-0  property. The default is
None.

PuncturePattern
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Puncture pattern vector

Specify the pattern that the object uses to puncture the encoded data. Use a double-precision binary
column vector of length CodewordLength on page 3-0 –MessageLength on page 3-0 . Zeros in
the puncture pattern vector indicate the position of the parity bits that the object punctures or
excludes from each codeword. This property applies when you set PuncturePatternSource on
page 3-0  to Property. The default is [ones(8,1); zeros(2,1)].

ErasuresInputPort

Enable erasures input

Set this property to true to specify a vector of erasures as a step method input. The erasures vector
is a double-precision or logical binary column vector that indicates which bits of the input codewords
to erase or ignore. Values of 1 in the erasures vector correspond to erased bits in the same position of
the (possibly punctured) input codewords. Set this property to false to disable erasures. The default
is false.

NumCorrectedErrorsOutputPort

Output number of corrected errors

Set this property to true so that the step method outputs the number of corrected errors. The
default is true.

Input and Output Signal Lengths in BCH and RS System Objects
The notation y = c * x denotes that y is an integer multiple of x.

The number of punctures equals the number of zeros in the puncture vector.

M is the degree of the primitive polynomial. Each group of M bits represents an integer between 0
and 2M–1 that belongs to the finite Galois field GF(2M).
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ShortMessageLe
ngthSource

comm.BCHEncode
r

comm.RSEncoder
(BitInput =
false)

comm.BCHDecode
r

comm.RSDecoder
(BitInput =
false)

comm.RSEncoder
(BitInput =
true)

comm.RSDecoder
(BitInput =
true)

Auto Input Length:

c *
MessageLength

Output Length:

c *
( CodewordLeng
th – number of
punctures)

Input Length:

c *
(CodewordLengt
h – number of
punctures)

Output Length:

c *
MessageLength

Erasures
Length:

c *
( CodewordLeng
th – number of
punctures)

Input Length:

c *
(MessageLength
* M)

Output Length:

c *
(( CodewordLen
gth – number
of punctures)
* M)

Input Length:

c *
( (CodewordLen
gth – number
of punctures)
* M)

Output Length:

c *
(MessageLength
* M)

Erasures
Length:

c *
(CodewordLength
– number of
punctures)
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ShortMessageLe
ngthSource

comm.BCHEncode
r

comm.RSEncoder
(BitInput =
false)

comm.BCHDecode
r

comm.RSDecoder
(BitInput =
false)

comm.RSEncoder
(BitInput =
true)

comm.RSDecoder
(BitInput =
true)

Property Input Length:

c *
ShortMessageLe
ngth

Output Length:

c *
(CodewordLengt
h -
MessageLength
+
ShortMessageLe
ngth - number
of punctures)

Input Length:

c *
(CodewordLengt
h -
MessageLength
+
ShortMessageLe
ngth - number
of punctures)

Output Length:

c *
ShortMessageLe
ngth

Erasures
Length:

c *
(CodewordLengt
h -
MessageLength
+
ShortMessageLe
ngth - number
of punctures)

Input Length:

c *
(ShortMessageL
ength * M)

Output Length:

c *
( (CodewordLen
gth -
MessageLength
+
ShortMessageLe
ngth - number
of punctures)
* M)

Input Length:

c *
((CodewordLeng
th -
MessageLength
+
ShortMessageLe
ngth - number
of punctures)
* M)

Output Length:

c *
(ShortMessageL
ength * M)

Erasures
Length:

c *
(CodewordLengt
h -
MessageLength
+
ShortMessageLe
ngth - number
of punctures)

Methods

step Decode data using a BCH decoder

Common to All System Objects
release Allow System object property value changes

Examples

Compute Errors for 8-DPSK-Modulated Signal with BCH Forward Error Correction Applied

Transmit a BCH-encoded, 8-DPSK-modulated bit stream through an AWGN channel, and then
demodulate, decode, and count errors in the received signal.
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enc = comm.BCHEncoder;
mod = comm.DPSKModulator('BitInput',true);
chan = comm.AWGNChannel( ...
    'NoiseMethod','Signal to noise ratio (SNR)', ...
    'SNR',10);
demod = comm.DPSKDemodulator('BitOutput',true);
dec = comm.BCHDecoder;
errorRate = comm.ErrorRate('ComputationDelay',3);

for counter = 1:20
  data = randi([0 1],30,1);
  encodedData = enc(data);
  modSignal = mod(encodedData);
  receivedSignal = chan(modSignal);
  demodSignal = demod(receivedSignal);
  receivedBits = dec(demodSignal);
  errorStats = errorRate(data,receivedBits);
end
fprintf('Error rate = %f\nNumber of errors = %d\n', ...
  errorStats(1),errorStats(2))

Error rate = 0.015075
Number of errors = 9

Transmit and Receive a BPSK-Modulated Signal

Transmit and receive a BPSK-modulated signal encoded with a shortened BCH code, then count
errors.

Specify the codeword, message, and shortened message lengths.

N = 255;
K = 239;
S = 63;

Create a BCH (255,239) generator polynomial. Use the generator polynomial to create a BCH
encoder and decoder pair. The BCH code is based on the AMR standard.

gp = bchgenpoly(255,239);
bchEncoder = comm.BCHEncoder(N,K,gp,S);
bchDecoder = comm.BCHDecoder(N,K,gp,S);

Create an error rate counter.

errorRate = comm.ErrorRate('ComputationDelay',3);

Main processing loop.

for counter = 1:20
  data = randi([0 1],630,1);                 % Generate binary data
  encodedData = bchEncoder(data);            % BCH encode data
  modSignal = pskmod(encodedData,2);         % BPSK modulate
  receivedSignal = awgn(modSignal,5);        % Pass through AWGN channel
  demodSignal = pskdemod(receivedSignal,2);  % BSPK demodulate
  receivedBits = bchDecoder(demodSignal);    % BCH decode data
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  errorStats = errorRate(data,receivedBits); % Compute error statistics
end

Display the error statistics.

fprintf('Error rate = %f\nNumber of errors = %d\n', ...
  errorStats(1), errorStats(2))

Error rate = 0.000318
Number of errors = 4

Shorten a BCH Code

Shorten a (31,26) BCH code to an (11,6) BCH code and use it to encode and decode random binary
data.

Create a BCH encoder and decoder pair for a (31,26) code. Specify the generator polynomial,
x5 + x2 + 1, and a shortened message length of 6.

enc = comm.BCHEncoder(31,26,'x5+x2+1',6);
dec = comm.BCHDecoder(31,26,'x5+x2+1',6);

Encode and decode random binary data and verify that the decoded bit stream matches the original
data.

x = randi([0 1],60,1);
y = step(enc,x);
z = step(dec,y);
isequal(x,z)

ans = logical
   1

Selected Bibliography

[1] Clark, George C. Jr., and J. Bibb Cain, Error-Correction Coding for Digital Communications. New
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River, NJ, Prentice Hall, 1995.

Algorithms
This object implements the algorithm, inputs, and outputs described in “Algorithms for BCH and RS
Errors-only Decoding”.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.BCHEncoder | comm.RSDecoder | bchdec | bchgenpoly | primpoly
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step
System object: comm.BCHDecoder
Package: comm

Decode data using a BCH decoder

Syntax
Y = step(H,X)
[Y,ERR] = step(H,X)
Y = step(H,X,ERASURES)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Y = step(H,X) decodes input binary codewords in X using a (CodewordLength,MessageLength)
BCH decoder with the corresponding narrow-sense generator polynomial. The step method returns
the estimated message in Y. This syntax applies when you set the
NumCorrectedErrorsOutputPort property to false. The input and output length of the step
function equal the values listed in the table in “Input and Output Signal Lengths in BCH and RS
System Objects” on page 3-87.

[Y,ERR] = step(H,X) returns the number of corrected errors in output ERR when you set the
NumCorrectedErrorsOutputPort property to true. A non- negative value in the i-th element of
the ERR output vector denotes the number of corrected errors in the i-th input codeword. A value of
-1 in the i-th element of the ERR output indicates that a decoding error occurred for the i-th input
codeword. A decoding error occurs when an input codeword has more errors than the error
correction capability of the BCH code.

Y = step(H,X,ERASURES) uses ERASURES as the erasures pattern input when you set the
ErasuresInputPort property to true. The object decodes the binary encoded data input, X, and
treats as erasures the bits of the input codewords specified by the binary column vector, ERASURES.
The length of ERASURES must equal the length of X, and its elements must be of data type double or
logical. Values of 1 in the erasures vector correspond to erased bits in the same position of the
(possibly punctured) input codewords.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This initialization
locks nontunable properties and input specifications. For more information on changing property
values, see “System Design in MATLAB Using System Objects”.
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comm.BCHEncoder
Package: comm

Encode data using BCH encoder

Description
The BCHEncoder object creates a BCH code with specified message and codeword lengths.

To encode data using a BCH coding scheme:

1 Define and set up your BCH encoder object. See “Construction” on page 3-94.
2 Call step to create a BCH code with message and codeword lengths specified according to the

properties of comm.BCHEncoder. The behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
enc = comm.BCHEncoder creates a BCH encoder System object, enc, that performs BCH encoding.

enc = comm.BCHEncoder(N,K) creates a BCH encoder object, enc, with the CodewordLength
property set to N and the MessageLength property set to K.

enc = comm.BCHEncoder(N,K,GP) creates a BCH encoder object, enc, with the
CodewordLength property set to N, the MessageLength property set to K and the
GeneratorPolynomial property set to GP.

enc = comm.BCHEncoder(N,K,GP,S) creates a BCH encoder object, enc, with the
CodewordLength property set to N, the MessageLength property set to K, the
GeneratorPolynomial property set to GP and the ShortMessageLength property set to S.

enc = comm.BCHEncoder(N,K,GP,S,Name,Value) creates a BCH encoder object, enc, with the
CodewordLength property set to N, the MessageLength property set to K, the
GeneratorPolynomial property set to GP, the ShortMessageLength property set to S, and each
specified property Name set to the specified Value.

enc = comm.BCHEncoder(Name,Value) creates a BCH encoder object, enc, with each specified
property set to the specified value. You can specify additional name-value pair arguments in any order
as (Name1,Value1,...,NameN,ValueN).

Properties

Note The input and output signal lengths are listed in “Input and Output Signal Lengths in BCH and
RS System Objects” on page 3-87 on the comm.BCHDecoder reference page.
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CodewordLength

Codeword length

Specify the codeword length of the BCH code as a double-precision positive integer scalar. The
default is 15. The values of the CodewordLength and MessageLength on page 3-0  properties
must produce a valid narrow-sense BCH code. For a full-length BCH code, the value of the property
must use the form 2M − 1, where M is an integer such that 3 ≤ M ≤ 16. The default is 15.

MessageLength

Message length

Specify the message length as a double-precision positive integer scalar. The values of the
CodewordLength on page 3-0  and MessageLength properties must produce a valid narrow-sense
BCH code. The default is 5.

ShortMessageLengthSource

Short message length source

Specify the source of the shortened message as either Auto or Property. When this property is set
to Auto, the BCH code is defined by the CodewordLength on page 3-0 , MessageLength on page
3-0 , GeneratorPolynomial on page 3-0 , and PrimitivePolynomial on page 3-0
properties. When ShortMessageLengthSource is set to Property, you must specify the
ShortMessageLength on page 3-0  property that is used with the other properties to define the
RS code. The default is Auto.

ShortMessageLength

Shortened message length

Specify the length of the shortened message as a double-precision positive integer scalar whose value
must be less than or equal to MessageLength on page 3-0 . When
ShortMessageLength < MessageLength, the BCH code is shortened. The default is 5.

GeneratorPolynomialSource

Source of generator polynomial

Specify the source of the generator polynomial as either Auto or Property. Set this property
to Auto to create the generator polynomial automatically. Set it to Property to specify a generator
polynomial using the GeneratorPolynomial on page 3-0   property. The default is Auto.

GeneratorPolynomial

Generator polynomial

Specify the generator polynomial as a binary double-precision row vector, a binary Galois row vector
that represents the coefficients of the generator polynomial in order of descending powers, or as a
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polynomial character vector. The length of the generator polynomial requires a value of
CodewordLength on page 3-0 -MessageLength on page 3-0 +1. This property applies when you
set GeneratorPolynomialSource on page 3-0  to Property. The default is 'X^10 + X^8 +
X^5 + X^4 + X^2 + X + 1', which is the result of bchgenpoly(15,5,[],'double') and
corresponds to a (15,5) code.

CheckGeneratorPolynomial

Enable generator polynomial checking

Set this property to true to perform a generator polynomial check the first time you call
the step method. This check verifies that the specified generator polynomial is valid. For larger
codes, disabling the check reduces processing time. As a best practice, perform the check at least
once before setting this property to false. This property applies when you set
 GeneratorPolynomialSource on page 3-0    to Property. The default is true.

PrimitivePolynomialSource

Source of primitive polynomial

Specify the source of the primitive polynomial as one of Auto or Property. Set this property to Auto
to create a primitive polynomial of degree M=ceil(log2(CodewordLength on page 3-0 +1)).
Set it to Property to specify a polynomial using the PrimitivePolynomial on page 3-0
property. The default is Auto

PrimitivePolynomial

Primitive polynomial

Specify the primitive polynomial of order M, that defines the finite Galois field GF(2). Use a double-
precision, binary row vector with the coefficients of the polynomial in order of descending powers or
as a polynomial character vector. This property applies when you set the
PrimitivePolynomialSource on page 3-0  property to Property. The default is 'X^4 + X +
1', which is the result of int2bit(primpoly(4),5)'.

PuncturePatternSource

Source of puncture pattern

Specify the source of the puncture pattern as one of None or Property. Set this property to None to
disable puncturing. Set it to Property to decode punctured codewords. This decoding is based on a
puncture pattern vector you specify in the PuncturePattern on page 3-0  property. The default is
None.

PuncturePattern

Puncture pattern vector

Specify the pattern that the object uses to puncture the encoded data. Use a double-precision binary
column vector of length CodewordLength on page 3-0 -MessageLength on page 3-0 . Zeros in
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the puncture pattern vector indicate the position of the parity bits that the object punctures or
excludes from each codeword. This property applies when you set PuncturePatternSource on
page 3-0  to Property. The default is [ones(8,1); zeros(2,1)].

Methods

step Encode data using a BCH encoder

Common to All System Objects
release Allow System object property value changes

Examples

Compute Errors for 8-DPSK-Modulated Signal with BCH Forward Error Correction Applied

Transmit a BCH-encoded, 8-DPSK-modulated bit stream through an AWGN channel, and then
demodulate, decode, and count errors in the received signal.

enc = comm.BCHEncoder;
mod = comm.DPSKModulator('BitInput',true);
chan = comm.AWGNChannel( ...
    'NoiseMethod','Signal to noise ratio (SNR)', ...
    'SNR',10);
demod = comm.DPSKDemodulator('BitOutput',true);
dec = comm.BCHDecoder;
errorRate = comm.ErrorRate('ComputationDelay',3);

for counter = 1:20
  data = randi([0 1],30,1);
  encodedData = enc(data);
  modSignal = mod(encodedData);
  receivedSignal = chan(modSignal);
  demodSignal = demod(receivedSignal);
  receivedBits = dec(demodSignal);
  errorStats = errorRate(data,receivedBits);
end
fprintf('Error rate = %f\nNumber of errors = %d\n', ...
  errorStats(1),errorStats(2))

Error rate = 0.015075
Number of errors = 9

Transmit and Receive a BPSK-Modulated Signal

Transmit and receive a BPSK-modulated signal encoded with a shortened BCH code, then count
errors.

Specify the codeword, message, and shortened message lengths.
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N = 255;
K = 239;
S = 63;

Create a BCH (255,239) generator polynomial. Use the generator polynomial to create a BCH
encoder and decoder pair. The BCH code is based on the AMR standard.

gp = bchgenpoly(255,239);
bchEncoder = comm.BCHEncoder(N,K,gp,S);
bchDecoder = comm.BCHDecoder(N,K,gp,S);

Create an error rate counter.

errorRate = comm.ErrorRate('ComputationDelay',3);

Main processing loop.

for counter = 1:20
  data = randi([0 1],630,1);                 % Generate binary data
  encodedData = bchEncoder(data);            % BCH encode data
  modSignal = pskmod(encodedData,2);         % BPSK modulate
  receivedSignal = awgn(modSignal,5);        % Pass through AWGN channel
  demodSignal = pskdemod(receivedSignal,2);  % BSPK demodulate
  receivedBits = bchDecoder(demodSignal);    % BCH decode data
  errorStats = errorRate(data,receivedBits); % Compute error statistics
end

Display the error statistics.

fprintf('Error rate = %f\nNumber of errors = %d\n', ...
  errorStats(1), errorStats(2))

Error rate = 0.000318
Number of errors = 4

Shorten a BCH Code

Shorten a (31,26) BCH code to an (11,6) BCH code and use it to encode and decode random binary
data.

Create a BCH encoder and decoder pair for a (31,26) code. Specify the generator polynomial,
x5 + x2 + 1, and a shortened message length of 6.

enc = comm.BCHEncoder(31,26,'x5+x2+1',6);
dec = comm.BCHDecoder(31,26,'x5+x2+1',6);

Encode and decode random binary data and verify that the decoded bit stream matches the original
data.

x = randi([0 1],60,1);
y = step(enc,x);
z = step(dec,y);
isequal(x,z)
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ans = logical
   1

Selected Bibliography
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Algorithms
This object implements the algorithm, inputs, and outputs described in “Algorithms for BCH and RS
Errors-only Decoding”.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.BCHDecoder | comm.RSEncoder | bchenc | bchgenpoly | primpoly
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step
System object: comm.BCHEncoder
Package: comm

Encode data using a BCH encoder

Syntax
Y = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Y = step(H,X) encodes input binary data, X, using a (CodewordLength,MessageLength) BCH
encoder with the corresponding narrow-sense generator polynomial and returns the result in vector
Y. The input and output length of the step function equal the values listed in the table in “Input and
Output Signal Lengths in BCH and RS System Objects” on page 3-87.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This initialization
locks nontunable properties and input specifications. For more information on changing property
values, see “System Design in MATLAB Using System Objects”.
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comm.BPSKDemodulator
Package: comm

Demodulate using BPSK method

Description
The comm.BPSKDemodulator System object demodulates a signal that was modulated using the
binary phase shift keying method. The object maps the points exp(jθ) or -exp(jθ) to 0 and 1,
respectively. The PhaseOffset property specifies the value of θ in radians.

To demodulate BPSK-modulated signal data:

1 Create the comm.BPSKDemodulator object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
bpskdemodulator = comm.BPSKDemodulator
bpskdemodulator = comm.BPSKDemodulator(Name,Value)
bpskdemodulator = comm.BPSKDemodulator(phase,Name,Value)

Description

bpskdemodulator = comm.BPSKDemodulator creates a demodulator System object that
demodulates the input signal using the BPSK method.

bpskdemodulator = comm.BPSKDemodulator(Name,Value) creates a BPSK demodulator
System object with each specified property set to the specified value. You can specify additional
name-value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

bpskdemodulator = comm.BPSKDemodulator(phase,Name,Value) creates a BPSK
demodulator System object with the PhaseOffset property is set to phase, and the other specified
properties set to the specified values.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.
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PhaseOffset — Phase of zeroth point of constellation
0 (default) | scalar

Phase of zeroth point of the constellation in radians, specified as a scalar.
Data Types: double

DecisionMethod — Demodulation decision method
'Hard decision' (default) | 'Log-likelihood ratio' | 'Approximate log-likelihood
ratio'

Demodulation decision method, specified as 'Hard decision', 'Log-likelihood ratio', or
'Approximate log-likelihood ratio'.
Data Types: char | string

VarianceSource — Source of noise variance
'Property' (default) | 'Input port'

Source of noise variance, specified as one of 'Property' or 'Input port'.
Dependencies

To enable this property set the DecisionMethod property to 'Log-likelihood ratio' or
'Approximate log-likelihood ratio'.
Data Types: char | string

Variance — Noise variance
1 (default) | nonzero scalar

Noise variance, specified as a nonzero scalar. When the noise variance or signal power result in
computations involving extreme positive or negative magnitudes, see “BPSK Soft Demodulation” on
page 3-107 for demodulation decision type considerations.

Tunable: Yes
Dependencies

To enable this property set the VarianceSource property to 'Property'.
Data Types: double

OutputDataType — Output datatype
'Full precision' (default) | 'Smallest unsigned integer' | 'double' | 'single' |
'int8' | 'uint8' | 'int16' | 'uint16' | 'int32' | 'uint32' | 'logical' | ...

Output datatype, specified as one of these options.

• When you set this property to 'Full precision', the output data type is the same as that of the
input when the input data type is single or double precision. If the input data is of a fixed-point
type, then the output data type works as if you had set this property to 'Smallest unsigned
integer'.
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• When you set the DecisionMethod property to 'Log-liklihood ratio' or 'Approximate
log-liklihood ratio , the output data type is the same as that of the input and the input data
type must be single or double precision.

Note For integer data type inputs, the Fixed-Point Designer™ software is required when this
property is set to 'Full precision' or 'Smallest unsigned integer'.

• 'Full precision'
• 'Smallest unsigned integer'
• 'double'
• 'single'
• 'int8'
• 'uint8'
• 'int16'
• 'uint16'
• 'int32'
• 'uint32'
• 'logical'

Dependencies

To enable this property set the DecisionMethod property to 'Hard decision'.
Data Types: char

Fixed-Point Properties

DerotateFactorDataType — Data type of derotate factor
'Same word length as input' (default) | 'Custom'

Data type of derotate factor, specified as one of 'Same word length as input' | 'Custom'.

Dependencies

To enable this property set the DecisionMethod property to 'Hard decision'. Additionally, the
object uses the derotate factor in the computations only when the input must be of a fixed-point type,
and the PhaseOffset property value is not a multiple of π/2.
Data Types: char | string

CustomOutputDataType — Fixed-point data type of output
numerictype([],16) (default) | numerictype object

Fixed-point data type of output, specified as a numerictype object with a signedness of Auto.

Dependencies

To enable this property set the OutputDataType property to 'Custom'.
Data Types: fi
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Usage

Syntax
data = bpskdemodulator(waveform)

Description

data = bpskdemodulator(waveform) applies BPSK demodulation to the modulated waveform
and returns the demodulated input signal.

Input Arguments

waveform — BPSK Modulated baseband signal
column vector | matrix

BPSK Modulated baseband signal, specified as a column vector or matrix of the same size as the
input signal. For more information about the output datatype, see the OutputDataType property.
Data Types: double | single | fi
Complex Number Support: Yes

Output Arguments

data — Output signal data
column vector | matrix

Output signal data, returned as a column vector or matrix. The OutputDataType specifies the data
type for the output data.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to comm.BPSKDemodulator
constellation Calculate or plot ideal signal constellation

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples
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Demodulate BPSK Signal and Calculate Errors

Generate a BPSK signal, pass it through an AWGN channel, demodulate the signal, and compute the
error statistics.

Create BPSK modulator and demodulator System objects.

bpskModulator = comm.BPSKModulator;
bpskDemodulator = comm.BPSKDemodulator;

Create an error rate calculator System object.

errorRate = comm.ErrorRate;

Generate 50-bit random data frames, apply BPSK modulation, pass the signal through an AWGN
channel, demodulate the received data, and compile the error statistics.

for counter = 1:100
    % Transmit a 50-symbol frame
    txData = randi([0 1],50,1);            % Generate data
    modSig = bpskModulator(txData);        % Modulate
    rxSig = awgn(modSig,5);                % Pass through AWGN
    rxData = bpskDemodulator(rxSig);       % Demodulate
    errorStats = errorRate(txData,rxData); % Collect error stats
end

Display the cumulative error statistics.

fprintf('Error rate = %f\nNumber of errors = %d\n', ...
    errorStats(1), errorStats(2))

Error rate = 0.005600
Number of errors = 28

More About
BPSK Hard-Decision Demodulation

When applying hard demodulation, the input signal type and phase offset are considered.

This figure shows the hard decision BPSK demodulator for a floating-point or fixed-point signal and
trivial phase offset (multiple of π/2)
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This figure shows the hard decision BPSK demodulator for a floating-point signal and nontrivial phase
offset

This figure shows the hard decision BPSK demodulator for a fixed-point signal and nontrivial phase
offset
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BPSK Soft Demodulation

For soft demodulation, two soft-decision log-likelihood ratio (LLR) algorithms are available: exact LLR
and approximate LLR. The exact LLR algorithm is more accurate but has slower execution speed than
the approximate LLR algorithm. For further description of these algorithms, see the “Hard- vs. Soft-
Decision Demodulation” topic.

Note The exact LLR algorithm computes exponentials using finite precision arithmetic. For
computations involving very large positive or negative magnitudes, the exact LLR algorithm yields:

• Inf or -Inf if the noise variance is a very large value
• NaN if the noise variance and signal power are both very small values

The approximate LLR algorithm does not compute exponentials. You can avoid Inf, -Inf, and NaN
results by using the approximate LLR algorithm.

Version History
Introduced in R2012a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.
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double and single data types are supported for simulation, but not for HDL code generation.

To generate HDL code from predefined System objects, see “HDL Code Generation from Viterbi
Decoder System Object” (HDL Coder).

See Also
Objects
comm.BPSKModulator | comm.PSKDemodulator

Blocks
BPSK Demodulator Baseband
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comm.IQImbalanceCompensator
Package: comm

Compensate for IQ imbalance

Description
The comm.IQImbalanceCompensator System object compensates for the imbalance between the
in-phase and quadrature (IQ) components of a modulated signal. The adaptive algorithm inherent to
the IQ imbalance compensator is compatible with M-PSK, M-QAM, and OFDM modulation schemes,
where M>2. For more information, see “Algorithms” on page 3-120.

Note The output of the compensator might be scaled and rotated, that is, multiplied by a complex
number, relative to the reference constellation. In practice, this transformation is not an issue
because, before demodulation, receivers correct for it by using channel estimation.

To compensate for IQ imbalance:

1 Create the comm.IQImbalanceCompensator object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation
Syntax
iqcomp = comm.IQImbalanceCompensator
iqcomp = comm.IQImbalanceCompensator(Name=Value)

Description

iqcomp = comm.IQImbalanceCompensator creates a compensator System object that
compensates for the imbalance between the in-phase and quadrature components of the input signal.

iqcomp = comm.IQImbalanceCompensator(Name=Value) creates an IQ imbalance compensator
object and sets properties using one or more name-value arguments. For example,
comm.IQImbalanceCompensator(CoefficientSource="Input port") specifies that the
compensator coefficients must be provided when you call the object. For this configuration, all other
properties are disabled.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.
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For more information on changing property values, see System Design in MATLAB Using System
Objects.

CoefficientSource — Source of compensator coefficients
"Estimated from input signal" (default) | "Input port"

Source of the compensator coefficients, specified as either "Estimated from input signal" or
"Input port".

• If this property is set to "Estimated from input signal", the compensator uses an adaptive
algorithm and the input signal to estimate the compensator coefficient.

• If this property is set to "Input port", all other properties are disabled and the compensator
coefficients must be provided as input argument c when you call the object.

InitialCoefficent — Initial coefficient used to compensate for IQ imbalance
0+0i (default) | scalar

Initial coefficient used to compensate for IQ imbalance, specified as a complex scalar.

Dependencies

To enable this property, set the CoefficientSource property to "Estimated from input
signal".
Data Types: double
Complex Number Support: Yes

StepSizeSource — Source of step size for coefficient adaptation
"Property" (default) | "Input port"

Source of the step size to use for coefficient adaptation, specified as either "Property" or "Input
port".

• If this property is set to "Property", specify the step size through the StepSize property.
• If this property is set to "Input port", specify the step size as input argument s when calling

the object.

StepSize — Adaptation step size
1e-5 (default) | scalar

Adaptation step size, specified as a scalar. The value of this property is the step size that the
algorithm uses when estimating the IQ imbalance. For more information, see “Algorithms” on page 3-
120.

Tunable: Yes

Dependencies

To enable this property, set the StepSizeSource to "Property".
Data Types: double
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AdaptInputPort — Option to adapt compensator coefficient
false or 0 (default) | true or 1

Option to adapt the compensator coefficient from an input argument, specified as a logical 0 (false)
or 1 (true).

• If this property is false, the coefficients update after each output sample.
• If this property is true, you must provide a logical value for the input argument a to enable and

disable coefficient adaptation.

CoefficientOutputPort — Option to output compensator coefficients
false or 0 (default) | true or 1

Option to output the compensator coefficients, specified as a logical 0 (false) or 1 (true).

• When this logical property is false, the IQ imbalance compensator coefficients are not available
as output when you call the object.

• When this logical property is true, the IQ imbalance compensator coefficients are available as
output coef when you call the object.

Usage

Syntax
y = iqcomp(x)
y = iqcomp(x,c)
y = iqcomp(x,s)
y = iqcomp(x,a)
y = iqcomp(x,s,a)
[y,estcoef] = iqcomp(x, ___ )

Description

y = iqcomp(x) compensates for IQ imbalance of the input signal. The compensator coefficient is
estimated from x by a blind adaptive algorithm.

y = iqcomp(x,c) accepts input compensation coefficients, c, instead of generating them internally.
This syntax applies when the CoefficientSource property is set to Input port. When using this
syntax, adaptive estimation of the compensator coefficient is disabled.

y = iqcomp(x,s) accepts input step size, s. This syntax applies when the StepSizeSource
property is set to Input port.

y = iqcomp(x,a) accepts the adaptation control signal, a, to enable or disable coefficient updates.
This syntax applies when the AdaptInputPort property is set to true.

y = iqcomp(x,s,a) accepts the step size, s, and the adaptation control signal, a, to enable and
disable coefficient updates. This syntax applies when the StepSizeSource property is set to Input
port and the AdaptInputPort property is set to true.
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[y,estcoef] = iqcomp(x, ___ ) also returns estimated compensation coefficients with input
arguments from any of the previous syntaxes. This syntax applies when the
CoefficientOutputPort property is set to Input port.

Input Arguments

x — Input signal
scalar | column vector

Input signal, specified as a scalar or a column vector.
Data Types: double | single

c — Compensator coefficients
scalar | column vector

Compensator coefficients, specified as a scalar or a column vector the same length as input signal x.
Dependencies

To enable this input, set the CoefficientSource property to "Input port".
Data Types: single | double

s — Step size
scalar

Step size for blind adaptive estimation of compensator coefficient, specified as a scalar.
Dependencies

To enable this input, set the StepSizeSource property to "Input port".
Data Types: single | double

a — Adaptation control signal
logical scalar

Adaptation control signal, specified as a logical scalar.

• If this property is true, then the compensator coefficient will be adapted.
• If this property is false, then the compensator coefficient will remain unchanged.

Dependencies

To enable this input, set the AdaptInputPort property to "Input port".
Data Types: logical

Output Arguments

y — IQ imbalance compensated signal
scalar | column vector

IQ imbalance compensated signal, returned as a scalar or column vector with the same size as input
signal x.

coef — Estimated compensator coefficient
scalar | column vector
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Estimated compensator coefficient, returned as a scalar or column vector with the same size as input
signal x.

• If a is true, the returned compensator coefficient adapts when you call the object.
• If a is false, then the returned compensator coefficient remains unchanged from the last time

you called the object.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Remove IQ Imbalance from QPSK Signal

Mitigate the impacts of amplitude and phase imbalance on a QPSK modulated signal by using the
comm.IQImbalanceCompensator System object™.

Generate random data symbols and apply QPSK modulation.

M = 4;                       % QPSK
spf = 1e6;                   % Samples per frame
data = randi([0 M-1],spf,1);
txSig = pskmod(data,M,pi/4);

Create a constellation diagram object to display the QPSK signal before and after IQ imbalance
compensation. The reference constellation for the object does not require an update because the
default QPSK reference constellation matches the transmitted signal.

cdscope = comm.ConstellationDiagram( ...
    NumInputPorts=2, ...
    ShowLegend=true, ...
    ChannelNames=["Impaired signal","IQ imbalance compensated"]);

Create an IQ imbalance compensator.

iqImbComp = comm.IQImbalanceCompensator;

Apply amplitude and phase imbalance to the transmitted signal.

ampImb = 5;                          % dB
phImb = 15;                          % deg
rxSig = iqimbal(txSig,ampImb,phImb);

On the receiver side, apply the IQ compensation algorithm to the impaired signal.
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compSig = iqImbComp(rxSig);

To display the impaired signal and the IQ impairment compensated signal, load the last 1000 symbols
of the signals into the constellation diagram object. The impaired signal constellation shows IQ
amplitude and phase impairments. The impairment compensated signal constellation nearly aligns
with the reference constellation.

cdscope(rxSig(spf - 1000:end),compSig(spf - 1000:end))
release(cdscope)
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Remove IQ Imbalance from 8-PSK Signal Using External Coefficients

Compensate for an amplitude and phase imbalance on an 8-PSK signal by using the
comm.IQImbalanceCompensator System object™ with external coefficients.

Generate an 8-PSK reference constellation. Create a constellation diagram System object. Configure
the constellation diagram object to display only the last 100 data symbols of two input signals and
provide the reference constellation.

refconst = pskmod(0:7,8,0);
cdscope = comm.ConstellationDiagram(...
    NumInputPorts=2, ...
    SymbolsToDisplaySource="Property", ...
    SymbolsToDisplay=100, ...
    ReferenceConstellation=refconst, ...
    ChannelNames=["Uncompensated","Compensated"]);

Create an I/Q imbalance compensator object with an input port for the algorithm coefficients.

iqcomp = comm.IQImbalanceCompensator( ...
    CoefficientSource="Input port");

Generate random data symbols and apply 8-PSK modulation.

data = randi([0 7],1000,1);
txSig = pskmod(data,8,0);

Apply amplitude and phase imbalance to the transmitted signal.

ampImb = 5;                          % dB
phImb = 15;                          % degrees
rxSig = iqimbal(txSig,ampImb,phImb);

Use the iqimbal2coef function to determine the compensation coefficient given the amplitude and
phase imbalance.

compCoef = iqimbal2coef(ampImb,phImb);

Apply the compensation coefficient to the received signal when calling the iqcomp object. Display the
resulting constellations for the uncompensated and compensated signal. You can see severe IQ
imbalance in the uncompensated signal and the compensated signal constellation is nearly aligned
with the reference constellation.

compSig = iqcomp(rxSig,compCoef);
cdscope(rxSig,compSig)
release(cdscope)
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Remove IQ Imbalance from QAM Signal

Remove an IQ imbalance from a 64-QAM signal and make the estimated coefficients externally
available while setting the algorithm step size from an input port.

Create a constellation diagram object. Use name-value pairs to ensure that the constellation diagram
displays only the last 256 data symbols, set the axes limits, and specify the reference constellation.

M = 64;
refC = qammod(0:M-1,M);
cdscope = comm.ConstellationDiagram(...
    NumInputPorts=2, ...
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    SymbolsToDisplaySource="Property", ...
    SymbolsToDisplay=256, ...
    XLimits=[-10 10], ...
    YLimits=[-10 10], ...
    ReferenceConstellation=refC, ...
    ChannelNames=["Uncompensated","Compensated"]);

Create an IQ imbalance compensator System object™ in which the step size is specified as an input
argument and the estimated coefficients are made available through an output port.

iqImbComp = comm.IQImbalanceCompensator( ...
    StepSizeSource="Input port", ...
    CoefficientOutputPort=true);

Generate random data symbols and apply 64-QAM modulation.

nSym = 30000;
data = randi([0 M-1],nSym,1);
txSig = qammod(data,M);

Apply amplitude and phase imbalance to the transmitted signal.

ampImb = 2;                          % dB
phImb = 10;                          % deg
rxSig = iqimbal(txSig,ampImb,phImb);

Specify the step size parameter for the IQ imbalance compensator.

stepSize = 1e-5;

Compensate for the IQ imbalance while setting the step size with an input argument. Plot the
constellation diagram of the received signal. You can see that the compensated signal constellation is
now nearly aligned with the reference constellation.

[compSig,estCoef] = iqImbComp(rxSig,stepSize);
cdscope(rxSig,compSig)
release(cdscope)
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Plot the real and imaginary values of the estimated coefficients. The output coefficients show the
simulation reaches a steady-state solution after approximately 5000 symbols.

plot((1:nSym)'/1000,[real(estCoef),imag(estCoef)])
grid
xlabel('Symbols (thousands)')
ylabel('Coefficient Value')
legend('Real','Imaginary','location','best')
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Control Adaptation Algorithm for IQ Imbalance Compensator

Control the adaptation algorithm of the IQ imbalance compensator using an external argument.

Apply QPSK modulation to random data symbols.

data = randi([0 3],600,1);
txSig = pskmod(data,4,pi/4,'gray');

Create an IQ imbalance compensator in which the adaptation algorithm is controlled through an
input port, the step size is specified through the StepSize property, and the estimated coefficients
are made available through an output port.

iqImbComp = comm.IQImbalanceCompensator( ...
    AdaptInputPort=true, ...
    StepSize=0.001, ...
    CoefficientOutputPort=true);

Apply amplitude and phase imbalance to the transmitted signal.

ampImb = 5; % dB
phImb = 15; % deg
gainI = 10.^(0.5*ampImb/20);
gainQ = 10.^(-0.5*ampImb/20);
imbI = real(txSig)*gainI*exp(-0.5i*phImb*pi/180);
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imbQ = imag(txSig)*gainQ*exp(1i*(pi/2 + 0.5*phImb*pi/180));
rxSig = imbI + imbQ;

Break the compensation operation into three segments in which the compensator is enabled for the
first 200 symbols, disabled for the next 200 symbols, and enabled for the last 200 symbols. Save the
coefficient data in three vectors.

[~,estCoef1] = iqImbComp(rxSig(1:200),true);
[~,estCoef2] = iqImbComp(rxSig(201:400),false);
[~,estCoef3] = iqImbComp(rxSig(401:600),true);

Concatenate the complex algorithm coefficients and plot their real and imaginary parts. Observe that
the coefficients do not adapt when the compensator is disabled.

estCoef = [estCoef1; estCoef2; estCoef3];
plot((1:600)',[real(estCoef) imag(estCoef)])
grid
xlabel('Symbols')
ylabel('Coefficient Value')
legend('Real','Imaginary','location','best')

Algorithms
Imbalance between the in-phase and quadrature components of signal output from RF receivers can
be cost-effectively compensated rather than improving the analog front-end RF hardware. Direct
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conversion receivers, in particular, introduce IQ imbalance. A circularity-based blind compensation
algorithm is used as the basis for the IQ imbalance compensator.

A generalized IQ imbalance model is shown, where g is the amplitude imbalance and ϕ is the phase
imbalance. For no impairment, g = 1 and ϕ = 0. In the figure, H(f) is the nominal frequency response
of the branches due to, for example, low-pass filters. HI(f) and HQ(f) represent the portions of the in-
phase and quadrature amplitude and phase responses that differ from the nominal response. With
perfect matching, HI(f) = HQ(f) = 1.

Let z(t) be the ideal baseband equivalent signal of the received signal, r(t), where its Fourier
transform is denoted as Z(f). Given the generalized IQ imbalance model, the Fourier transform of the
imbalanced signal, x(t) = xI(t) + xQ(t), is

X(f ) = G1(f )Z(f ) + G2(f )Z*( − f )

where G1(f) and G2(f) are the direct and conjugate components of the IQ imbalance. These
components are defined as

G1(f ) = HI(f ) + HQ(f )gexp( − jϕ) /2
G2(f ) = HI(f ) + HQ(f )gexp( jϕ) /2

Applying the inverse Fourier transform to X(f), the signal model becomes x(t) = g1(t) × z(t) + g2(t) ×
z*(t).

This transformation suggests the compensator structure as shown in which discrete-time notation
expresses the variables. The compensated signal is expressed as y(n) = x(n) + wx*(n).
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An algorithm of the form

y(n) = x(n) + w(n)x*(n)
w(n + 1) = w(n) −My2(n)

is used to determine the weights because it ensures that the output is proper, that is, the condition,
E[y2(n)] = 0 is satisfied. For further details, see [1]. The initial value of w is determined by the initial
compensator coefficient, which has a default value of 0 + 0i. M is the adaptation step size as
described in StepSize.

Version History
Introduced in R2014b

References
[1] Anttila, L., M. Valkama, and M. Renfors. "Blind compensation of frequency-selective I/Q

imbalances in quadrature radio receivers: Circularity-based approach", Proc. IEEE ICASSP,
pp.III-245–248, 2007.

[2] Kiayani, A., L. Anttila, Y. Zou, and M. Valkama, "Advanced Receiver Design for Mitigating Multiple
RF Impairments in OFDM Systems: Algorithms and RF Measurements", Journal of Electrical
and Computer Engineering, Vol. 2012.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).
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See Also
Blocks
I/Q Imbalance Compensator

Functions
iqimbal | iqcoef2imbal | iqimbal2coef
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comm.BPSKModulator
Package: comm

Modulate using BPSK method

Description
The comm.BPSKModulator object modulates using the binary phase shift keying method. The output
is a baseband representation of the modulated signal. The input signal must be a discrete-time
binary-valued signal. If the input bit is 0 or 1, then the modulated symbol is exp(jθ) or -exp(jθ),
respectively. The PhaseOffset property specifies the value of θ in radians.

To modulate a signal using BPSK method:

1 Create the comm.BPSKModulator object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation
Syntax
bpskmodulator = comm.BPSKModulator
bpskmodulator = comm.BPSKModulator(Name,Value)
bpskmodulator = comm.BPSKModulator(phase,Name,Value)

Description

bpskmodulator = comm.BPSKModulator creates a modulator System object to modulate input
signals using the binary phase shift keying (BPSK) method.

bpskmodulator = comm.BPSKModulator(Name,Value) creates a BPSK modulator object with
each specified property set to the specified value. You can specify additional name-value pair
arguments in any order as (Name1,Value1,...,NameN,ValueN).

bpskmodulator = comm.BPSKModulator(phase,Name,Value) creates a BPSK modulator object
with the PhaseOffset property set to phase, and the other specified properties set to the specified
values.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.
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PhaseOffset — Phase of zeroth point of constellation
0 (default) | scalar

Phase of zeroth point of the constellation in radians, specified as a scalar.
Data Types: double

OutputDataType — Output datatype
'double' (default) | 'single' | 'Custom'

Output datatype, specified as 'double', 'single' or 'Custom'.
Data Types: char

Fixed-Point Properties

CustomOutputDataType — Fixed-point data type of output
numerictype([],16) (default) | numerictype object

Fixed-point data type of the output, specified as a numerictype object with a signedness of Auto.
Dependencies

This property applies when you set the OutputDataType property to 'Custom'.

Usage

Syntax
waveform = bpskmodulator(data)

Description

waveform = bpskmodulator(data) applies BPSK modulation to the input data and returns the
modulated BPSK baseband signal.

Input Arguments

data — Input signal data
column vector | matrix

Input signal data, specified as a column vector or matrix.
Data Types: double

Output Arguments

waveform — BPSK modulated baseband signal
column vector | matrix

BPSK modulated baseband signal, returned as a column vector or matrix of the same size as the input
signal. For more information about the output datatype, see the OutputDataType property.
Data Types: double | single | fi
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Complex Number Support: Yes

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to comm.BPSKModulator
constellation Calculate or plot ideal signal constellation

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

BPSK Data Scatter Plot

This example creates binary data, modulates it, and then displays the data using a scatter plot.

Create binary data symbols.

data = randi([0 1],100,1);

Create a BPSK modulator System object.

bpskModulator = comm.BPSKModulator;

Change the phase offset to pi/16.

bpskModulator.PhaseOffset = pi/16;

Modulate and plot the data.

modData = bpskModulator(data);
scatterplot(modData)
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Algorithms
Phase modulation is a linear baseband modulation technique in which the message modulates the
phase of a constant amplitude signal. Binary Phase Shift Keying (BPSK) is a two phase modulation
scheme, where the 0’s and 1’s in a binary message are represented by two different phase states in
the carrier signal

sn(t) =
2Eb
Tb

cos 2πfct + ϕn ,

for (n− 1)Tb ≤ t ≤ nTb,  n = 1, 2,  3, …where:

• ϕn = πm, m∈{0,1}.
• Eb is the energy per bit.
• Tb is the bit duration.
• fc is the carrier frequency.

In MATLAB, the baseband representation of a BPSK signal is

sn(t) = e−iϕn = cos πn .

The BPSK signal has two phases: 0 and π. The probability of a bit error in an AWGN channel is
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Pb = Q
2Eb
N0

,

where N0 is the noise power spectral density.

Version History
Introduced in R2012a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

double and single data types are supported for simulation, but not for HDL code generation.

To generate HDL code from predefined System objects, see “HDL Code Generation from Viterbi
Decoder System Object” (HDL Coder).

See Also
Objects
comm.BPSKDemodulator | comm.PSKModulator

Blocks
BPSK Modulator Baseband
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comm.OFDMModulator
Package: comm

Modulate signal using OFDM method

Description
The OFDMModulator object modulates a signal using the orthogonal frequency division multiplexing
method. The output is a baseband representation of the modulated signal.

To modulate a signal using OFDM:

1 Create the comm.OFDMModulator object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation
Syntax
hMod = comm.OFDMModulator
hMod = comm.OFDMModulator(Name,Value)
hMod = comm.OFDMModulator(hDemod)

Description

hMod = comm.OFDMModulator creates an OFDM modulator System object.

hMod = comm.OFDMModulator(Name,Value) specifies “Properties” on page 3-129 using one of
more name-value pair arguments. Enclose each property name in quotes. For example,
comm.OFDMModulator('NumSymbols',8) specifies eight OFDM symbols in the time-frequency
grid.

hMod = comm.OFDMModulator(hDemod) sets the OFDM modulator system object properties based
on the specified OFDM demodulator system object comm.OFDMDemodulator.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

FFTLength — Number of FFT points
64 (default) | positive integer

 comm.OFDMModulator

3-129



Number of Fast Fourier Transform (FFT) points, specified as a positive integer. The length of the FFT,
NFFT, must be greater than or equal to 8 and is equivalent to the number of subcarriers.
Data Types: double

NumGuardBandCarriers — Number of subcarriers to the left and right guard bands
[6;5] (default) | two-element column vector of integers

Number of subcarriers allocated to the left and right guard bands, specified as a two-element column
vector of integers. The number of subcarriers must fall within [0, ⌊NFFT/2⌋ − 1]. This vector has the
form [NleftG, NrightG], where NleftG and NrightG specify the left and right guard bands, respectively.
Data Types: double

InsertDCNull — Option to insert DC null
false or 0 (default) | true or 1

Option to insert DC null, specified as a numeric or logical 0 (false) or 1 (true). The DC subcarrier is
the center of the frequency band and has the index value:

• (FFTLength / 2) + 1 when FFTLength is even
• (FFTLength + 1) / 2 when FFTLength is odd

PilotInputPort — Option to specify pilot input
false or 0 (default) | true or 1

Option to specify pilot input, specified as a numeric or logical 0 (false) or 1 (true). If this property
is 1 (true), you can assign individual subcarriers for pilot transmission. If this property is 0 (false),
pilot information is assumed to be embedded in the input data.

PilotCarrierIndices — Pilot subcarrier indices
[12; 26; 40; 54] (default) | column vector

Pilot subcarrier indices, specified as a column vector. If the PilotCarrierIndices property is set to 1
(true), you can specify the indices of the pilot subcarriers. You can assign the indices to the same or
different subcarriers for each symbol. Similarly, the pilot carrier indices can differ across multiple
transmit antennas. Depending on the desired level of control for index assignments, the dimensions
of the property vary. Valid pilot indices fall in the range

NleftG + 1, NFFT/2 ∪ NFFT/2 + 2, NFFT− NrightG ,

where the index value cannot exceed the number of subcarriers. When the pilot indices are the same
for every symbol and transmit antenna, the property has dimensions Npilot-by-1. When the pilot
indices vary across symbols, the property has dimensions Npilot-by-Nsym. If you transmit only one
symbol but multiple transmit antennas, the property has dimensions Npilot-by-1-by-Nt., where Nt. is the
number of transmit antennas. If the indices vary across the number of symbols and transmit
antennas, the property has dimensions Npilot-by-Nsym-by-Nt. If the number of transmit antennas is
greater than one, ensure that the indices per symbol must be mutually distinct across antennas to
minimize interference.
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To enable this property, set the PilotInputPort property to 1 (true).

CyclicPrefixLength — Length of cyclic prefix
16 (default) | positive integer | row vector

Length of cyclic prefix, specified as a positive integer. If you specify a scalar, the prefix length is the
same for all symbols through all antennas. If you specify a row vector of length Nsym, the prefix length
can vary across symbols but remains the same through all antennas.
Data Types: double

Windowing — Option to apply raised cosine window between OFDM symbols
false or 0 (default) | true or 1

Option to apply raised cosine window between OFDM symbols, specified as true or false.
Windowing is the process in which the OFDM symbol is multiplied by a raised cosine window before
transmission to more quickly reduce the power of out-of-band subcarriers. Windowing reduces
spectral regrowth.

WindowLength — Length of raised cosine window
1 (default) | positive scalar

Length of raised cosine window, specified as a positive scalar. This value must be less than or equal to
the minimum cyclic prefix length. For example, in a configuration of four symbols with cyclic prefix
lengths 12, 14, 16, and 18, the window length must be less than or equal to 12.

To enable this property, set the Windowing property to 1 (true).

NumSymbols — Number of OFDM symbols
1 (default) | positive integer

Number of OFDM symbols in the time-frequency grid, specified as a positive integer.

NumTransmitAntennnas — Number of transmit antennas
1 (default) | positive integer

Number of transmit antennas, used to transmit the OFDM modulated signal, specified as a positive
integer.

Usage

Syntax
waveform = hMod(insignal)
waveform = hMod(data,pilot)
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Description

waveform = hMod(insignal) applies OFDM modulation the specified baseband signal and returns
the modulated OFDM baseband signal.

waveform = hMod(data,pilot) assigns the pilot signal, pilot, into the frequency subcarriers
specified by the PilotCarrierIndices property value of the hMod system object. To enable this syntax
set the PilotCarrierIndices property to true.

Input Arguments

insignal — Input baseband signal
matrix | 3-D array

Input baseband signal, specified as a matrix or 3-D array of numeric values. The input baseband
signal must be of size Nf-by-Nsym-by-Nt. where Nf is the number of frequency subcarriers excluding
guard bands and DC null.
Data Types: double
Complex Number Support: Yes

data — Input data
matrix | 3-D array

Input data, specified as a matrix or 3-D array. The input must be a numeric of size Nd-by-Nsym-by-Nt.
where Nd is the number of data subcarriers in each symbol. For more information on how Nd is
calculated, see the PilotCarrierIndices property.
Data Types: double
Complex Number Support: Yes

pilot — Pilot signal
3-D array

Pilot signal, specified as a 3-D array of numeric values. The pilot signal must be of size Npilot-by-Nsym-
by-Nt.
Data Types: double
Complex Number Support: Yes

Output Arguments

waveform — OFDM Modulated baseband signal
2-D array

OFDM Modulated baseband signal, returned as a 2-D array. If the CyclicPrefixLength property is
a scalar, the output waveform is of size ((NFFT+CPlen)⁎Nsym)-by-Nt. Otherwise, the size is (NFFT⁎Nsym
+∑(CPlen))-by-Nt.
Data Types: double
Complex Number Support: Yes

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:
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release(obj)

Specific to comm.OFDMModulator
info Provide dimensioning information for OFDM modulator
showResourceMapping Show the subcarrier mapping of the OFDM symbols created by the OFDM

modulator System object

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Create and Modify OFDM Modulator

Create and display an OFDM modulator System object™ with default property values.

hMod = comm.OFDMModulator

hMod = 
  comm.OFDMModulator with properties:

               FFTLength: 64
    NumGuardBandCarriers: [2x1 double]
            InsertDCNull: false
          PilotInputPort: false
      CyclicPrefixLength: 16
               Windowing: false
              NumSymbols: 1
     NumTransmitAntennas: 1

Modify the number of subcarriers and symbols.

hMod.FFTLength = 128;
hMod.NumSymbols = 2;

Verify that the number of subcarriers and the number of symbols changed.

disp(hMod)

  comm.OFDMModulator with properties:

               FFTLength: 128
    NumGuardBandCarriers: [2x1 double]
            InsertDCNull: false
          PilotInputPort: false
      CyclicPrefixLength: 16
               Windowing: false
              NumSymbols: 2
     NumTransmitAntennas: 1
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Use the showResourceMapping object function to show the mapping of data, pilot, and null
subcarriers in the time-frequency space.

showResourceMapping(hMod)

Create OFDM Modulator from OFDM Demodulator

Create an OFDM demodulator System object™ with default property values. Then, specify pilot
indices for a single symbol and two transmit antennas.

Setting the PilotCarrierIndices property of the demodulator affects the number of transmit
antennas in the OFDM modulator when you use the demodulator in the creation of the modulator. The
number of receive antennas in the demodulator is uncorrelated with the number of transmit
antennas.

ofdmDemod = comm.OFDMDemodulator;
ofdmDemod.PilotOutputPort = true;
ofdmDemod.PilotCarrierIndices = ...
    cat(3,[12; 26; 40; 54],[13; 27; 41; 55]);

Use the OFDM demodulator to construct the OFDM modulator.

ofdmMod = comm.OFDMModulator(ofdmDemod);
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Display the properties of the OFDM modulator and demodulator, verifying that the applicable
properties match.

disp(ofdmMod)

  comm.OFDMModulator with properties:

               FFTLength: 64
    NumGuardBandCarriers: [2x1 double]
            InsertDCNull: false
          PilotInputPort: true
     PilotCarrierIndices: [4x1x2 double]
      CyclicPrefixLength: 16
               Windowing: false
              NumSymbols: 1
     NumTransmitAntennas: 2

disp(ofdmDemod)

  comm.OFDMDemodulator with properties:

               FFTLength: 64
    NumGuardBandCarriers: [2x1 double]
         RemoveDCCarrier: false
         PilotOutputPort: true
     PilotCarrierIndices: [4x1x2 double]
      CyclicPrefixLength: 16
              NumSymbols: 1
      NumReceiveAntennas: 1

Visualize Time-Frequency Resource Assignments for OFDM Modulator

The showResourceMapping method displays the time-frequency resource mapping for each
transmit antenna.

Construct an OFDM modulator.

mod = comm.OFDMModulator;

Apply the showResourceMapping method.

showResourceMapping(mod)
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Insert a DC null.

mod.InsertDCNull = true;

Show the resource mapping after adding the DC null.

showResourceMapping(mod)
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Create OFDM Modulator and Specify Pilots

Create an OFDM modulator and specify the subcarrier indices for the pilot signals. Specify the
indices for each symbol and transmit antenna. When the number of transmit antennas is greater than
one, set different pilot indices for each symbol between antennas.

Create an OFDM modulator System object, specifying two symbols and inserting a DC null.

mod = comm.OFDMModulator('FFTLength',128,'NumSymbols',2,...
    'InsertDCNull',true);

Enable the pilot input port so you can specify the pilot indices.

mod.PilotInputPort = true;

Specify the same pilot indices for both symbols.

mod.PilotCarrierIndices = [12; 56; 89; 100];

Visualize the placement of the pilot signals and nulls in the OFDM time-frequency grid by using the
showResourceMapping object function.

showResourceMapping(mod)
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Specify different indices for the second symbol by concatenating a second column of pilot indices to
the PilotCarrierIndices property.

mod.PilotCarrierIndices = cat(2,mod.PilotCarrierIndices, ...
    [17; 61; 94; 105]);

Verify that the pilot subcarrier indices differ between the two symbols.

showResourceMapping(mod)
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Increase the number of transmit antennas to two.

mod.NumTransmitAntennas = 2;

Specify the pilot indices for each of the two transmit antennas. To provide indices for multiple
antennas while minimizing interference among the antennas, set the PilotCarrierIndices
property as a 3-D array such that the indices for each symbol differ among antennas.

mod.PilotCarrierIndices = cat(3,[20; 50; 70; 110], [15; 60; 75; 105]);

Display the resource mapping for the two transmit antennas. The gray lines denote the insertion of
custom nulls. The nulls are created by the object to minimize interference among the pilot symbols
from different antennas.

showResourceMapping(mod)
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Create OFDM Modulator with Varying Cyclic Prefix Lengths

Specify the length of the cyclic prefix for each OFDM symbol.

Create an OFDM modulator, specifying five symbols, four left and three right guard-band subcarriers,
and the cyclic prefix length for each OFDM symbol.

mod = comm.OFDMModulator('NumGuardBandCarriers',[4;3],...
    'NumSymbols',5,...
    'CyclicPrefixLength',[12 10 14 11 13]);

Display the properties of the OFDM modulator, verifying that the cyclic prefix length changes across
symbols.

disp(mod)

  comm.OFDMModulator with properties:

               FFTLength: 64
    NumGuardBandCarriers: [2x1 double]
            InsertDCNull: false
          PilotInputPort: false
      CyclicPrefixLength: [12 10 14 11 13]
               Windowing: false
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              NumSymbols: 5
     NumTransmitAntennas: 1

Determine OFDM Modulator Data Dimensions

Get the OFDM modulator data dimensions by using the info object function.

Construct an OFDM modulator System object™ with user-specified pilot indices, an inserted DC null,
and specify two transmit antennas.

hMod = comm.OFDMModulator('NumGuardBandCarriers',[4;3], ...
    'PilotInputPort',true, ...
    'PilotCarrierIndices',cat(3,[12; 26; 40; 54], ...
    [11; 25; 39; 53]), ...
    'InsertDCNull',true, ...
    'NumTransmitAntennas',2);

Use the info object function to get the modulator input data, pilot input data, and output data sizes.

info(hMod)

ans = struct with fields:
     DataInputSize: [48 1 2]
    PilotInputSize: [4 1 2]
        OutputSize: [80 2]

Create OFDM Modulated Data

Generate OFDM modulated symbols for use in link-level simulations.

Construct an OFDM modulator with an inserted DC null, seven guard-band subcarriers, and two
symbols having different pilot indices for each symbol.

mod = comm.OFDMModulator( ...
    'NumGuardBandCarriers',[4;3], ...
    'PilotInputPort',true, ...
    'PilotCarrierIndices',[12 11; 26 27; 40 39; 54 55], ...
    'NumSymbols',2, ...
    'InsertDCNull',true);

Determine input data, pilot, and output data dimensions.

modDim = info(mod);

Generate random data symbols for the OFDM modulator. The structure variable, modDim, determines
the number of data symbols.

dataIn = complex( ...
    randn(modDim.DataInputSize),randn(modDim.DataInputSize));

Create a pilot signal that has the correct dimensions.
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pilotIn = complex( ...
    rand(modDim.PilotInputSize),rand(modDim.PilotInputSize));

Apply OFDM modulation to the data and pilot signals.

modData = mod(dataIn,pilotIn);

Use the OFDM modulator object to create the corresponding OFDM demodulator.

demod = comm.OFDMDemodulator(mod);

Demodulate the OFDM signal and output the data and pilot signals.

[dataOut, pilotOut] = demod(modData);

Verify that, within a tight tolerance, the input data and pilot symbols match the output data and pilot
symbols.

isSame = (max(abs([dataIn(:) - dataOut(:); ...
    pilotIn(:) - pilotOut(:)])) < 1e-10)

isSame = logical
   1

More About
Orthogonal Frequency Division Multiplexing

OFDM operation divides a high-rate data stream into lower data rate substreams by decomposing the
transmission frequency band into N contiguous individually modulated subcarriers. Multiple parallel
and orthogonal subcarriers carry the samples with almost the same bandwidth as a wideband
channel. By using narrow orthogonal subcarriers, the OFDM signal gains robustness over a
frequency-selective fading channel and eliminates adjacent subcarrier interference. Intersymbol
interference (ISI) is reduced because the lower data rate substreams have symbol durations larger
than the channel delay spread.

This image shows a frequency domain representation of orthogonal subcarriers in an OFDM
waveform.
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The transmitter applies inverse fast Fourier transform (IFFT) to N symbols at a time. Typically, the
output of the IFFT is the sum of the N orthogonal sinusoids:

x(t) = ∑
k = 0

N − 1
Xke j2πkΔf t, 0 ≤ t ≤ T,

where {Xk} are data symbols, and T is the OFDM symbol time. The data symbols Xk are typically
complex and can be from any digital modulation alphabet (for example, QPSK, 16-QAM, 64-QAM, ...).

Note The MATLAB implementation of the discrete Fourier transform normalizes the output of the
IFFT by 1/N. For more information, see “Discrete Fourier Transform of Vector” on the ifft reference
page.

The subcarrier spacing is Δf = 1/T, ensuring that the subcarriers are orthogonal over each symbol
period, as shown below:

1
T∫0 T

e j2πmΔf t * e j2πnΔf t dt = 1
T∫0 T

e j2π(m− n)Δf t dt = 0 for m ≠ n .

An OFDM modulator consists of a serial-to-parallel conversion followed by a bank of N complex
modulators, individually corresponding to each OFDM subcarrier.
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Subcarrier Allocation, Guard Bands and Guard Intervals

Individual OFDM subcarriers are allocated as data, pilot, or null subcarriers.

As shown here, subcarriers are designated as data, DC, pilot, or guard band subcarriers.

• Data subcarriers transmit user data.
• Pilot subcarriers are used for channel estimation.
• Null subcarriers transmit no data. Subcarriers with no data are used to provide a DC null and

serve as buffers between OFDM resource blocks.

• The null DC subcarrier is the center of the frequency band with an index value of (nfft/2 + 1)
if nfft is even, or ((nfft + 1) / 2) if nfft is odd.

• The guard bands provide buffers between adjacent signals in neighboring bands to reduce
interference caused by spectral leakage.

Null subcarriers enable you to model guard bands and DC subcarrier locations for specific standards,
such as the various 802.11 formats, LTE, WiMAX, or for custom allocations. You can allocate the
location of nulls by assigning a vector of null subcarrier indices.

Similar to guard bands, guard intervals are used in OFDM to protect the integrity of transmitted
signals by reducing intersymbol interference.
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Assignment of guard intervals is analogous to the assignment of guard bands. You can model guard
intervals to provide temporal separation between OFDM symbols. The guard intervals help preserve
intersymbol orthogonality after the signal passes through time-dispersive channels. Guard intervals
are created by using cyclic prefixes. Cyclic prefix insertion copies the last part of an OFDM symbol as
the first part of the OFDM symbol.

As long as the span of the time dispersion does not exceed the duration of the cyclic prefix, the
benefit of cyclic prefix insertion is maintained.

Inserting a cyclic prefix results in a fractional reduction of user data throughput because the cyclic
prefix occupies bandwidth that could be used for data transmission.

Raised Cosine Windowing

While the cyclic prefix creates a guard period in time domain to preserve orthogonality, an OFDM
symbol rarely begins with the same amplitude and phase exhibited at the end of the prior OFDM
symbol causing spectral regrowth and therefore, spreading of signal bandwidth due to
intermodulation distortion. To limit this spectral regrowth, it is desired to create a smooth transition
between the last sample of a symbol and the first sample of the next symbol. This can be done by
using a cyclic suffix and raised cosine windowing.

To create the cyclic suffix, the first NWIN samples of a given symbol are appended to the end of that
symbol. However, in order to comply with the 802.11g standard, for example, the length of a symbol
cannot be arbitrarily lengthened. Instead, the cyclic suffix must overlap in time and is effectively
summed with the cyclic prefix of the following symbol. This overlapped segment is where windowing
is applied. Two windows are applied, one of which is the mathematical inverse of the other. The first
raised cosine window is applied to the cyclic suffix of symbol k and decreases from 1 to 0 over its
duration. The second raised cosine window is applied to the cyclic prefix of symbol k+1 and increases
from 0 to 1 over its duration. This process provides a smooth transition from one symbol to the next.

The raised cosine window, w(t), in the time domain can be expressed as:

w(t) =

1, 0 ≤ t <
T − TW

2
1
2 1 + cos π

TW
t −

T − TW
2 ,

T − TW
2 ≤ t ≤

T + TW
2

0, otherwise
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where:

• T is the OFDM symbol duration including the guard interval.
• TW is the duration of the window.

Adjust the length of the cyclic suffix via the window length setting property, with suffix lengths set
between 1 and the minimum cyclic prefix length. While windowing improves spectral regrowth, it
does so at the expense of multipath fading immunity. This occurs because redundancy in the guard
band is reduced because the guard band sample values are compromised by the smoothing.

The following figures display the application of raised cosine windowing.

Version History
Introduced in R2014a
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comm.OFDMDemodulator
Package: comm

Demodulate using OFDM method

Description
The OFDMDemodulator object demodulates using the orthogonal frequency division multiplexing
method. The output is a baseband representation of the modulated signal, which was input into the
OFDMModulator companion object.

To demodulate an OFDM signal:

1 Define and set up the OFDM demodulator object. See “Construction” on page 3-149.
2 Call step to demodulate a signal according to the properties of comm.OFDMDemodulator. The

behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
H = comm.OFDMDemodulator creates a demodulator System object, H, that demodulates an input
signal by using the orthogonal frequency division demodulation method.

H = comm.OFDMDemodulator(Name,Value) creates an OFDM demodulator object, H, with each
specified property set to the specified value. You can specify additional name-value pair arguments in
any order as (Name1,Value1,...,NameN,ValueN).

H = comm.OFDMDemodulator(hMod) creates an OFDM demodulator object, H, whose properties
are determined by the corresponding OFDM modulator object, hMod.

Properties
FFTLength

The length of the FFT, NFFT, is equivalent to the number of subcarriers used in the modulation
process. FFTLength must be ≥ 8.

Specify the number of subcarriers. The default is 64.

NumGuardBandCarriers

The number of guard band subcarriers allocated to the left and right guard bands.
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Specify the number of left and right subcarriers as nonnegative integers in [0,NFFT/2 − 1] where you
specify the left, NleftG, and right, NrightG, guard bands independently in a 2-by-1 column vector. The
default values are [6; 5].

RemoveDCCarrier

A logical variable that when true, mandates removal of a DC subcarrier. The default value is
false.

PilotOutputPort

A logical property that controls whether to separate the pilot signals and make them available at
an additional output port. The location of each pilot output symbol is determined by the pilot
subcarrier indices specified in the PilotCarrierIndices property. When false, pilot symbols may
be present but embedded in the data. The default value is false.

PilotCarrierIndices

If the PilotOutputPort property is true, output separate pilot signals located at the indices
specified by the PilotCarrierIndices property. If the indices are a 2-D array, the pilot carriers
across all the transmit antennas per symbol are the same. If there is more than one transmit antenna
(this information is not known by the demodulator), the pilots from different transmit antennas may
interfere with each other. To avoid this, specify the pilot carrier indices as a 3-D array with different
pilot indices for each symbol across the antennas. This avoids interference between pilots from
different transmit antennas, since, on a per-symbol basis, each transmit antenna has different pilot
carriers and the OFDM modulator creates custom nulls at the appropriate locations. The size of the
third dimension of the PilotCarrierIndices property gives the number of transmit antennas.

CyclicPrefixLength

The cyclic prefix length property specifies the length of the OFDM cyclic prefix. If you specify a
scalar, the prefix length is the same for all symbols through all antennas. If you specify a row vector
of length Nsym, the prefix length can vary across symbols but remains the same length through all
antennas. The default value is 16.

NumSymbols

This property specifies the number of symbols, Nsym. Specify Nsym as a positive integer. The default
value is 1.

NumReceiveAntennnas

This property determines the number of antennas, NR, used to receive the OFDM modulated signal.
Specify NR as a positive integer. The default value is 1.
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Methods
info Provide dimensioning information for the OFDM method
showResourceMapping Show the subcarrier mapping of the OFDM symbols created by the OFDM

demodulator System object
step Demodulate using OFDM method

Common to All System Objects
release Allow System object property value changes
reset Reset internal states of System object

When using reset, this method resets the windowed suffix from the last symbol in the previously
processed frame.

Examples

Create and Modify OFDM Demodulator

Construct an OFDM demodulator System object™ with default properties. Modify some of the
properties.

Construct the OFDM demodulator.

demod = comm.OFDMDemodulator

demod = 
  comm.OFDMDemodulator with properties:

               FFTLength: 64
    NumGuardBandCarriers: [2x1 double]
         RemoveDCCarrier: false
         PilotOutputPort: false
      CyclicPrefixLength: 16
              NumSymbols: 1
      NumReceiveAntennas: 1

Modify the number of subcarriers and symbols.

demod.FFTLength = 128;
demod.NumSymbols = 2;

Verify that the number of subcarriers and the number of symbols changed.

demod

demod = 
  comm.OFDMDemodulator with properties:

               FFTLength: 128
    NumGuardBandCarriers: [2x1 double]
         RemoveDCCarrier: false
         PilotOutputPort: false
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      CyclicPrefixLength: 16
              NumSymbols: 2
      NumReceiveAntennas: 1

Create OFDM Demodulator from OFDM Modulator

Create an OFDM demodulator System object™ from an existing OFDM modulator System object.

Construct an OFDM modulator using default parameters.

mod = comm.OFDMModulator('NumTransmitAntennas',4);

Construct the corresponding OFDM demodulator from the modulator, mod.

demod = comm.OFDMDemodulator(mod);

Display the properties of the modulator and verify that they match those of the demodulator.

mod

mod = 
  comm.OFDMModulator with properties:

               FFTLength: 64
    NumGuardBandCarriers: [2x1 double]
            InsertDCNull: false
          PilotInputPort: false
      CyclicPrefixLength: 16
               Windowing: false
              NumSymbols: 1
     NumTransmitAntennas: 4

demod

demod = 
  comm.OFDMDemodulator with properties:

               FFTLength: 64
    NumGuardBandCarriers: [2x1 double]
         RemoveDCCarrier: false
         PilotOutputPort: false
      CyclicPrefixLength: 16
              NumSymbols: 1
      NumReceiveAntennas: 1

Note that the number of transmit antennas is independent of the number of receive antennas.

Visualize Time-Frequency Resource Assignments

The showResourceMapping method shows the time-frequency resource mapping for each transmit
antenna.
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Construct an OFDM demodulator.

demod = comm.OFDMDemodulator;

Apply the showResourceMapping method.

showResourceMapping(demod)

Remove the DC subcarrier.

demod.RemoveDCCarrier = true;

Show the resource mapping after removing the DC subcarrier.

showResourceMapping(demod)
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Demodulate OFDM Data

Construct an OFDM modulator with an inserted DC null, seven guard-band subcarriers, and two
symbols that have different pilot indices for each symbol.

mod = comm.OFDMModulator( ...
    'NumGuardBandCarriers',[4;3], ...
    'PilotInputPort',true, ...
    'PilotCarrierIndices', ...
    cat(2,[12; 26; 40; 54],[11; 27; 39; 55]), ...
    'NumSymbols',2, ...
    'InsertDCNull',true);

Determine input data, pilot, and output data dimensions.

modDim = info(mod)

modDim = struct with fields:
     DataInputSize: [52 2]
    PilotInputSize: [4 2]
        OutputSize: [160 1]

Generate random data symbols for the OFDM modulator. Determine the number of data symbols by
using the structure variable, modDim.
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dataIn = complex( ...
    randn(modDim.DataInputSize),randn(modDim.DataInputSize));

Create a pilot signal that has the correct dimensions.

pilotIn = complex( ...
    rand(modDim.PilotInputSize),rand(modDim.PilotInputSize));

Apply OFDM modulation to the data and pilot signals.

modSig = mod(dataIn,pilotIn);

Use the OFDM modulator object to create the corresponding OFDM demodulator.

demod = comm.OFDMDemodulator(mod);

Demodulate the OFDM signal and output the data and pilot signals.

[dataOut,pilotOut] = demod(modSig);

Verify that the input data and pilot symbols match the output data and pilot symbols.

isSame = (max(abs([dataIn(:) - dataOut(:); ...
    pilotIn(:) - pilotOut(:)])) < 1e-10)

isSame = logical
   1

Algorithms
The orthogonal frequency division multiplexing (OFDM) demodulator System object demodulates an
OFDM input signal by using an FFT operation that results in N parallel data streams.

The figure shows an OFDM demodulator. It consists of a bank of N correlators with one assigned to
each OFDM subcarrier followed by a parallel-to-serial conversion.
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Guard Bands and Intervals

There are three types of OFDM subcarriers: data, pilot, and null. Data subcarriers are used for
transmitting data while pilot subcarriers are used for channel estimation. There is no transmission on
null subcarriers, which are used to provide a DC null as well as to provide buffers between OFDM
resource blocks. These buffers are referred to as guard bands whose purpose is to prevent inter-
symbol interference. The allocation of nulls and guard bands varies depending upon the standard,
e.g., 802.11n differs from LTE. Consequently, the OFDM modulator object allows the user to assign
subcarrier indices as required.

Analogous to the concept of guard bands, the OFDM modulator object supports guard intervals that
provide temporal separation between OFDM symbols so that the signal does not lose orthogonality
due to time-dispersive channels. As long as the guard interval is longer than the delay spread, each
symbol does not interfere with other symbols. Guard intervals are created by using cyclic prefixes in
which the last part of an OFDM symbol is copied and inserted as the first part of the OFDM symbol.
The benefit of cyclic prefix insertion is maintained as long as the span of the time dispersion does not
exceed the duration of the cyclic prefix. The OFDM modulator object enables the cyclic prefix length
to be set. The drawback in using a cyclic prefix is increased overhead.
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info
System object: comm.OFDMDemodulator
Package: comm

Provide dimensioning information for the OFDM method

Syntax
Y = info(H)

Description
Y = info(H) provides data dimensioning information for the OFDM demodulator System object, H.
It returns the expected dimensions for data input into the OFDM demodulator, for the pilot output,
and for the data output from the demodulator. The output, Y, is a structure containing three fields:
InputSize, DataOutputSize, and PilotOutputSize.

Y.InputSize
Gives the dimensions of the demodulator input data, [(NFFT + NCP) × Nsym]-by-Nr, where NFFT is
the number of subcarriers, NCP is the length of the cyclic prefix, Nsym is the number of symbols,
and Nr is the number of receive antennas.

Y.DataOutputSize
Shows the dimensions of the demodulator output data, Ndata-by-Nsym-by-Nr, where Ndata is the
number of data subcarriers such that Ndata = NFFT − NleftG − NrightG − NDCNull − Npilot − NcustNull.
The variables are defined as follows:

NFFT Number of subcarriers
NleftG Number of subcarriers in the left guard band
NrightG Number of subcarriers in the right guard

band
NDCNull Number of subcarriers in the DC null (either

0 or 1)
Npilot Number of pilot subcarriers
NcustNull Number of subcarriers used for custom nulls

Y.PilotOutputSize
Provides the dimensions of the pilot signal output array, Npilot-by-Nsym-by-Nr or Npilot-by-Nsym-by-Nt-
by-Nr, depending on the number of transmit antennas.
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showResourceMapping
System object: comm.OFDMDemodulator
Package: comm

Show the subcarrier mapping of the OFDM symbols created by the OFDM demodulator System object

Syntax
showResourceMapping(H)
showResourceMapping(H,CI)

Description
showResourceMapping(H) shows a visualization of the subcarrier mapping for the OFDM symbols
used by the OFDM demodulator System object, H. The subcarrier indices are numbered from 1 to
NFFT.

showResourceMapping(H,CI) shows the resource mapping where the optional argument, CI, is
used to number the subcarrier indices that will be displayed. CI is a 1x2 integer row vector such that
diff(CI)= NFFT − 1.
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step
System object: comm.OFDMDemodulator
Package: comm

Demodulate using OFDM method

Syntax
Y = step(H,X)
[Y,PILOT] = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Y = step(H,X) demodulates input data, X, with the OFDM demodulator System object, H, and
returns the baseband demodulated output, Y. The input is a double-precision, real or complex, 2-D
matrix of symbols whose dimensions are a function of the number of subcarriers, the cyclic prefix
length, and the number of receive antennas. You can determine the dimensions by using the info
method. The output, Y, is a double-precision, complex, 3-D array.

[Y,PILOT] = step(H,X) separates the PILOT signal on the subcarriers specified by the
PilotCarrierIndices property value of H. This syntax applies when the PilotOutputPort property of H is
true. PILOT is a double-precision, complex, 3-D array.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This initialization
locks nontunable properties and input specifications. For more information on changing property
values, see “System Design in MATLAB Using System Objects”.
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comm.CarrierSynchronizer
Package: comm

Compensate for carrier frequency offset

Description
The comm.CarrierSynchronizer System object compensates for carrier frequency and phase
offsets in signals that use single-carrier modulation schemes. The carrier synchronizer algorithm is
compatible with BPSK, QPSK, OQPSK, 8-PSK, PAM, and rectangular QAM modulation schemes.

Note

• This System object does not resolve phase ambiguities created by the synchronization algorithm.
As indicated in this table, the potential phase ambiguity introduced by the synchronizer depends
on the modulation type:

Modulation Phase Ambiguity (degrees)
'BPSK' or 'PAM' 0, 180
'OQPSK', 'QPSK', or 'QAM' 0, 90, 180, 270
'8PSK' 0, 45, 90, 135, 180, 225, 270, 315

The “Examples” on page 3-0  demonstrate carrier synchronization and resolution of phase
ambiguity.

• For best results, apply carrier synchronization to non-oversampled signals, as demonstrated in
“Correct Phase and Frequency Offset for 16-QAM Using Coarse and Fine Synchronization” on
page 3-169.

To compensate for frequency and phase offsets in signals that use single-carrier modulation schemes:

1 Create the comm.CarrierSynchronizer object and set its properties.
2 Call the object, as if it were a function.

To learn more about how System objects work, see What Are System Objects?.

Creation

Syntax
carrSynch = comm.CarrierSynchronizer
carrSynch = comm.CarrierSynchronizer(Name,Value)
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Description

carrSynch = comm.CarrierSynchronizer creates a System object that compensates for carrier
frequency offset and phase offset in signals that use single-carrier modulation schemes.

carrSynch = comm.CarrierSynchronizer(Name,Value) sets properties using one or more
name-value pairs. Enclose each property name in quotes.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Modulation — Modulation type
'QAM' (default) | '8PSK' | 'BPSK' | 'OQPSK' | 'PAM' | 'QPSK'

Modulation type, specified as 'QAM', '8PSK', 'BPSK', 'OQPSK', 'PAM', or 'QPSK'.
Example: comm.CarrierSynchronizer('Modulation','QPSK') creates a carrier synchronizer
System object to use with a QPSK modulated signal.

Tunable: No

ModulationPhaseOffset — Modulation phase offset method
'Auto' (default) | 'Custom'

Modulation phase offset method, specified as 'Auto' or 'Custom'.

• 'Auto' — Apply the traditional offset for the specified modulation type.

Modulation Phase Offset (radians)
'BPSK', 'QAM', or 'PAM' 0
'OQPSK' or 'QPSK' π/4
'8PSK' π/8

• 'Custom' — Specify a user-defined phase offset with the CustomPhaseOffset property.

Tunable: Yes

CustomPhaseOffset — Custom phase offset
0 (default) | scalar

Custom phase offset in radians, specified as a scalar.
Dependencies

This property applies when the ModulationPhaseOffset property is set to 'Custom'.
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Data Types: double

SamplesPerSymbol — Number of samples per symbol
2 (default) | positive integer

Number of samples per symbol, specified as a positive integer.

Tunable: Yes
Data Types: double

DampingFactor — Damping factor of loop
0.707 (default) | positive scalar

Damping factor of the loop, specified as a positive scalar.

Tunable: Yes
Data Types: double

NormalizedLoopBandwidth — Normalized bandwidth of loop
0.01 (default) | scalar

Normalized bandwidth of the loop, specified as a scalar in the range (0,1]. The loop bandwidth is
normalized by the sample rate of the synchronizer.

Decreasing the loop bandwidth reduces the synchronizer convergence time but also reduces the pull-
in range of the synchronizer.

Tunable: Yes
Data Types: double

Usage

Syntax
[outSig,phErr] = carrSynch(inSig)

Description

[outSig,phErr] = carrSynch(inSig) compensates for frequency offset and phase offset in the
input signal. This System object returns a compensated output signal and an estimate of the phase
error.

Input Arguments

inSig — Input signal
scalar | column vector

Input signal, specified as a complex scalar or a column vector of complex values.
Data Types: double | single
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Complex Number Support: Yes

Output Arguments

outSig — Output signal
scalar (default) | column vector

Output signal, returned as a scalar or column vector with the same data type and length as inSig.
The output signal adjusts the input signal compensating for carrier frequency and phase offsets in
signals that use single-carrier modulation schemes.

phErr — Phase error estimate
scalar (default) | column vector

Phase error estimate in radians, returned as a scalar or column vector with the same length as
inSig.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to comm.CarrierSynchronizer
info Characteristic information about carrier synchronizer
clone Create duplicate System object
isLocked Determine if System object is in use

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Correct Phase and Frequency Offset in QPSK Link

Correct phase and frequency offsets of a QPSK signal passed through an AWGN channel. Using
preambles, resolve phase ambiguity.

Define the simulation parameters.

M = 4; % Modulation order
rng(1993) % For repeatable results
barker = comm.BarkerCode(...
    'Length',13,'SamplesPerFrame',13);  % For preamble
msgLen = 1e4;
numFrames = 10;
frameLen = msgLen/numFrames;
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Add preambles to each frame, which are used later when performing phase ambiguity resolution.
Generate random data symbols, and apply QPSK modulation.

preamble = (1+barker())/2;  % Length 13, unipolar
data = zeros(msgLen,1);
for idx = 1 : numFrames
    payload = randi([0 M-1],frameLen-barker.Length,1);
    data((idx-1)*frameLen + (1:frameLen)) = [preamble; payload];
end

modSig = pskmod(data,4,pi/4);

Create a comm.PhaseFrequencyOffset System object™ to introduce phase and frequency offsets
to the modulated input signal. Set the phase offset to 45 degrees, frequency offset to 1 kHz, and
sample rate to 10 kHz. The frequency offset is set to 1% of the sample rate.

pfo = comm.PhaseFrequencyOffset( ...
    'PhaseOffset',45, ...
    'FrequencyOffset',1e4, ...
    'SampleRate',1e6);

Create a carrier synchronizer System object to use for correcting the phase and frequency offsets
with samples per symbol set to 1.

carrierSync = comm.CarrierSynchronizer( ...
    'SamplesPerSymbol',1, ...
    'Modulation','QPSK');

Apply phase and frequency offsets using the pfo System object, and then pass the signal through an
AWGN channel to add white Gaussian noise.

modSigOffset = pfo(modSig);
rxSig = awgn(modSigOffset,12);

Display the scatter plot of the received signal. The data appear in a circle instead of being grouped
around the reference constellation points due to the frequency offset.

scatterplot(rxSig)
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Use the carrierSync System object to correct the phase and frequency offset in the received signal.

syncSignal = carrierSync(rxSig);

Use a constellation diagram to display the first and last 1000 symbols of the synchronized signal.
Before convergence of the synchronizer loop, the plotted symbols are not grouped around the
reference constellation points. After convergence, the plotted symbols are grouped around the
reference constellation points.

constDiag = comm.ConstellationDiagram( ...
    'SymbolsToDisplaySource','Property', ...
    'SymbolsToDisplay',300, ...
    'ChannelNames',{'Before convergence','After convergence'}, ...
    'ShowLegend',true, ...
    'Position',[400 400 400 400]);

constDiag([syncSignal(1:1000) syncSignal(9001:10000)]);
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Demodulate the synchronized signal. Compute and display the total bit errors and BER.

syncData = pskdemod(syncSignal,4,pi/4);
[syncDataTtlErr,syncDataBER] = biterr( ...
    data(6000:end),syncData(6000:end))

syncDataTtlErr = 8001

syncDataBER = 0.9999

Phase ambiguity in the received signal might cause bit errors. Using the preamble, determine phase
ambiguity. Remove this phase ambiguity from the synchronized signal to reduce bit errors.

idx = 9000 + (1:barker.Length);
phOffset = angle(modSig(idx) .* conj(syncSignal(idx)));
phOffset = round((2/pi) * phOffset); % -1, 0, 1, +/-2
phOffset(phOffset==-2) = 2; % Prep for mean operation
phOffset = mean((pi/2) * phOffset); % -pi/2, 0, pi/2, or pi
disp(['Estimated mean phase offset = ', ...
    num2str(phOffset*180/pi),' degrees'])

Estimated mean phase offset = 180 degrees

resPhzSig = exp(1i*phOffset) * syncSignal;

Demodulate the signal after resolving the phase ambiguity. Recompute and display the updated total
bit errors and BER. Removing the phase ambiguity reduces the BER dramatically.
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resPhzData = pskdemod(resPhzSig,4,pi/4);
[resPhzTtlErr, resPhzBER] = biterr( ...
    data(6000:end),resPhzData(6000:end))

resPhzTtlErr = 1

resPhzBER = 1.2497e-04

Estimate Frequency Offset in an 8-PSK Link

Estimate the frequency offset introduced into a noisy 8-PSK signal using a carrier synchronizer
System object™.

Define the simulation parameters.

M = 8;                  % Modulation order
fs = 1e6;               % Sample rate (Hz)
foffset = 1000;         % Frequency offset (Hz)
phaseoffset = 15;       % Phase offset (deg)
snrdb = 20;             % Signal-to-noise ratio (dB)

Create a comm.PhaseFrequencyOffset System object to introduce phase and frequency offsets to
a modulated signal.

pfo = comm.PhaseFrequencyOffset('PhaseOffset',phaseoffset, ...
    'FrequencyOffset',foffset,'SampleRate',fs);

Create a carrier synchronizer System object to use for correcting the phase and frequency offsets.
Set the Modulation property to 8PSK.

carrierSync = comm.CarrierSynchronizer('Modulation','8PSK');

Generate random data and apply 8-PSK modulation.

data = randi([0 M-1],5000,1);
modSig = pskmod(data,M,pi/M);

Apply phase and frequency offsets using the pfo System object, and pass the signal through an AWGN
channel to add Gaussian white noise.

modSigOffset = pfo(modSig);
rxSig = awgn(modSigOffset,snrdb);

Use the carrier synchronizer to estimate the phase offset of the received signal.

[~,phError] = carrierSync(rxSig);

Determine the frequency offset by using the diff function to compute an approximate derivative of
the phase error. The derivative must be scaled by 2π because the phase error is measured in radians.

estFreqOffset = diff(phError)*fs/(2*pi);

Plot the running mean of the estimated frequency offset. After the synchronizer converges to a
solution, the mean value of the estimate is approximately equal to the input frequency offset value of
1000 Hz.
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rmean = cumsum(estFreqOffset)./(1:length(estFreqOffset))';
plot(rmean)
xlabel('Symbols')
ylabel('Estimated Frequency Offset (Hz)')
grid

Correct Phase and Frequency Offset for 16-QAM Using Coarse and Fine Synchronization

Compensation of significant phase and frequency offsets for a 16-QAM signal in an AWGN channel is
accomplished in two steps. First, correct the coarse frequency offset using the estimate provided by
the coarse frequency compensator, and then fine-tune the correction using carrier synchronization.
Because of the coarse frequency correction, the carrier synchronizer converges quickly even though
the normalized bandwidth is set to a low value. Lower normalized bandwidth values enable better
correction for small residual carrier offsets. After applying phase and frequency offset corrections to
the received signal, resolve phase ambiguity using the preambles.

Define the simulation parameters.

fs = 10000;                  % Sample rate (Hz)
sps = 4;                     % Samples per symbol
M = 16;                      % Modulation order
k = log2(M);                 % Bits per symbol
rng(1996)                    % Set seed for repeatable results
barker = comm.BarkerCode(... % For preamble
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    'Length',13,'SamplesPerFrame',13);
msgLen = 1e4;
numFrames = 10;
frameLen = msgLen/numFrames;

Generate data payloads and add the preamble to each frame. The preamble is later used for phase
ambiguity resolution.

preamble = (1+barker())/2;  % Length 13, unipolar
data = zeros(msgLen, 1);
for idx = 1 : numFrames
    payload = randi([0 M-1],frameLen-barker.Length,1);
    data((idx-1)*frameLen + (1:frameLen)) = [preamble; payload];
end

Create a System object™ for the transmit pulse shape filtering, the receive pulse shape filtering, the
QAM coarse frequency compensation, the carrier synchronization, and a constellation diagram.

txFilter = comm.RaisedCosineTransmitFilter( ...
    'OutputSamplesPerSymbol',sps);
rxFilter = comm.RaisedCosineReceiveFilter(...
    'InputSamplesPerSymbol',sps, ...
    'DecimationFactor',sps);
coarse = comm.CoarseFrequencyCompensator( ...
    'SampleRate',fs, ...
    'FrequencyResolution',10);
fine = comm.CarrierSynchronizer( ...
    'DampingFactor',0.4, ...
    'NormalizedLoopBandwidth',0.001, ...
    'SamplesPerSymbol',1, ...
    'Modulation','QAM');
axislimits = [-6 6];
constDiagram = comm.ConstellationDiagram( ...
    'ReferenceConstellation',qammod(0:M-1,M), ...
    'ChannelNames',{'Before convergence','After convergence'}, ...
    'ShowLegend',true, ...
    'XLimits',axislimits, ...
    'YLimits',axislimits);

Also create a System object for the AWGN channel, and the phase and frequency offset to add
impairments to the signal. A phase offset greater than 90 degrees is added to induce a phase
ambiguity that results in a constellation quadrant shift.

ebn0 = 8;
freqoffset = 110;
phaseoffset = 110;
awgnChannel = comm.AWGNChannel( ...
    'EbNo',ebn0, ...
    'BitsPerSymbol',k, ...
    'SamplesPerSymbol',sps);
pfo = comm.PhaseFrequencyOffset( ...
    'FrequencyOffset',freqoffset, ...
    'PhaseOffset',phaseoffset, ...
    'SampleRate',fs);

Generate random data symbols, apply 16-QAM modulation, and pass the modulated signal through
the transmit pulse shaping filter.
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txMod = qammod(data,M);
txSig = txFilter(txMod);

Apply phase and frequency offsets using the pfo System object, and then pass the signal through an
AWGN channel to add white Gaussian noise.

txSigOffset = pfo(txSig);
rxSig = awgnChannel(txSigOffset);

The coarse frequency compensator System object provides a rough correction for the frequency
offset. For the conditions in this example, correcting the frequency offset of the received signal
correction to within 10 Hz of the transmitted signal is sufficient.

syncCoarse = coarse(rxSig);

Pass the signal through the receive pulse shaping filter, and apply fine frequency correction.

rxFiltSig = fine(rxFilter(syncCoarse));

Display the constellation diagram of the first and last 1000 symbols in the signal. Before convergence
of the synchronization loop, the spiral nature of the diagram indicates that the frequency offset is not
corrected. After the carrier synchronizer has converged to a solution, the symbols are aligned with
the reference constellation.

constDiagram([rxFiltSig(1:1000) rxFiltSig(9001:end)])
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Demodulate the signal. Account for the signal delay caused by the transmit and receive filters to align
the received data with the transmitted data. Compute and display the total bit errors and BER. When
checking the bit errors, use the later portion of the received signal to be sure the synchronization
loop has converged.

rxData = qamdemod(rxFiltSig,M);
delay = (txFilter.FilterSpanInSymbols + ...
    rxFilter.FilterSpanInSymbols) / 2;
idxSync = 2000; % Check BER after synchronization loop has converged
[syncDataTtlErr,syncDataBER] = biterr( ...
    data(idxSync:end-delay),rxData(idxSync+delay:end))

syncDataTtlErr = 16116

syncDataBER = 0.5042
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Depending on the random data used, there may be bit errors resulting from phase ambiguity in the
received signal after the synchronization loop converges and locks. In this case, you can use the
preamble to determine and then remove the phase ambiguity from the synchronized signal to reduce
bit errors. If phase ambiguity is minimal, the number of bit errors may be unchanged.

idx = 9000 + (1:barker.Length);
phOffset = angle(txMod(idx) .* conj(rxFiltSig(idx+delay)));

phOffsetEst = mean(phOffset);
disp(['Phase offset = ',num2str(rad2deg(phOffsetEst)),' degrees'])

Phase offset = -90.1401 degrees

resPhzSig = exp(1i*phOffsetEst) * rxFiltSig;

Demodulate the signal after resolving the phase ambiguity. Recompute the total bit errors and BER.

resPhzData = qamdemod(resPhzSig,M);
[resPhzTtlErr,resPhzBER] = biterr( ...
    data(idxSync:end-delay),resPhzData(idxSync+delay:end))

resPhzTtlErr = 5

resPhzBER = 1.5643e-04

MSK Signal Recovery

Model channel impairments such as timing phase offset, carrier frequency offset, and carrier phase
offset for a minimum shift keying (MSK) signal. Use comm.MSKTimingSynchronizer and
comm.CarrierSynchronizer System objects to synchronize such signals at the receiver. The MSK
timing synchronizer recovers the timing offset, while a carrier synchronizer recovers the carrier
frequency and phase offsets.

Initialize system variables by running the MATLAB® script configureMSKSignalRecoveryEx.
Define the logical control variable recoverTimingPhase to enable timing phase recovery, and
recoverCarrier to enable carrier frequency and phase recovery.

configureMSKSignalRecoveryEx;
recoverTimingPhase = true;
recoverCarrier = true;

Modeling Channel Impairments

Specify the sample delay, timingOffset, that the channel model applies. Create a variable
fractional delay object to introduce the timing delay to the transmitted signal.

timingOffset = 0.2;
varDelay = dsp.VariableFractionalDelay;

Create a comm.PhaseFrequencyOffset System object™ to introduce carrier phase and frequency
offsets to a modulated signal. Because the MSK modulator upsamples the transmitted symbols, set
the SampleRate property to the ratio of the samplesPerSymbol and the sample time, Ts.

freqOffset = 50;
phaseOffset = 30;
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pfo = comm.PhaseFrequencyOffset(...
    'FrequencyOffset',freqOffset, ...
    'PhaseOffset',phaseOffset, ...
    'SampleRate',samplesPerSymbol/Ts);

Set the simulated SNR to 20 dB. Since the MSK modulator generates symbols with 1 Watt of power,
the signal power is 1 W or 0 dB W, which is the default value for the awgn channel signal power input.

SNR = 20;

Timing Phase, Carrier Frequency, and Carrier Phase Synchronization

Create an MSK timing synchronizer to recover symbol timing phase using a fourth-order nonlinearity
method.

timeSync = comm.MSKTimingSynchronizer(...
    'SamplesPerSymbol',samplesPerSymbol, ...
    'ErrorUpdateGain',0.02);

Create a carrier synchronizer to recover both carrier frequency and phase. Because the MSK
constellation is QPSK with a 0-degree phase offset, set the comm.CarrierSynchronizer
accordingly.

phaseSync = comm.CarrierSynchronizer(...
    'Modulation','QPSK', ...
    'ModulationPhaseOffset','Custom', ...
    'CustomPhaseOffset',0, ...
    'SamplesPerSymbol',1);

Stream Processing Loop

The simulation modulates data using MSK modulation. The modulated symbols pass through the
channel model, which applies timing delay, carrier frequency and phase shift, and additive white
Gaussian noise. The receiver performs timing phase and carrier frequency and phase recovery.
Finally, the signal symbols are demodulated and the bit error rate is calculated. The
plotResultsMSKSignalRecoveryEx script generates scatter plots in this order to show these
effects:

1 Channel impairments
2 Timing synchronization
3 Carrier synchronization

At the end of the simulation, the example displays the timing phase, frequency, and phase estimates
as a function of simulation time.

for p = 1:numFrames
    %------------------------------------------------------
    % Generate and modulate data
    %------------------------------------------------------
    txBits = randi([0 1],samplesPerFrame,1);
    txSym = modem(txBits);
    %------------------------------------------------------
    % Transmit through channel
    %------------------------------------------------------
    %
    % Add timing offset
    rxSigTimingOff = varDelay(txSym,timingOffset*samplesPerSymbol);
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    %
    % Add carrier frequency and phase offset
    rxSigCFO = pfo(rxSigTimingOff);
    %
    % Pass the signal through an AWGN channel
    rxSig = awgn(rxSigCFO,SNR);
    %
    % Save the transmitted signal for plotting
    plot_rx = rxSig;
    %
    %------------------------------------------------------
    % Timing recovery
    %------------------------------------------------------
    if recoverTimingPhase
        % Recover symbol timing phase using 
        % fourth-order nonlinearity method
        [rxSym,timEst] = timeSync(rxSig);
        % Calculate the timing delay estimate for each sample
        timEst = timEst(1)/samplesPerSymbol;
    else
        % Do not apply timing recovery and 
        % simply downsample the received signal
        rxSym = downsample(rxSig,samplesPerSymbol);
        timEst = 0;
    end
    
    % Save the timing synchronized received signal for plotting
    plot_rxTimeSync = rxSym;
    
    %------------------------------------------------------
    % Carrier frequency and phase recovery
    %------------------------------------------------------
    if recoverCarrier
        % The following script applies carrier frequency and 
        % phase recovery using a second order phase-locked 
        % loop (PLL), and removes phase ambiguity
        [rxSym,phEst] = phaseSync(rxSym);
        removePhaseAmbiguityMSKSignalRecoveryEx;
        freqShiftEst = mean(diff(phEst)/(Ts*2*pi));
        phEst = mod(mean(phEst),360); % in degrees
    else
        freqShiftEst = 0;
        phEst = 0;
    end
    
    % Save the phase synchronized received signal for plotting
    plot_rxPhSync = rxSym;
    %------------------------------------------------------
    % Demodulate the received symbols
    %------------------------------------------------------
    rxBits = demod(rxSym);
    %------------------------------------------------------
    % Calculate the bit error rate
    %------------------------------------------------------
    errorStats = BERCalc(txBits,rxBits);
    %------------------------------------------------------
    % Plot results
    %------------------------------------------------------
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    plotResultsMSKSignalRecoveryEx;
end
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Display the bit error rate and the total number of symbols processed by the error rate calculator.

BitErrorRate = errorStats(1)

BitErrorRate = 4.0001e-06

TotalNumberOfSymbols = errorStats(3)

TotalNumberOfSymbols = 499982

Conclusion and Further Experimentation

The recovery algorithms are demonstrated by using constellation plots taken after timing, carrier
frequency, and carrier phase synchronization.

Open the script to create a writable copy of this example and its supporting files. Then, to show the
effects of the recovery algorithms, you can enable and disable the logical control variables
recoverTimingPhase and recoverCarrier and rerun the simulation.

Appendix

This example uses these scripts:

• configureMSKSignalRecoveryEx
• plotResultsMSKSignalRecoveryEx
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• removePhaseAmbiguityMSKSignalRecoveryEx

Algorithms
The comm.CarrierSynchronizer System object is a closed-loop compensator that uses the PLL-
based algorithm described in [1]. The output of the synchronizer, yn, is a frequency-shifted version of
the complex input signal, xn, for the nth sample. The synchronizer output is

yn = xneiλn ,

where λn is the output of the direct digital synthesizer (DDS). The DDS is the discrete-time version of
a voltage-controlled oscillator and is a core component of discrete-time phase locked loops. In the
context of this System object, the DDS works as an integration filter.

To correct for the frequency offset, first the algorithm determines the phase error, en. The value of the
phase error depends on the modulation scheme.

Modulation Phase Error
QAM or QPSK en = sgn Re xn × Im xn − sgn Im xn

× Re xn

For a detailed description of this equation, see
[1].

BPSK or PAM en = sgn Re xn × Im xn

For a detailed description of this equation, see
[1].
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Modulation Phase Error
8-PSK

en =

sgn Re xn × Im xn − 2 − 1 sgn Im xn × Re xn , for Re xn ≥ Im xn

2 − 1 sgn Re xn × Im xn − sgn Im xn × Re xn , for Re xn < Im xn

For a detailed description of this equation, see
[2].

OQPSK en = sgn Re xn‐SamplePerSymbol/2
× Im xn‐SamplePerSymbol/2 − sgn Im xn
× Re xn

To ensure system stability, the phase error passes through a biquadratic loop filter governed by

ψn = gIen + ψn−1 ,

where ψn is the output of the loop filter at sample n, and gI is the integrator gain. The integrator gain
is determined from the equation

gI =
4 θ2/d
KpK0

,

where θ, d, K0, and Kp are determined from the System object properties. Specifically,

θ =
BnT

ζ + 1
4ζ

and d = 1 + 2ζθ + θ2,

where Bn is the normalized loop bandwidth, and ζ is the damping factor. The phase recovery gain, K0,
is equal to the number of samples per symbol. The modulation type determines the phase error
detector gain, Kp.

Modulation Kp

BPSK, PAM, QAM, QPSK, or OQPSK 2
8-PSK 1

The output of the loop filter is then passed to the DDS. The DDS is another biquadratic loop filter
whose expression is based on the forward Euler integration rule

λn = gPen‐1 + ψn‐1 + λn‐1 ,

where gP is the proportional gain that is expressed as

gP = 4ζ θ/d
KpK0

.

The info object function of this System object returns estimates of the normalized pull-in range, the
maximum frequency lock delay, and the maximum phase lock delay. The normalized pull-in range,
(Δf)pull-in, is expressed in radians and estimated as

Δf pull‐in ≈ min 1, 2π 2ζBn .
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The expression for (Δf )pull-in becomes less accurate as 2π 2ζBn approaches 1.

The maximum frequency lock delay, TFL, and phase lock delay, TPL, are expressed in samples and
estimated as

TFL ≈ 4
Δf pull‐in

2

Bn
3 and TPL ≈

1.3
Bn

.

Version History
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
comm.SymbolSynchronizer | comm.CoarseFrequencyCompensator |
comm.PhaseFrequencyOffset

Blocks
Carrier Synchronizer

Topics
“QPSK Transmitter and Receiver”
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comm.CCDF
Package: comm

Complementary cumulative distribution function (CCDF) measurements

Description
The comm.CCDF System object obtains the CCDF measurements of an input signal. The CCDF
measures the probability that the instantaneous power of the signal is a specified level above its
average power.

To obtain the CCDF measurements of an input signal:

1 Create the comm.CCDF object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation
Syntax
ccdf = comm.CCDF
ccdf = comm.CCDF(Name,Value)

Description

ccdf = comm.CCDF creates a CCDF measurement System object.

ccdf = comm.CCDF(Name,Value) sets properties on page 3-181 using one or more name-value
arguments. For example, comm.CCDF('NumPoints',2000) creates a CCDF measurement object
with 2000 CCDF points.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

NumPoints — Number of CCDF points
1000 (default) | positive integer

Number of CCDF points, specified as a positive integer. This property and the MaximumPowerLimit
property control the size of the histogram bins that the object uses to estimate CCDF curves. The size
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of the histogram bins determines the resolution of the curves. All input channels have the same
number of CCDF points.
Data Types: double

MaximumPowerLimit — Maximum expected input signal power limit
50 (default) | numeric scalar | numeric row vector

Maximum expected input signal power limit, specified as one of these options.

• Numeric scalar — All channels in the input signal have the same expected maximum power.
• Numeric row vector — The ith element of the vector is the maximum expected power for the ith

channel in the input signal.

For each input channel, the object obtains the CCDF results by integrating a histogram of
instantaneous input signal powers. The object sets the bins of the histogram so that the last bin
collects all power occurrences that are equal to or greater than the power specified by this property.
The object issues a warning if an input signal exceeds its specified maximum power limit.

This property and the NumPoints property control the size of the histogram bins that the object uses
to estimate CCDF curves. The size of the histogram bins determines the resolution of the curves.

To specify the units for this property, use the PowerUnits property.
Data Types: double

PowerUnits — Power measurement units
'dBm' (default) | 'dBW' | 'Watts'

Power measurement units, specified as one of these values.

• 'dBm' or 'dBW' — The object returns relative power values in a dB scale.
• 'Watts' — The object returns relative power values in a linear scale.

This property determines the power units of the MaximumPowerLimit property.
Data Types: char | string

AveragePowerOutputPort — Option to enable average power measurement output
0 or false (default) | 1 or true

Option to enable average power measurement output, specified as a logical value 0 (false) or 1
(true). When you set this property to true, the object returns the running average power
measurements.
Data Types: logical | double

PeakPowerOutputPort — Option to enable peak power measurement output
0 or false (default) | 1 or true

Option to enable peak power measurement output, specified as a logical value 0 (false) or 1 (true).
When you set this property to true, the object returns the running peak power measurements.
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Data Types: logical | double

PAPROutputPort — Option to enable PAPR measurement output
0 or false (default) | 1 or true

Option to enable peak-to-average power (PAPR) measurement output, specified as a logical value 0
(false) or 1 (true). When you set this property to true, the object returns the running PAPR
measurements.
Data Types: logical | double

Usage

Syntax
[ccdfy,ccdfx] = ccdf(signal)
[ccdfy,ccdfx,avg] = ccdf(signal)
[ccdfy,ccdfx,peak] = ccdf(signal)
[ccdfy,ccdfx,papr] = ccdf(signal)
[ccdfy,ccdfx,avg,peak,papr] = ccdf(signal)

Description

[ccdfy,ccdfx] = ccdf(signal) returns the y-axis and x-axis points of the CCDF curve of each
channel in input signal.

[ccdfy,ccdfx,avg] = ccdf(signal) returns also the average power measurements of each
channel in the input signal. To use this syntax, set the AveragePowerOutputPort property to true.

[ccdfy,ccdfx,peak] = ccdf(signal) returns also the peak power measurements of each
channel in the input signal. To use this syntax, set the PeakPowerOutputPort property to true.

[ccdfy,ccdfx,papr] = ccdf(signal) returns the PAPR measurements of each channel in the
input signal. To use this syntax, set the PAPROutputPort property to true.

[ccdfy,ccdfx,avg,peak,papr] = ccdf(signal) returns all CCDF measurements. To use this
syntax, set the AveragePowerOutputPort, PeakPowerOutputPort, and PAPROutputPort
properties to true.

Input Arguments

signal — Input signal
matrix of complex numbers

Input signal, specified as an M-by-N matrix of complex numbers. M is the number of time samples. N
is the number of input channels.
Data Types: double
Complex Number Support: Yes

Output Arguments

ccdfy — y-axis points of CCDF curves
numeric matrix
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y-axis points of the CCDF curve of each channel, returned as a numeric matrix of the form
(NumPoints+1)-by-N, where N is the number of columns in input signal. The ith column of the
matrix contains the probability values measured for the channel in the ith column of signal. The
probability values are percentages in the range [0, 100].
Data Types: double

ccdfx — x-axis points of CCDF curves
numeric matrix

x-axis points of the CCDF curve of each channel, returned as a numeric matrix of the form
(NumPoints+1)-by-N. N is the number of channels in input signal. The ith column of the matrix
contains the instantaneous-to-average power ratios for the channel in the ith column of signal.
Data Types: double

avg — Average power measurements
numeric column vector

Average power measurement for each channel, returned as a numeric column vector. The ith element
corresponds to the average power measurement for the channel in the ith column of the input
signal. The object returns this value in the units specified by the PowerUnits property.
Data Types: double

peak — Peak power measurements
numeric column vector

Peak power measurement of each channel, returned as a numeric column vector. The ith element
corresponds to the peak power measurement for the channel in the ith column of the input signal.
The object returns this value in the units specified by the PowerUnits property.
Data Types: double

papr — PAPR measurements
numeric column vector

PAPR measurement of each channel, returned as a numeric column vector. The ith element
corresponds to the PAPR measurement for the channel in the ith column of the input signal. The
object returns this value in the units specified by the PowerUnits property.
Data Types: double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to comm.CCDF
getPercentileRelativePower Relative power value for given percentile using CCDF
getProbability Probability of relative power value using CCDF
plot 2-D line plots of CCDF curves
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Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Obtain CCDF Curves for 16-QAM and QPSK Signals

Generate 16-QAM and QPSK modulated signals.

qamTxSig = qammod(randi([0 15],20e3,1),16,'UnitAveragePower',true);
qpskTxSig = pskmod(randi([0 3],20e3,1),4,pi/4);

Pass the signals through an AWGN channel.

qamRxSig = awgn(qamTxSig,15);
qpskRxSig = awgn(qpskTxSig,15);

Create a CCDF measurement object enabling outputs for the average power measurements and peak
power measurements.

ccdf = comm.CCDF(...
    'AveragePowerOutputPort',true, ...
    'PeakPowerOutputPort',true);

Obtain the CCDF measurements of the two waveforms.

[ccdfy,ccdfx,avg,peak] = ccdf([qamRxSig qpskRxSig]);

Plot the CCDF curves for both signals.

plot(ccdf)
legend('16-QAM','QPSK')
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Version History
Introduced in R2012a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
comm.ACPR | comm.EVM | comm.MER
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comm.CoarseFrequencyCompensator
Package: comm

Compensate for frequency offset of PAM, PSK, or QAM signal

Description
The comm.CoarseFrequencyCompensator System object compensates for the frequency offset of
received signals using an open-loop technique.

To compensate for the frequency offset of a PAM, PSK, or QAM signal:

1 Create the comm.CoarseFrequencyCompensator object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
coarseFreqComp = comm.CoarseFrequencyCompensator
coarseFreqComp = comm.CoarseFrequencyCompensator(Name,Value)

Description

coarseFreqComp = comm.CoarseFrequencyCompensator creates a coarse frequency offset
compensator System object. This object uses an open-loop technique to estimate and compensate for
the carrier frequency offset in a received signal. For more information about the estimation algorithm
options, see “Algorithms” on page 3-195.

coarseFreqComp = comm.CoarseFrequencyCompensator(Name,Value) specifies properties
using one or more name-value arguments. For example, Modulation='QPSK' specifies quadrature
phase-shift keying modulation.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Modulation — Modulation type

'QAM' (default) | '8PSK' | 'BPSK' | 'OQPSK' | 'PAM' | 'QPSK'
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Modulation type, specified as one of,

• 'BPSK' – Binary phase shift keying
• 'QPSK' – Quadrature phase shift keying
• 'OQPSK' – Offset quadrature phase shift keying
• '8PSK' – 8-phase shift keying
• 'PAM' – Pulse amplitude modulation
• 'QAM' – Quadrature amplitude modulation

Data Types: char | string

Algorithm — Algorithm used to estimate frequency offset
'FFT-based' (default) | 'Correlation-based'

Algorithm used to estimate the frequency offset, specified as 'FFT-based' or 'Correlation-
based'.

Dependency

To enable this property, set Modulation to 'BPSK', 'QPSK', '8PSK', or 'PAM'. This table shows
the valid combinations of the modulation type and the estimation algorithm.

Modulation FFT-Based Algorithm Correlation-Based Algorithm
BPSK, QPSK, 8PSK, PAM Yes Yes
OQPSK, QAM Yes No

Use the correlation-based algorithm for HDL implementations and for other situations in which you
want to avoid using an FFT.
Data Types: char | string

FrequencyResolution — Frequency resolution
0.001 (default) | positive scalar

Frequency resolution for the offset frequency estimation in hertz, specified as a positive scalar. This
property establishes the FFT length used to perform spectral analysis and must be less than the
sample rate.
Data Types: double

MaximumFrequencyOffset — Maximum measurable frequency offset
0.05 (default) | positive scalar

Maximum measurable frequency offset in hertz, specified as a positive scalar.

The value of this property must be less than fsamp / M. For more details, see “Correlation-Based
Estimation” on page 3-195.

Dependency

To enable this property, set the Algorithm property to 'Correlation-based'.
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Data Types: double

SampleRate — Sample rate
1 (default) | positive scalar

Sample rate in samples per second, specified as a positive scalar.
Data Types: double

SamplesPerSymbol — Samples per symbol
4 (default) | even integer, greater than or equal to 4

Samples per symbol, specified as an even positive integer greater than or equal to 4.

Dependency

To enable this property, set Modulation to 'OQPSK'.

Usage

Syntax
y = coarseFreqComp(x)
[y,estimate] = coarseFreqComp(x)

Description

y = coarseFreqComp(x) returns a signal that compensates for the carrier frequency offset of the
input signal.

[y,estimate] = coarseFreqComp(x) returns a scalar estimate of the frequency offset.

Input Arguments

x — Input signal
column vector

Input signal, specified as a column vector.
Data Types: single | double

Output Arguments

y — Compensated output signal
complex column vector

Compensated output signal, returned as a complex column vector with the same dimensions and data
type as the input x.

estimate — Estimate of frequency offset
scalar

Estimate of the frequency offset, returned as a scalar.
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Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to comm.CoarseFrequencyCompensator
info Characteristic information about coarse frequency compensator
clone Create duplicate System object
isLocked Determine if System object is in use

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Compensate for Frequency Offset in QPSK Signal

Compensate for a 4 kHz frequency offset imposed on a noisy QPSK signal.

Set up the example parameters.

nSym = 2048;       % Number of input symbols
sps = 4;           % Samples per symbol
nSamp = nSym*sps;  % Number of samples
fs = 80000;        % Sampling frequency (Hz)

Create a square root raised cosine transmit filter.

txfilter = comm.RaisedCosineTransmitFilter( ...
    RolloffFactor=0.2, ...
    FilterSpanInSymbols=8, ...
    OutputSamplesPerSymbol=sps);

Create a phase frequency offset object to introduce the 4 kHz frequency offset.

freqOffset = comm.PhaseFrequencyOffset( ...
    FrequencyOffset=-4000, ...
    SampleRate=fs);

Create a coarse frequency compensator object to compensate for the offset.

freqComp = comm.CoarseFrequencyCompensator( ...
    Modulation="qpsk", ...
    SampleRate=fs, ...
    FrequencyResolution=1);

Generate QPSK symbols, filter the modulated data, pass the signal through an AWGN channel, and
apply the frequency offset.
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data = randi([0 3],nSym,1);
modData = pskmod(data,4,pi/4);
txSig = txfilter(modData);
rxSig = awgn(txSig,20,"measured");
offsetData = freqOffset(rxSig);

Compensate for the frequency offset using the coarse frequency compensator. When the frequency
offset is high, applying coarse frequency compensation prior to receive filtering is benefitial because
filtering suppresses energy in the useful spectrum.

[compensatedData,estFreqOffset] = freqComp(offsetData);

Display the estimate of the frequency offset.

estFreqOffset

estFreqOffset = -4.0001e+03

Return information about the coarse frequency compensator System object. To obtain the FFT length,
you must call coarse frequency compensator System object prior to calling the info object function.

freqCompInfo = info(freqComp)

freqCompInfo = struct with fields:
    FFTLength: 131072
    Algorithm: 'FFT-based'

Create a spectrum analyzer object and plot the offset and compensated spectra. Verify that the
compensated signal has a center frequency at 0 Hz and that the offset signal has a center frequency
at -4 kHz.

sa = spectrumAnalyzer( ...
    SampleRate=fs, ...
    ShowLegend=true, ...
    ChannelNames=["Offset Signal","Compensated Signal"]);
sa([offsetData compensatedData])
release(sa)
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Compensate for Frequency Offset Using Coarse and Fine Compensation

Correct for a phase and frequency offset in a noisy QAM signal using a carrier synchronizer. Then
correct for the offsets using both a carrier synchronizer and a coarse frequency compensator.

Set the example parameters.

fs = 10000;   % Symbol rate (Hz)
sps = 4;      % Samples per symbol
M = 16;       % Modulation order
k = log2(M);  % Bits per symbol
EbNo = 20;    % Eb/No (dB)
SNR = convertSNR(EbNo,"ebno",BitsPerSymbol=k,SamplesPerSymbol=sps);

Create a constellation diagram object to visualize the effects of the offset compensation techniques.
Specify the constellation diagram to display only the last 4000 samples.

constdiagram = comm.ConstellationDiagram( ...
    'ReferenceConstellation',qammod(0:M-1,M), ...
    'SamplesPerSymbol',sps, ...
    'SymbolsToDisplaySource','Property', ...
    'SymbolsToDisplay',4000, ...
    'XLimits',[-5 5], ...
    'YLimits',[-5 5]);
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Introduce a frequency offset of 400 Hz and a phase offset of 30 degrees.

phaseFreqOffset = comm.PhaseFrequencyOffset( ...
    'FrequencyOffset',400, ...
    'PhaseOffset',30, ...
    'SampleRate',fs);

Generate random data symbols and apply 16-QAM modulation.

data = randi([0 M-1],10000,1);
modSig = qammod(data,M);

Create a raised cosine filter object and filter the modulated signal.

txfilter = comm.RaisedCosineTransmitFilter( ...
    'OutputSamplesPerSymbol',sps, ...
    'Gain',sqrt(sps));
txSig = txfilter(modSig);

Apply the phase and frequency offset, and then pass the signal through the AWGN channel.

freqOffsetSig = phaseFreqOffset(txSig);
rxSig = awgn(freqOffsetSig,SNR);

Apply fine frequency correction to the signal by using the carrier synchronizer.

fineSync = comm.CarrierSynchronizer( ...
    'DampingFactor',0.7, ...
    'NormalizedLoopBandwidth',0.005, ...
    'SamplesPerSymbol',sps, ...
    'Modulation','QAM');
rxData = fineSync(rxSig);

Display the constellation diagram of the last 4000 symbols.

constdiagram(rxData)
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Even with time to converge, the spiral nature of the plot shows that the carrier synchronizer has not
yet compensated for the large frequency offset. The 400 Hz offset is 1% of the sample rate.

Repeat the process with a coarse frequency compensator inserted before the carrier synchronizer.

Create a coarse frequency compensator to reduce the frequency offset to a manageable level.

coarseSync = comm.CoarseFrequencyCompensator( ...
    'Modulation','QAM', ...
    'FrequencyResolution',1, ...
    'SampleRate',fs*sps);

Pass the received signal to the coarse frequency compensator and then to the carrier synchronizer.

syncCoarse = coarseSync(rxSig);
rxData = fineSync(syncCoarse);
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Plot the constellation diagram of the signal after coarse and fine frequency compensation. The
received data now aligns with the reference constellation.

constdiagram(rxData)

Algorithms
Correlation-Based Estimation

Reference [1] describes the correlation-based estimation algorithm used to estimate the frequency
offset for PSK and PAM signals. To determine the frequency offset, Δf, the algorithm performs a
maximum likelihood (ML) estimation of the complex-valued oscillation exp(j2πΔft). The observed
signal, rk, is represented as
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rk = e j 2πΔfkTs + θ , 1 ≤ k ≤ N

Ts is the sampling interval, θ is an unknown random phase, and N is the number of samples. The ML
estimation of the frequency offset is equivalent to seeking the maximum of the likelihood function,

Λ(Δf ) ≈ ∑
i = 1

N
rie
− j2πΔf iTs

2
= ∑

k = 1

N
∑

m = 1

N
rkrm* e− j2πΔfTs(k−m)

After simplifying, the problem is expressed as a discrete Fourier transform, weighted by a parabolic
windowing function. It is expressed as

Im ∑
k = 1

N − 1
k(N − k)R(k)e j2πΔf Ts = 0

R(k) denotes the estimated autocorrelation of the sequence rk and is represented as

R(k) ≜ 1
N − k ∑

i = k + 1

N
ri ri− k* , 0 ≤ k ≤ N − 1

The term k(N–k) is the parabolic windowing function. In [1], it is shown that R(k) is a poor estimate of
the autocorrelation of rk when k = 0 or when k is close to N. Consequently, the windowing function
can be expressed as a rectangular sequence of 1s for k = 1, 2, ..., L, where L ≤ N – 1. The result is a
modified ML estimation strategy in which

Im ∑
k = 1

L
R(k)e− j2πΔf kTs = 0

This equation results in an estimate of Δf  in which

Δf ≅ fsamp
π(L + 1)arg ∑

k = 1

L
R(k)

The sampling frequency, fsamp, is the reciprocal of Ts. The number of elements used to compute the
autocorrelation sequence, L, are determined as

L = round
fsamp
fmax

− 1

fmax is the maximum expected frequency offset. and round is the nearest integer function. The
frequency offset estimate improves when L ≥ 7 and leads to the recommendation that fmax ≤ fsamp /
(4M).

FFT-Based Estimation

FFT-based estimation algorithms can be used to estimate the frequency offset for various modulation
types. The coarse frequency compensator implementation supports these modulation methods by
using the algorithm noted.

• For BPSK, QPSK, 8PSK, PAM, or QAM modulation, the coarse frequency compensator uses the FFT-
based algorithm described in [2]. The algorithm estimates Δf  by using a periodogram of the mth

power of the received signal and is given as
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Δf =
fsamp
N ⋅margmax

f
∑

k = 0

N − 1
rm(k)e− j2πkt/N , −

Rsym
2 ≤ f ≤

Rsym
2

where m is the modulation order, r(k) is the received sequence, Rsym is the symbol rate, and N is
the number of samples. The algorithm searches for a frequency that maximizes the time average
of the mth power of the received signal multiplied by various frequencies in the range of [–Rsym/2,
Rsym/2]. Because the form of the algorithm is the definition of the discrete Fourier transform of
rm(t), searching for a frequency that maximizes the time average is equivalent to searching for a
peak line in the spectrum of rm(t). The number of points required by the FFT is

N = 2 log2
fsamp

fr

where fr is the desired frequency resolution.
• For OQPSK modulation, the coarse frequency compensator uses the FFT-based algorithm

described in [4]. The algorithm searches for spectral peaks at ±200 kHz around the symbol rate.
This technique locates desired peaks in the presence of interference from spectral content around
baseband frequencies due to filtering.

Version History
Introduced in R2015b

References
[1] Luise, M., and R. Reggiannini. “Carrier Frequency Recovery in All-Digital Modems for Burst-Mode

Transmissions.” IEEE Transactions on Communications, vol. 43, no. 2/3/4, Feb. 1995, pp.
1169–78.

[2] Wang, Y., et al. “Non-Data-Aided Feedforward Carrier Frequency Offset Estimators for QAM
Constellations: A Nonlinear Least-Squares Approach.” EURASIP Journal on Advances in
Signal Processing, vol. 2004, no. 13, Dec. 2004, p. 856139.

[3] Nakagawa, Tadao, et al. “Non-Data-Aided Wide-Range Frequency Offset Estimator for QAM
Optical Coherent Receivers.” Optical Fiber Communication Conference/National Fiber Optic
Engineers Conference 2011, OSA, 2011, p. OMJ1.

[4] Olds, Jonathan. Designing an OQPSK demodulator.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
comm.PhaseFrequencyOffset | comm.CarrierSynchronizer | dsp.FFT
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Blocks
Coarse Frequency Compensator
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info
Package: comm

Characteristic information about coarse frequency compensator

Syntax
infostruct = info(coarseFreqComp)

Description
infostruct = info(coarseFreqComp) returns characteristic information for the specified coarse
frequency compensator.

Examples

Compensate for Frequency Offset in QPSK Signal

Compensate for a 4 kHz frequency offset imposed on a noisy QPSK signal.

Set up the example parameters.

nSym = 2048;       % Number of input symbols
sps = 4;           % Samples per symbol
nSamp = nSym*sps;  % Number of samples
fs = 80000;        % Sampling frequency (Hz)

Create a square root raised cosine transmit filter.

txfilter = comm.RaisedCosineTransmitFilter( ...
    RolloffFactor=0.2, ...
    FilterSpanInSymbols=8, ...
    OutputSamplesPerSymbol=sps);

Create a phase frequency offset object to introduce the 4 kHz frequency offset.

freqOffset = comm.PhaseFrequencyOffset( ...
    FrequencyOffset=-4000, ...
    SampleRate=fs);

Create a coarse frequency compensator object to compensate for the offset.

freqComp = comm.CoarseFrequencyCompensator( ...
    Modulation="qpsk", ...
    SampleRate=fs, ...
    FrequencyResolution=1);

Generate QPSK symbols, filter the modulated data, pass the signal through an AWGN channel, and
apply the frequency offset.

data = randi([0 3],nSym,1);
modData = pskmod(data,4,pi/4);
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txSig = txfilter(modData);
rxSig = awgn(txSig,20,"measured");
offsetData = freqOffset(rxSig);

Compensate for the frequency offset using the coarse frequency compensator. When the frequency
offset is high, applying coarse frequency compensation prior to receive filtering is benefitial because
filtering suppresses energy in the useful spectrum.

[compensatedData,estFreqOffset] = freqComp(offsetData);

Display the estimate of the frequency offset.

estFreqOffset

estFreqOffset = -4.0001e+03

Return information about the coarse frequency compensator System object. To obtain the FFT length,
you must call coarse frequency compensator System object prior to calling the info object function.

freqCompInfo = info(freqComp)

freqCompInfo = struct with fields:
    FFTLength: 131072
    Algorithm: 'FFT-based'

Create a spectrum analyzer object and plot the offset and compensated spectra. Verify that the
compensated signal has a center frequency at 0 Hz and that the offset signal has a center frequency
at -4 kHz.

sa = spectrumAnalyzer( ...
    SampleRate=fs, ...
    ShowLegend=true, ...
    ChannelNames=["Offset Signal","Compensated Signal"]);
sa([offsetData compensatedData])
release(sa)

3 System Objects

3-200



Input Arguments
coarseFreqComp — Coarse frequency compensator
CoarseFrequencyCompensator System object

Coarse frequency compensator specified as a comm.CoarseFrequencyCompensator System object.

Output Arguments
infostruct — Characteristic information about coarse frequency compensator
structure

Characteristic information about coarse frequency compensator, returned as a structure containing
these fields.

FFTLength — Number of FFT samples
scalar

Number of fast Fourier transform (FFT) samples, returned as a scalar. Appears only when
Algorithm is FFT-based.
Dependency

To enable this field, set the Algorithm property of the coarseFreqComp input to 'FFT-based'.
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Algorithm — Algorithm used to estimate frequency offset
'FFT-based' | 'Correlation-based'

Algorithm used to estimate frequency offset, returned as 'FFT-based' or 'Correlation-based'.
This value matches the Algorithm property of the coarseFreqComp input.

MaxLag — Number of samples used to estimate the autocorrelation
positive integer

Number of samples used to estimate the autocorrelation, returned as a positive integer.

Dependency

To enable this field, set the Algorithm property of the coarseFreqComp input to 'Correlation-
based'.

Data Types: struct

Version History
Introduced in R2015b

See Also
comm.CoarseFrequencyCompensator
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comm.ChannelFilter
Package: comm

Filter signal using multipath gains at specified path delays

Description
Use the comm.ChannelFilter System object to filter a signal using multipath gains at specified
path delays.

To filter a signal using multipath gains:

1 Create the comm.ChannelFilter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
chanFilt = comm.ChannelFilter
chanFilt = comm.ChannelFilter(Name,Value)

Description

chanFilt = comm.ChannelFilter creates a multipath channel filter System object to filter an
input signal with path gains at the specified path delays

chanFilt = comm.ChannelFilter(Name,Value) sets properties using one or more name-value
pairs. For example, 'SampleRate',1e6 sets the sampling rate to 1 MHz. Enclose each property
name in quotes.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

SampleRate — Sample rate
1 Hz (default) | real positive scalar

Sample rate of the input signal, specified as a real, positive scalar.
Data Types: double
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PathDelays — Discrete path delays
0 (default) | real scalar | real vector

Delays of the discrete paths in seconds, specified as a real scalar or vector.
Data Types: double

FilterDelaySource — Channel filter delay source
'Auto' (default) | 'Custom'

Channel filter delay source, specified as either 'Auto' or 'Custom'.

• Set FilterDelaySource to 'Auto' to specify the channel filter delay as the minimum possible
value.

• Set FilterDelaySource to 'Custom' to specify the channel filter delay as a custom value. The
custom value cannot be smaller than the minimum possible value.

Data Types: char

FilterDelay — Channel filter delay
7 (default) | real non-negative integer scalar

Channel filter delay in samples, specified as a real, non-negative, integer scalar.

Dependencies

To enable this property, set the FilterDelaySource property to 'Custom'. The specified value
must be no smaller than the automatically determined channel filter delay when you set
FilterDelaySource to 'Auto'.
Data Types: double

NormalizeChannelOutputs — Normalize outputs by number of receive antennas
1 or true (default) | 0 or false

Normalize outputs by number of receive antennas, specified as a logical 1 (true) or 0 (false).
Data Types: logical

Usage

Syntax
y = chanFilt(x,g)

Description

y = chanFilt(x,g) filters input signal x, through a multipath channel with path gains g, at the
path delay locations specified by the PathDelays property.

Input Arguments

x — Input signal
matrix
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Input signal, specified as a matrix. The argument x must be a Ns-by-Nt matrix, where Ns is the
number of samples and Nt is the number of transmit antennas.
Data Types: double

g — Path gain
array

Path gain, specified as an array. The input G must be a Ns-by-Np-by-Nt-by-Nr or 1-by-Np-by-Nt-by-Nr
array, where Nr is the number of receive antennas and Np is the number of paths, i.e., the length of
the PathDelays property.
Data Types: double

Output Arguments

y — Channel output
matrix

Channel output, returned as a Ns-by-Nr matrix.
Data Types: double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to comm.ChannelFilter
info Return characteristic information about channel filter

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Explore Spatial Diversity of Channel in Distributed MIMO System

In a distributed MIMO system, explore spatial diversity by transmitting the same signal from two
geographically separated transmitters and combining the received signals at one receiver. Use ray
tracing to analyze the propagation paths and gains from each transmitter to receiver.

Perform Ray Tracing

Import buildings data for Chicago into siteviewer from an OpenStreetMap® (osm) file. For more
information about the osm file, see [1] on page 3-208. Place two transmitter and one receiver sites in
the city.
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sv = siteviewer("buildings","Chicago.osm"); 
rx = rxsite("Name","Receiver", ...
    "Latitude",41.878543,"Longitude",-87.630599, ...
    "AntennaHeight",1.5);
show(rx);
tx1 = txsite("Name","Transmitter #1", ...
    "Latitude",41.878996,"Longitude",-87.629361); 
show(tx1);
tx2 = txsite("Name","Transmitter #2", ...
    "Latitude",41.880142,"Longitude",-87.630850);
show(tx2);

Perform ray tracing from each transmitter site to the receiver site with up to second order reflection.
Plot the computed rays.

rays  = raytrace([tx1, tx2],rx);
plot([rays{:}]);

Ray tracing finds several ray paths to the receiver from each transmitter. From the map we can
visually see the first transmitter is closer to the receiver than the second transmitter. We can also see
the first transmitter has more reflected paths to the receiver. Display the propagation delays
associated with each transmitter.

pd1 = [rays{1}.PropagationDelay]

pd1 = 1×10
10-6 ×

    0.3830    0.3839    0.5476    0.6482    0.5485    0.5486    0.6572    0.6945    0.7140    0.8874
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pd2 = [rays{2}.PropagationDelay]

pd2 = 1×5
10-6 ×

    0.5967    0.5973    0.6059    0.6066    0.6255

Construct one channel filter for each transmitter site. Specify a sample rate of 30 MHz and use the
minimum delay among the seven rays as the reference of time 0.

chanFilt1 = comm.ChannelFilter( ...
    "SampleRate",30e6, ...
    "PathDelays",pd1-min([pd1, pd2]))

chanFilt1 = 
  comm.ChannelFilter with properties:

                 SampleRate: 30000000
                 PathDelays: [0 8.7598e-10 1.6459e-07 2.6516e-07 1.6553e-07 1.6565e-07 2.7417e-07 3.1151e-07 3.3105e-07 5.0442e-07]
          FilterDelaySource: 'Auto'
    NormalizeChannelOutputs: true

chanFilt2 = comm.ChannelFilter( ...
    "SampleRate",30e6, ...
    "PathDelays",pd2-min([pd1, pd2]))

chanFilt2 = 
  comm.ChannelFilter with properties:

                 SampleRate: 30000000
                 PathDelays: [2.1372e-07 2.1434e-07 2.2294e-07 2.2357e-07 2.4247e-07]
          FilterDelaySource: 'Auto'
    NormalizeChannelOutputs: true

The individual channel filters for the two transmitters yield different filter delay values. Use the info
object function of comm.ChannelFilter to show the filter delay of the two channel filters.

fd1 = chanFilt1.info.ChannelFilterDelay

fd1 = 7

fd2 = chanFilt2.info.ChannelFilterDelay

fd2 = 1

The two channel filters must have the same filter delay to combine the channel outputs at the
receiver site. Customize the filter delay for each channel filter to use the larger value of the
individually computed delay values.

set(chanFilt1,"FilterDelaySource","Custom", ...
    "FilterDelay",max(fd1,fd2));
set(chanFilt2,"FilterDelaySource","Custom", ...
    "FilterDelay",max(fd1,fd2));

Apply Receive Signal Combining

Set up system parameters, assigning only one isotropic antenna at each site.
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Nt = 1;    % Number of transmit elements
Ns = 1000; % Samples per frame
M  = 64;   % Modulation order 

Retrieve path gains from the computed rays. Assume the sites are static and no Doppler shift is
introduced.

pg1  = 10.^(-[rays{1}.PathLoss]/20) .* ...
    exp(1i*[rays{1}.PhaseShift]);
pg2  = 10.^(-[rays{2}.PathLoss]/20) .* ...
    exp(1i*[rays{2}.PhaseShift]);

Generate a frame of random 64-QAM signals. Perform channel filtering for each transmitter site and
receive signal combining. The combined 2x1 distributed MIMO channel has a filter delay of
max(fd1,fd2).

x  = qammod(randi([0, M-1],Ns,Nt),M);
y = chanFilt1(x,pg1) + chanFilt2(x,pg2);

Appendix

[1] The osm file is downloaded from https://www.openstreetmap.org, which provides access to crowd-
sourced map data all over the world. The data is licensed under the Open Data Commons Open
Database License (ODbL), https://opendatacommons.org/licenses/odbl/.

Perform Channel Filtering for an LTE 2x2 EVA Profile

Construct a channel filter object with the LTE Extended Vehicular A model (EVA) delay profile.

chanFilt = comm.ChannelFilter( ...
    'SampleRate', 30.72e6, ...
    'PathDelays', [0 30 150 310 370 710 1090 1730 2510]*1e-9);

Set up system parameters. There are two transmit and receive antennas.

[Nt, Nr] = deal(2);
Ns = 30720;
Np = length(chanFilt.PathDelays);
M  = 256;

Generate random 256-QAM signal and complex path gains.

x = qammod(randi([0, M-1], Ns, Nt), M);
g = complex(rand(Ns, Np, Nt, Nr), rand(Ns, Np, Nt, Nr));

Filter the signal with path gains for the EVA delay profile.

y = chanFilt(x, g);
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Reciprocal Downlink and Uplink Transmissions in MIMO Channel

Using one MIMO channel System object™ and two identically configured channel filter System
objects, switch a link-level simulation between 3-by-2 downlink and reciprocal 2-by-3 uplink signal
transmissions.

Define system parameters.

modOrder = 256;        % Modulation order
Nant1 = 3;             % Number of 'transmit' antennas
Nant2 = 2;             % Number of 'receive' antennas   
Rs = 1e6;              % Sample rate 
pd = [0 1.5 2.3]*1e-6; % Path delays
frmLen = 1e3;          % Frame length

Create a MIMO channel System object™, configuring it for path gain generation by disabling channel
filtering.

chan = comm.MIMOChannel( ...
    'SampleRate',Rs, ...
    'PathDelays',pd, ...
    'AveragePathGains',[1.5 1.2 0.2], ...
    'MaximumDopplerShift',300, ...
    'SpatialCorrelationSpecification','none', ...
    'NumTransmitAntennas',Nant1, ...
    'NumReceiveAntennas',Nant2, ...
    'ChannelFiltering',false, ...
    'NumSamples',frmLen);

Create identical channel filter System objects for both transmission directions: one channel filter for
the Nant1-by-Nant2 downlink channel (3 transmit antennas to 2 receive antennas) and a reciprocal
channel filter for the Nant2-by-Nant1 uplink channel (2 transmit antennas to 3 receive antennas).

chanFiltDownlink = comm.ChannelFilter( ...
    'SampleRate',Rs, ...
    'PathDelays',pd);
chanFiltUplink = clone(chanFiltDownlink);

Downlink Transmission

Generate random path gains for one frame of the downlink 3-by-2 channel. Pass randomly generated
256-QAM signals through the 3-by-2 downlink channel.

pgDownlink = chan();
x = qammod(randi([0 modOrder-1],frmLen,Nant1),modOrder);
yDL = chanFiltDownlink(x,pgDownlink);

Uplink Transmission

Switch the link direction. Run the channel object to generate another frame of path gains, permuting
its 3rd (Tx) and 4th (Rx) dimensions for the reciprocal uplink 2-by-3 channel. Pass randomly
generated 256-QAM signals through the 2-by-3 reciprocal uplink channel.

pgUplink = permute(chan(),[1 2 4 3]);
x = qammod(randi([0 modOrder-1],frmLen,Nant2),modOrder);
yUL = chanFiltUplink(x,pgUplink);
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Downlink and Uplink Array Dimensions

Show the sizes of the downlink and uplink path gain arrays returned by the MIMI channel object as
an NS-by-NP-by-NT-by-NR array.

• NS is the number of samples.
• NP is the number of path delays.
• NT is the number of transmit antennas. Nant1 for downlink and Nant2 for uplink.
• NR is the number of receive antennas. Nant2 for downlink and Nant1 for uplink.

size(pgDownlink)

ans = 1×4

        1000           3           3           2

size(pgUplink)

ans = 1×4

        1000           3           2           3

Show the size of the channel output matrices returned by the MIMI channel object as an NS-by-NR
matrix. NS is the number of samples. NR is the number of receive antennas.

size(yDL)

ans = 1×2

        1000           2

size(yUL)

ans = 1×2

        1000           3

Algorithms
The channel filter implements a fractional delay (FD) finite impulse response (FIR) bandpass filter
with a length of 16 coefficients for each candidate fractional delay at 0, 0.02, 0.04, …, 0.98.

Each discrete path is rounded to its nearest candidate fractional delay, so the delay error limit is 1%
of the sample time. To achieve a group delay bandwidth exceeding 80% and a magnitude bandwidth
exceeding 90%, the algorithm selects the optimal FIR coefficient values for each fractional delay,
while satisfying the following criteria:

• Group delay ripple ≤ 10%
• Magnitude ripple ≤ 2 dB
• Magnitude bandedge attenuation = 3 dB
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The plots show bandwidths that satisfy the design criteria for group delay ripple, magnitude ripple,
and magnitude bandedge attenuation.

For additional information, see the article A Matlab-based Object-Oriented Approach to Multipath
Fading Channel Simulation at MATLAB Central.

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
comm.MIMOChannel | comm.RayleighChannel | comm.RicianChannel |
comm.RayTracingChannel

 comm.ChannelFilter

3-211

https://www.mathworks.com/matlabcentral/fileexchange/18869-a-matlab-based-object-oriented-approach-to-multipath-fading-channel-simulation
https://www.mathworks.com/matlabcentral/fileexchange/18869-a-matlab-based-object-oriented-approach-to-multipath-fading-channel-simulation


comm.ConstellationDiagram
Package: comm

Display and analyze input signals in IQ-plane

Description
The comm.ConstellationDiagram System object displays real- and complex-valued floating- and
fixed-point signals in the IQ plane. Specifically, the IQ-plane displays the in-phase and quadrature
components of modulated signals on the real and imaginary axis of an xy-plot. Use this System object
to perform qualitative and quantitative analysis on modulated single-carrier signals.

In the Constellation Diagram window, you can:

• Input and plot multiple signals on a single constellation diagram. To define a reference
constellation for each input signal, use the ReferenceConstellation property.
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• Select signals in the legend to toggle visibility of individual channels. To display the legend, use
the ShowLegend property. For a multichannel signal, specify the input as a matrix with individual
signals defined in the columns of the matrix.

• Display calculated error vector magnitude (EVM) and modulation error ratio (MER)
measurements for individual signals. To view and configure the measurements, select EVM/MER
on the Measurements tab. When multiple signals are input, you can select which signal to use for
measurements in the Channel section.

To display constellation diagrams for input signals:

1 Create the comm.ConstellationDiagram object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
constdiag = comm.ConstellationDiagram
constdiag = comm.ConstellationDiagram(Name,Value)

Description

constdiag = comm.ConstellationDiagram returns a constellation diagram System object that
displays real- and complex-valued floating- and fixed-point signals in the IQ plane.

constdiag = comm.ConstellationDiagram(Name,Value) sets properties using one or more
name-value arguments. For example, 'SamplesPerSymbol',10 specifies 10 samples for each
plotted symbol.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Name — Title of Constellation Diagram window
'Constellation Diagram' (default) | character vector | string scalar

Title of the Constellation Diagram window, specified as a character vector or string scalar.

Tunable: Yes
Data Types: char | string
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ShowTrajectory — Option to plot signal trajectory
false or 0 (default) | true or 1

Option to plot the signal trajectory, specified as a logical 0 (false) or 1 (true). Setting this property
to true displays the trajectory between constellation points for the plotted signals. To view the signal
trajectory, select Trajectory on the Plot tab.

Tunable: Yes
Data Types: logical

ShowReferenceConstellation — Option to display reference constellation
true or 1 (default) | false or 0

Option to display the reference constellation, specified as a logical 1 (true) or 0 (false).

Tunable: Yes
Data Types: logical

EnableMeasurements — Option to calculate and display EVM and MER measurements
false or 0 (default) | true or 1

Option to calculate and display the EVM and MER measurements, specified as a logical 0 (false) or
1 (true).

Tunable: Yes
Data Types: logical

NumInputPorts — Number of input signals
1 (default) | integer in the range [1, 20]

Number of input signals, specified as an integer in the range [1, 20]. Each input signal, whether it is a
multichannel signal or a single channel signal, becomes a separate channel in the scope.

The total number of channels cannot exceed 20. When you specify multichannel input signals, the
maximum number of input signals is limited by the total number of input channels that you define.

When you call the object, the number of inputs that you specify must equal the value of this property.

Tips

To define ReferenceConstellation values for multiple input signals, you must first set the
NumInputPorts value.
Data Types: double

Symbol configuration

SamplesPerSymbol — Number of samples used to represent each symbol
1 (default) | positive integer
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Number of samples used to represent each symbol, specified as a positive integer. The signal is
downsampled by the value of this property before it is plotted.

Tunable: Yes
Data Types: double

SampleOffset — Number of samples to skip before plotting points
0 (default) | nonnegative integer

Number of samples to skip before plotting points, specified as a nonnegative integer less than the
SamplesPerSymbol property value. This value specifies the number of samples to skip when
SamplesPerSymbol is greater than 1.

Tunable: Yes
Data Types: double

SymbolsToDisplaySource — Source of symbols to display
'Input frame length' (default) | 'Property'

Source of symbols to display, specified as one of these values.

• 'Input frame length' — The number of symbols to display is equal to the input frame length
divided by the SamplesPerSymbol property value.

• 'Property' — The SymbolsToDisplay property specifies the maximum number of symbols to
display.

Tunable: Yes
Data Types: char | string

SymbolsToDisplay — Maximum number of symbols to display
256 (default) | positive integer

Maximum number of symbols to display, specified as a positive integer. Use this property to limit the
maximum number of symbols that the constellation diagram displays when you input long signals.
The object plots the most recently received symbols.

Tunable: Yes

Dependencies

To enable this property, set SymbolsToDisplaySource to 'Property'.
Data Types: double

Display configuration

ColorFading — Option to add color fading effect
false or 0 (default) | true or 1
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Option to add color fading effect, specified as a logical 0 (false) or 1 (true). When you set this
property to true, the points in the display fade as the interval of time after they are first plotted
increases. This animation resembles an oscilloscope display.

Tunable: Yes
Data Types: logical

XLimits — x-axis limits
[-1.375 1.375] (default) | two-element row vector

x-axis limits, specified as a two-element row vector of the form [xmin xmax]. The first element is the
minimum x-axis value, and the second element is the maximum x-axis value.

Tunable: Yes
Data Types: double

YLimits — y-axis limits
[-1.375 1.375] (default) | two-element row vector

y-axis limits, specified as a two-element row vector of the form [ymin ymax]. The first element is the
minimum y-axis value, and the second element is the maximum y-axis value.

Tunable: Yes
Data Types: double

XLabel — x-axis label
'In-phase Amplitude' (default) | character vector | string scalar

x-axis label, specified as a character vector or string scalar.

Tunable: Yes
Data Types: char | string

YLabel — y-axis label
'Quadrature Amplitude' (default) | character vector | string scalar

y-axis label, specified as a character vector or string scalar.

Tunable: Yes
Data Types: char | string

Title — Plot title
'' (default) | character vector | string scalar

Plot title, specified as a character vector or string scalar.

Tunable: Yes
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Data Types: char | string

ShowLegend — Option to display legend
false or 0 (default) | true or 1

Option to display the legend, specified as a logical 0 (false) or 1 (true). The names listed in the
legend are the signal names specified by the ChannelNames property. The legend does not display
until you call the object with an input signal.

In the scope legend, click a signal name to toggle the signal visibility in the scope.

Tunable: Yes
Data Types: logical

ChannelNames — Names for input channels
{''} (default) | cell array of strings or character vectors

Names for the input channels, specified as a cell array of strings or character vectors. If you do not
specify names, the object labels the channels as Channel 1, Channel 2, etc.

These names appear in the legend, the Measurements tab, and the Measurements Setting pane.
Example: {'8-QAM','8-PSK'} specifies the names for two input channels to 8-QAM and 8-PSK.

Tunable: Yes
Data Types: cell

ShowGrid — Option to show grid
true or 1 (default) | false or 0

Option to show grid on the constellation diagram, specified as a logical 1 (true) or 0 (false).

Tunable: Yes
Data Types: logical

ShowTicks — Option to show tick labels
false or 0 (default) | true or 1

Option to show tick labels on the constellation diagram axes, specified as a logical 0 (false) or 1
(true).

Tunable: Yes
Data Types: logical

Position — Scope window position and size
600-by-600 pixel window at center of screen (default) | four-element row vector

Scope window position and size in pixels, specified as a four-element row vector of the form [left
bottom width height]. The first two elements in the vector indicate the location of the lower-left
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corner, and the second elements two specify the size of the window. The default value for the location
depends on the screen resolution.

Tunable: Yes
Data Types: double

Reference constellation

ReferenceConstellation — Reference constellations
[0.7071+0.7071i -0.7071+0.7071i -0.7071-0.7071i 0.7070-0.7071i] (default) | row
vector | cell array

Reference constellations for the input signals, specified as a row vector or cell array of vectors
defining the ideal constellation points for each input signal. Input signals can be single channel or
multichannel. You can define one reference constellation for each input signal.

• When you specify a row vector, the values apply for all input signals.
• When you specify a cell array, you can specify individual reference constellations for each input

signal.

The EVM and MER measurements use the specified reference constellation to calculate the signal
quality of the modulated input signal. For more information about the signal quality measurements,
see “EVM and MER Measurements” on page 3-226.

Tunable: Yes

Dependencies

To define ReferenceConstellation values for multiple input signals, you must first set the
NumInputPorts value.
Data Types: double
Complex Number Support: Yes

ReferenceColor — Color for reference display constellation
[1 0 0] (red) (default) | three-element row vector | cell array

Color for reference display constellation, specified as a three-element row vector indicating RGB
component colors or as a cell array containing RGB component colors for each input signal.

Tunable: Yes
Data Types: double

ReferenceMarker — Marker for reference constellation display
'+' (default) | 'o' | '*' | '.' | 'x' | ...

Marker for the reference constellation display, specified as one of the values listed in this table.

Marker Description Resulting Marker
"o" Circle
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Marker Description Resulting Marker
"+" Plus sign

"*" Asterisk

"." Point

"x" Cross

"_" Horizontal line

"|" Vertical line

"square" Square

"diamond" Diamond

"^" Upward-pointing triangle

"v" Downward-pointing triangle

">" Right-pointing triangle

"<" Left-pointing triangle

"pentagram" Pentagram

"hexagram" Hexagram

"none" No markers Not applicable

Tunable: Yes

Measurement settings

MeasurementInterval — Window length for EVM and MER measurements
'Current display' (default) | 'All displays' | ...

Window length for the EVM and MER measurements, specified as 'Current display', 'All
displays', or an integer in the range [2, SymbolsToDisplay].

For more information, see “EVM and MER Measurements” on page 3-226.

Tunable: Yes
Data Types: char | string | double

EVMNormalization — EVM normalization method
'Average constellation power' (default) | 'Peak constellation power'
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EVM normalization method, specified as 'Average constellation power' or 'Peak
constellation power'. For more information, see “EVM and MER Measurements” on page 3-226.

Tunable: Yes

Usage

Syntax
constdiag(signal1, ..., signalN)

Description

constdiag(signal1, ..., signalN) displays up to N signals in one constellation diagram,
where N is the NumInputPorts property value.

Input Arguments

signal1, ..., signalN — Signals (as separate arguments)
column vectors | matrices

Signals, specified as separate arguments of Nsym-by-1 column vectors or Nsym-by-Nchannel matrices.
Nsym is the number of symbols, and Nchannel is the number of input signal channels. Signals can have
different data types and dimensions.

You must specify N input arguments, where N is the NumInputPorts property value. You can
visualize up to 20 individual or collective signal channels in the constellation diagram. For example, if
you create a two-channel signal for every input, then you can define up to 10 input arguments.
Example: [sig1_1,sig1_2],sig2 specifies two signals, provided that sig1_1, sig1_2, and sig2
are single channel column vector signals. the first, [sig1_1,sig1_2], specifies a two-channel signal
(constructed by concatenating two column vectors into a matrix). The second signal, sig2, specifies a
single channel.
Data Types: double
Complex Number Support: Yes

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to Scopes
show Show scope window
hide Hide scope window
isVisible Determine visibility of scope window

Common to All System Objects
step Run System object algorithm
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release Release resources and allow changes to System object property values and input
characteristics

reset Reset internal states of System object

Examples

Display Amplitude-Imbalanced QPSK Constellation

QPSK-modulate random data symbols and apply an amplitude imbalance to the signal. Pass the signal
through a noisy channel. Display the resultant constellation.

Create a constellation diagram System object. Because the default reference constellation for the
object is QPSK, setting additional properties is not necessary.

constDiagram = comm.ConstellationDiagram;

Generate random data symbols, and then apply QPSK modulation.

data = randi([0 3],1000,1);
modData = pskmod(data,4,pi/4);

Apply an amplitude imbalance to the modulated signal.

txSig = iqimbal(modData,5);

Pass the transmitted signal through an AWGN channel, and then display the constellation diagram.
The data points shift from their ideal locations.

rxSig = awgn(txSig,20);
constDiagram(rxSig)
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Display 16-QAM Constellation

Apply 16-QAM modulation, transmit data using an AWGN channel, and display the signal
constellation.

Create a 16-QAM reference constellation.

M = 16;
refC = qammod(0:M-1,M);

Create a constellation diagram System object, specifying the constellation reference points and axes
limits.
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constDiagram = comm.ConstellationDiagram('ReferenceConstellation',refC, ...
    'XLimits',[-4 4],'YLimits',[-4 4]);

Generate random 16-ary data symbols.

data = randi([0 M-1],1000,1);

Apply 16-QAM modulation.

sym = qammod(data,M);

Pass the modulated signal through an AWGN channel.

rcv = awgn(sym,15);

Display the constellation diagram.

constDiagram(rcv)

 comm.ConstellationDiagram

3-223



Display Constellation of Multi-Input Signals

Display the constellation of multi-input and multichannel modulated signals. Plot a multichannel
signal with two 16-QAM signals for the first input and one 8-PSK signal for the second input.

Create a 16-QAM and an 8-PSK reference constellation.

M = 16;
refQAM = qammod(0:M-1,M);
S = 8;
refPSK = pskmod(0:S-1,S,pi/8);
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Create a constellation diagram System object, specifying reference constellations for the two input
signals. The object applies a single reference constellation for all the channels of an individual
multichannel signal input, but separate input signals can specify separate reference constellations.

constDiag = comm.ConstellationDiagram(2, ...
    'ReferenceConstellation',{refQAM,refPSK}, ...
    'ShowLegend',true, ...
    'XLimits',[-6 6],'YLimits',[-6 6], ...
    'ChannelNames', ...
    {'16-QAM, SNR 10 dB','16-QAM, SNR 20 dB','8-PSK'});

Generate random data symbols, modulate the symbols, and add AWGN with two different SNRs to
yield two received signals. Use SNR values of 10 and 20 dB.

d = randi([0 M-1],1000,1);
dQAM = qammod(d,M);
rcv1_1 = awgn(dQAM,10);
rcv1_2 = awgn(dQAM,20);
d = randi([0 S-1],1000,1);
dPSK = pskmod(d,S,pi/8);
rcv2 = awgn(dPSK,20);

For the first input, create a multichannel signal by concatenating the two received 16-QAM signals.
For the second input uses a single channel 8-PSK signal.

Display the constellation diagram of the multi-input and multichannel signals.

constDiag([rcv1_1,rcv1_2],rcv2);
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More About
EVM and MER Measurements

The Measurements pane displays the EVM and MER signal quality measurement settings and the
calculation results for the specified signal channel.

• EVM — An error vector is a vector in the IQ plane from the ideal constellation point to the actual
point at the receiver. The EVM calculations include root mean square (RMS), peak, and average
values.
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You can normalize the EVMRMS and EVMAverage calculations by the average or peak constellation
power method as computed using these algorithms.

EVM Normalization Method Algorithm
Average constellation power

EVMk = 100
ek

Pavg

EVMRMS, in percent, for average constellation power
normalization:

EVMRMS(%) = 100

1
N ∑k = 1

N
(ek)

Pavg

Peak constellation power
EVMk = 100

ek
Pmax

EVMRMS, in percent, for peak constellation power
normalization:

EVMRMS(%) = 100

1
N ∑k = 1

N
(ek)

Pmax

The Measurements pane shows the RMS and peak EVM in percent and the average and peak
EVM decibels for the selected input channel. The EVM in decibels is computed as EVM (dB) = 10 ‑
log10(EVMMS) = 20 ‑ log10(EVMRMS), where:

• ek = (Ik− I k)2 + (Qk− Qk)2

• Ik is the in-phase value of the kth symbol in the input vector.
• Qk is the quadrature phase value of the kth symbol in the input vector.
• Ik and Qk represent ideal (reference) symbol values. I k and Qk represent measured (received)

symbol values.
• N is the input vector length.
• Pavg is the value for average constellation power.
• Pmax is the value for peak constellation power.
• EVMRMS = EVMMS

The maximum EVM value in a vector is EVMmax = max
k ∈ [1, ..., N]

EVMk , where k is the kth symbol

in a vector of length N.
• MER — MER is the ratio of the average power of the transmitted signal to the average power of

the error vector. The Measurements pane indicates average MER measurement result in decibels
for the selected signal channel.

MER is a measure of the SNR in a modulated signal, calculated in dB. The MER over N symbols is
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MER = 10 × log10

∑
k = 1

N
Ik2 + Qk

2

∑
k = 1

N
ek

dB,

where:

• ek = (Ik− I k)2 + (Qk− Qk)2

• Ik is the in-phase value of the kth symbol in the input vector.
• Qk is the quadrature phase value of the kth symbol in the input vector.
• Ik and Qk represent ideal (reference) values. I k and Qk represent measured (received) symbols.

Tips
• To capture a simple signal constellation snapshot, use the scatterplot function.
• To calculate signal quality, show signal trajectory, capture constellations for multiple signals, or

maintain state between calls, use a comm.ConstellationDiagram System object.

Version History
Introduced in R2013a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Supports MEX code generation by treating the calls to the object as extrinsic. Does not support
code generation for standalone applications.

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Blocks
Constellation Diagram

Functions
scatterplot | eyediagram

Topics
“Scatter Plots and Constellation Diagrams”
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comm.ConvolutionalDeinterleaver
Package: comm

Deinterleave symbols using set of shift registers with specified delays

Description
The comm.ConvolutionalDeinterleaver System object deinterleaves the symbols in the input
sequence by using a set of shift registers, each with its own specified delay. The
comm.ConvolutionalDeinterleaver object must have the same number of registers as the
associated interleaver. For information about delays, see “Delays of Convolutional Interleaving and
Deinterleaving” on page 3-232.

To deinterleave symbols using a set of shift registers with specified delays:

1 Create the comm.ConvolutionalDeinterleaver object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
deintrlvr = comm.ConvolutionalDeinterleaver
deintrlvr = comm.ConvolutionalDeinterleaver(Name=Value)

Description

deintrlvr = comm.ConvolutionalDeinterleaver creates a default convolutional deinterleaver
System object.

deintrlvr = comm.ConvolutionalDeinterleaver(Name=Value) sets “Properties” on page 3-
229 using one or more name-value arguments. For example, NumRegisters=10 specifies 10 internal
shift registers.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

NumRegisters — Number of internal shift registers
6 (default) | positive integer
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Number of internal shift registers, specified as a positive integer.
Data Types: double

RegisterLengthStep — Symbol capacity difference of each successive shift register
2 (default) | positive integer

Symbol capacity difference of each successive shift register, specified as a positive integer. The last
register holds zero symbols.
Data Types: double

InitialConditions — Initial conditions of shift registers
0 (default) | scalar | column vector

Initial conditions of the shift registers, specified as one of these options.

• Scalar — All shift registers, except the last one, store the same specified value.
• Column vector — If the length of the column vector equals the value of the NumRegisters

property, then the kth shift register stores the (N–k+1)th element of the specified vector. N is the
total number of shift registers (NumRegisters).

Because the first shift register has zero delay, the object ignores the first element of this property.
Data Types: double

Usage

Syntax
deintrlvseq = deintrlvr(intrlvseq)

Description

deintrlvseq = deintrlvr(intrlvseq) deinterleaves the input sequence of symbols, by using a
set of shift registers. The object outputs the deinterleaved sequence of symbols. For information
about delays, see “Delays of Convolutional Interleaving and Deinterleaving” on page 3-232.

Input Arguments

intrlvseq — Interleaved sequence of symbols
column vector

Interleaved sequence of symbols, specified as a column vector. This sequence must be one that was
interleaved using the comm.ConvolutionalInterleaver System object.
Data Types: numeric | logical | fi

Output Arguments

deintrlvseq — Deinterleaved sequence of symbols
column vector
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Deinterleaved sequence of symbols, returned as a column vector of the same data type and size as
the intrlvseq argument.
Data Types: numeric | logical | fi

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Convolutionally Interleave and Deinterleave Sequence

Create a convolutional interleaver System object, specifying the number of shift registers and
register length step.

intrlvr = comm.ConvolutionalInterleaver(NumRegisters=2, ...
                                        RegisterLengthStep=3);

Create a convolutional deinterleaver System object, specifying the number of shift registers and
register length step.

deintrlvr = comm.ConvolutionalDeinterleaver(NumRegisters=2, ...
                                            RegisterLengthStep=3);

Generate a random data sequence. Pass the data sequence through the interleaver and then the
deinterleaver.

data = (0:20)';
intrlvData = intrlvr(data);
deintrlvData = deintrlvr(intrlvData);

Display the original sequence, interleaved sequence, and restored sequence.

[data,intrlvData,deintrlvData]

ans = 21×3

     0     0     0
     1     0     0
     2     2     0
     3     0     0
     4     4     0
     5     0     0
     6     6     0
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     7     1     1
     8     8     2
     9     3     3
      ⋮

The delay through the interleaver and deinterleaver pair is equal to the product of the
NumRegisters and RegisterLengthStep properties.

intrlvDelay = intrlvr.NumRegisters*intrlvr.RegisterLengthStep

intrlvDelay = 6

After accounting for this delay, verify that the original and deinterleaved data are identical.

numSymErrors = symerr(data(1:end-intrlvDelay), ...
                      deintrlvData(1+intrlvDelay:end))

numSymErrors = 0

More About
Delays of Convolutional Interleaving and Deinterleaving

The total delay due to a convolutional interleaver and deinterleaver pair is N × slope × (N – 1).

• N is the number of registers and equals the value of the NumRegisters property
• slope is the register length step and equals the value of the RegisterLengthStep property

This diagram shows the structure of a general convolutional interleaver comprised of a set of shift
registers, each having a specified delay shown as D(1), D(2),..., D(N), and a commutator to switch
input and output symbols through registers. The kth shift register holds D(k) symbols, where k = 1, 2,
3, … N. The kth shift register has a delay value of ((k–1) × slope). With each new input symbol, the
commutator switches to a new register and shifts in the new symbol while shifting out the oldest
symbol in that register. When the commutator reaches the Nth register, upon the next new input, the
commutator returns to the first register.

Version History
Introduced in R2012a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

double and single data types are supported for simulation, but not for HDL code generation.

To generate HDL code from predefined System objects, see “HDL Code Generation from Viterbi
Decoder System Object” (HDL Coder).

See Also
Objects
comm.ConvolutionalInterleaver | comm.HelicalDeinterleaver |
comm.MultiplexedDeinterleaver

Blocks
Convolutional Interleaver | Convolutional Deinterleaver

Functions
convintrlv | convdeintrlv

Topics
“Interleaving”
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comm.ConvolutionalEncoder
Package: comm

Convolutionally encode binary data

Description
The comm.ConvolutionalEncoder System object encodes a sequence of binary input vectors to
produce a sequence of binary output vectors.

To convolutionally encode binary data:

1 Create the comm.ConvolutionalEncoder object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
convencoder = comm.ConvolutionalEncoder
convencoder = comm.ConvolutionalEncoder(trellis)
convencoder = comm.ConvolutionalEncoder( ___ ,Name,Value)

Description

convencoder = comm.ConvolutionalEncoder creates a convolutional encoder System object.

convencoder = comm.ConvolutionalEncoder(trellis) sets the TrellisStructure
property to trellis.

convencoder = comm.ConvolutionalEncoder( ___ ,Name,Value) sets “Properties” on page 3-
234 using one or more name-value arguments in addition to any argument combinations in previous
syntaxes. For example, 'TerminationMethod','Continuous' specifies the termination method as
continuous to retain the encoder states at the end of each input vector for use with the next input
vector.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.
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TrellisStructure — Trellis description of convolutional code
poly2trellis(7, [171 133]) (default) | structure

Trellis description of the convolutional code, specified as a structure that contains the trellis
description for a rate K ∕ N code. K is the number of input bit streams, and N is the number of output
bit streams.

You can either use the poly2trellis function to create the trellis structure or create it manually.
For more about this structure, see “Trellis Description of a Convolutional Code” and the istrellis
function.

The trellis structure contains these fields.

numInputSymbols — Number of symbols input to encoder
2K

Number of symbols input to the encoder, specified as an integer equal to 2K, where K is the number of
input bit streams.
Data Types: double

numOutputSymbols — Number of symbols output from encoder
2N

Number of symbols output from the encoder, specified as an integer equal to 2N, where N is the
number of output bit streams.
Data Types: double

numStates — Number of states in encoder
power of 2

Number of states in the encoder, specified as a power of 2.
Data Types: double

nextStates — Next states
matrix of integers

Next states for all combinations of current states and current inputs, specified as a matrix of integers.
The matrix size must be numStates by 2K.
Data Types: double

outputs — Outputs
matrix of octal numbers

Outputs for all combinations of current states and current inputs, specified as a matrix of octal
numbers. The matrix size must be numStates by 2K.
Data Types: double

Data Types: struct

TerminationMethod — Termination method of encoded frame
'Continuous' (default) | 'Truncated' | 'Terminated'
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Termination method of the encoded frame, specified as one of these values.

• 'Continuous' — The System object retains the encoder states at the end of each input vector for
use with the next input vector.

• 'Truncated' — The System object treats each input vector independently. The encoder states
are reset at the start of each input vector. If you set the InitialStateInputPort property to 0
(false), the object resets its states to the all-zeros state. If you set the
InitialStateInputPort property to 1(true), the object resets its states to the values you
specify in the InitialStateInputPort input.

• 'Terminated' — The System object treats each input vector independently. For each input
vector, the object uses extra bits to set the encoder states to all-zeros states at the end of the
vector. For a rate K/N code, the object outputs a vector of length N × (L + S) K, where S =
constraintLength – 1 (or, in the case of multiple constraint lengths, S = sum(constraintLength(i)–
1)). L is the length of the input. constraintLength – 1 is defined as log2(NumStates).

Data Types: char | string

ResetInputPort — Option to enable encoder reset input
false or 0 (default) | true or 1

Option to enable the encoder reset input, specified as a logical 1(true) or 0 (false). Set this
property to 1 (true) to enable the additional input to the object. When this additional reset input is a
nonzero value, the internal states of the encoder reset to their initial conditions.

Dependencies

To enable this property, set the TerminationMethod property to 'Continuous'.
Data Types: logical

DelayedResetAction — Option to delay output reset
false or 0 (default) | true or 1

Option to delay the output reset, specified as one of these logical values.

• 1 (true) — The reset of the internal states of the encoder occurs after the object computes the
encoded data.

• 0 (false) — The reset of the internal states of the encoder occurs before the object computes the
encoded data.

Dependencies

To enable this property, set the ResetInputPort property to 1 (true).
Data Types: logical

InitialStateInputPort — Option to enable initial state input
false or 0 (default) | true or 1
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Option to enable the initial state input, specified as a logical 1 (true) or 0 (false). When you set this
property to 1 (true), the object enables you to specify the initial state of the encoder for each input
vector.

Dependencies

To enable this property, set the TerminationMethod property to 'Truncated'.
Data Types: logical

FinalStateOutputPort — Option to enable final state output
false or 0 (default) | true or 1

Option to enable the final state output, specified as a logical 1 (true) or 0 (false). Set this property
to 1 (true) to obtain the final state of the encoder as an output.

Dependencies

To enable this property, set the TerminationMethod property to 'Continuous' or 'Truncated'.
Data Types: logical

PuncturePatternSource — Source of puncture pattern
'None' (default) | 'Property'

Source of the puncture pattern, specified as one of these values.

• 'None' — The object does not apply puncturing.
• 'Property' — The object punctures the code. This puncturing is based on the puncture pattern

vector that you specify for the PuncturePattern property.

Dependencies

To enable this property, set the TerminationMethod property to 'Continuous' or 'Truncated'.
Data Types: char | string

PuncturePattern — Puncture pattern vector
[1;1;0;1;0;1] (default) | column vector

Puncture pattern vector to puncture the encoded data, specified as a column vector. The vector must
contain 1s and 0s, where 0 indicates the position of punctured bits or excluded bits.

Dependencies

To enable this property, set the TerminationMethod property to 'Continuous' or 'Truncated'
and the PuncturePatternSource property to 'Property'.
Data Types: double
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Usage

Syntax
codeword = convencoder(message)
codeword = convencoder(message,initstate)
codeword = convencoder(message,resetstate)
[codeword,finalstate] = convencoder(message)

Description

codeword = convencoder(message) encodes the input message using the convolutional encoding
scheme specified by the trellis structure. codeword is the encoded codeword. message and
codeword are column vectors of numeric, logical, or unsigned fixed-point values with word length 1
(fi (Fixed-Point Designer) object).

codeword = convencoder(message,initstate) specifies the initial state of the encoder for
each input vector. To enable this syntax, set the TerminationMethod property to 'Truncated' and
the InitialStateInputPort property to 1 (true).

codeword = convencoder(message,resetstate) specifies the input to reset the internal states
of the encoder. To enable this syntax, set the TerminationMethod property to 'Continuous' and
the ResetInputPort property to 1 (true).

[codeword,finalstate] = convencoder(message) also returns the final state of the encoder.
To enable this syntax, set the FinalStateOutputPort property to 1 (true) and the
TerminationMethod property to 'Continuous' or 'Truncated'.

Input Arguments

message — Input message
binary-valued column vector

Input message, specified as a binary-valued column vector.
Data Types: double | int8 | fi(data,0,1)

initstate — Initial state of encoder
integer

Initial state of the encoder, specified as an integer.

Dependencies

To enable this argument, set the TerminationMethod property to 'Truncated' and the
InitialStateInputPort property to 1 (true).
Data Types: double

resetstate — Reset for internal states of encoder
false or 0 (default) | true or 1

Reset for internal states of the encoder, specified as a numeric or logical 1 (true) or 0 (false).
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Dependencies

To enable this argument, set the TerminationMethod property to 'Continuous' and the
ResetInputPort property to 1 (true).
Data Types: double | logical

Output Arguments

codeword — Convolutionally encoded message
binary-valued column vector

Convolutionally encoded message, returned as a binary-valued column vector. This output vector has
the same data type and orientation as input message.

When the convolutional encoder represents a rate K/N code, the length of the input vector equals
K×L for some positive integer L. The object sets the length of this output vector, to L×N.
Data Types: double | int8 | fi(data,0,1)

finalstate — Final state of encoder
integer

Final state of the encoder, returned as an integer.

Dependencies

To enable this argument, set the TerminationMethod property to 'Continuous' or 'Truncated'.
Data Types: double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Encode and Decode 8-DPSK Modulated Data

Transmit a convolutionally encoded 8 differential phase shift keying (DPSK) modulated bit stream
through an additive white Gaussian noise (AWGN) channel. Then, demodulate and decode the
modulated bit stream using a Viterbi decoder.

Create the necessary System objects.
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conEnc = comm.ConvolutionalEncoder;
modDPSK = comm.DPSKModulator('BitInput',true);
chan = comm.AWGNChannel('NoiseMethod','Signal to noise ratio (SNR)','SNR',10);
demodDPSK = comm.DPSKDemodulator('BitOutput',true);
vDec = comm.ViterbiDecoder('InputFormat','Hard');
error = comm.ErrorRate('ComputationDelay',3,'ReceiveDelay',34);

Process the data by following these steps.

1 Generate random bits.
2 Convolutionally encode the data.
3 Apply DPSK modulation.
4 Pass the modulated signal through an AWGN channel.
5 Demodulate the noisy signal.
6 Decode the data using a Viterbi algorithm.
7 Collect error statistics.

for counter = 1:20
    data = randi([0 1],30,1);
    encodedData = conEnc(data);
    modSignal = modDPSK(encodedData);
    receivedSignal = chan(modSignal);
    demodSignal = demodDPSK(receivedSignal);
    receivedBits = vDec(demodSignal);
    errors = error(data,receivedBits);
end

Display the number of errors.

errors(2)

ans = 3

Convolutionally Encode and Viterbi Decode with Puncture Pattern Matrix

Encode and decode a sequence of bits using a convolutional encoder and a Viterbi decoder with a
defined puncture pattern. Verify that the input and output bits are identical.

Define a puncture pattern matrix, and then reshape it into vector form for use with the encoder and
decoder System objects.

pPatternMat = [1 0 1;1 1 0];
pPatternVec = reshape(pPatternMat,6,1);

Create a convolutional encoder and a Viterbi decoder in which the puncture pattern is defined by
pPatternVec.

conEnc = comm.ConvolutionalEncoder('PuncturePatternSource','Property','PuncturePattern',pPatternVec);
viDec = comm.ViterbiDecoder('InputFormat','Hard','PuncturePatternSource','Property', ...
        'PuncturePattern',pPatternVec);

Create an error rate counter with the appropriate receive delay.
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error = comm.ErrorRate('ReceiveDelay',viDec.TracebackDepth);

Encode a sequence of random bits, and then decode the encoded message.

dataIn = randi([0 1],600,1);
dataEncoded = conEnc(dataIn);
dataOut = viDec(dataEncoded);

Verify that no errors exist in the output data.

errStats = error(dataIn,dataOut);
errStats(2)

ans = 0

High Rate Convolutional Codes for Turbo Coding

Concatenated convolutional codes offer high reliability and have gained in prominence and usage as
turbo codes. The comm.TurboEncoder and comm.TurboDecoder System objects support rate 1/n
convolutional codes only. This example shows the parallel concatenation of two rate 2/3 convolutional
codes to achieve an effective rate 1/3 turbo code by using comm.ConvolutionalEncoder and
comm.APPDecoder System objects.

System Parameters

blkLength = 1024;   % Block length
EbNo = 0:5;         % Eb/No values to loop over
numIter = 3;        % Number of decoding iterations
maxNumBlks = 1e2;   % Maximum number of blocks per Eb/No value

Convolutional Encoder/Decoder Parameters

trellis = poly2trellis([5 4],[23 35 0; 0 5 13]);
k = log2(trellis.numInputSymbols);      % number of input bits
n = log2(trellis.numOutputSymbols);     % number of output bits
intrIndices = randperm(blkLength/k)';   % Random interleaving
decAlg = 'True App';                    % Decoding algorithm
modOrder = 2;                           % PSK-modulation order

Initialize System Objects

Initialize Systems object™ for convolutional encoding, APP Decoding, BPSK modulation and
demodulation, AGWN channel, and error rate computation. The demodulation output soft bits using a
log-likelihood ratio method.

cEnc1 = comm.ConvolutionalEncoder( ...
    'TrellisStructure',trellis, ...
    'TerminationMethod','Truncated');
cEnc2 = comm.ConvolutionalEncoder( ...
    'TrellisStructure',trellis, ...
    'TerminationMethod','Truncated');
cAPPDec1 = comm.APPDecoder( ...
    'TrellisStructure',trellis, ...
    'TerminationMethod','Truncated', ...
    'Algorithm',decAlg);
cAPPDec2 = comm.APPDecoder( ...
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    'TrellisStructure',trellis, ...
    'TerminationMethod','Truncated', ...
    'Algorithm',decAlg);

bpskMod = comm.BPSKModulator;
bpskDemod = comm.BPSKDemodulator( ...
    'DecisionMethod','Log-likelihood ratio', ...
    'VarianceSource','Input port');

awgnChan = comm.AWGNChannel( ...
    'NoiseMethod','Variance', ...
    'VarianceSource','Input port');

bitError = comm.ErrorRate; % BER measurement

Frame Processing Loop

Loop through a range of Eb/N0 values to generate results for BER performance. The
helperTurboEnc and helperTurboDec helper functions on page 3-243 perform the turbo encoding
and decoding.

ber = zeros(length(EbNo),1); 
bitsPerSymbol = log2(modOrder);
turboEncRate = k/(2*n);

for ebNoIdx = 1:length(EbNo)
    % Calculate the noise variance from EbNo
    EsNo = EbNo(ebNoIdx) + 10*log10(bitsPerSymbol);
    SNRdB = EsNo + 10*log10(turboEncRate); % Account for code rate
    noiseVar = 10^(-SNRdB/10);

    for  numBlks = 1:maxNumBlks 
        % Generate binary data
        data = randi([0 1],blkLength,1);

        % Turbo encode the data
        [encodedData,outIndices] = helperTurboEnc( ...
            data,cEnc1,cEnc2, ...
            trellis,blkLength,intrIndices);

        % Modulate the encoded data
        modSignal = bpskMod(encodedData);

        % Pass the modulated signal through an AWGN channel
        receivedSignal = awgnChan(modSignal,noiseVar);

        % Demodulate the noisy signal using LLR to output soft bits
        demodSignal = bpskDemod(receivedSignal,noiseVar);

        % Turbo decode the demodulated data
        receivedBits = helperTurboDec( ...
            -demodSignal,cAPPDec1,cAPPDec2, ...
            trellis,blkLength,intrIndices,outIndices,numIter); 
        
        % Calculate the error statistics
        errorStats = bitError(data,receivedBits);        
    end
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    ber(ebNoIdx) = errorStats(1);
    reset(bitError);
end

Display Results

While the practical wireless systems, such as LTE and CCSDS, specify base rate-1/n convolutional
codes for turbo codes, the results show use of higher rate convolutional codes as turbo codes is
viable.

figure; 
semilogy(EbNo, ber, '*-');
grid on; 
xlabel('E_b/N_0 (dB)'); 
ylabel('BER'); 
title('High Rate Convolutional Codes for Turbo Coding'); 
legend(['N = ' num2str(blkLength) ', ' num2str(numIter) ' iterations']);

Helper Functions
function [yEnc,outIndices] = helperTurboEnc( ...
    data,hCEnc1,hCEnc2,trellis,blkLength,intrIndices)
% Turbo encoding using two parallel convolutional encoders.
% No tail bits handling and assumes no output stream puncturing.

    % Trellis parameters
    k = log2(trellis.numInputSymbols);
    n = log2(trellis.numOutputSymbols);
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    cLen = blkLength*n/k;

    punctrVec = [0;0;0;0;0;0];      % assumes all streams are output
    N = length(find(punctrVec==0));

    % Encode random data bits
    y1 = hCEnc1(data);
    y2 = hCEnc2( ...
        reshape(intrlv(reshape(data,k,[])',intrIndices)',[],1));
    y1D = reshape(y1(1:cLen),n,[]);
    y2D = reshape(y2(1:cLen),n,[]);
    yDTemp = [y1D; y2D];
    y = yDTemp(:);

    % Generate output indices vector using puncturing vector
    idx = 0 : 2*n : (blkLength - 1)*2*(n/k);
    punctrVecIdx = find(punctrVec==0);
    dIdx = repmat(idx, N, 1) + punctrVecIdx;
    outIndices = dIdx(:);
    yEnc = y(outIndices);
end

function yDec = helperTurboDec( ...
    yEnc,cAPPDec1,cAPPDec2,trellis, ...
    blkLength,intrIndices,inIndices,numIter)
% Turbo decoding using two a-posteriori probability (APP) decoders

    % Trellis parameters
    k = log2(trellis.numInputSymbols);
    n = log2(trellis.numOutputSymbols);
    rCodLen = 2*(n/k)*blkLength;
    typeyEnc = class(yEnc);

    % Re-order encoded bits according to outIndices
    x = zeros(rCodLen,1);
    x(inIndices) = yEnc;

    % Generate output of first encoder
    yD = reshape(x(1:rCodLen),2*n,[]);
    lc1D = yD(1:n, :);
    Lc1_in = lc1D(:);

    % Generate output of second encoder
    lc2D   = yD(n+1:2*n, :);
    Lc2_in = lc2D(:);

    % Initialize unencoded data input
    Lu1_in = zeros(blkLength,1,typeyEnc);

    % Turbo Decode
    out1 = zeros(blkLength/k,k,typeyEnc);
    for iterIdx = 1 : numIter
        [Lu1_out, ~] = cAPPDec1(Lu1_in,Lc1_in);
        tmp = Lu1_out(1:blkLength);
        Lu2_in = reshape(tmp,k,[])';
        [Lu2_out, ~] = cAPPDec2( ...
            reshape(Lu2_in(intrIndices, :)',[],1),Lc2_in);
        out1(intrIndices, :) = reshape(Lu2_out(1:blkLength),k,[])';
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        Lu1_in = reshape(out1',[],1);
    end
    % Calculate llr and decoded bits for the final iteration
    llr = reshape(out1', [], 1) + Lu1_out(1:blkLength);
    yDec = cast((llr>=0), typeyEnc);
end

More About
Convolutional Coding

Convolutional coding is an error-control coding that has memory. Specifically, the computations and
coded output depend on the current set of input symbols and on a number of previous input symbols
that varies depending on the trellis configuration. A convolutional encoder outputs N bits for every K
input bits. The input can have varying multiples of K bits over a simulation.

Using a MATLAB trellis structure that defines a set of generator polynomials, you can model
nonsystematic, systematic feedforward, or systematic feedback convolutional codes. For more
information and examples that demonstrate various convolutional code architectures, see the
“Convolutional Codes” topic.

To decode the convolutionally coded output, you can use:

• The vitdec function or comm.ViterbiDecoder System object — Uses the Viterbi algorithm with
hard-decision and soft-decision decoding

• The comm.APPDecoder System object — Uses an a posteriori probability decoder for the soft
output decoding of convolutional codes

Version History
Introduced in R2012a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Functions
distspec | poly2trellis | istrellis | vitdec | convenc

Objects
comm.APPDecoder | comm.ViterbiDecoder | comm.TurboEncoder

Blocks
Convolutional Encoder | Viterbi Decoder | Turbo Encoder

Topics
“Convolutional Codes”
“Trellis Description of a Convolutional Code”
“Estimate BER for Hard and Soft Decision Viterbi Decoding”
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comm.ConvolutionalInterleaver
Package: comm

Permute symbols using set of shift registers with specified delays

Description
The comm.ConvolutionalInterleaver System object permutes the symbols in the input sequence
by using a set of shift registers, each with its own delay value. For information about delays, see
“Delays of Convolutional Interleaving and Deinterleaving” on page 3-250.

To permute symbols using a set of shift registers with specified delays:

1 Create the comm.ConvolutionalInterleaver object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation
Syntax
intrlvr = comm.ConvolutionalInterleaver
intrlvr = comm.ConvolutionalInterleaver(Name=Value)

Description

intrlvr = comm.ConvolutionalInterleaver creates a default convolutional interleaver System
object.

intrlvr = comm.ConvolutionalInterleaver(Name=Value) sets “Properties” on page 3-247
using one or more name-value arguments. For example, NumRegisters=10 specifies 10 internal shift
registers.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

NumRegisters — Number of internal shift registers
6 (default) | positive integer

Number of internal shift registers, specified as a positive integer.
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Data Types: double

RegisterLengthStep — Number of additional symbols that fit in each successive shift
register
2 (default) | positive integer

Number of additional symbols that fit in each successive shift register, specified as a positive integer.
The first register holds zero symbols.
Data Types: double

InitialConditions — Initial conditions of shift registers
0 (default) | scalar | column vector

Initial conditions of the shift registers, specified as one of these options.

• Scalar — All shift registers, except the first one, store the same specified value.
• Column vector — If the length of the column vector equals the value of the NumRegisters

property, then the kth shift register stores the kth element of the specified vector.

You do not need to specify a value for the first shift register, which has zero delay. Because the first
shift register has zero delay, the object ignores the first element of this property.
Data Types: double

Usage

Syntax
intrlvseq = intrlvr(inputseq)

Description

intrlvseq = intrlvr(inputseq) permutes the input sequence of symbols by using a set of shift
registers. The object outputs the interleaved sequence of symbols.

For information about delays, see “Delays of Convolutional Interleaving and Deinterleaving” on page
3-250.

Input Arguments

inputseq — Sequence of symbols
column vector

Sequence of symbols, specified as a column vector.
Data Types: numeric | logical | fi

Output Arguments

intrlvseq — Interleaved sequence of symbols
column vector

3 System Objects

3-248



Interleaved sequence of symbols, returned as a column vector of the same data type and size as the
inputseq input.
Data Types: numeric | logical | fi

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Convolutionally Interleave and Deinterleave Sequence

Create a convolutional interleaver System object, specifying the number of shift registers and
register length step.

intrlvr = comm.ConvolutionalInterleaver(NumRegisters=2, ...
                                        RegisterLengthStep=3);

Create a convolutional deinterleaver System object, specifying the number of shift registers and
register length step.

deintrlvr = comm.ConvolutionalDeinterleaver(NumRegisters=2, ...
                                            RegisterLengthStep=3);

Generate a random data sequence. Pass the data sequence through the interleaver and then the
deinterleaver.

data = (0:20)';
intrlvData = intrlvr(data);
deintrlvData = deintrlvr(intrlvData);

Display the original sequence, interleaved sequence, and restored sequence.

[data,intrlvData,deintrlvData]

ans = 21×3

     0     0     0
     1     0     0
     2     2     0
     3     0     0
     4     4     0
     5     0     0
     6     6     0
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     7     1     1
     8     8     2
     9     3     3
      ⋮

The delay through the interleaver and deinterleaver pair is equal to the product of the
NumRegisters and RegisterLengthStep properties.

intrlvDelay = intrlvr.NumRegisters*intrlvr.RegisterLengthStep

intrlvDelay = 6

After accounting for this delay, verify that the original and deinterleaved data are identical.

numSymErrors = symerr(data(1:end-intrlvDelay), ...
                      deintrlvData(1+intrlvDelay:end))

numSymErrors = 0

More About
Delays of Convolutional Interleaving and Deinterleaving

The total delay due to a convolutional interleaver and deinterleaver pair is N × slope × (N – 1).

• N is the number of registers and equals the value of the NumRegisters property
• slope is the register length step and equals the value of the RegisterLengthStep property

This diagram shows the structure of a general convolutional interleaver comprised of a set of shift
registers, each having a specified delay shown as D(1), D(2),..., D(N), and a commutator to switch
input and output symbols through registers. The kth shift register holds D(k) symbols, where k = 1, 2,
3, … N. The kth shift register has a delay value of ((k–1) × slope). With each new input symbol, the
commutator switches to a new register and shifts in the new symbol while shifting out the oldest
symbol in that register. When the commutator reaches the Nth register, upon the next new input, the
commutator returns to the first register.

For more information, see “Interleaving”.

3 System Objects

3-250



Version History
Introduced in R2012a

References
[1] Clark, George C., and J. Bibb Cain. Error-Correction Coding for Digital Communications.

Applications of Communications Theory. New York: Plenum Press, 1981.

[2] Forney, G., D., Jr. "Burst-Correcting Codes for the Classic Bursty Channel." IEEE Transactions on
Communications, vol. COM-19, October 1971. 772-781.

[3] Ramsey, J. L. "Realization of Optimum Interleavers." IEEE Transactions on Information Theory,
IT-16 (3), May 1970. 338-345.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

double and single data types are supported for simulation, but not for HDL code generation.

To generate HDL code from predefined System objects, see “HDL Code Generation from Viterbi
Decoder System Object” (HDL Coder).

See Also
Objects
comm.ConvolutionalDeinterleaver | comm.gpu.ConvolutionalInterleaver |
comm.HelicalInterleaver | comm.MultiplexedInterleaver

Functions
convintrlv | convdeintrlv

Blocks
Convolutional Interleaver | Convolutional Deinterleaver

Topics
“Interleaving”
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comm.CPFSKDemodulator
Package: comm

Demodulate using CPFSK method and Viterbi algorithm

Description
The CPFSKDemodulator object demodulates a signal that was modulated using the continuous phase
frequency shift keying method. The input is a baseband representation of the modulated signal.

To demodulate a signal that was modulated using the continuous phase frequency shift keying
method:

1 Define and set up your CPFSK demodulator object. See “Construction” on page 3-252 .
2 Call step to demodulate the signal according to the properties of comm.CPFSKDemodulator.

The behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
H = comm.CPFSKDemodulator creates a demodulator System object, H. This object demodulates
the input continuous phase frequency shift keying (CPFSK) modulated data using the Viterbi
algorithm.

H = comm.CPFSKDemodulator(Name,Value) creates a CPFSK demodulator object, H, with each
specified property set to the specified value. You can specify additional name-value pair arguments in
any order as (Name1,Value1,...,NameN,ValueN).

H = comm.CPFSKDemodulator(M,Name,Value) creates a CPFSK demodulator object, H. This
object has the ModulationOrder property set to M, and the other specified properties set to the
specified values.

Properties
ModulationOrder

Size of symbol alphabet

Specify the size of the symbol alphabet. The value of this property requires a power of two, real,
integer scalar. The default is 4.

BitOutput

Output data as bits
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Specify whether the output consists of groups of bits or integer values. The default is false.

When you set this property to false, the step method outputs a column vector of length equal to N/
SamplesPerSymbol on page 3-0  and with elements that are integers between –
(ModulationOrder on page 3-0 –1) and ModulationOrder–1. In this case, N, is the length of the
input signal, which indicates the number of input baseband modulated symbols.

When you set this property to true, the step method outputs a binary column vector of length equal
to P×(N/SamplesPerSymbol), where P = log2(ModulationOrder). The output contains length-P
bit words. In this scenario, the object first maps each demodulated symbol to an odd integer value, K,
between –(ModulationOrder-1) and ModulationOrder–1. The object then maps K to the
nonnegative integer (K+ModulationOrder–1)/2. Finally, the object maps each nonnegative integer
to a length-P binary word, using the mapping specified in the SymbolMapping on page 3-0
property.

SymbolMapping

Symbol encoding

Specify the mapping of the modulated symbols as one of Binary | Gray. The default is Binary. This
property determines how the object maps each demodulated integer symbol value (in the range 0 and
ModulationOrder on page 3-0 –1) to a P-length bit word, where P = ModulationOrder on page
3-0 (ModulationOrder).

When you set this property to Binary, the object uses a natural binary-coded ordering.

When you set this property to Gray, the object uses a Gray-coded ordering.

This property applies when you set the BitOutput on page 3-0  property to true.

ModulationIndex

Modulation index

Specify the modulation index. The default is 0.5. The value of this property can be a scalar, h, or a
column vector, [h0, h1, …. hH-1]

where H-1 represents the length of the column vector.

When hi varies from interval to interval, the object operates in multi-h. When the object operates in
multi-h, hi must be a rational number.

InitialPhaseOffset

Initial phase offset

Specify the initial phase offset of the input modulated waveform in radians as a real, numeric scalar.
The default is 0.

SamplesPerSymbol

Number of samples per input symbol
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Specify the expected number of samples per input symbol as a positive, integer scalar. The default is
8.

TracebackDepth

Traceback depth for Viterbi algorithm

Specify the number of trellis branches that the Viterbi algorithm uses to construct each traceback
path as a positive, integer scalar. The default is 16. The value of this property is also the value of the
output delay. That value is the number of zero symbols that precede the first meaningful demodulated
symbol in the output.

OutputDataType

Data type of output

Specify the output data type as one of int8 | int16 | int32 | double, when you set the BitOutput
on page 3-0  property to false. The default is double.

When you set the BitOutput property to true, specify the output data type as one of logical |
double.

Methods
step Demodulate using CPFSK method and Viterbi algorithm

Common to All System Objects
release Allow System object property value changes
reset Reset internal states of System object

Examples

Demodulate CPFSK Modulated Signal Encoded with Gray Symbol Mapping

Create a CPFSK modulator, an AWGN channel, and a CPFSK demodulator. Configure the modulator
and demodulator with modulation order set to 8, bit input, and Gray-encoded symbol mapping.

M = 8;
cpfskMod = comm.CPFSKModulator(M,'BitInput',true, ...
    'SymbolMapping','Gray');
awgnChan = comm.AWGNChannel('NoiseMethod', ...
    'Signal to noise ratio (SNR)', ...
    'SNR',0);
cpfskDemod = comm.CPFSKDemodulator(M,'BitOutput',true, ...
    'SymbolMapping','Gray');

Define simulation parameters. Create an error rate calculator, accounting for the delay caused by the
Viterbi algorithm used by the CPFSK demodulator.

numFrames = 1000; % Number of frames transmitted
k = log2(M);      % Bits per symbol 
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spf = 100;        % Symobls per frame

delay = log2(M)*cpfskDemod.TracebackDepth;
errorRate = comm.ErrorRate( ...
    'ReceiveDelay',delay);
for counter = 1:numFrames
    data = randi([0 1],k*spf,1);
    modSignal = cpfskMod(data);
    noisySignal = awgnChan(modSignal);
    receivedData = cpfskDemod(noisySignal);
    errorStats = errorRate(data,receivedData);
end

fprintf('Error rate = %f\nNumber of errors = %d\n', ...
    errorStats(1),errorStats(2))

Error rate = 0.004247
Number of errors = 1274

Algorithms
This object implements the algorithm, inputs, and outputs described on the CPFSK Demodulator
Baseband block reference page. The object properties correspond to the block parameters. For
CPFSK the phase shift per symbol is π × h, where h is the modulation index.

Version History
Introduced in R2012a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.CPFSKModulator | comm.CPMModulator | comm.CPMDemodulator
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step
System object: comm.CPFSKDemodulator
Package: comm

Demodulate using CPFSK method and Viterbi algorithm

Syntax
Y = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Y = step(H,X) demodulates input data, X, with the CPFSK demodulator System object, H, and
returns Y. Input X must be a double or single precision, column vector with a length equal to an
integer multiple of the number of samples per symbol specified in the SamplesPerSymbol property.
Depending on the BitOutput property value, output Y can be integer or bit valued.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This initialization
locks nontunable properties and input specifications. For more information on changing property
values, see “System Design in MATLAB Using System Objects”.
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comm.CPFSKModulator
Package: comm

Modulate using CPFSK method

Description
The CPFSKModulator object modulates using the continuous phase frequency shift keying method.
The output is a baseband representation of the modulated signal.

To modulate a signal using the continuous phase frequency shift keying method:

1 Define and set up your CPFSK modulator object. See “Construction” on page 3-257.
2 Call step to modulate the signal according to the properties of comm.CPFSKModulator. The

behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
H = comm.CPFSKModulator creates a modulator System object, H. This object modulates the input
signal using the continuous phase frequency shift keying (CPFSK) modulation method.

H = comm.CPFSKModulator(Name,Value) creates a CPFSK modulator object, H, with each
specified property set to the specified value. You can specify additional name-value pair arguments in
any order as (Name1,Value1,...,NameN,ValueN).

H = comm.CPFSKModulator(M,Name,Value) creates a CPFSK modulator object, H. This object
has the ModulationOrder property set to M, and the other specified properties set to the specified
values.

Properties
ModulationOrder

Size of symbol alphabet

Specify the size of the symbol alphabet. The value of this property requires a power of two, real,
integer scalar. The default is 4.

BitInput

Assume bit inputs

Specify whether the input is bits or integers. The default is false. When you set this property to
false, the step method input must be a double-precision or signed integer data type column vector.
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This vector comprises odd integer values between –(ModulationOrder on page 3-0 –1) and
ModulationOrder–1.

When you set this property to true, the step method input must be a column vector of P-length bit
words, where P = log2(ModulationOrder). The input data must be double precision or logical data
type. The object maps each bit word to an integer K between 0 and ModulationOrder–1, using the
mapping specified in the SymbolMapping on page 3-0  property. The object then maps the integer
K to the intermediate value 2K–(ModulationOrder–1) and proceeds as in the case when you set the
BitInput on page 3-0  property to false.

SymbolMapping

Symbol encoding

Specify the mapping of bit inputs as one of Binary | Gray. The default is Binary. This property
determines how the object maps each input P-length bit word, where P = log2(ModulationOrder
on page 3-0 ), to an integer between 0 and ModulationOrder–1.

When you set this property to Binary, the object uses a natural binary-coded ordering.

When you set this property to Gray, the object uses a Gray-coded ordering.

This property applies when you set the BitInput on page 3-0  property to true.

ModulationIndex

Modulation index

Specify the modulation index. The default is 0.5. The value of this property can be a scalar, h, or a
column vector, [h0, h1, …. hH-1]

where H-1 represents the length of the column vector. The phase shift over a symbol is π × h.

When hi varies from interval to interval, the object operates in multi-h. When the object operates in
multi-h, hi must be a rational number.

InitialPhaseOffset

Initial phase offset

Specify the initial phase of the modulated waveform in radians as a real, numeric scalar. The default
is 0.

SamplesPerSymbol

Number of samples per output symbol

Specify the upsampling factor at the output as a real, positive, integer scalar. The default is 8. The
upsampling factor is the number of output samples that the step method produces for each input
sample.
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OutputDataType

Data type of output

Specify output data type as one of double | single. The default is double.

Methods
step Modulate using CPFSK method

Common to All System Objects
release Allow System object property value changes
reset Reset internal states of System object

Examples

Demodulate CPFSK Modulated Signal Encoded with Gray Symbol Mapping

Create a CPFSK modulator, an AWGN channel, and a CPFSK demodulator. Configure the modulator
and demodulator with modulation order set to 8, bit input, and Gray-encoded symbol mapping.

M = 8;
cpfskMod = comm.CPFSKModulator(M,'BitInput',true, ...
    'SymbolMapping','Gray');
awgnChan = comm.AWGNChannel('NoiseMethod', ...
    'Signal to noise ratio (SNR)', ...
    'SNR',0);
cpfskDemod = comm.CPFSKDemodulator(M,'BitOutput',true, ...
    'SymbolMapping','Gray');

Define simulation parameters. Create an error rate calculator, accounting for the delay caused by the
Viterbi algorithm used by the CPFSK demodulator.

numFrames = 1000; % Number of frames transmitted
k = log2(M);      % Bits per symbol 
spf = 100;        % Symobls per frame

delay = log2(M)*cpfskDemod.TracebackDepth;
errorRate = comm.ErrorRate( ...
    'ReceiveDelay',delay);
for counter = 1:numFrames
    data = randi([0 1],k*spf,1);
    modSignal = cpfskMod(data);
    noisySignal = awgnChan(modSignal);
    receivedData = cpfskDemod(noisySignal);
    errorStats = errorRate(data,receivedData);
end

fprintf('Error rate = %f\nNumber of errors = %d\n', ...
    errorStats(1),errorStats(2))

Error rate = 0.004247
Number of errors = 1274

 comm.CPFSKModulator

3-259



Algorithms
This object implements the algorithm, inputs, and outputs described on the CPFSK Modulator
Baseband block reference page. The object properties correspond to the block parameters. For
CPFSK the phase shift per symbol is π × h, where h is the modulation index.

Version History
Introduced in R2012a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.CPFSKDemodulator | comm.CPMModulator | comm.CPMDemodulator
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step
System object: comm.CPFSKModulator
Package: comm

Modulate using CPFSK method

Syntax
Y = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Y = step(H,X) modulates input data, X, with the CPFSK modulator System object, H. It returns the
baseband modulated output, Y. Depending on the value of the BitInput property, input X can be an
integer or bit valued column vector with data types double, signed integer, or logical. The length of
output vector, Y, is equal to the number of input samples times the number of samples per symbol
specified in the SamplesPerSymbol property.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This initialization
locks nontunable properties and input specifications. For more information on changing property
values, see “System Design in MATLAB Using System Objects”.
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comm.CPMDemodulator
Package: comm

Demodulate signal using CPM method and Viterbi algorithm

Description
The comm.CPMDemodulator System object demodulates an input signal that was modulated using
the continuous phase modulation (CPM) method. The input is a baseband representation of the
modulated signal. For more information about the demodulation and filtering applied, see “CPM
Demodulation Method” on page 3-268 and “Pulse Shape Filtering” on page 3-269.

To demodulate a signal that was modulated using the CPM method:

1 Create the comm.CPMDemodulator object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
cpmdemod = comm.CPMDemodulator
cpmdemod = comm.CPMDemodulator(Name,Value)
cpmdemod = comm.CPMDemodulator(M,Name,Value)

Description

cpmdemod = comm.CPMDemodulator creates a demodulator System object to demodulate input
CPM signals using the Viterbi algorithm.

cpmdemod = comm.CPMDemodulator(Name,Value) sets properties using one or more name-value
arguments. For example, 'SymbolMapping','Gray' specifies gray-ordered symbol mapping for the
modulated symbols.

cpmdemod = comm.CPMDemodulator(M,Name,Value) sets the ModulationOrder property to M
and optional name-value arguments.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.
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ModulationOrder — Modulation order
4 (default) | power of two scalar

Modulation order, specified as a power-of-two scalar. The modulation order, M = 2k specifies the
number of points in the signal constellation, where k is a positive integer indicating the number of
bits per symbol.
Data Types: double

BitOutput — Option to output data as bits
0 or false (default) | 1 or true

Option to output data as bits, specified as a logical 0 (false) or 1 (true).

• Set this property to false to output data as integers.
• Set this property to true to output data as bits.

For more information, see “Integer-Valued and Binary-Valued Output Signals” on page 3-270.
Data Types: logical

SymbolMapping — Symbol encoding
'Binary' (default) | 'Gray'

Symbol encoding mapping of constellation bits, specified as 'Binary' or 'Gray'.

• Set this property to 'Binary' to map symbols using natural binary-coded ordering.
• Set this property to 'Gray' to map symbols using Gray-coded ordering.

For more information, see “Integer-Valued and Binary-Valued Output Signals” on page 3-270.

Dependencies

To enable this property, set the BitOutput property to true.

ModulationIndex — Modulation index
0.5 (default) | nonnegative scalar | column vector

Modulation index, specified as a nonnegative scalar or column vector. For more information, see
“CPM Demodulation Method” on page 3-268.
Data Types: double

FrequencyPulse — Type of frequency pulse shaping
'Rectangular' (default) | 'Raised Cosine' | 'Spectral Raised Cosine' | 'Gaussian' |
'Tamed FM'

Type of frequency pulse shaping used by the modulator to smooth the phase transitions of the
modulated signal, specified as 'Rectangular', 'Raised Cosine', 'Spectral Raised
Cosine', 'Gaussian', or 'Tamed FM'. For more information, see “Pulse Shape Filtering” on page
3-269.
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MainLobeDuration — Main lobe duration
1 (default) | positive integer

Main lobe duration of the largest lobe in the spectral raised cosine pulse, specified as a positive
integer representing the number of symbol intervals used by the demodulator to pulse-shape the
modulated signal.

Dependencies

To enable this property, set the FrequencyPulse property to 'Spectral Raised Cosine'.
Data Types: double

RolloffFactor — Roll-off factor
0.2 (default) | scalar in the range [0, 1]

Roll-off factor of the spectral raised cosine pulse, specified as a scalar in the range [0, 1].

Dependencies

To enable this property, set the FrequencyPulse property to 'Spectral Raised Cosine'.
Data Types: double

BandwidthTimeProduct — Product of bandwidth and symbol time of Gaussian pulse shape
0.3 (default) | positive scalar

Product of the bandwidth and symbol time of the Gaussian pulse shape, specified as a positive scalar.
Use BandwidthTimeProduct to reduce the bandwidth, at the expense of increased intersymbol
interference.

Dependencies

To enable this property, set the FrequencyPulse property to 'Gaussian'.
Data Types: double

PulseLength — Length of frequency pulse shape
1 (default) | positive integer

Length of the frequency pulse shape in symbol intervals, specified as a positive integer. For more
information on the frequency pulse length, refer to LT in “Pulse Shape Filtering” on page 3-269.
Data Types: double

SymbolPrehistory — Symbol prehistory
1 (default) | scalar | vector

Symbol prehistory, specified as scalar or vector with odd integer elements in the range [–
(ModulationOrder – 1), (ModulationOrder – 1)]. This property defines the data symbols used by
the modulator prior to the first call of the object, in reverse chronological order.
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• A scalar value expands to a vector of length PulseLength – 1.
• For a vector, the length must be PulseLength – 1.

Data Types: double

InitialPhaseOffset — Initial phase offset
0 (default) | scalar

Initial phase offset in radians of the modulated waveform, specified as a scalar.
Data Types: double

SamplesPerSymbol — Number of samples per input symbol
8 (default) | positive integer

Number of samples per input symbol, specified as a positive integer. This property represents the
number of samples input for each integer or binary word output. For all nonbinary schemes, as
defined by the pulse shapes, this value must be greater than 1.
Data Types: double

TracebackDepth — Traceback depth for Viterbi algorithm
16 (default) | positive integer

Traceback depth for the Viterbi algorithm, specified as a positive integer representing the number of
trellis branches that the Viterbi algorithm uses to construct each traceback path. The value of this
property is also the output delay and the number of zero symbols that precede the first meaningful
demodulated symbol in the output. For more information, see “Traceback Depth and Output Delays”
on page 3-271.
Data Types: double

OutputDataType — Data type of output
'double' (default) | 'logical' | 'int8' | 'int16' | 'int32'

Data type of the output, specified as one of these values.

• When you set the BitOutput property to false, you can set the output data type to 'double',
'int8', 'int16', or 'int32'.

• When you set the BitOutput property to true, you can set the output data type to 'logical' or
'double'.

Usage

Syntax
y = cpmdemod(x)
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Description

y = cpmdemod(x) applies CPM demodulation method to the input signal and returns the
demodulated signal.

Input Arguments

x — CPM-modulated signal
column vector

CPM-modulated signal, specified as a column vector with a length equal to an integer multiple of the
SamplesPerSymbol property.
Data Types: double | single

Output Arguments

y — Output signal
column vector | matrix

Output signal, returned as a column vector or matrix. To specify whether the object outputs values as
integers or bits, use the BitOutput property. To specify the output data type, use the
OutputDataType property.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

CPM Modulate and Demodulate Signal with Gray Mapping and Bit Inputs

Create CPM modulator, and CPM demodulator System objects.

    cpmmodulator = comm.CPMModulator(8, ...
        'BitInput',true, ...
        'SymbolMapping','Gray');
    cpmdemodulator = comm.CPMDemodulator(8, ...
        'BitOutput',true, ...
        'SymbolMapping','Gray');

Create an error rate calculator System object™, that accounts for the delay caused by the Viterbi
algorithm.
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    delay = log2(cpmdemodulator.ModulationOrder) ...
        * cpmdemodulator.TracebackDepth;
    errorRate = comm.ErrorRate('ReceiveDelay',delay);

Transmit 100 3-bit words and print the error rate results.

    for counter = 1:100
        data = randi([0 1],300,1);
        modSignal = cpmmodulator(data);
        noisySignal = awgn(modSignal,0);
        receivedData = cpmdemodulator(noisySignal);
        errorStats = errorRate(data,receivedData);
    end
    fprintf('Error rate = %f\nNumber of errors = %d\n', ...
      errorStats(1),errorStats(2))

Error rate = 0.004006
Number of errors = 120

Apply GFSK Modulation and Demodulation

Using the comm.CPMModulator and comm.CPMDemodulator System objects, apply Gaussian
frequency-shift keying (GFSK) modulation and demodulation to random bit data.

Create a GFSK modulator and demodulator pair.

gfskMod = comm.CPMModulator( ...
    'ModulationOrder',2, ...
    'FrequencyPulse','Gaussian', ...
    'BandwidthTimeProduct',0.5, ...
    'ModulationIndex',1, ...
    'BitInput',true);
gfskDemod = comm.CPMDemodulator( ...
    'ModulationOrder',2, ...
    'FrequencyPulse','Gaussian', ...
    'BandwidthTimeProduct',0.5, ...
    'ModulationIndex',1, ...
    'BitOutput',true);

Generate random bit data and apply GFSK modulation. Use a scatter plot to view the constellation.

numSym = 100;
x = randi([0 1],numSym*gfskMod.SamplesPerSymbol,1);
y = gfskMod(x);
eyediagram(y,16)
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Demodulate the GFSK-modulated data. To verify that the demodulated signal data is equal to the
original data, account for the delay introduced by the Gaussian filtering in the GFSK modulation and
demodulation processes.

z = gfskDemod(y);
delay = finddelay(x,z);
isequal(x(1:end-delay),z(delay+1:end))

ans = logical
   1

More About
CPM Demodulation Method

The CPM demodulation method process consists of a correlator followed by a maximum-likelihood
sequence detector (MLSD) that searches the paths through the state trellis for the minimum
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Euclidean distance path. When the modulation index is rational (h = m / p), a finite number of phase
states exist in the symbol. The implementation uses the Viterbi algorithm to perform MLSD.

{hi} is a sequence of modulation indices that moves cyclically through a set of indices {h0, h1, h2,
…,hH-1}.

• hi = mi / pi is the modulation index in proper rational form.
• mi is the numerator of the modulation index.
• pi is the denominator of the modulation index.
• mi and pi are relatively prime positive numbers.
• The least common multiple (LCM) of {p0, p1, p2, …,pH-1} is denoted as p.
• hi= m'i / p.

{hi} determines the number of phase states,

numPhaseStates =
p, for all even m′i
2p, for any odd m′i

,

and affects the number of trellis states,

numStates = numPhaseStates×M(L-1),

• L is the pulse length.
• M is the modulation order.

CPM Method

The input to the demodulator is a baseband representation of the modulated signal:

s(t) = exp j 2π ∑
i = 0

n
αihiq(t − iT) ,  and

nT < t < (n + 1)T .

where:

• {αi} is a sequence of M-ary data symbols selected from the alphabet ±1, ±3, ±(M–1).
• M must have the form 2k for some positive integer k, where M is the modulation order and
specifies the size of the symbol alphabet.

• {hi} is a sequence of modulation indices. hi moves cyclically through a set of indices {h0, h1, h2, ...,
hH-1}. When H=1, only one modulation index exists, h0, which is denoted as h.

Pulse Shape Filtering

The CPM method uses pulse shaping to smooth the phase transitions of the modulated signal. The
function q(t) is the phase response obtained from the frequency pulse, g(t), through this relation:

q(t) =∫− ∞
t

g(t)dt.

The specified frequency pulse shape corresponds to these pulse shape expressions for g(t).
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Pulse Shape Expression
Rectangular

g(t) =
1

2LT , 0 ≤ t ≤ LT

0 otherwise
Raised cosine

g(t) =
1

2LT 1 − cos 2πt
LT , 0 ≤ t ≤ LT

0 otherwise
Spectral raised cosine

g(t) = 1
LmainT

sin 2πt
LmainT
2πt

LmainT

cos β 2πt
LmainT

1 − 4β
LmainT t

2 , 0 ≤ β

≤ 1

Gaussian
g(t) = 1

2T Q 2πBb
t − T

2
ln2 − Q 2πBb

t + T
2

ln2 , where

Q(t) =∫t ∞ 1
2πe−τ2/2dτ

Tamed FM (tamed frequency modulation) g(t) = 1
8 g0(t − T) + 2g0(t) + g0(t + T) , where

g0(t) ≈ 1
T

sin(πt
T )

πt
T

− π2

24
2sin πt

T − 2πt
T cos πt

T − πt
T

2sin πt
T

πt
T

3

• Lmain is the main lobe pulse duration in symbol intervals.
• β is the roll-off factor of the spectral raised cosine.
• Bb is the product of the bandwidth and the Gaussian pulse.
• The duration of the pulse, LT, is the pulse length in symbol intervals. As defined by the

expressions, the spectral raised cosine, Gaussian, and tamed FM pulse shapes have infinite length.
For all practical purposes, LT specifies the truncated finite length.

• T is the symbol durations.
• Q(t) is the complementary cumulative distribution function.

For more information on pulse shape filtering, see [1].

Integer-Valued and Binary-Valued Output Signals

When you set the BitOutput property to false:

• The object outputs an integer column vector of length equal to N/SamplesPerSymbol, where N is
the length of the input signal and indicates the number of input baseband modulated symbols. The
output values are odd integers in the range [–(ModulationOrder–1), (ModulationOrder–1)].

• You cannot set the OutputDataType property to 'logical'.

When you set the BitOutput property to true:

3 System Objects

3-270



• The object outputs a binary column vector of length equal to k×(N / SamplesPerSymbol), where
k = log2(ModulationOrder) and N is the number of input baseband modulated symbols
(specifically, the length of the input signal).

The SymbolMapping property determines how the object maps integers in the range [0,
ModulationOrder – 1] to k-length bit word. The binary word mapping options are natural binary-
coded ordering or Gray-coded ordering.

• You can set the OutputDataType property to only 'double' or 'logical'.
• The object follows this process.

1 Map each demodulated symbol to an odd integer L in the range [–(ModulationOrder–1),
(ModulationOrder–1)].

2 Map L to the nonnegative integer (L + ModulationOrder–1)/2.
3 Map each nonnegative integer to a k-length binary word. The binary word mapping options

are natural binary-coded ordering or Gray-coded ordering, as specified by the
SymbolMapping property.

Traceback Depth and Output Delays

The traceback depth is the number of trellis branches used to construct each traceback path.
Traceback depth influences the output delay, which is the number of zero symbols that precede the
first meaningful demodulated value in the output.

The optimal traceback depth setting depends on minimum squared Euclidean distance calculations.
Alternatively, you can choose a typical value, dependent on the number of states, using the five-times-
the-constraint-length rule, which corresponds to 5log2(numStates).

For a binary raised cosine pulse shape with a pulse length of 3 and h=2/3, applying this rule
(5log2(3×22) = 18 gives a result that is close to the optimum value of 20.

Version History
Introduced in R2012a

References
[1] Anderson, John B., Tor Aulin, and Carl-Erik Sundberg. Digital Phase Modulation. New York:

Plenum Press, 1986.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).
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See Also
Objects
comm.CPMModulator | comm.CPFSKDemodulator | comm.MSKDemodulator |
comm.GMSKDemodulator

Blocks
CPM Demodulator Baseband

Topics
“Continuous-Phase Modulation”
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comm.CPMModulator
Package: comm

Modulate signal using CPM method

Description
The comm.CPMModulator System object modulates an input signal using the continuous phase
modulation (CPM) method. The output is a baseband representation of the modulated signal. For
more information about the modulation and filtering applied, see “CPM Method” on page 3-281 and
“Pulse Shape Filtering” on page 3-282.

To modulate a signal using the CPM method:

1 Create the comm.CPMModulator object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
cpmmod = comm.CPMModulator
cpmmod = comm.CPMModulator(Name,Value)
cpmmod = comm.CPMModulator(M,Name,Value)

Description

cpmmod = comm.CPMModulator creates a modulator System object to modulate input signals using
the CPM method.

cpmmod = comm.CPMModulator(Name,Value) sets properties using one or more name-value
arguments. For example, 'SymbolMapping','Gray' specifies gray-ordered symbol mapping for the
modulated symbols.

cpmmod = comm.CPMModulator(M,Name,Value) sets the ModulationOrder property to M and
optional name-value arguments.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.
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ModulationOrder — Modulation order
4 (default) | power of two scalar

Modulation order, specified as a power-of-two scalar. The modulation order, M = 2k specifies the
number of points in the signal constellation, where k is a positive integer indicating the number of
bits per symbol.
Data Types: double

BitInput — Option to input data as bits
0 or false (default) | 1 or true

Option to input data as bits, specified as a logical 0 (false) or 1 (true).

• When you set this property to false, the input must be a column vector of odd integer values in
the range [–(ModulationOrder – 1), (ModulationOrder – 1)].

• When you set this property to true, the input must be a column vector of k-length bit words,
where k = log2(ModulationOrder). For more information, see “Symbol Sets” on page 3-282.

Data Types: logical

SymbolMapping — Symbol mapping
'Binary' (default) | 'Gray'

Symbol mapping of constellation bits, specified as 'Binary' or 'Gray'. For more information, see
“Symbol Sets” on page 3-282.

• Set this property to 'Binary' to map symbols using natural binary-coded ordering.
• Set this property to 'Gray' to map symbols using Gray-coded ordering.

Dependencies

To enable this property, set the BitInput property to true.

ModulationIndex — Modulation index
0.5 (default) | nonnegative scalar | column vector

Modulation index, specified as a nonnegative scalar or column vector. For more information, see
“CPM Method” on page 3-281.
Data Types: double

FrequencyPulse — Type of frequency pulse shaping
'Rectangular' (default) | 'Raised Cosine' | 'Spectral Raised Cosine' | 'Gaussian' |
'Tamed FM'

Type of frequency pulse shaping used by the modulator to smooth the phase transitions of the
modulated signal, specified as 'Rectangular', 'Raised Cosine', 'Spectral Raised
Cosine', 'Gaussian', or 'Tamed FM'. For more information, see “Pulse Shape Filtering” on page
3-282.
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MainLobeDuration — Main lobe duration
1 (default) | positive integer

Main lobe duration of the largest lobe in the spectral raised cosine pulse, specified as a positive
integer representing the number of symbol intervals used by the modulator to pulse-shape the
modulated signal.

Dependencies

To enable this property, set the FrequencyPulse property to 'Spectral Raised Cosine'.
Data Types: double

RolloffFactor — Roll-off factor
0.2 (default) | scalar in the range [0, 1]

Roll-off factor of the spectral raised cosine pulse, specified as a scalar in the range [0, 1].

Dependencies

To enable this property, set the FrequencyPulse property to 'Spectral Raised Cosine'.
Data Types: double

BandwidthTimeProduct — Product of bandwidth and symbol time of Gaussian pulse shape
0.3 (default) | positive scalar

Product of the bandwidth and symbol time of the Gaussian pulse shape, specified as a positive scalar.
Use BandwidthTimeProduct to reduce the bandwidth, at the expense of increased intersymbol
interference.

Dependencies

To enable this property, set the FrequencyPulse property to 'Gaussian'.
Data Types: double

PulseLength — Length of frequency pulse shape
1 (default) | positive integer

Length of the frequency pulse shape in symbol intervals, specified as a positive integer. For more
information on the frequency pulse length, refer to LT in “Pulse Shape Filtering” on page 3-282.
Data Types: double

SymbolPrehistory — Symbol prehistory
1 (default) | scalar | vector

Symbol prehistory, specified as scalar or vector with odd integer elements in the range [–
(ModulationOrder – 1), (ModulationOrder – 1)]. This property defines the data symbols used by
the modulator prior to the first call of the object, in reverse chronological order.
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• A scalar value expands to a vector of length PulseLength – 1.
• For a vector, the length must be PulseLength – 1.

Data Types: double

InitialPhaseOffset — Initial phase offset
0 (default) | scalar

Initial phase offset in radians of the modulated waveform, specified as a scalar.
Data Types: double

SamplesPerSymbol — Number of samples per output symbol
8 (default) | positive integer

Number of samples per output symbol, specified as a positive integer. This property represents the
number of samples output for each integer or binary word input. For all nonbinary schemes, as
defined by the pulse shapes, this value must be greater than 1.
Data Types: double

OutputDataType — Data type of output
'double' (default) | 'single'

Data type of the output, specified as 'double' or 'single'.

Usage

Syntax
y = cpmmod(x)

Description

y = cpmmod(x) applies CPM method to the input signal and returns the modulated CPM baseband
signal.

Input Arguments

x — Input signal
column vector | matrix

Input signal data, specified as a column vector or matrix of integers or bits. For more information, see
the BitInput property.
Data Types: double | single | int | logical

Output Arguments

y — CPM-modulated baseband signal
column vector
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CPM-modulated baseband signal, returned as a column vector. The length of this output vector is
equal to the number of input samples times the number of samples per symbol specified in the
SamplesPerSymbol property. To specify the output data type use the OutputDataType property.
Data Types: double | single
Complex Number Support: Yes

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

CPM Modulate and Demodulate Signal with Gray Mapping and Bit Inputs

Create CPM modulator, and CPM demodulator System objects.

    cpmmodulator = comm.CPMModulator(8, ...
        'BitInput',true, ...
        'SymbolMapping','Gray');
    cpmdemodulator = comm.CPMDemodulator(8, ...
        'BitOutput',true, ...
        'SymbolMapping','Gray');

Create an error rate calculator System object™, that accounts for the delay caused by the Viterbi
algorithm.

    delay = log2(cpmdemodulator.ModulationOrder) ...
        * cpmdemodulator.TracebackDepth;
    errorRate = comm.ErrorRate('ReceiveDelay',delay);

Transmit 100 3-bit words and print the error rate results.

    for counter = 1:100
        data = randi([0 1],300,1);
        modSignal = cpmmodulator(data);
        noisySignal = awgn(modSignal,0);
        receivedData = cpmdemodulator(noisySignal);
        errorStats = errorRate(data,receivedData);
    end
    fprintf('Error rate = %f\nNumber of errors = %d\n', ...
      errorStats(1),errorStats(2))

Error rate = 0.004006
Number of errors = 120
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Apply GFSK Modulation and Demodulation

Using the comm.CPMModulator and comm.CPMDemodulator System objects, apply Gaussian
frequency-shift keying (GFSK) modulation and demodulation to random bit data.

Create a GFSK modulator and demodulator pair.

gfskMod = comm.CPMModulator( ...
    'ModulationOrder',2, ...
    'FrequencyPulse','Gaussian', ...
    'BandwidthTimeProduct',0.5, ...
    'ModulationIndex',1, ...
    'BitInput',true);
gfskDemod = comm.CPMDemodulator( ...
    'ModulationOrder',2, ...
    'FrequencyPulse','Gaussian', ...
    'BandwidthTimeProduct',0.5, ...
    'ModulationIndex',1, ...
    'BitOutput',true);

Generate random bit data and apply GFSK modulation. Use a scatter plot to view the constellation.

numSym = 100;
x = randi([0 1],numSym*gfskMod.SamplesPerSymbol,1);
y = gfskMod(x);
eyediagram(y,16)
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Demodulate the GFSK-modulated data. To verify that the demodulated signal data is equal to the
original data, account for the delay introduced by the Gaussian filtering in the GFSK modulation and
demodulation processes.

z = gfskDemod(y);
delay = finddelay(x,z);
isequal(x(1:end-delay),z(delay+1:end))

ans = logical
   1

Plot Phase Tree for Continuous Phase Modulation

Plot the phase tree diagram for signals that have applied continuous phase modulation (CPM). A
phase tree diagram superimposes many curves, each of which plots the phase of a modulated signal
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over time. The distinct curves result from different inputs to the modulator. This example defines
settings for the CPM modulator, applies symbol mapping, and plots the results. Each curve represents
a different instance of simulating the CPM modulator with a distinct (constant) input signal.

Define parameters for the example and create a CPM modulator System object™.

M = 2;                   % Modulation order
modindex = 2/3;          % Modulation index
sps = 8;                 % Samples per symbol
L = 5;                   % Symbols to display
pmat = zeros(L*sps,M^L); % Empty phase matrix 

cpm = comm.CPMModulator(M, ...
    ModulationIndex=modindex, ...
    FrequencyPulse="Raised Cosine", ...
    PulseLength=2, ...
    SamplesPerSymbol=sps);

Use a for-loop to apply the mapping of the input symbol to the CPM symbols, mapping 0 to -(M-1), 1
to -(M-2), and so on. Populate the columns of the phase matrix with the unwrapped phase angle of the
modulated symbols.

for ip_sig = 0:(M^L)-1
    s = int2bit(ip_sig,L,1);
    s = 2*s + 1 - M;
    x = cpm(s);
    pmat(:,ip_sig+1) = unwrap(angle(x(:)));
end
pmat = pmat/(pi*modindex);
t = (0:L*sps-1)'/sps;

Plot the CPM phase tree.

plot(t,pmat);
title('CPM Phase Tree')
xlabel('Samples')
ylabel('Phase (radians)')
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More About
CPM Method

The output of the modulator is a baseband representation of the modulated signal:

s(t) = exp j 2π ∑
i = 0

n
αihiq(t − iT) ,  and

nT < t < (n + 1)T .

where:

• {αi} is a sequence of M-ary data symbols selected from the alphabet ±1, ±3, ±(M–1).
• M must have the form 2k for some positive integer k, where M is the modulation order and
specifies the size of the symbol alphabet.

• {hi} is a sequence of modulation indices. hi moves cyclically through a set of indices {h0, h1, h2, ...,
hH-1}. When H=1, only one modulation index exists, h0, which is denoted as h.

The phase shift over a symbol is π × h.

When hi varies from interval to interval, the object operates in multi-h. To ensure a finite number of
phase states, hi must be a rational number.
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Pulse Shape Filtering

The CPM method uses pulse shaping to smooth the phase transitions of the modulated signal. The
function q(t) is the phase response obtained from the frequency pulse, g(t), through this relation:

q(t) =∫− ∞
t

g(t)dt.

The specified frequency pulse shape corresponds to these pulse shape expressions for g(t).

Pulse Shape Expression
Rectangular

g(t) =
1

2LT , 0 ≤ t ≤ LT

0 otherwise
Raised cosine

g(t) =
1

2LT 1 − cos 2πt
LT , 0 ≤ t ≤ LT

0 otherwise
Spectral raised cosine

g(t) = 1
LmainT

sin 2πt
LmainT
2πt

LmainT

cos β 2πt
LmainT

1 − 4β
LmainT t

2 , 0 ≤ β

≤ 1

Gaussian
g(t) = 1

2T Q 2πBb
t − T

2
ln2 − Q 2πBb

t + T
2

ln2 , where

Q(t) =∫t ∞ 1
2πe−τ2/2dτ

Tamed FM (tamed frequency modulation) g(t) = 1
8 g0(t − T) + 2g0(t) + g0(t + T) , where

g0(t) ≈ 1
T

sin(πt
T )

πt
T

− π2

24
2sin πt

T − 2πt
T cos πt

T − πt
T

2sin πt
T

πt
T

3

• Lmain is the main lobe pulse duration in symbol intervals.
• β is the roll-off factor of the spectral raised cosine.
• Bb is the product of the bandwidth and the Gaussian pulse.
• The duration of the pulse, LT, is the pulse length in symbol intervals. As defined by the

expressions, the spectral raised cosine, Gaussian, and tamed FM pulse shapes have infinite length.
For all practical purposes, LT specifies the truncated finite length.

• T is the symbol durations.
• Q(t) is the complementary cumulative distribution function.

For more information on pulse shape filtering, see [1].

Symbol Sets

In binary input mode, the object processing follows this procedure.
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1 Divide the input bits into k-length bit words and map each bit-group to an integer, L, in the range
[0, M – 1]. k = log2(M) and M is the modulation order specified by the ModulationOrder
property. The binary word mapping options are natural binary-coded ordering or Gray-coded
ordering, as specified by the SymbolMapping property.

2 Map each integer L to signed integers as 2L–(M–1).
3 Proceed with modulation processing as in the integer input mode.

Version History
Introduced in R2012a

References
[1] Anderson, John B., Tor Aulin, and Carl-Erik Sundberg. Digital Phase Modulation. New York:

Plenum Press, 1986.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
comm.CPMDemodulator | comm.CPFSKModulator | comm.MSKModulator | comm.GMSKModulator

Blocks
CPM Modulator Baseband

Topics
“Continuous-Phase Modulation”
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comm.CRCDetector
Package: comm

Detect errors in input data using CRC

Description
The comm.CRCDetector System object computes cyclic redundancy check (CRC) checksums for an
entire received codeword. For successful CRC detection in a communications system link, you must
align the property settings of the comm.CRCDetector System object with the paired
comm.CRCGenerator System object. For more information, see “CRC Syndrome Detector Operation”
on page 3-289.

To detect errors in the received codeword containing CRC sequence bits:

1 Create the comm.CRCDetector object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
crcdetector = comm.CRCDetector
crcdetector = comm.CRCDetector(Name,Value)
crcdetector = comm.CRCDetector(poly,Name,Value)

Description

crcdetector = comm.CRCDetector creates a CRC code detector System object. This object
detects errors in the received codewords according to a specified generator polynomial.

crcdetector = comm.CRCDetector(Name,Value) sets properties using one or more name-value
pairs. For example, comm.CRCDetector('Polynomial','z^16 + z^14 + z + 1') configures
the CRC code detector System object to use the CRC-16 cyclic redundancy check bits when checking
for CRC code errors in the received codewords. Enclose each property name in quotes.

crcdetector = comm.CRCDetector(poly,Name,Value) creates a CRC code detector System
object. This object has the Polynomial property set to poly, and the other specified properties set
to the specified values.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.
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For more information on changing property values, see System Design in MATLAB Using System
Objects.

Polynomial — Generator polynomial
'z^16 + z^12 + z^5 + 1' (default) | polynomial character vector | binary row vector | integer
row vector

Generator polynomial for the CRC algorithm, specified as one of the following:

• A polynomial character vector such as 'z^3 + z^2 + 1'.
• A binary row vector that represents the coefficients of the generator polynomial in order of

descending power. The length of this vector is (N+1), where N is the degree of the generator
polynomial. For example, [1 1 0 1] represents the polynomial x3+ z2+ 1.

• An integer row vector containing the exponents of z for the nonzero terms in the polynomial in
descending order. For example, [3 2 0] represents the polynomial z3 + z2 + 1.

For more information, see “Representation of Polynomials in Communications Toolbox”.

Some commonly used generator polynomials include:

CRC
method

Generator polynomial

CRC-32 'z^32 + z^26 + z^23 + z^22 + z^16 + z^12 + z^11 + z^10 + z^8 + z^7
+ z^5 + z^4 + z^2 + z + 1'

CRC-24 'z^24 + z^23 + z^14 + z^12 + z^8 + 1'
CRC-16 'z^16 + z^15 + z^2 + 1'
Reversed
CRC-16

'z^16 + z^14 + z + 1'

CRC-8 'z^8 + z^7 + z^6 + z^4 + z^2 + 1'
CRC-4 'z^4 + z^3 + z^2 + z + 1'

Example: 'z^7 + z^2 + 1', [1 0 0 0 0 1 0 1], and [7 2 0] represent the same polynomial,
p(z) = z 7 + z 2 + 1.
Data Types: double | char

InitialConditions — Initial states of internal shift register
0 (default) | 1 | binary row vector

Initial states of the internal shift register, specified as a binary scalar or a binary row vector with a
length equal to the degree of the generator polynomial. A scalar value is expanded to a row vector of
equal length to the degree of the generator polynomial.
Data Types: logical

DirectMethod — Use direct algorithm for CRC checksum calculations
false (default) | true

Use direct algorithm for CRC checksum calculations, specified as false or true.
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When you set this property to true, the object uses the direct algorithm for CRC checksum
calculations. When you set this property to false, the object uses the non-direct algorithm for CRC
checksum calculations.

For more information on direct and non-direct algorithms, see “Error Detection and Correction”.
Data Types: logical

ReflectInputBytes — Reflect input bytes
false (default) | true

Reflect input bytes, specified as false or true. Set this property to true to flip the received
codeword on a bytewise basis before entering the data into the shift register.

When you set this property to true, the received codeword length divided by the value of the
ChecksumsPerFrame property must be an integer and a multiple of 8.
Data Types: logical

ReflectChecksums — Reflect checksums before final XOR
false (default) | true

Reflect checksums before final XOR, specified as false or true. Set this property to true to flip the
CRC checksums around their centers after the received codeword is completely through the shift
register.

When you set this property to true, the object flips the CRC checksums around their centers before
the final XOR.
Data Types: logical

FinalXOR — Final XOR
0 (default) | binary scalar | binary vector

Final XOR, specified as a binary scalar or a binary row vector with a length equal to the degree of the
generator polynomial. The XOR operation runs using the value of the FinalXOR property and the
CRC checksum before comparing with the input checksum. A scalar value is expanded to a row vector
of equal length to the degree of the generator polynomial. A setting of 0 is equivalent to no XOR
operation.
Data Types: logical

ChecksumsPerFrame — Number of checksums calculated
1 (default) | positive integer

Number of checksums calculated for each received codeword frame, specified as a positive integer.
for more information, see “CRC Syndrome Detector Operation” on page 3-289.
Data Types: double
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Usage

Syntax
out = crcdetector(codeword)
[msg,err] = crcdetector(codeword)

Description

out = crcdetector(codeword) checks CRC code bits for each received codeword frame, removes
the checksums, and then concatenates subframes to the output frame.

[msg,err] = crcdetector(codeword) also returns the checksum error signal computed when
checking CRC code bits for each codeword subframe.

Input Arguments

codeword — Received codeword
binary column vector

Received codeword, specified as a binary column vector.
Data Types: double | logical

Output Arguments

out — Output frame
binary column vector

Output frame, returned as a binary column vector that inherits the data type of the input signal. The
message word output contains the received codeword with the checksums removed.

The length of the output frame is n - k * r bits, where n is the size of the received codeword, k is the
number of checksums per frame, and r is the degree of the generator polynomial.

err — Checksum error signal
binary column vector

Checksum error signal, returned as a binary column vector that inherits the data type of the input
signal. The length of Err equals the value of ChecksumsPerFrame. For each checksum computation,
an element value of 0 in err indicates no checksum error, and an element value of 1 in err indicates
a checksum error.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
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release Release resources and allow changes to System object property values and input
characteristics

reset Reset internal states of System object

Examples

CRC Detection of Errors in a Random Message

Pass binary data through a CRC generator, introduce a bit error, and detect the error using a CRC
detector.

Create a random binary vector.

x = randi([0 1],12,1);

Encode the input message frame using a CRC generator with the ChecksumsPerFrame property set
to 2. This subdivides the incoming frame into two equal-length subframes.

crcgenerator = comm.CRCGenerator([1 0 0 1],'ChecksumsPerFrame',2);
codeword = crcgenerator(x);

Decode the codeword and verify that there are no errors in either subframe.

crcdetector = comm.CRCDetector([1 0 0 1],'ChecksumsPerFrame',2);
[~, err] = crcdetector(codeword)

err = 2×1

     0
     0

Introduce an error in the second subframe by inverting the last element of subframe 2. Pass the
corrupted codeword through the CRC detector and verify that the error is detected in the second
subframe.

codeword(end) = not(codeword(end));
[~,err] = crcdetector(codeword)

err = 2×1

     0
     1

Cyclic Redundancy Check of Noisy BPSK Data Frames

Use a CRC code to detect frame errors in a noisy BPSK signal.

Create a CRC generator and detector pair using a standard CRC-4 polynomial, z4 + z3 + z2 + z + 1.

poly = 'z4+z3+z2+z+1';
crcgenerator = comm.CRCGenerator(poly);
crcdetector = comm.CRCDetector(poly);
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Generate 12-bit frames of binary data and append the CRC bits. Based on the degree of the
polynomial, 4 bits are appended to each frame. Apply BPSK modulation and pass the signal through
an AWGN channel. Demodulate and use the CRC detector to determine if the frame is in error.

numFrames = 20;
frmError = zeros(numFrames,1);

for k = 1:numFrames
    data = randi([0 1],12,1);                 % Generate binary data
    encData = crcgenerator(data);                   % Append CRC bits
    modData = pskmod(encData,2);              % BPSK modulate
    rxSig = awgn(modData,5);                  % AWGN channel, SNR = 5 dB
    demodData = pskdemod(rxSig,2);            % BPSK demodulate
    [~,frmError(k)] = crcdetector(demodData); % Detect CRC errors
end

Identify the frames in which CRC code bit errors are detected.

find(frmError)

ans = 6

More About
Cyclic Redundancy Check Coding

Cyclic redundancy check (CRC) coding is an error-control coding technique for detecting errors that
occur when a data frame is transmitted. Unlike block or convolutional codes, CRC codes do not have
a built-in error-correction capability. Instead, when a communications system detects an error in a
received codeword, the receiver requests the sender to retransmit the codeword.

In CRC coding, the transmitter applies a rule to each data frame to create extra CRC bits, called the
checksum or syndrome, and then appends the checksum to the data frame. After receiving a
transmitted codeword, the receiver applies the same rule to the received codeword. If the resulting
checksum is nonzero, an error has occurred and the transmitter should resend the data frame.

When the number of checksums per frame is greater than 1, the input data frame is divided into
subframes, the rule is applied to each data subframe, and individual checksums are appended to each
subframe. The subframe codewords are concatenated to output one frame.

For a discussion of the supported CRC algorithms, see “Cyclic Redundancy Check Codes”.

CRC Syndrome Detector Operation

The CRC syndrome detector outputs the received message frame and a checksum error vector
according to the specified generator polynomial and number of checksums per frame.

The checksum bits are removed from each subframe, so that the resulting the output frame length is
n - k × r, where n is the size of the received codeword, k is the number of checksums per frame, and r
is the degree of the generator polynomial. The input frame must be evenly divisible by k.

For a specific initial state of the internal shift register:

1 The received codeword is divided into k equal sized subframes.
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2 The CRC is removed from each of the k subframes and compared to the checksum calculated on
the received codeword subframes.

3 The output frame is assembled by concatenating the subframe bits of the k subframes and then
output as a column vector.

4 The checksum error is output as a binary column vector of length k. An element value of 0
indicates an error-free received subframe, and an element value of 1 indicates an error occurred
in the received subframe.

For the scenario shown here, a 16-bit codeword is received, a third degree generator polynomial
computes the CRC checksum, the initial state is 0, and the number of checksums per frame is 2.

Since the number of checksums per frame is 2 and the generator polynomial degree is 3, the received
codeword is split in half and two checksums of size 3 are computed, one for each half of the received
codeword. The initial states are not shown, because an initial state of [0] does not affect the output
of the CRC algorithm. The output frame contains the concatenation of the two halves of the received
codeword as a single vector of size 10. The checksum error signal output contains a 2-by-1 binary
frame vector whose entries depend on whether the computed checksums are zero. As shown in the
figure, the first checksum is nonzero and the second checksum is zero, indicating an error occurred
in reception of the first half of the codeword.

References
[1] Sklar, Bernard. Digital Communications: Fundamentals and Applications. Englewood Cliffs, N.J.:

Prentice-Hall, 1988.

[2] Wicker, Stephen B. Error Control Systems for Digital Communication and Storage. Upper Saddle
River, N.J.: Prentice Hall, 1995.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
comm.CRCGenerator | comm.HDLCRCDetector

Blocks
General CRC Syndrome Detector

Topics
“Cyclic Redundancy Check Codes”
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comm.CRCGenerator
Package: comm

Generate CRC code bits and append to input data

Description
The comm.CRCGenerator System object generates cyclic redundancy check (CRC) code bits for each
input frame and appends them to the frame. For more information, see “CRC Generator Operation”
on page 3-300.

To generate CRC code bits for each input frame and append them to the frame:

1 Create the comm.CRCGenerator object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
crcgenerator = comm.CRCGenerator
crcgenerator = comm.CRCGenerator(Name,Value)
crcgenerator = comm.CRCGenerator(poly,Name,Value)

Description

crcgenerator = comm.CRCGenerator creates a CRC code generator System object. This object
generates CRC bits according to a specified generator polynomial and appends them to the input
frame.

crcgenerator = comm.CRCGenerator(Name,Value) sets properties using one or more name-
value pairs. For example, comm.CRCGenerator('Polynomial','z^16 + z^14 + z + 1')
configures the CRC generator System object to append CRC-16 cyclic redundancy check bits to the
input frame. Enclose each property name in quotes.

crcgenerator = comm.CRCGenerator(poly,Name,Value) creates a CRC code generator
System object. This object has the Polynomial property set to poly, and the other specified
properties set to the specified values.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.
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For more information on changing property values, see System Design in MATLAB Using System
Objects.

Polynomial — Generator polynomial
'z^16 + z^12 + z^5 + 1' (default) | polynomial character vector | binary row vector | integer
row vector

Generator polynomial for the CRC algorithm, specified as one of the following:

• A polynomial character vector such as 'z^3 + z^2 + 1'.
• A binary row vector that represents the coefficients of the generator polynomial in order of

descending power. The length of this vector is (N+1), where N is the degree of the generator
polynomial. For example, [1 1 0 1] represents the polynomial z3+ z2+ 1.

• An integer row vector containing the exponents of z for the nonzero terms in the polynomial in
descending order. For example, [3 2 0] represents the polynomial z3 + z2 + 1.

For more information, see “Representation of Polynomials in Communications Toolbox”.

Some commonly used generator polynomials include:

CRC
method

Generator polynomial

CRC-32 'z^32 + z^26 + z^23 + z^22 + z^16 + z^12 + z^11 + z^10 + z^8 + z^7
+ z^5 + z^4 + z^2 + z + 1'

CRC-24 'z^24 + z^23 + z^14 + z^12 + z^8 + 1'
CRC-16 'z^16 + z^15 + z^2 + 1'
Reversed
CRC-16

'z^16 + z^14 + z + 1'

CRC-8 'z^8 + z^7 + z^6 + z^4 + z^2 + 1'
CRC-4 'z^4 + z^3 + z^2 + z + 1'

Example: 'z^7 + z^2 + 1', [1 0 0 0 0 1 0 1], and [7 2 0] represent the same polynomial,
p(z) = z 7 + z 2 + 1.
Data Types: double | char

InitialConditions — Initial states of internal shift register
0 (default) | 1 | binary row vector

Initial states of the internal shift register, specified as a binary scalar or a binary row vector with a
length equal to the degree of the generator polynomial. A scalar value is expanded to a row vector of
equal length to the degree of the generator polynomial.
Data Types: logical

DirectMethod — Use direct algorithm for CRC checksum calculations
false (default) | true

Use direct algorithm for CRC checksum calculations, specified as false or true.
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When you set this property to true, the object uses the direct algorithm for CRC checksum
calculations. When you set this property to false, the object uses the non-direct algorithm for CRC
checksum calculations.

For more information on direct and non-direct algorithms, see “Error Detection and Correction”.
Data Types: logical

ReflectInputBytes — Reflect input bytes
false (default) | true

Reflect input bytes, specified as false or true. Set this property to true to flip the input frame on a
bytewise basis before entering the data into the shift register.

When you set this property to true, the input frame length divided by the value of the
ChecksumsPerFrame property must be an integer and a multiple of 8.
Data Types: logical

ReflectChecksums — Reflect checksums before final XOR
false (default) | true

Reflect checksums before final XOR, specified as false or true. Set this property to true to flip the
CRC checksums around their centers after the input data are completely through the shift register.
Data Types: logical

FinalXOR — Final XOR
0 (default) | binary scalar | binary vector

Final XOR, specified as a binary scalar or a binary row vector with a length equal to the degree of the
generator polynomial. The XOR operation runs using the value of the FinalXOR property and the
CRC checksum before comparing with the input checksum. A scalar value is expanded to a row vector
of equal length to the degree of the generator polynomial. A setting of 0 is equivalent to no XOR
operation.
Data Types: logical

ChecksumsPerFrame — Number of checksums calculated for each frame
1 (default) | positive integer

Number of checksums calculated for each frame, specified as a positive integer. For more
information, see “CRC Generator Operation” on page 3-300.
Data Types: double

Usage

Syntax
codeword = crcgenerator(x)
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Description

codeword = crcgenerator(x) generates CRC code bits for each input frame and appends them to
the frame.

Input Arguments

x — Input signal
binary column vector

Input signal, specified as a binary column vector. The length of the input frame must be a multiple of
the value of the ChecksumsPerFrame property. If the input data type is double, the least significant
bit is used as the binary value. For more information, see “CRC Generator Operation” on page 3-300.
Data Types: double | logical

Output Arguments

codeword — Output codeword frame
binary column vector

Output codeword frame, returned as a binary column vector that inherits the data type of the input
signal. The output contains the input frames with the CRC code sequence bits appended.

The length of the output codeword frame is m + k * r, where m is the size of the input message, k is
the number of checksums per input frame, and r is the degree of the generator polynomial. For more
information, see “CRC Generator Operation” on page 3-300.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Generate CRC-8 Checksum

Generate a CRC-8 checksum for the example shown in 802.11™-2016[1] on page 3-296, section
21.3.10.3 and compare with the expected CRC.

Create a CRC Generator System object™. To align with the CRC calculation in 802.11-20016, the
System object sets the generator polynomial as z8 + z2 + z + 1, initial states to 1, direct method, and
final XOR to 1.
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crc8 = comm.CRCGenerator('Polynomial','z^8 + z^2 + z + 1', ...
    'InitialConditions',1,'DirectMethod',true,'FinalXOR',1)

crc8 = 
  comm.CRCGenerator with properties:

           Polynomial: 'z^8 + z^2 + z + 1'
    InitialConditions: 1
         DirectMethod: true
    ReflectInputBytes: false
     ReflectChecksums: false
             FinalXOR: 1
    ChecksumsPerFrame: 1

Process one input frame according to the example from the 802.11-2016 standard in section
21.3.10.3. In the example, the input bit stream {m0, … m22} is {1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1} and the expected CRC checksum {c7, … c0} is {0 0 0 1 1 1 0 0}.

x = [1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1]';
expectedChecksum = [0 0 0 1 1 1 0 0]';
checksumLength = length(expectedChecksum);

The generated CRC checksum is compared to the expected checksum.

codeword = crc8(x);
checksum = codeword(end-checksumLength+1:end);
isequal(checksum,expectedChecksum)

ans = logical
   1

References

[1] IEEE® Std 802.11™-2016 IEEE Standard for Information Technology—Local and Metropolitan
Area Networks—Specific Requirements Part 11: Wireless LAN MAC and PHY Specifications.

CRC Detection of Errors in a Random Message

Pass binary data through a CRC generator, introduce a bit error, and detect the error using a CRC
detector.

Create a random binary vector.

x = randi([0 1],12,1);

Encode the input message frame using a CRC generator with the ChecksumsPerFrame property set
to 2. This subdivides the incoming frame into two equal-length subframes.

crcgenerator = comm.CRCGenerator([1 0 0 1],'ChecksumsPerFrame',2);
codeword = crcgenerator(x);

Decode the codeword and verify that there are no errors in either subframe.
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crcdetector = comm.CRCDetector([1 0 0 1],'ChecksumsPerFrame',2);
[~, err] = crcdetector(codeword)

err = 2×1

     0
     0

Introduce an error in the second subframe by inverting the last element of subframe 2. Pass the
corrupted codeword through the CRC detector and verify that the error is detected in the second
subframe.

codeword(end) = not(codeword(end));
[~,err] = crcdetector(codeword)

err = 2×1

     0
     1

Cyclic Redundancy Check of Noisy BPSK Data Frames

Use a CRC code to detect frame errors in a noisy BPSK signal.

Create a CRC generator and detector pair using a standard CRC-4 polynomial, z4 + z3 + z2 + z + 1.

poly = 'z4+z3+z2+z+1';
crcgenerator = comm.CRCGenerator(poly);
crcdetector = comm.CRCDetector(poly);

Generate 12-bit frames of binary data and append the CRC bits. Based on the degree of the
polynomial, 4 bits are appended to each frame. Apply BPSK modulation and pass the signal through
an AWGN channel. Demodulate and use the CRC detector to determine if the frame is in error.

numFrames = 20;
frmError = zeros(numFrames,1);

for k = 1:numFrames
    data = randi([0 1],12,1);                 % Generate binary data
    encData = crcgenerator(data);                   % Append CRC bits
    modData = pskmod(encData,2);              % BPSK modulate
    rxSig = awgn(modData,5);                  % AWGN channel, SNR = 5 dB
    demodData = pskdemod(rxSig,2);            % BPSK demodulate
    [~,frmError(k)] = crcdetector(demodData); % Detect CRC errors
end

Identify the frames in which CRC code bit errors are detected.

find(frmError)

ans = 6
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CRC-16-CCITT Generator for X.25

Create a CRC-16-CCITT generator as described in Section 2.2.7.4 of ITU-T Recommendation X-25[1]
on page 3-298 using the input data and expected frame check sequence (FCS) from Example 2 in
Appendix I, I.1.

Create an unnumbered acknowledgement (UA) response frame where address = B and F = 1.

Address = [1 0 0 0 0 0 0 0];
UA = [1 1 0 0 1 1 1 0];
input = [Address UA]';
expectedChecksum = [1 1 0 0 0 0 0 1 1 1 1 0 1 0 1 0]'; % Expected FCS
checksumLength = 16;

crcGen = comm.CRCGenerator(...
    'Polynomial','X^16 + X^12 + X^5 + 1',...
    'InitialConditions',1,...
    'DirectMethod',true,...
    'FinalXOR',1);
crcSeq = crcGen(input);
checkSum =  crcSeq(end-checksumLength+1:end);

Compare calculated checksum with the expected checksum.

isequal(expectedChecksum,checkSum)

ans = logical
   1

References

[1] ITU Telecommunication Standardization Sector. Series X: Data Networks And Open System
Communication. Public data networks – Interfaces. 1997

CRC-32 Generator for Ethernet

Create a CRC-32 code for the frame check sequence (FCS) field for Ethernet as described in Section
3.2.9 of the IEEE Standard for Ethernet[1] on page 3-299.

rng(1865);  % Seed for repeatable results

Initialize a message with random data to represent the protected fields of the MAC frame, specifically
the destination address, source address, length or type field, MAC client data, and padding.

data = randi([0,1],100,1);

Specify the CRC-32 generating polynomial used for encoding Ethernet messages.

poly = [32,26,23,22,16,12,11,10,8,7,5,4,2,1,0];

Calculate the CRC by following the steps specified in the standard and using the nondirect method to
generate the CRC code.
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% Section 3.2.9 step a) and b)
dataN = [not(data(1:32));data(33:end)];
crcGen1 = comm.CRCGenerator(...
    'Polynomial',poly, ...
    'InitialConditions',0, ...
    'DirectMethod',false, ...
    'FinalXOR',1);
% Section 3.2.9 step c), d) and e)
seq = crcGen1(dataN);
csNondirect = seq(end-31:end);

Calculate the CRC by following the steps specified in the standard and using the direct method to
generate the CRC code.

crcGen2 = comm.CRCGenerator( ...
    'Polynomial',poly, ...
    'InitialConditions',1, ...
    'DirectMethod',true, ...
    'FinalXOR',1);
txSeq = crcGen2(data);
csDirect = txSeq(end-31:end);

Compare the generated CRC codes by using the nondirect and direct methods.

disp([csNondirect';csDirect']);

  Columns 1 through 13

     1     1     1     0     1     1     0     0     1     0     0     1     0
     1     1     1     0     1     1     0     0     1     0     0     1     0

  Columns 14 through 26

     1     0     0     1     0     1     0     1     1     0     0     0     1
     1     0     0     1     0     1     0     1     1     0     0     0     1

  Columns 27 through 32

     1     1     0     0     1     0
     1     1     0     0     1     0

isequal(csNondirect,csDirect)

ans = logical
   1

rng('default');  % Reset the random number generator

References

 comm.CRCGenerator

3-299



[1] IEEE Computer Society. IEEE Standard for Ethernet: Std 802.3-2012. New York, NY: 2012.

More About
Cyclic Redundancy Check Coding

Cyclic redundancy check (CRC) coding is an error-control coding technique for detecting errors that
occur when a data frame is transmitted. Unlike block or convolutional codes, CRC codes do not have
a built-in error-correction capability. Instead, when a communications system detects an error in a
received codeword, the receiver requests the sender to retransmit the codeword.

In CRC coding, the transmitter applies a rule to each data frame to create extra CRC bits, called the
checksum or syndrome, and then appends the checksum to the data frame. After receiving a
transmitted codeword, the receiver applies the same rule to the received codeword. If the resulting
checksum is nonzero, an error has occurred and the transmitter should resend the data frame.

When the number of checksums per frame is greater than 1, the input data frame is divided into
subframes, the rule is applied to each data subframe, and individual checksums are appended to each
subframe. The subframe codewords are concatenated to output one frame.

For a discussion of the supported CRC algorithms, see “Cyclic Redundancy Check Codes”.

CRC Generator Operation

The CRC generator appends CRC checksums to the input frame according to the specified generator
polynomial and number of checksums per frame.

For a specific initial state of the internal shift register and k checksums per input frame:

1 The input signal is divided into k subframes of equal size.
2 Each of the k subframes are prefixed with the initial states vector.
3 The CRC algorithm is applied to each subframe.
4 The resulting checksums are appended to the end of each subframe.
5 The subframes are concatenated and output as a column vector.

For the scenario shown here, a 10-bit frame is input, a third degree generator polynomial computes
the CRC checksum, the initial state is 0, and the number of checksums per frame is 2.
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The input frame is divided into two subframes of size 5 and checksums of size 3 are computed and
appended to each subframe. The initial states are not shown, because an initial state of [0] does not
affect the output of the CRC algorithm. The output transmitted codeword frame has the size 5 + 3 +
5 + 3 = 16.

References
[1] Sklar, Bernard. Digital Communications: Fundamentals and Applications. Englewood Cliffs, N.J.:

Prentice-Hall, 1988.

[2] Wicker, Stephen B. Error Control Systems for Digital Communication and Storage. Upper Saddle
River, N.J.: Prentice Hall, 1995.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
comm.CRCDetector | comm.HDLCRCGenerator

Blocks
General CRC Generator
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Topics
“Cyclic Redundancy Check Codes”
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comm.DBPSKDemodulator
Package: comm

Demodulate using DBPSK method

Description
The DBPSKDemodulator object demodulates a signal that was modulated using the differential
binary phase shift keying method. The input is a baseband representation of the modulated signal.

To demodulate a signal that was modulated using differential binary phase shift keying:

1 Define and set up your DBPSK demodulator object. See “Construction” on page 3-303.
2 Call step to demodulate a signal according to the properties of comm.DBPSKDemodulator. The

behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
H = comm.DBPSKDemodulator creates a demodulator System object, H. This object demodulates
the input signal using the differential binary phase shift keying (DBPSK) method.

H = comm.DBPSKDemodulator(Name,Value) creates a DBPSK demodulator object, H, with each
specified property set to the specified value. You can specify additional name-value pair arguments in
any order as (Name1,Value1,...,NameN,ValueN).

H = comm.DBPSKDemodulator(PHASE,Name,Value) creates a DBPSK demodulator object, H. This
object has the PhaseRotation property set to PHASE and the other specified properties set to the
specified values.

Properties
PhaseRotation

Additional phase shift

Specify the additional phase difference between previous and current modulated bits in radians as a
real scalar. The default is 0. This value corresponds to the phase difference between previous and
current modulated bits when the input is zero.

OutputDataType

Data type of output
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Specify output data type as one of Full precision | Smallest unsigned integer | double |
single | int8 | uint8 | int16 | uint16 | int32 | uint32 | logical. The default is Full
precision. When you set this property to Full precision, the output data type has the same data
type as the input. In this case, that value must be a double- or single-precision data type.

Methods
step Demodulate using DBPSK method

Common to All System Objects
release Allow System object property value changes
reset Reset internal states of System object

Examples

DBPSK Signal in AWGN

Create a DBPSK modulator and demodulator pair.

dbpskmod = comm.DBPSKModulator(pi/4);
dpbpskdemod = comm.DBPSKDemodulator(pi/4);

Create an error rate calculator. Set the ComputationDelay property to 1 to account for the one bit
transient caused by the differential modulation

errorRate = comm.ErrorRate('ComputationDelay',1);

Main processing loop steps:

• Generate 50-bit frames
• DBPSK modulate
• Pass through AWGN channel
• DBPSK demodulate
• Collect error statistics

for counter = 1:100
    txData = randi([0 1],50,1);
    modSig = dbpskmod(txData);
    rxSig = awgn(modSig,7);
    rxData = dpbpskdemod(rxSig);
    errorStats = errorRate(txData,rxData);
end

Display the error statistics.

ber = errorStats(1)

ber = 0.0040

numErrors = errorStats(2)

numErrors = 20
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numBits = errorStats(3)

numBits = 4999

Algorithms
This object implements the algorithm, inputs, and outputs described on the DBPSK Demodulator
Baseband block reference page. The object properties correspond to the block parameters.

Version History
Introduced in R2012a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.DBPSKModulator | comm.DQPSKModulator
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step
System object: comm.DBPSKDemodulator
Package: comm

Demodulate using DBPSK method

Syntax
Y = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Y = step(H,X) demodulates input data, X, with the DBPSK demodulator System object, H, and
returns Y. Input X must be a double or single precision data type scalar or column vector.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This initialization
locks nontunable properties and input specifications. For more information on changing property
values, see “System Design in MATLAB Using System Objects”.
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comm.DBPSKModulator
Package: comm

Modulate using DBPSK method

Description
The DBPSKModulator object modulates using the differential binary phase shift keying method. The
output is a baseband representation of the modulated signal.

To modulate a signal using differential binary phase shift keying:

1 Define and set up your DBPSK modulator object. See “Construction” on page 3-307.
2 Call step to modulate a signal according to the properties of comm.DBPSKModulator. The

behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
H = comm.DBPSKModulator creates a modulator System object, H. This object modulates the input
signal using the differential binary phase shift keying (DBPSK) method.

H = comm.DBPSKModulator(Name,Value) creates a DBPSK modulator object, H, with each
specified property set to the specified value. You can specify additional name-value pair arguments in
any order as (Name1,Value1,...,NameN,ValueN).

H = comm.DBPSKModulator(PHASE,Name,Value) creates a DBPSK modulator object, H. This
object has the PhaseRotation property set to PHASE, and the other specified properties set to the
specified values.

Properties
PhaseRotation

Additional phase shift

Specify the additional phase difference between previous and current modulated bits in radians as a
real scalar value. The default is 0. This value corresponds to the phase difference between previous
and current modulated bits when the input is zero.

OutputDataType

Data type of output
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Specify output data type as one of double | single. The default is double.

Methods
step Modulate using DBPSK method

Common to All System Objects
release Allow System object property value changes
reset Reset internal states of System object

Examples

DBPSK Signal in AWGN

Create a DBPSK modulator and demodulator pair.

dbpskmod = comm.DBPSKModulator(pi/4);
dpbpskdemod = comm.DBPSKDemodulator(pi/4);

Create an error rate calculator. Set the ComputationDelay property to 1 to account for the one bit
transient caused by the differential modulation

errorRate = comm.ErrorRate('ComputationDelay',1);

Main processing loop steps:

• Generate 50-bit frames
• DBPSK modulate
• Pass through AWGN channel
• DBPSK demodulate
• Collect error statistics

for counter = 1:100
    txData = randi([0 1],50,1);
    modSig = dbpskmod(txData);
    rxSig = awgn(modSig,7);
    rxData = dpbpskdemod(rxSig);
    errorStats = errorRate(txData,rxData);
end

Display the error statistics.

ber = errorStats(1)

ber = 0.0040

numErrors = errorStats(2)

numErrors = 20

numBits = errorStats(3)

numBits = 4999
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Algorithms
This object implements the algorithm, inputs, and outputs described on the DBPSK Modulator
Baseband block reference page. The object properties correspond to the block parameters.

Version History
Introduced in R2012a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.DBPSKDemodulator | comm.DQPSKModulator
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step
System object: comm.DBPSKModulator
Package: comm

Modulate using DBPSK method

Syntax
Y = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Y = step(H,X) modulates input data, X, with the DBPSK modulator System object, H. It returns the
baseband modulated output, Y. The input must be a numeric or logical data type column vector of
bits.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This initialization
locks nontunable properties and input specifications. For more information on changing property
values, see “System Design in MATLAB Using System Objects”.
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comm.Descrambler
Package: comm

Descramble input signal

Description
The comm.Descrambler System object applies multiplicative descrambling to input data. It performs
the inverse operation of the comm.Scrambler object used in the transmitter.

This schematic shows the multiplicative descrambler operation. The adders and subtracter operate
modulo N, where N is the value specified by the Calculation base property.

At each time step, the input causes the contents of the registers to shift sequentially. Using the
Polynomial property, you specify the on or off state for each switch in the descrambler. To make the
comm.Descrambler object reverse the operation of the comm.Scrambler object, use the same
property settings in both objects. If there is no signal delay between the scrambler and the
descrambler, then the InitialConditions in the two objects must be the same.

Note To apply additive descrambling to input data, you can use the comm.PNSequence System
object and the xor function. For an example, see “Additive Scrambling of Input Data” on page 3-1034.

To descramble an input signal:

1 Create the comm.Descrambler object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
descrambler = comm.Descrambler
descrambler = comm.Descrambler(base,poly,cond)
descrambler = comm.Descrambler( ___ ,Name,Value)
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Description

descrambler = comm.Descrambler creates a descrambler System object. This object
descrambles the input data by using a linear feedback shift register that you specify with the
Polynomial property.

descrambler = comm.Descrambler(base,poly,cond) creates the descrambler object with the
CalculationBase property set to base, the Polynomial property set to poly, and the InitialConditions
property set to cond.
Example: comm.Descrambler(8,'1 + x^-2 + x^-3 + x^-5 + x^-7',[0 3 2 2 5 1 7])
sets the calculation base to 8, and the descrambler polynomial and initial conditions as specified.

descrambler = comm.Descrambler( ___ ,Name,Value) sets properties using one or more
name-value pairs and either of the previous syntaxes. Enclose each property name in single quotes.
Example: comm.Descrambler('CalculationBase',2)

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

CalculationBase — Range of input data

4 (default) | nonnegative integer

Range of input data used in the descrambler for modulo operations, specified as a nonnegative
integer. The input and output of this object are integers from 0 to CalculationBase – 1.
Data Types: double

Polynomial — Connections for linear feedback shift registers

'1 + x^-1 + x^-2 + x^-4' (default) | character vector | integer vector | binary vector

Connections for linear feedback shift registers in the descrambler, specified as a character vector,
integer vector, or binary vector. The Polynomial property defines if each switch in the descrambler
is on or off. Specify the polynomial as:

• A character vector, such as '1 + x^-6 + x^-8'. For more details on specifying polynomials in
this way, see “Representation of Polynomials in Communications Toolbox”.

• An integer vector, such as [0 -6 -8], listing the descrambler coefficients in order of descending
powers of x-1, where p(x-1) = 1 + p1x-1 + p2x-2 + ...

• A binary vector, such as [1 0 0 0 0 0 1 0 1], listing the powers of x that appear in the
polynomial that have a coefficient of 1. In this case, the order of the descramble polynomial is one
less than the binary vector length.

Example: '1 + x^-6 + x^-8', [0 -6 -8], and [1 0 0 0 0 0 1 0 1] all represent this
polynomial:
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p(x-1) = 1 + x-6 + x-8

Data Types: double | char

InitialConditionsSource — Initial conditions source

'Property' (default) | 'Input port'

• 'Property' – Specify descrambler initial conditions by using the InitialConditions property.
• 'Input port' – Specify descrambler initial conditions by using an additional input argument,

initcond, when calling the object.

Data Types: char

InitialConditions — Initial conditions of descrambler registers

[0 1 2 3] (default) | nonnegative integer vector

Initial conditions of descrambler registers when the simulation starts, specified as a nonnegative
integer vector. The length of InitialConditions must equal the order of the Polynomial property.
The vector element values must be integers from 0 to CalculationBase – 1.
Dependencies

This property is available when InitialConditionsSource is set to 'Property'.

ResetInputPort — Descrambler state reset port

false (default) | true

Descrambler state reset port, specified as false or true. If ResetInputPort is true, you can reset
the descrambler object by using an additional input argument, reset, when calling the object.
Dependencies

This property is available when InitialConditionsSource is set to 'Property'.

Usage

Syntax
descrambledOut = descrambler(signal)
descrambledOut = descrambler(signal,initcond)
descrambledOut = descrambler(signal,reset)

Description

descrambledOut = descrambler(signal) descrambles the input signal. The output is the same
data type and length as the input vector.

descrambledOut = descrambler(signal,initcond)provides an additional input with values
specifying the initial conditions of the linear feedback shift register.

This syntax applies when you set the InitialConditionsSource property of the object to 'Input
port'.
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descrambledOut = descrambler(signal,reset) provides an additional input indicating
whether to reset the state of the descrambler.

This syntax applies when you set the InitialConditionsSource property of the object to 'Property'
and the ResetInputPort to true.

Input Arguments

signal — Input signal
column vector

Input signal, specified as a column vector.
Example: descrambledOut = descrambler([0 1 1 0 1 0])
Data Types: double | logical

initcond — Initial register condition
nonnegative integer column vector

Initial descrambler register conditions when the simulation starts, specified as a nonnegative integer
column vector. The length of initcond must equal the order of the Polynomial property. The vector
element values must be integers from 0 to CalculationBase – 1.
Example: descrambledOut = descrambler(signal,[0 1 1 0]) corresponds to possible initial
register states for a descrambler with a polynomial order of 4 and a calculation base of 2 or higher.
Data Types: double

reset — Reset initial state of descrambler
scalar

Reset initial state of the descrambler when the simulation starts, specified as a scalar. When the value
of reset is nonzero, the object is reset before it is called.
Example: descrambledOut = descrambler(signal,0) descrambles the input signal without
resetting the descrambler states.
Data Types: double

Output Arguments

out — Descrambled output
column vector

Descrambled output, returned as a column vector with the same data type and length as signal.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
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release Release resources and allow changes to System object property values and input
characteristics

reset Reset internal states of System object

Examples

Scramble and Descramble Data

Scramble and descramble 8-ary data using comm.Scrambler and comm.Descrambler System
objects™ having a calculation base of 8.

Create scrambler and descrambler objects, specifying the calculation base, polynomial, and initial
conditions using input arguments. The scrambler and descrambler polynomials are specified with
different but equivalent data formats.

N = 8;
scrambler = comm.Scrambler(N,'1 + x^-2 + x^-3 + x^-5 + x^-7', ...
    [0 3 2 2 5 1 7]);
descrambler = comm.Descrambler(N,[1 0 1 1 0 1 0 1], ...
    [0 3 2 2 5 1 7]);

Scramble and descramble random integers. Display the original data, scrambled data, and
descrambled data sequences.

data = randi([0 N-1],5,1);
scrData = scrambler(data);
deScrData = descrambler(scrData);
[data scrData deScrData]

ans = 5×3

     6     7     6
     7     5     7
     1     7     1
     7     0     7
     5     3     5

Verify that the descrambled data matches the original data.

isequal(data,deScrData)

ans = logical
   1

Scramble and Descramble Data with Changing Initial Conditions

Scramble and descramble quaternary data while changing the initial conditions between function
calls.
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Create scrambler and descrambler System objects having a calculation base of 4. Set the
InitialConditionsSource property to 'Input port' so you can set the initial conditions as an
argument to the object.

N = 4;
scrambler = comm.Scrambler( ...
    N,'1 + z^-3', ...
    'InitialConditionsSource','Input port');
descrambler = comm.Descrambler( ...
    N,'1 + z^-3', ...
    'InitialConditionsSource','Input port');

Preallocate memory for the error vector which will be used to store errors output by the symerr
function.

errVec = zeros(10,1);

Scramble and descramble random integers while changing the initial conditions, initCond, each
time the loop executes. Use the symerr function to determine if the scrambling and descrambling
operations result in symbol errors.

for k = 1:10
    initCond = randperm(3)';
    data = randi([0 N-1],5,1);
    scrData = scrambler(data,initCond);
    deScrData = descrambler(scrData,initCond);
    errVec(k) = symerr(data,deScrData);
end

Examine errVec to verify that the output from the descrambler matches the original data.

errVec

errVec = 10×1

     0
     0
     0
     0
     0
     0
     0
     0
     0
     0

Additive Scrambling of Input Data

Digital communications systems commonly use additive scrambling to randomize input data to aid in
timing synchronization and power spectral requirements. The comm.Scrambler System object™
implements multiplicative scrambling but does not support additive scrambling. To perform additive
scrambling you can use the comm.PNSequence System object. This example implements the additive
scrambling specified in IEEE 802.11™ by scrambling input data with an output sequence generated
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by the comm.PNSequence System object. For a Simulink® model that implements a similar workflow,
see the “Additive Scrambling of Input Data in Simulink” example.

This figure shows an additive scrambler, that uses the generator polynomial x7 + x4 + 1, as specified
in figure 17-7 of IEEE 802.11 Section 17.3.5.5 [1] on page 3-318.

Comparing the shift register specified in 802.11 with the shift register implementated using a
comm.PNSequence System object, note that the two shift register schematics are mirror images of
each other. Therefore, when configuring the comm.PNSequence System object to implement an
additive scrambler, you must reverse values for the generator polynomial, the initial states, and the
mask output. To take the output of the register from the leading end, specify a shift value of 7.

For more information about the 802.11 scrambler, see [1] on page 3-318 and the wlanScramble
(WLAN Toolbox) reference page.

Define variables for the generator polynomial, shift value for the output, an initial shift register state,
a frame of input data, and a variable containing the 127-bit scrambler sequence specified in section
17.3.5.5 of the IEEE 802.11 standard. Create a PN sequence object that initializes the registers by
using an input argument.

genPoly = 'x^7 + x^3 + 1';   % Generator polynomial
shift = 7;                   % Shift value for output
spf = 127;                   % Samples per frame
initState = [1 1 1 1 1 1 1]; % Initial shift register state
dataIn = randi([0 1],spf,1);
ieee802_11_scram_seq = logical([ ...
    0 0 0 0 1 1 1 0 1 1 1 1 0 0 1 0 1 1 0 0 1 ...
    0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 0 0 0 ...
    1 0 1 1 1 0 1 0 1 1 0 1 1 0 0 0 0 0 1 1 0 ...
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    0 1 1 0 1 0 1 0 0 1 1 1 0 0 1 1 1 1 0 1 1 ...
    0 1 0 0 0 0 1 0 1 0 1 0 1 1 1 1 1 0 1 0 0 ...
    1 0 1 0 0 0 1 1 0 1 1 1 0 0 0 1 1 1 1 1 1 1])';

pnSeq = comm.PNSequence( ...
    Polynomial=genPoly, ...
    InitialConditionsSource="Input Port", ...
    Mask=shift, ...
    SamplesPerFrame=spf, ...
    OutputDataType="logical");
pnsequence = pnSeq(initState);

Compare the PN sequence object output to the IEEE 802.11 127-bit scrambler sequence to confirm
the generated PN sequence matches the 802.11 specified sequence.

isequal(ieee802_11_scram_seq,pnsequence)

ans = logical
   1

Scramble input data according to the 802.11 specified additive scrambler by modulo-adding input
data with the PN sequence output.

scrambledOut = xor(dataIn,pnSeq(initState));

Descramble the scrambled data by applying the same scrambler and initial conditions to the
scrambled data.

descrambledData = xor(scrambledOut,pnSeq(initState));

Verify that the descrambled data matches the input data.

isequal(dataIn,descrambledData)

ans = logical
   1

Reference

[1] IEEE Std 802.11™-2020 (Revision of IEEE Std 802.11™-2016). "Part 11: Wireless LAN Medium
Access Control (MAC) and Physical Layer (PHY) Specifications." IEEE Standard for Information
technology — Telecommunications and information exchange between systems. Local and
metropolitan area networks — Specific requirements.

Version History
Introduced in R2012a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
comm.Scrambler | comm.PNSequence

Blocks
Descrambler
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comm.DifferentialDecoder
Package: comm

Decode binary signal using differential decoding

Description
The DifferentialDecoder object decodes the binary input signal. The output is the logical
difference between the consecutive input element within a channel.

To decode a binary signal using differential decoding:

1 Define and set up your differential decoder object. See “Construction” on page 3-320.
2 Call step to decode a binary signal according to the properties of

comm.DifferentialDecoder. The behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
H = comm.DifferentialDecoder creates a differential decoder System object, H. This object
decodes a binary input signal that was previously encoded using a differential encoder.

H = comm.DifferentialDecoder(Name,Value) creates object, H, with each specified property
set to the specified value. You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties
InitialCondition

Initial value used to generate initial output

Specify the initial condition as a real scalar. This property can have a logical, numeric, or fixed-point
(embedded.fi object) data type. The default is 0. The object treats nonbinary values as binary signals.

Methods
step Decode binary signal using differential decoding

Common to All System Objects
release Allow System object property value changes
reset Reset internal states of System object

3 System Objects

3-320



Examples

Decode Differentially Encoded Signal

Create a differential encoder and decoder pair.

diffEnc = comm.DifferentialEncoder;
diffDec = comm.DifferentialDecoder;

Generate random binary data. Differentially encode and decode the data.

data = randi([0 1],100,1);
encData = diffEnc(data);
decData = diffDec(encData);

Determine the number of errors between the original data and the decoded data.

numErrors = biterr(data,decData)

numErrors = 0

Algorithms
This object implements the algorithm, inputs, and outputs described on the Differential Decoder
block reference page. The object properties correspond to the block parameters, except:
The object only supports single channel, column vector inputs.

Version History
Introduced in R2012a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.DifferentialEncoder
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step
System object: comm.DifferentialDecoder
Package: comm

Decode binary signal using differential decoding

Syntax
Y = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Y = step(H,X) decodes the differentially encoded input data, X, and returns the decoded data, Y.
The input X must be a column vector of data type logical, numeric, or fixed-point (embedded.fi
objects). Y has the same data type as X. The object treats non-binary inputs as binary signals. The
object computes the initial output value by performing an Xor operation of the value in the
InitialCondition property and the first element of the vector you input the first time you call the
step method.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This initialization
locks nontunable properties and input specifications. For more information on changing property
values, see “System Design in MATLAB Using System Objects”.
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comm.DifferentialEncoder
Package: comm

Encode binary signal using differential coding

Description
The DifferentialEncoder object encodes the binary input signal within a channel. The output is
the logical difference between the current input element and the previous output element.

To encode a binary signal using differential coding:

1 Define and set up your differential encoder object. See “Construction” on page 3-323.
2 Call step to encode a binary signal according to the properties of

comm.DifferentialEncoder. The behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
H = comm.DifferentialEncoder creates a differential encoder System object, H. This object
encodes a binary input signal by calculating its logical difference with the previously encoded data.

H = comm.DifferentialEncoder(Name,Value) creates object, H, with each specified property
set to the specified value. You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties
InitialCondition

Initial value used to generate initial output

Specify the initial condition as a real scalar. This property can have a logical, numeric, or fixed-point
(embedded.fi object) data type. The default is 0. The object treats nonbinary values as binary signals.

Methods
step Encode binary signal using differential coding

Common to All System Objects
release Allow System object property value changes
reset Reset internal states of System object
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Examples

Differentially Encode Binary Data

Create a differential encoder object.

diffEnc = comm.DifferentialEncoder;

Generate random binary data. Encode the data.

data = randi([0 1],10,1);
encData = diffEnc(data)

encData = 10×1

     1
     0
     0
     1
     0
     0
     0
     1
     0
     1

Algorithms
This object implements the algorithm, inputs, and outputs described on the Differential Encoder block
reference page. The object properties correspond to the block parameters, except:
The object only supports single channel, column vector inputs.

Version History
Introduced in R2012a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.DifferentialDecoder
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step
System object: comm.DifferentialEncoder
Package: comm

Encode binary signal using differential coding

Syntax
Y = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Y = step(H,X) encodes the binary input data, X, and returns the differentially encoded data, Y. The
input X must be a column vector of data type logical, numeric, or fixed-point (embedded.fi objects). Y
has the same data type as X. The object treats non-binary inputs as binary signals. The object
computes the initial output value by performing an Xor operation of the value in the
InitialCondition property and the first element of the vector you input the first time you call the
step method.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This initialization
locks nontunable properties and input specifications. For more information on changing property
values, see “System Design in MATLAB Using System Objects”.
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comm.DiscreteTimeVCO
Package: comm

Generate variable frequency sinusoid

Description
The DiscreteTimeVCO (voltage-controlled oscillator) object generates a signal whose frequency
shift from the quiescent frequency property is proportional to the input signal. The input signal is
interpreted as a voltage.

To generate a variable frequency sinusoid:

1 Define and set up your discrete time voltage-controlled oscillator object. See “Construction” on
page 3-326 .

2 Call step to generate a variable frequency sinusoid according to the properties of
comm.DiscreteTimeVCO. The behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
H = comm.DiscreteTimeVCO creates a discrete-time voltage-controlled oscillator (VCO) System
object, H. This object generates a sinusoidal signal with the frequency shifted from the specified
quiescent frequency to a value proportional to the input signal.

H = comm.DiscreteTimeVCO(Name,Value) creates a discrete-time VCO object, H, with each
specified property set to the specified value. You can specify additional name-value pair arguments in
any order as (Name1,Value1,...,NameN,ValueN).

Properties
OutputAmplitude

Amplitude of output signal

Specify the amplitude of the output signal as a double- or single-precision, scalar value. The default is
1. This property is tunable.

QuiescentFrequency

Frequency of output signal when input is zero

Specify the quiescent frequency of the output signal in Hertz, as a double- or single-precision, real,
scalar value. The default is 10. This property is tunable.
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Sensitivity

Sensitivity of frequency shift of output signal

Specify the sensitivity of the output signal frequency shift to the input as a double- or single-
precision, real, scalar value. The default is 1. This value scales the input voltage and, consequently,
the shift from the quiescent frequency value. The property measures Sensitivity in Hertz per volt.
This property is tunable.

InitialPhase

Initial phase of output signal

Specify the initial phase of the output signal, in radians, as a double or single precision, real, scalar
value. The default is 0.

SampleRate

Sample rate of input

Specify the sample rate of the input, in Hertz, as a double- or single-precision, positive, scalar value.
The default is 100.

Methods
step Generate variable frequency sinusoid

Common to All System Objects
release Allow System object property value changes
reset Reset internal states of System object

Examples

Generate FSK Signal Using Discrete Time VCO

Create a signal source System object™.

reader = dsp.SignalSource;

Generate random data and apply rectangular pulse shaping.

reader.Signal = randi([0 7],10,1);
reader.Signal = rectpulse(reader.Signal,100);

Create a signal logger and discrete time VCO System objects.

logger = dsp.SignalSink;
discreteVCO = comm.DiscreteTimeVCO( ...
    'OutputAmplitude',8, ...
    'QuiescentFrequency',1);
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Generate an FSK signal.

while(~isDone(reader))
    sig = reader();
    y = discreteVCO(sig);
    logger(y);
end
oscsig = logger.Buffer;

Plot the generated FSK signal.

t = (0:length(oscsig)-1)'/discreteVCO.SampleRate;
plot(t,reader.Signal,'--r', 'LineWidth',3)
hold on
plot(t,oscsig,'-b');
hold off
xlabel('Time (s)')
ylabel('Amplitude (V)')
legend('Input Signal','FSK Signal','location','se')

Algorithms
This object implements the algorithm, inputs, and outputs as described on the Discrete-Time VCO
block reference page. However, this object and the corresponding block may not generate the exact
same outputs for single-precision inputs or property values due to the following differences in casting
strategies and arithmetic precision issues:
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• The block always casts the result of intermediate mathematical operations to the input data type.
The object does not cast intermediate results and MATLAB decides the data type. The object casts
the final output to the input data type.

• You can specify the SampleRate object property in single-precision or double-precision. The block
does not allow this.

• In arithmetic operations with more than two operands with mixed data types, the result may differ
depending on the order of operation. Thus, the following calculation may also contribute to the
difference in the output of the block and the object:

input * sensitivity * sampleTime
• The block performs this calculation from left to right. However, since sensitivity * sampleTime is

a one-time calculation, the object calculates this in the following manner:

input * (sensitivity * sampleTime)

Version History
Introduced in R2012a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.CarrierSynchronizer
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step
System object: comm.DiscreteTimeVCO
Package: comm

Generate variable frequency sinusoid

Syntax
Y = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Y = step(H,X) generates a sinusoidal signal, Y, with frequency shifted, from the value you specify
in the QuiescentFrequency property, to a value proportional to the input signal, X. The input, X,
must be a double or single precision, real, scalar value. The output, Y, has the same data type and
size as the input, X.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This initialization
locks nontunable properties and input specifications. For more information on changing property
values, see “System Design in MATLAB Using System Objects”.
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comm.DPD
Package: comm

Digital predistorter

Description
The comm.DPD System object applies digital predistortion (DPD) to a complex baseband signal by
using a memory polynomial to compensate for nonlinearities in a power amplifier. For more
information, see “Digital Predistortion” on page 3-335.

To predistort signals:

1 Create the comm.DPD object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
dpd = comm.DPD
dpd = comm.DPD(Name,Value)

Description

dpd = comm.DPD creates a digital predistorter System object to predistort a signal.

dpd = comm.DPD(Name,Value) sets properties using one or more name-value pairs. For example,
comm.DPD('PolynomialType','Cross-term memory polynomial') configures the
predistorter System object to predistort the input signal by using a memory polynomial with cross
terms. Enclose each property name in quotes.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

PolynomialType — Polynomial type
'Memory polynomial' (default) | 'Cross-term memory polynomial'

Polynomial type used for predistortion, specified as one of these values:
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• 'Memory polynomial' — Predistorts the input signal by using a memory polynomial without
cross terms.

• 'Cross-term memory polynomial' — Predistorts the input signal by using a memory
polynomial with cross terms.

For more information, see “Digital Predistortion” on page 3-335.

Coefficients — Memory-polynomial coefficients
complex([1 0 0 0 0; 0 0 0 0 0; 0 0 0 0 0]) (default) | matrix

Memory-polynomial coefficients, specified as a matrix. The number of rows in the matrix must equal
the memory depth of the memory polynomial.

• If PolynomialType is 'Memory polynomial', the number of columns in the matrix is the
degree of the memory polynomial.

• If PolynomialType is 'Cross-term memory polynomial', the number of columns in the
matrix must equal m(n-1)+1. m is the memory depth of the polynomial, and n is the degree of the
memory polynomial.

For more information, see “Digital Predistortion” on page 3-335.
Data Types: double
Complex Number Support: Yes

Usage

Syntax
out = dpd(in)

Description

out = dpd(in) predistorts a complex baseband signal by using a memory polynomial to
compensate for nonlinearities in a power amplifier.

Input Arguments

in — Input baseband signal
column vector

Input baseband signal, specified as a column vector.
Data Types: double
Complex Number Support: Yes

Output Arguments

out — Predistorted baseband signal
column vector

Predistorted baseband signal, returned as a column vector of the same length as the input signal.
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Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Predistort Power Amplifier Input Signal

Apply digital predistortion (DPD) to a power amplifier input signal. The DPD coefficient estimator
System object uses a captured signal containing power amplifier input and output signals to
determine the predistortion coefficient matrix.

Load a file containing the input and output signals for the power amplifier.

load('commpowamp_dpd_data.mat','PA_input','PA_output')

Generate a DPD coefficient estimator System object and a raised cosine transmit filter System object.

estimator = comm.DPDCoefficientEstimator( ...
    'DesiredAmplitudeGaindB',10, ...
    'PolynomialType','Memory polynomial', ...
    'Degree',5,'MemoryDepth',3,'Algorithm','Least squares');

rctFilt = comm.RaisedCosineTransmitFilter('OutputSamplesPerSymbol',2);

Estimate the digital predistortion memory-polynomial coefficients.

coef = estimator(PA_input,PA_output);

Generate a DPD System object using coef, the estimated coefficients output from the DPD coefficient
estimator, as for the coefficient matrix.

dpd = comm.DPD('PolynomialType','Memory polynomial', ...
    'Coefficients',coef);

Generate 2000 random symbols and apply 16-QAM modulation to the signal. Apply raised cosine
transmit filtering to the modulated signal.

s = randi([0,15],2000,1);
u = qammod(s,16);
x = rctFilt(u);

Apply digital predistortion to the data. The DPD System object returns a predistorted signal to
provide as input to the power amplifier.

y = dpd(x);
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Format of Coefficient Matrix for Digital Predistortion Memory Polynomial

This example shows the format of the coefficient matrix for the DPD memory polynomial by using a
randomly generated coefficient matrix. Steps in the example include:

• Creation of a digital predistorter System object configured using a memory polynomial coefficient
matrix with the memory depth set to 3 and the polynomial degree set to 5 consisting of random
values.

• Predistortion of a signal using the memory-polynomial coefficient matrix.
• Comparison of one predistorted output element to the corresponding input element that has been

manually computed using the memory-polynomial coefficient matrix.

Create a coefficient matrix representing a predistorter with the output equal to the input by
generating a 3-by-5 coefficient matrix of zeros and setting the coef(1,1) element to 1. Add small
random complex nonlinear terms to the coefficient matrix.

coef = zeros(3,5);
coef(1,1) = 1;
coef = coef + 0.01*(randn(3,5)+1j*randn(3,5));

Create a DPD System object using the memory polynomial coefficient matrix, coef.

dpd = comm.DPD( ...
    'PolynomialType','Memory polynomial', ...
    'Coefficients',coef);

Generate an input signal and predistort it using the dpd System object.

x = randn(20,1) + 1j*randn(20,1);
y = dpd(x);

Compare the manually distorted output for an input corresponding output element y(18) to show
how the coefficient matrix is used to calculate that particular output value.

u = x(18:-1:(18-3+1));
isequal(y(18),sum(sum(coef .* ...
    [u u.*abs(u) u.*(abs(u).^2) u .* (abs(u).^3) u .* (abs(u).^4)])))

ans = logical
   1

Format of Cross-Term Coefficient Matrix for Digital Predistortion Memory Polynomial

This example shows the format of the coefficient matrix for the DPD memory polynomial by using a
randomly generated coefficient matrix. Steps in the example include:

• Creation of a digital predistorter System object configured using a cross-term memory polynomial
coefficient matrix with the memory depth set to 3 and the polynomial degree set to 5 consisting of
random values.
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• Predistortion of a signal using the cross-term memory polynomial coefficient matrix.
• Comparison of one predistorted output element to the corresponding input element that has been

manually computed using the cross-term memory polynomial coefficient matrix.

Create a coefficient matrix representing a predistorter with the output equal to the input by
generating a 3-by-5 coefficient matrix of zeros and setting the coef(1,1) element to 1. Add small
random complex nonlinear terms to the coefficient matrix.

coef = zeros(3,3*(5-1)+1);
coef(1,1) = 1;
coef = coef + 0.01*(randn(3,13) + 1j*randn(3,13));

Create a DPD System object using the cross-term memory polynomial coefficient matrix, coef.

dpd = comm.DPD( ...
    'PolynomialType','Cross-term memory polynomial', ...
    'Coefficients',coef);

Generate an input signal and predistort it using the dpd System object.

x = randn(20,1) + 1j*randn(20,1);
y = dpd(x);

Compare the manually distorted output for an input corresponding output element y(18) to show
how the coefficient matrix is used to calculate that particular output value.

u = x(18:-1:(18-3+1));
isequal(y(18),sum(sum(coef .* ...
    [u u*abs(u.') u*(abs(u.').^2) u*(abs(u.').^3) u*(abs(u.').^4)])))

ans = logical
   1

More About
Digital Predistortion

Wireless communication transmissions commonly require wide bandwidth signal transmission over a
wide signal dynamic range. To transmit signals over a wide dynamic range and achieve high
efficiency, RF power amplifiers (PAs) commonly operate in their nonlinear region. As this constellation
diagram shows, the nonlinear behavior of a PA causes signal constellation distortions that pinch the
amplitude (AM-AM distortion) and twist phase (AM-PM distortion) of constellation points proportional
to the amplitude of the constellation point.
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The goal of digital predistortion is to find a nonlinear function that linearizes the net effect of the PA
nonlinear behavior at the PA output across the PA operating range. When the PA input is x(n), and the
predistortion function is f(u(n)), where u(n) is the true signal to be amplified, the PA output is
approximately equal to G×u(n), where G is the desired amplitude gain of the PA.

The digital predistorter can be configured to use a memory polynomial with or without cross terms.

• The memory polynomial with cross terms predistorts the input signal as

x(n) = f (u(n)) ≜ ∑
m=0

M − 1
cm × u(n‐m) + ∑

m=0

M − 1
∑
j=0

M − 1
∑

k=0

K − 1
am jk × u(n‐m) × u(n‐ j) k .

The memory polynomial with cross terms has (M+M×M×(K-1)) coefficients for cm and amjk.
• The memory polynomial without cross terms predistorts the input signal as

x(n) = f (u(n)) ≜ ∑
m=0

M − 1
∑

k=0

K − 1
amk × u(n‐m) × u(n‐m) k .
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The polynomial without cross terms has M×K coefficients for amk.

Estimating Predistortion Function and Coefficients

The DPD coefficient estimation uses an indirect learning architecture to find function f(u(n)) to
predistort input signal u(n) which precedes the PA input.

The DPD coefficient estimation algorithm models nonlinear PA memory effects based on the work in
reference papers by Morgan, et al [1], and by Schetzen [2], using the theoretical foundation
developed for Volterra systems.

Specifically, the inverse mapping from the PA output normalized by the PA gain, {y(n)/G}, to the PA
input, {x(n)}, provides a good approximation to the function f(u(n)), needed to predistort {u(n)} to
produce {x(n)}.

Referring to the memory polynomial equations above, estimates are computed for the memory-
polynomial coefficients:

• cm and amjk for a memory polynomial with cross terms
• amk for a memory polynomial without cross terms

The memory-polynomial coefficients are estimated by using a least squares fit algorithm or a
recursive least squares algorithm. The least squares fit algorithm or a recursive least squares
algorithms use the memory polynomial equations above for a memory polynomial with or without
cross terms, by replacing {u(n)} with {y(n)/G}. The function order and dimension of the coefficient
matrix are defined by the degree and depth of the memory polynomial.

For an example that details the process of accurately estimating memory-polynomial coefficients and
predistorting a PA input signal, see “Digital Predistortion to Compensate for Power Amplifier
Nonlinearities”.

For background reference material, see the works listed in [1] and [2].

Version History
Introduced in R2019a

References
[1] Morgan, Dennis R., Zhengxiang Ma, Jaehyeong Kim, Michael G. Zierdt, and John Pastalan. "A

Generalized Memory Polynomial Model for Digital Predistortion of Power Amplifiers." IEEE
Transactions on Signal Processing. Vol. 54, Number 10, October 2006, pp. 3852–3860.

[2] M. Schetzen. The Volterra and Wiener Theories of Nonlinear Systems. New York: Wiley, 1980.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).
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See Also
Objects
comm.DPDCoefficientEstimator

Blocks
DPD

Topics
“Digital Predistortion to Compensate for Power Amplifier Nonlinearities”
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comm.DPDCoefficientEstimator
Package: comm

Estimate memory-polynomial coefficients for digital predistortion

Description
The comm.DPDCoefficientEstimator System object estimates the coefficients of a memory
polynomial for digital pre-distortion (DPD) of a nonlinear power amplifier, given the baseband
equivalent input and baseband equivalent output of the power amplifier. For more information, see
“Digital Predistortion” on page 3-345.

To compute predistortion coefficients:

1 Create the comm.DPDCoefficientEstimator object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
estimator = comm.DPDCoefficientEstimator
estimator = comm.DPDCoefficientEstimator(Name,Value)

Description

estimator = comm.DPDCoefficientEstimator creates a digital predistortion coefficient
estimator System object to estimate the coefficients of a memory polynomial for digital predistortion
(DPD) of a nonlinear power amplifier.

estimator = comm.DPDCoefficientEstimator(Name,Value) sets properties using one or
more name-value pairs. For example,
comm.DPDCoefficientEstimator('PolynomialType','Cross-term memory polynomial')
configures the predistortion coefficient estimator System object to estimate the coefficients for a
memory-polynomial with cross terms. Enclose each property name in quotes.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.
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DesiredAmplitudeGaindB — Desired amplitude gain
10 (default) | scalar

Desired amplitude gain in dB, specified as a scalar. This property value expresses the desired signal
gain at the compensated amplifier output.

In addition to linearization, the DPD should make the combined gain between the DPD input and the
power amplifier output as close as possible to the expected gain. Therefore, set this property based
on the expected gain of the power amplifier that you obtain during PA characterization.

Tunable: Yes
Data Types: double

PolynomialType — Polynomial type
'Memory polynomial' (default) | 'Cross-term memory polynomial'

Polynomial type used for predistortion, specified as one of these values:

• 'Memory polynomial' — Computes predistortion coefficients by using a memory polynomial
without cross terms

• 'Cross-term memory polynomial' — Computes predistortion coefficients by using a memory
polynomial with cross terms

For more information, see “Digital Predistortion” on page 3-345.

Degree — Memory-polynomial degree
5 (default) | positive integer

Memory-polynomial degree, specified as a positive integer.
Data Types: double

MemoryDepth — Memory-polynomial depth
3 (default) | positive integer

Memory-polynomial depth in samples, specified as a positive integer.
Data Types: double

Algorithm — Estimation algorithm
'Least squares' (default) | 'Recursive least squares'

Adaptive algorithm used for equalization, specified as one of these values:

• 'Least squares' — Estimate the memory polynomial coefficients by using a least squares
algorithm

• 'Recursive least squares' — Estimate the memory polynomial coefficients by using a
recursive least squares algorithm

For algorithm reference material, see the works listed in [1] and [2].
Data Types: char | string

ForgettingFactor — Forgetting factor
0.99 (default) | scalar in the range (0, 1]
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Forgetting factor used by the recursive least squares algorithm, specified as a scalar in the range (0,
1]. Decreasing the forgetting factor reduces the convergence time but causes the output estimates to
be less stable.

Tunable: Yes

Dependencies

To enable this property, set Algorithm to 'Recursive least squares'.
Data Types: double

InitialCoefficientEstimate — Initial coefficient estimate
[] (default) | matrix

Initial coefficient estimate for the recursive least squares algorithm, specified as a matrix.

• If InitialCoefficientEstimate is an empty matrix, the initial coefficient estimate for the
recursive least squares algorithm is chosen automatically to correspond to a memory polynomial
that is an identity function, so that the output is equal to input.

• If InitialCoefficientEstimate is a nonempty matrix, the number of rows must be equal to
MemoryDepth.

• If PolynomialType is 'Memory polynomial', the number of columns is the degree of the
memory polynomial.

• If PolynomialType is 'Cross-term memory polynomial', the number of columns must
equal m(n-1)+1. m is the memory depth of the polynomial, and n is the degree of the memory
polynomial.

For more information, see “Digital Predistortion” on page 3-345.

Dependencies

To enable this property, set Algorithm to 'Recursive least squares'.
Data Types: double
Complex Number Support: Yes

Usage

Syntax
coef = estimator(paIn,paOut)

Description

coef = estimator(paIn,paOut) estimates the coefficients of a memory polynomial for use by the
comm.DPD System object to predistort a complex baseband signal by using a memory-polynomial to
compensate for nonlinearities in a power amplifier.

Input Arguments

paIn — Power amplifier baseband equivalent input
column vector
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Power amplifier baseband equivalent input, specified as a column vector.
Data Types: double
Complex Number Support: Yes

paOut — Power amplifier baseband equivalent output
column vector

Power amplifier baseband equivalent output, specified as a column vector of the same length as
paIn.
Data Types: double
Complex Number Support: Yes

Output Arguments

coef — Memory-polynomial coefficients
matrix

Memory-polynomial coefficients, returned as a matrix. For more information, see “Digital
Predistortion” on page 3-345.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Predistort Power Amplifier Input Signal

Apply digital predistortion (DPD) to a power amplifier input signal. The DPD coefficient estimator
System object uses a captured signal containing power amplifier input and output signals to
determine the predistortion coefficient matrix.

Load a file containing the input and output signals for the power amplifier.

load('commpowamp_dpd_data.mat','PA_input','PA_output')

Generate a DPD coefficient estimator System object and a raised cosine transmit filter System object.

estimator = comm.DPDCoefficientEstimator( ...
    'DesiredAmplitudeGaindB',10, ...
    'PolynomialType','Memory polynomial', ...
    'Degree',5,'MemoryDepth',3,'Algorithm','Least squares');
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rctFilt = comm.RaisedCosineTransmitFilter('OutputSamplesPerSymbol',2);

Estimate the digital predistortion memory-polynomial coefficients.

coef = estimator(PA_input,PA_output);

Generate a DPD System object using coef, the estimated coefficients output from the DPD coefficient
estimator, as for the coefficient matrix.

dpd = comm.DPD('PolynomialType','Memory polynomial', ...
    'Coefficients',coef);

Generate 2000 random symbols and apply 16-QAM modulation to the signal. Apply raised cosine
transmit filtering to the modulated signal.

s = randi([0,15],2000,1);
u = qammod(s,16);
x = rctFilt(u);

Apply digital predistortion to the data. The DPD System object returns a predistorted signal to
provide as input to the power amplifier.

y = dpd(x);

Format of Coefficient Matrix for Digital Predistortion Memory Polynomial

This example shows the format of the coefficient matrix for the DPD memory polynomial by using a
randomly generated coefficient matrix. Steps in the example include:

• Creation of a digital predistorter System object configured using a memory polynomial coefficient
matrix with the memory depth set to 3 and the polynomial degree set to 5 consisting of random
values.

• Predistortion of a signal using the memory-polynomial coefficient matrix.
• Comparison of one predistorted output element to the corresponding input element that has been

manually computed using the memory-polynomial coefficient matrix.

Create a coefficient matrix representing a predistorter with the output equal to the input by
generating a 3-by-5 coefficient matrix of zeros and setting the coef(1,1) element to 1. Add small
random complex nonlinear terms to the coefficient matrix.

coef = zeros(3,5);
coef(1,1) = 1;
coef = coef + 0.01*(randn(3,5)+1j*randn(3,5));

Create a DPD System object using the memory polynomial coefficient matrix, coef.

dpd = comm.DPD( ...
    'PolynomialType','Memory polynomial', ...
    'Coefficients',coef);

Generate an input signal and predistort it using the dpd System object.

x = randn(20,1) + 1j*randn(20,1);
y = dpd(x);
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Compare the manually distorted output for an input corresponding output element y(18) to show
how the coefficient matrix is used to calculate that particular output value.

u = x(18:-1:(18-3+1));
isequal(y(18),sum(sum(coef .* ...
    [u u.*abs(u) u.*(abs(u).^2) u .* (abs(u).^3) u .* (abs(u).^4)])))

ans = logical
   1

Format of Cross-Term Coefficient Matrix for Digital Predistortion Memory Polynomial

This example shows the format of the coefficient matrix for the DPD memory polynomial by using a
randomly generated coefficient matrix. Steps in the example include:

• Creation of a digital predistorter System object configured using a cross-term memory polynomial
coefficient matrix with the memory depth set to 3 and the polynomial degree set to 5 consisting of
random values.

• Predistortion of a signal using the cross-term memory polynomial coefficient matrix.
• Comparison of one predistorted output element to the corresponding input element that has been

manually computed using the cross-term memory polynomial coefficient matrix.

Create a coefficient matrix representing a predistorter with the output equal to the input by
generating a 3-by-5 coefficient matrix of zeros and setting the coef(1,1) element to 1. Add small
random complex nonlinear terms to the coefficient matrix.

coef = zeros(3,3*(5-1)+1);
coef(1,1) = 1;
coef = coef + 0.01*(randn(3,13) + 1j*randn(3,13));

Create a DPD System object using the cross-term memory polynomial coefficient matrix, coef.

dpd = comm.DPD( ...
    'PolynomialType','Cross-term memory polynomial', ...
    'Coefficients',coef);

Generate an input signal and predistort it using the dpd System object.

x = randn(20,1) + 1j*randn(20,1);
y = dpd(x);

Compare the manually distorted output for an input corresponding output element y(18) to show
how the coefficient matrix is used to calculate that particular output value.

u = x(18:-1:(18-3+1));
isequal(y(18),sum(sum(coef .* ...
    [u u*abs(u.') u*(abs(u.').^2) u*(abs(u.').^3) u*(abs(u.').^4)])))

ans = logical
   1

3 System Objects

3-344



More About
Digital Predistortion

Wireless communication transmissions commonly require wide bandwidth signal transmission over a
wide signal dynamic range. To transmit signals over a wide dynamic range and achieve high
efficiency, RF power amplifiers (PAs) commonly operate in their nonlinear region. As this constellation
diagram shows, the nonlinear behavior of a PA causes signal constellation distortions that pinch the
amplitude (AM-AM distortion) and twist phase (AM-PM distortion) of constellation points proportional
to the amplitude of the constellation point.

The goal of digital predistortion is to find a nonlinear function that linearizes the net effect of the PA
nonlinear behavior at the PA output across the PA operating range. When the PA input is x(n), and the
predistortion function is f(u(n)), where u(n) is the true signal to be amplified, the PA output is
approximately equal to G×u(n), where G is the desired amplitude gain of the PA.

The digital predistorter can be configured to use a memory polynomial with or without cross terms.
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• The memory polynomial with cross terms predistorts the input signal as

x(n) = f (u(n)) ≜ ∑
m=0

M − 1
cm × u(n‐m) + ∑

m=0

M − 1
∑
j=0

M − 1
∑

k=0

K − 1
am jk × u(n‐m) × u(n‐ j) k .

The memory polynomial with cross terms has (M+M×M×(K-1)) coefficients for cm and amjk.
• The memory polynomial without cross terms predistorts the input signal as

x(n) = f (u(n)) ≜ ∑
m=0

M − 1
∑

k=0

K − 1
amk × u(n‐m) × u(n‐m) k .

The polynomial without cross terms has M×K coefficients for amk.

Estimating Predistortion Function and Coefficients

The DPD coefficient estimation uses an indirect learning architecture to find function f(u(n)) to
predistort input signal u(n) which precedes the PA input.

The DPD coefficient estimation algorithm models nonlinear PA memory effects based on the work in
reference papers by Morgan, et al [1], and by Schetzen [2], using the theoretical foundation
developed for Volterra systems.

Specifically, the inverse mapping from the PA output normalized by the PA gain, {y(n)/G}, to the PA
input, {x(n)}, provides a good approximation to the function f(u(n)), needed to predistort {u(n)} to
produce {x(n)}.

Referring to the memory polynomial equations above, estimates are computed for the memory-
polynomial coefficients:

• cm and amjk for a memory polynomial with cross terms
• amk for a memory polynomial without cross terms

The memory-polynomial coefficients are estimated by using a least squares fit algorithm or a
recursive least squares algorithm. The least squares fit algorithm or a recursive least squares
algorithms use the memory polynomial equations above for a memory polynomial with or without
cross terms, by replacing {u(n)} with {y(n)/G}. The function order and dimension of the coefficient
matrix are defined by the degree and depth of the memory polynomial.

For an example that details the process of accurately estimating memory-polynomial coefficients and
predistorting a PA input signal, see “Digital Predistortion to Compensate for Power Amplifier
Nonlinearities”.

For background reference material, see the works listed in [1] and [2].

Version History
Introduced in R2019a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).
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Blocks
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comm.DPSKDemodulator
Package: comm

Demodulate using M-ary DPSK method

Description
The DPSKDemodulator object demodulates a signal that was modulated using the M-ary differential
phase shift keying method. The input is a baseband representation of the modulated signal. The input
and output for this object are discrete-time signals. This object accepts a scalar-valued or column
vector input signal.

To demodulate a signal that was modulated using differential phase shift keying:

1 Define and set up your DPSK modulator object. See “Construction” on page 3-348.
2 Call step to demodulate a signal according to the properties of DPSKDemodulator. The

behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
H = comm.DPSKDemodulator creates a demodulator System object, H. This object demodulates the
input signal using the M-ary differential phase shift keying (M-DPSK) method.

H = comm.DPSKDemodulator(Name,Value) creates an M-DPSK demodulator object, H, with each
specified property set to the specified value. You can specify additional name-value pair arguments in
any order as (Name1,Value1,...,NameN,ValueN).

H = comm.DPSKDemodulator(M,PHASE,Name,Value) creates an M-DPSK demodulator object, H.
This object has the ModulationOrder property set to M, the PhaseRotation property set to PHASE,
and the other specified properties set to the specified values.

Properties
ModulationOrder

Number of points in signal constellation

Specify the number of points in the signal constellation as a positive, integer scalar value. The default
is 8.

PhaseRotation

Additional phase shift
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Specify the additional phase difference between previous and current modulated symbols in radians
as a real scalar value. The default is pi/8. This value corresponds to the phase difference between
previous and current modulated symbols when the input is zero.

BitOutput

Output data as bits

Specify whether the output consists of groups of bits or integer symbol values. The default is false.
When you set this property to true the step method outputs a column vector of bit values. The
length of this column vector is equal to log2(ModulationOrder on page 3-0 ) times the number of
demodulated symbols.

When you set this property to false, the step method outputs a column vector. The length of this
column vector is equal to that of the input data vector. The output contains integer symbol values
between 0 and ModulationOrder-1.

SymbolMapping

Constellation encoding

Specify how the object maps an integer or group of log2(ModulationOrder on page 3-0 ) bits to
the corresponding symbol as one of Binary | Gray. The default is Gray. When you set this property
to Gray, the object uses a Gray-encoded signal constellation. When you set this property to Binary,
the input integer m, between (0 ≤ m ≤ ModulationOrder–1) maps to the current symbol. This
mapping uses exp(j×PhaseRotation + j×2 × π ×m/ModulationOrder)×(previously modulated
symbol).

OutputDataType

Data type of output

Specify the output data type as one of Full precision | Smallest unsigned integer | double
| single | int8 | uint8 | int16 | uint16 | int32 | uint32. The default is Full precision.
When you set this property to Full precision, the input data type is single or double precision, the
output data is the same as that of the input. When you set the BitOutput on page 3-0  property to
true, logical data type becomes a valid option.

Methods

step Demodulate using M-ary DPSK method

Common to All System Objects
release Allow System object property value changes
reset Reset internal states of System object

Examples
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8-DPSK Signal in AWGN

Create a DPSK modulator and demodulator pair. Create an AWGN channel object having three bits
per symbol.

dpskmod = comm.DPSKModulator(8,pi/8,'BitInput',true);
dpskdemod = comm.DPSKDemodulator(8,pi/8,'BitOutput',true);
channel = comm.AWGNChannel('EbNo',10,'BitsPerSymbol',3);

Create an error rate calculator. Set the ComputationDelay property to 1 to account for the one bit
transient caused by the differential modulation

errorRate = comm.ErrorRate('ComputationDelay',1);

Main processing loop steps:

• Generate 50 3-bit frames
• 8-DPSK modulate
• Pass through AWGN channel
• 8-DPSK demodulate
• Collect error statistics

for counter = 1:100
    txData = randi([0 1],150,1);
    modSig = dpskmod(txData);
    rxSig = channel(modSig);
    rxData = dpskdemod(rxSig);
    errorStats = errorRate(txData,rxData);
end

Display the error statistics.

ber = errorStats(1)

ber = 0.0098

numErrors = errorStats(2)

numErrors = 147

numBits = errorStats(3)

numBits = 14999

Algorithms
This object implements the algorithm, inputs, and outputs described on the M-DPSK Demodulator
Baseband block reference page. The object properties correspond to the block parameters.

Version History
Introduced in R2012a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.DPSKModulator | comm.DBPSKDemodulator | comm.DQPSKDemodulator
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step
System object: comm.DPSKDemodulator
Package: comm

Demodulate using M-ary DPSK method

Syntax
Y = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Y = step(H,X) demodulates input data, X, with the DPSK demodulator System object, H, and
returns Y. Input X must be a double or single precision data type scalar or column vector. Depending
on the BitOutput property value, output Y can be integer or bit valued.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This initialization
locks nontunable properties and input specifications. For more information on changing property
values, see “System Design in MATLAB Using System Objects”.
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comm.DPSKModulator
Package: comm

Modulate using M-ary DPSK method

Description
The DPSKModulator object modulates using the M-ary differential phase shift keying method. The
output is a baseband representation of the modulated signal.

To modulate a signal using differential phase shift keying:

1 Define and set up your DPSK modulator object. See “Construction” on page 3-353.
2 Call step to modulate a signal according to the properties of comm.DPSKModulator. The

behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
H = comm.DPSKModulator creates a modulator System object, H. This object modulates the input
signal using the M-ary differential phase shift keying (M-DPSK) method.

H = comm.DPSKModulator(Name,Value) creates an M-DPSK modulator object, H, with each
specified property set to the specified value. You can specify additional name-value pair arguments in
any order as (Name1,Value1,...,NameN,ValueN).

H = comm.DPSKModulator(M,PHASE,Name,Value) creates an M-DPSK modulator object, H. This
object has the ModulationOrder property set to M, the PhaseRotation property set to PHASE, and
the other specified properties set to the specified values.

Properties
ModulationOrder

Number of points in signal constellation

Specify the number of points in the signal constellation as a positive, integer scalar value. The default
is 8.

PhaseRotation

Additional phase shift
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Specify the additional phase difference between previous and current modulated symbols in radians
as a real scalar value. The default is pi/8. This value corresponds to the phase difference between
previous and current modulated symbols when the input is zero.

BitInput

Assume bit inputs

Specify whether the input is bits or integers. The default is false. When you set this property to
true, the step method input must be a column vector of bit values whose length is an integer
multiple of log2(ModulationOrder on page 3-0 ). This vector contains bit representations of
integers between 0 and ModulationOrder–1. When you set this property to false, the step
method input requires a column vector of integer symbol values between 0 and ModulationOrder–
1.

SymbolMapping

Constellation encoding

Specify how the object maps an integer or group of log2(ModulationOrder on page 3-0 ) input
bits to the corresponding symbol as one of Binary | Gray. The default is Gray. When you set this
property to Gray, the object uses a Gray-encoded signal constellation. When you set this property to
Binary, the input integer m, between (0 ≤ m ≤ ModulationOrder–1) shifts the output phase. This
shift is (PhaseRotation on page 3-0  + 2 × π ×m/ModulationOrder) radians from the previous
output phase. The output symbol uses exp(j×PhaseRotation + j×2 × π ×m/ModulationOrder)×
(previously modulated symbol).

OutputDataType

Data type of output

Specify output data type as one of double | single. The default is double.

Methods

step Modulate using M-ary DPSK method

Common to All System Objects
release Allow System object property value changes
reset Reset internal states of System object

Examples

8-DPSK Signal in AWGN

Create a DPSK modulator and demodulator pair. Create an AWGN channel object having three bits
per symbol.
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dpskmod = comm.DPSKModulator(8,pi/8,'BitInput',true);
dpskdemod = comm.DPSKDemodulator(8,pi/8,'BitOutput',true);
channel = comm.AWGNChannel('EbNo',10,'BitsPerSymbol',3);

Create an error rate calculator. Set the ComputationDelay property to 1 to account for the one bit
transient caused by the differential modulation

errorRate = comm.ErrorRate('ComputationDelay',1);

Main processing loop steps:

• Generate 50 3-bit frames
• 8-DPSK modulate
• Pass through AWGN channel
• 8-DPSK demodulate
• Collect error statistics

for counter = 1:100
    txData = randi([0 1],150,1);
    modSig = dpskmod(txData);
    rxSig = channel(modSig);
    rxData = dpskdemod(rxSig);
    errorStats = errorRate(txData,rxData);
end

Display the error statistics.

ber = errorStats(1)

ber = 0.0098

numErrors = errorStats(2)

numErrors = 147

numBits = errorStats(3)

numBits = 14999

Algorithms
This object implements the algorithm, inputs, and outputs described on the M-DPSK Modulator
Baseband block reference page. The object properties correspond to the block parameters.

Version History
Introduced in R2012a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

 comm.DPSKModulator

3-355



See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.DPSKDemodulator | comm.DBPSKModulator | comm.DQPSKModulator

3 System Objects

3-356



step
System object: comm.DPSKModulator
Package: comm

Modulate using M-ary DPSK method

Syntax
Y = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Y = step(H,X) modulates input data, X, with the DPSK modulator System object, H. It returns the
baseband modulated output, Y. Depending on the value of the BitInput property, input X can be an
integer or bit valued column vector with numeric or logical data types.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This initialization
locks nontunable properties and input specifications. For more information on changing property
values, see “System Design in MATLAB Using System Objects”.
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comm.DQPSKDemodulator
Package: comm

Demodulate using DQPSK method

Description
The DQPSKDemodulator object demodulates a signal that was modulated using the differential
quadrature phase shift keying method. The input is a baseband representation of the modulated
signal.

To demodulate a signal that was modulated using differential quadrature phase shift keying:

1 Define and set up your DQPSK modulator object. See “Construction” on page 3-358.
2 Call step to demodulate a signal according to the properties of DQPSKDemodulator. The

behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
H = comm.DQPSKDemodulator creates a demodulator System object, H. This object demodulates
the input signal using the differential quadrature phase shift keying (DQPSK) method.

H = comm.DQPSKDemodulator(Name,Value) creates a DQPSK demodulator object, H, with each
specified property set to the specified value. You can specify additional name-value pair arguments in
any order as (Name1,Value1,...,NameN,ValueN).

H = comm.DQPSKDemodulator(PHASE,Name,Value) creates a DQPSK demodulator object, H.
This object has the PhaseRotation property set to PHASE and the other specified properties set to
the specified values.

Properties
PhaseRotation

Additional phase shift

Specify the additional phase difference between previous and current modulated symbols in radians
as a real scalar. The default is pi/4. This value corresponds to the phase difference between previous
and current modulated symbols when the input is zero.

BitOutput

Output data as bits
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Specify whether the output consists of groups of bits or integer symbol values. The default is false.
When you set this property to true the step method outputs a column vector of bit values with
length equal to twice the number of demodulated symbols. When you set this property to false, the
step method outputs a column vector, of length equal to the input data vector, that contains integer
symbol values between 0 and 3.

SymbolMapping

Constellation encoding

Specify how the object maps an integer or group of 2 bits to the corresponding symbol as one of
Binary | Gray. The default is Gray. When you set this property to Gray, the object uses a Gray-
encoded signal constellation. When you set this property to Binary, the integer m, between
0 ≤ m ≤ 3 maps to the current symbol as exp(j×PhaseRotation on page 3-0  + j×2 × π × m 4)×
(previously modulated symbol).

OutputDataType

Data type of output

Specify the output data type as one of Full precision | Smallest unsigned integer | double
| single | int8 | uint8 | int16 | uint16 | int32 | uint32. The default is Full precision.
When you set this property to Full precision the output has the same data type as that of the
input. In this case, the input data type is single- or double-precision value. When you set the
BitOutput on page 3-0  property to true, logical data type becomes a valid option.

Methods
step Demodulate using DQPSK method

Common to All System Objects
release Allow System object property value changes
reset Reset internal states of System object

Examples

DQPSK Signal in AWGN

Create a DQPSK modulator and demodulator pair. Create an AWGN channel object having two bits
per symbol.

dqpskmod = comm.DQPSKModulator('BitInput',true);
dqpskdemod = comm.DQPSKDemodulator('BitOutput',true);
channel = comm.AWGNChannel('EbNo',6,'BitsPerSymbol',2);

Create an error rate calculator. Set the ComputationDelay property to 1 to account for the one bit
transient caused by the differential modulation

errorRate = comm.ErrorRate('ComputationDelay',1);
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Main processing loop steps:

• Generate 50 2-bit frames
• 8-DPSK modulate
• Pass through AWGN channel
• 8-DPSK demodulate
• Collect error statistics

for counter = 1:100
    txData = randi([0 1],100,1);
    modSig = dqpskmod(txData);
    rxSig = channel(modSig);
    rxData = dqpskdemod(rxSig);
    errorStats = errorRate(txData,rxData);
end

Display the error statistics.

ber = errorStats(1)

ber = 0.0170

numErrors = errorStats(2)

numErrors = 170

numBits = errorStats(3)

numBits = 9999

Algorithms
This object implements the algorithm, inputs, and outputs described on the DQPSK Demodulator
Baseband block reference page. The object properties correspond to the block parameters.

Version History
Introduced in R2012a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.DQPSKModulator | comm.DPSKDemodulator | comm.DBPSKDemodulator

3 System Objects

3-360



step
System object: comm.DQPSKDemodulator
Package: comm

Demodulate using DQPSK method

Syntax
Y = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Y = step(H,X) demodulates input data, X, with the DQPSK demodulator System object, H, and
returns Y. Input X must be a single or double precision data type scalar or column vector. Depending
on the BitOutput property value, output Y can be integer or bit valued.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This initialization
locks nontunable properties and input specifications. For more information on changing property
values, see “System Design in MATLAB Using System Objects”.
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comm.DQPSKModulator
Package: comm

Modulate using DQPSK method

Description
The DQPSKModulator object modulates using the differential quadrature phase shift keying method.
The output is a baseband representation of the modulated signal.

To modulate a signal using differential quadrature phase shift keying:

1 Define and set up your DQPSK modulator object. See “Construction” on page 3-362.
2 Call step to modulate a signal according to the properties of comm.DQPSKModulator. The

behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
H = comm.DQPSKModulator creates a modulator System object, H. This object modulates the input
signal using the differential quadrature phase shift keying (DQPSK) method.

H = comm.DQPSKModulator(Name,Value) creates a DQPSK modulator object, H, with each
specified property set to the specified value. You can specify additional name-value pair arguments in
any order as (Name1,Value1,...,NameN,ValueN).

H = comm.DQPSKModulator(PHASE,Name,Value) creates a DQPSK modulator object, H. This
object has the PhaseRotation property set to PHASE and the other specified properties set to the
specified values.

Properties
PhaseRotation

Additional phase shift

Specify the additional phase difference between previous and current modulated symbols in radians
as a real scalar value. The default is pi/4. This value corresponds to the phase difference between
previous and current modulated symbols when the input is zero.

BitInput

Assume bit inputs
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Specify whether the input is bits or integers. The default is false. When you set this property to
true, the step method input must be a column vector of bit values. The length of this vector is an
integer multiple of two. This vector contains bit representations of integers between 0 and 3. When
you set this property to false, the step method input must be a column vector of integer symbol
values between 0 and 3.

SymbolMapping

Constellation encoding

Specify how the object maps an integer or group of two input bits to the corresponding symbol as one
of Binary | Gray. The default is Gray. When you set this property to Gray, the object uses a Gray-
encoded signal constellation. When you set this property to Binary, the input integer m, between
0 ≤ m ≤ 3 shifts the output phase. This shift is (PhaseRotation on page 3-0  + 2 × π × m 4)
radians from the previous output phase. The output symbol is exp(j×PhaseRotation + j×
2 × π × m 4)×(previously modulated symbol).

OutputDataType

Data type of output

Specify output data type as one of double | single. The default is double.

Methods

step Modulate using DQPSK method

Common to All System Objects
release Allow System object property value changes
reset Reset internal states of System object

Examples

DQPSK Signal in AWGN

Create a DQPSK modulator and demodulator pair. Create an AWGN channel object having two bits
per symbol.

dqpskmod = comm.DQPSKModulator('BitInput',true);
dqpskdemod = comm.DQPSKDemodulator('BitOutput',true);
channel = comm.AWGNChannel('EbNo',6,'BitsPerSymbol',2);

Create an error rate calculator. Set the ComputationDelay property to 1 to account for the one bit
transient caused by the differential modulation

errorRate = comm.ErrorRate('ComputationDelay',1);

Main processing loop steps:
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• Generate 50 2-bit frames
• 8-DPSK modulate
• Pass through AWGN channel
• 8-DPSK demodulate
• Collect error statistics

for counter = 1:100
    txData = randi([0 1],100,1);
    modSig = dqpskmod(txData);
    rxSig = channel(modSig);
    rxData = dqpskdemod(rxSig);
    errorStats = errorRate(txData,rxData);
end

Display the error statistics.

ber = errorStats(1)

ber = 0.0170

numErrors = errorStats(2)

numErrors = 170

numBits = errorStats(3)

numBits = 9999

Algorithms
This object implements the algorithm, inputs, and outputs described on the DQPSK Modulator
Baseband block reference page. The object properties correspond to the block parameters.

Version History
Introduced in R2012a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.DQPSKDemodulator | comm.DPSKModulator | comm.DBPSKModulator
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step
System object: comm.DQPSKModulator
Package: comm

Modulate using DQPSK method

Syntax
Y = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Y = step(H,X) modulates input data, X, with the DQPSK modulator System object, H. It returns the
baseband modulated output, Y. Depending on the value of the BitInput property, input X can be an
integer or bit valued column vector with numeric or logical data types.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This initialization
locks nontunable properties and input specifications. For more information on changing property
values, see “System Design in MATLAB Using System Objects”.
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comm.ErrorRate
Package: comm

Compute bit or symbol error rate of input data

Description
The comm.ErrorRate object compares input data from a transmitter with input data from a receiver
and calculates the error rate as a running statistic. To obtain the error rate, the object divides the
total number of unequal pairs of data elements by the total number of input data elements from one
source.

To compute the error rate:

1 Create the comm.ErrorRate object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
errorRate = comm.ErrorRate
errorRate = comm.ErrorRate(Name=Value)

Description

errorRate = comm.ErrorRate creates an error rate calculator System object. This object
computes the error rate of the received data by comparing it to the transmitted data.

errorRate = comm.ErrorRate(Name=Value) sets “Properties” on page 3-366 using one or more
name-value arguments. For example, ReceiveDelay = 5 specifies that the received data lags
behind the transmitted data by five samples.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

ReceiveDelay — Received signal delay
0 (default) | nonnegative integer
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Number of samples by which the received data lags behind the transmitted data, specified as a
nonnegative integer. Use this property to align the samples for comparison in the transmitted and
received input data vectors.
Data Types: double

ComputationDelay — Computation delay
0 (default) | nonnegative scalar

Number of data samples that the object ignores at the beginning of the comparison, specified as a
nonnegative integer. Use this property to ignore the transient behavior of both input signals.
Data Types: double

Samples — Samples to consider
Entire frame (default) | Custom | Input port

Samples to consider, specified as one of these values.

• Entire frame — Compare all the samples of the received data to those of the transmitted frame
• Custom — Set the indices of the samples to consider when making comparisons in the

CustomSamples property
• Input port — Set the indices of the samples to consider when making comparisons in the ind

input

Data Types: char | string

CustomSamples — Sample indices
[] (default) | positive integer | column vector of positive integers

Indices of the samples to consider when comparing data, specified as a positive integer or column
vector of positive integers. The default value is an empty vector, which corresponds to the object
using all samples from the received frame.
Dependencies

To enable this property, set the Samples property to Custom.
Data Types: double

ResetInputPort — Enable reset input
false or 0 (default) | true or 1

Enable the reset input, specified as a logical 1 (true) or 0 (false).
Data Types: logical

Usage

Syntax
y = errorRate(tx,rx)
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y = errorRate(tx,rx,ind)
y = errorRate( ___ ,reset)

Description

y = errorRate(tx,rx) counts the number of differences between transmitted and received data
vectors tx and rx, respectively.

y = errorRate(tx,rx,ind) counts the number of differences between the transmitted and
received data vectors based on sample indices ind. To enable this syntax, set the Samples property
to Input port.

y = errorRate( ___ ,reset) resets the error count when you set the reset input as a nonzero
value. To enable this syntax, set the ResetInputPort property to 1 (true).

Input Arguments

tx — Transmitted data
scalar | column vector

Transmitted data vector, specified as a scalar or column vector.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | logical

rx — Received data
scalar | column vector

Received data vector, specified as a scalar or column vector.

Note If you specify the tx or rx input as a scalar, the object compares this value with all elements of
the other input. If you specify both inputs as vectors, they must have the same size and data type.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | logical

ind — Sample indices
positive integer | column vector of positive integers

Indices of the samples to consider when comparing data, specified as a positive integer or column
vector of positive integers.

Dependencies

To enable this input, set the Samples property to Input port.
Data Types: single | double

reset — Reset error count
scalar

Reset error count, specified as a logical 1 (true) or 0 (false). To reset the error count between calls
to the object, set this property to a nonzero value.

Dependencies

To enable this input, set the ResetInputPort property to 1 (true).
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Data Types: double | logical

Output Arguments

y — Difference between transmitted and received data
column vector

Difference between transmitted and received data, returned as a column vector of the form [R; N;
S], where

• R is the error rate
• N is the number of errors
• S is the number of samples compared

Data Types: double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Examples

Calculate Error Statistics

Create two binary vectors and determine the error statistics.

Create a bit error rate counter object.

errorRate = comm.ErrorRate;

Create a binary data vector.

tx = [1 0 1 0 1 0 1 0 1 0]';

Introduce errors to the first and last bits.

rx = tx;
rx(1) = ~rx(1);
rx(end) = ~rx(end);

Calculate the difference between the transmitted and received data.

y = errorRate(tx,rx);

Display the bit error rate.

y(1)

ans = 0.2000

Display the number of errors.
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y(2)

ans = 2

Display the total number samples used for comparison.

y(3)

ans = 10

Calculate BER Between Transmitted and Received Signal

Create an 8-DPSK modulator and demodulator pair that work with binary data.

dpskModulator = comm.DPSKModulator( ...
    ModulationOrder=8,BitInput=true);
dpskDemodulator = comm.DPSKDemodulator( ...
    ModulationOrder=8,BitOutput=true);

Create an error rate calculator, accounting for the three bit (one symbol) transient caused by the
differential modulation.

errorRate = comm.ErrorRate( ...
    ComputationDelay=3,Samples="Input port");

Calculate and display the BER for 10 frames for the specified sample indices.

BER = zeros(10,1);
ind = (1:3:96)';

for i = 1:10
    tx = randi([0 1],96,1);      % Generate binary data
    modData = dpskModulator(tx); % Modulate
    rxSig = awgn(modData,7);     % Pass through AWGN channel
    rx = dpskDemodulator(rxSig); % Demodulate
    y = errorRate(tx,rx,ind);    % Compute error statistics
    BER(i) = y(1);               % Save BER data
end
BER

BER = 10×1

    0.0645
    0.0952
    0.0947
    0.0945
    0.0943
    0.0890
    0.0852
    0.0863
    0.0941
    0.0940
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Version History
Introduced in R2012a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Functions
alignsignals | finddelay

Blocks
Error Rate Calculation
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comm.DecisionFeedbackEqualizer
Package: comm

Equalize modulated signals using decision feedback filtering

Description
The comm.DecisionFeedbackEqualizer System object uses a decision feedback filter tap delay
line with a weighted sum to equalize modulated signals transmitted through a dispersive channel.
The equalizer object adaptively adjusts tap weights based on the selected algorithm. For more
information, see “Algorithms” on page 3-403.

To equalize modulated signals using a decision feedback filter:

1 Create the comm.DecisionFeedbackEqualizer object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
dfe = comm.DecisionFeedbackEqualizer
dfe = comm.DecisionFeedbackEqualizer(Name,Value)

Description

dfe = comm.DecisionFeedbackEqualizer creates a decision feedback equalizer System object
to adaptively equalize a signal.

dfe = comm.DecisionFeedbackEqualizer(Name,Value) sets properties using one or more
name-value pairs. For example, comm.DecisionFeedbackEqualizer('Algorithm','RLS')
configures the equalizer object to update tap weights using the recursive least squares (RLS)
algorithm. Enclose each property name in quotes.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Algorithm — Adaptive algorithm
'LMS' (default) | 'RLS' | 'CMA'
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Adaptive algorithm used for equalization, specified as one of these values:

• 'LMS' — Update the equalizer tap weights using the “Least Mean Square (LMS) Algorithm” on
page 3-405.

• 'RLS' — Update the equalizer tap weights using the “Recursive Least Square (RLS) Algorithm”
on page 3-405.

• 'CMA' — Update the equalizer tap weights using the “Constant Modulus Algorithm (CMA)” on
page 3-405.

Data Types: char | string

NumForwardTaps — Number of forward equalizer taps
5 (default) | positive integer

Number of forward equalizer taps, specified as a positive integer. The number of forward equalizer
taps must be greater than or equal to the value of the InputSamplesPerSymbol property.
Data Types: double

NumFeedbackTaps — Number of feedback equalizer taps
3 (default) | positive integer

Number of feedback equalizer taps, specified as a positive integer.
Data Types: double

StepSize — Step size
0.01 (default) | positive scalar

Step size used by the adaptive algorithm, specified as a positive scalar. Increasing the step size
reduces the equalizer convergence time but causes the equalizer output estimates to be less stable.

Tip To determine the maximum step size allowed, use the maxstep object function.

Tunable: Yes
Dependencies

To enable this property, set Algorithm to 'LMS' or 'CMA'.
Data Types: double

ForgettingFactor — Forgetting factor
0.99 (default) | scalar in the range (0, 1]

Forgetting factor used by the adaptive algorithm, specified as a scalar in the range (0, 1]. Decreasing
the forgetting factor reduces the equalizer convergence time but causes the equalizer output
estimates to be less stable.

Tunable: Yes
Dependencies

To enable this property, set Algorithm to 'RLS'.
Data Types: double
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InitialInverseCorrelationMatrix — Initial inverse correlation matrix
0.1 (default) | scalar | matrix

Initial inverse correlation matrix, specified as a scalar or an NTaps-by-NTaps matrix. NTaps is equal to the
sum of the NumForwardTaps and NumFeedbackTaps property values. If you specify
InitialInverseCorrelationMatrix as a scalar, a, the equalizer sets the initial inverse
correlation matrix to a times the identity matrix: a(eye(NTaps)).

Dependencies

To enable this property, set Algorithm to 'RLS'.
Data Types: double

Constellation — Signal constellation
pskmod(0:3,4,pi/4) (default) | vector

Signal constellation, specified as a vector. The default value is a QPSK constellation generated using
this code: pskmod(0:3,4,pi/4).
Data Types: double

ReferenceTap — Reference tap
3 (default) | positive integer

Reference tap, specified as a positive integer less than or equal to the NumForwardTaps property
value. The equalizer uses the reference tap location to track the main energy of the channel.
Data Types: double

InputDelay — Input signal delay
0 (default) | nonnegative integer

Input signal delay in samples relative to the reset time of the equalizer, specified as a nonnegative
integer. If the input signal is a vector of length greater than 1, then the input delay is relative to the
start of the input vector. If the input signal is a scalar, then the input delay is relative to the first call
of the System object and to the first call of the System object after calling the release or reset
object function.
Data Types: double

InputSamplesPerSymbol — Number of input samples per symbol
1 (default) | positive integer

Number of input samples per symbol, specified as a positive integer. Setting this property to any
number greater than one effectively creates a fractionally spaced equalizer.
Data Types: double

TrainingFlagInputPort — Enable training control input
0 or false (default) | 1 or true

Enable training control input, specified as a logical 0 (false) or 1 (true). Setting this property to
true enables the equalizer training flag input tf.
Data Types: logical
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AdaptAfterTraining — Update tap weights when not training
1 or true (default) | 0 or false

Update tap weights when not training, specified as a logical 1 (true) or 0 (false). If this property is
set to true, the System object uses decision directed mode to update equalizer tap weights. If this
property is set to false, the System object keeps the equalizer tap weights unchanged after training.
Data Types: logical

AdaptWeightsSource — Source of adapt tap weights request
'Property' (default) | 'Input port'

Source of adapt tap weights request, specified as one of these values:

• 'Property' — Specify this value to use the AdaptWeights property to control when the System
object adapts tap weights.

• 'Input port' — Specify this value to use the aw input to control when the System object adapts
tap weights.

Dependencies

To enable this property, set Algorithm to 'CMA'.
Data Types: char | string

AdaptWeights — Adapt tap weights
1 or true (default) | 0 or false

Adapt tap weights, specified as a logical 1 (true) or 0 (false). If this property is set to true, the
System object updates the equalizer tap weights. If this property is set to false, the System object
keeps the equalizer tap weights unchanged.
Dependencies

To enable this property, set AdaptWeightsSource to 'Property' and set AdaptAfterTraining to true.
Data Types: logical

InitialWeightsSource — Source for initial tap weights
'Auto' (default) | 'Property'

Source for initial tap weights, specified as one of these values:

• 'Auto' — Initialize the tap weights to the algorithm-specific default values, as described in the
InitialWeights property.

• 'Property' — Initialize the tap weights using the InitialWeights property value.

Data Types: char | string

InitialWeights — Initial weights
0 or [0;0;1;0;0] (default) | scalar | vector

Initial weights used by the adaptive algorithm, specified as a scalar or vector. The default is 0 when
the Algorithm property is set to 'LMS' or 'RLS'. The default is [0;0;1;0;0] when the Algorithm
property is set to 'CMA'.

If you specify InitialWeights as a scalar, the equalizer uses scalar expansion to create a vector of
length NTaps with all values set to InitialWeights. NTaps is equal to the sum of the
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NumForwardTaps and NumFeedbackTaps property values. If you specify InitialWeights as a
vector, the vector length must be NTaps.
Data Types: double

WeightUpdatePeriod — Tap weight update period
1 (default) | positive integer

Tap weight update period in symbols, specified as a positive integer. The equalizer updates the tap
weights after processing this number of symbols.
Data Types: double

Usage

Syntax
y = dfe(x,tsym)
y = dfe(x,tsym,tf)
y = dfe(x)
y = dfe(x,aw)
[y,err] = dfe( ___ )
[y,err,weights] = dfe( ___ )

Description

y = dfe(x,tsym) equalizes input signal x by using training symbols tsym. The output is the
equalized symbols. To enable this syntax, set the Algorithm property to 'LMS' or 'RLS'.

y = dfe(x,tsym,tf) also specifies training flag tf. The System object starts training when tf
changes from false to true (at the rising edge). The System object trains until all symbols in tsym
are processed. The input tsym is ignored when tf is false. To enable this syntax, set the Algorithm
property to 'LMS' or 'RLS' and TrainingFlagInputPort property to true.

y = dfe(x) equalizes input signal x. To enable this syntax, set the Algorithm property to 'CMA'.

y = dfe(x,aw) also specifies adapts weights flag aw. If aw is true, the System object adapts the
equalizer tap weights. If aw is false, the System object keeps the weights unchanged. To enable this
syntax, set the Algorithm property to 'CMA' and AdaptWeightsSource property to 'Input port'.

[y,err] = dfe( ___ ) also returns error signal err using input arguments from any of the
previous syntaxes.

[y,err,weights] = dfe( ___ ) also returns weights, the tap weights from the last tap weight
update, using input arguments from any of the previous syntaxes.

Input Arguments

x — Input signal
column vector

Input signal, specified as a column vector. The input signal vector length must be equal to an integer
multiple of the InputSamplesPerSymbol property value. For more information, see “Symbol Tap
Spacing” on page 3-403.
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Data Types: double
Complex Number Support: Yes

tsym — Training symbols
column vector

Training symbols, specified as a column vector of length less than or equal to the length of input x.
The input tsym is ignored when tf is false.

Dependencies

To enable this argument, set the Algorithm property to 'LMS' or 'RLS'.
Data Types: double

tf — Training flag
1 or true | 0 or false

Training flag, specified as a logical 1 (true) or 0 (false). The System object starts training when tf
changes from false to true (at the rising edge). The System object trains until all symbols in tsym
are processed. The input tsym is ignored when tf is false.

Dependencies

To enable this argument, set the Algorithm property to 'LMS' or 'RLS' and TrainingFlagInputPort
property to true.
Data Types: logical

aw — Adapt weights flag
1 or true | 0 or false

Adapt weights flag, specified as a logical 1 (true) or 0 (false). If aw is true, the System object
adapts weights. If aw is false, the System object keeps the weights unchanged.

Dependencies

To enable this argument, set the Algorithm property to 'CMA' and AdaptWeightsSource property to
'Input port'.
Data Types: logical

Output Arguments

y — Equalized symbols
column vector

Equalized symbols, returned as a column vector that has the same length as input signal x.

err — Error signal
column vector

Error signal, returned as a column vector that has the same length as input signal x.

weights — Tap weights
column vector
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Tap weights, returned as a column vector that has NTaps elements. NTaps is equal to the sum of the
NumForwardTaps and NumFeedbackTaps property values. weights contains the tap weights from
the last tap weight update.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to comm.DecisionFeedbackEqualizer
isLocked Determine if System object is in use
clone Create duplicate System object
info Characteristic information about the equalizer object
maxstep Maximum step size for LMS equalizer convergence
mmseweights Linear equalizer MMSE tap weights

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Decision Feedback Equalize BPSK-Modulated Signal

Create a BPSK modulator and an equalizer System object™, specifying a decision feedback LMS
equalizer having eight forward taps, five feedback taps, and a step size of 0.03.

bpsk = comm.BPSKModulator;
eqdfe_lms = comm.DecisionFeedbackEqualizer('Algorithm','LMS', ...
    'NumForwardTaps',8,'NumFeedbackTaps',5,'StepSize',0.03);

Change the reference tap index of the equalizer.

eqdfe_lms.ReferenceTap = 4;

Build a set of test data. Receive the data by convolving the signal.

x = bpsk(randi([0 1],1000,1));
rxsig = conv(x,[1 0.8 0.3]);

Use maxstep to find the maximum permitted step size.

mxStep = maxstep(eqdfe_lms,rxsig)

mxStep = 0.1028

Equalize the received signal. Use the first 200 symbols as the training sequence.

y = eqdfe_lms(rxsig,x(1:200));
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Decision Feedback Equalize QPSK-Modulated Signal

Apply decision feedback equalization using the least mean squares (LMS) algorithm to recover QPSK
symbols passed through a delayed multipath AWGN channel.

Initialize simulation variables.

M = 4; % QPSK
numSymbols = 10000;
numTrainingSymbols = 1000;
chtaps = [1 0.5*exp(1i*pi/6) 0.1*exp(-1i*pi/8)];

Generate QPSK-modulated symbols. Apply delayed multipath channel filtering and AWGN
impairments to the symbols.

data = randi([0 M-1], numSymbols, 1);
tx = pskmod(data, M, pi/4);
rx = awgn(filter(chtaps,1,tx),25,'measured');

Create a decision feedback equalizer System object and display the default configuration. Adjust the
reference tap to 1. Check the maximum permitted step size. Equalize the impaired symbols.

eq = comm.DecisionFeedbackEqualizer

eq = 
  comm.DecisionFeedbackEqualizer with properties:

                Algorithm: 'LMS'
           NumForwardTaps: 5
          NumFeedbackTaps: 3
                 StepSize: 0.0100
            Constellation: [0.7071 + 0.7071i -0.7071 + 0.7071i ... ]
             ReferenceTap: 3
               InputDelay: 0
    InputSamplesPerSymbol: 1
    TrainingFlagInputPort: false
       AdaptAfterTraining: true
     InitialWeightsSource: 'Auto'
       WeightUpdatePeriod: 1

eq.ReferenceTap = 1;

mxStep = maxstep(eq,rx)

mxStep = 0.2149

[y,err,weights] = eq(rx,tx(1:numTrainingSymbols));

Plot the constellation of the impaired and equalized symbols.

constell = comm.ConstellationDiagram('NumInputPorts',2);
constell(rx,y)
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Plot the equalizer error signal and compute the error vector magnitude of the equalized symbols.

plot(abs(err))
grid on; xlabel('Symbols'); ylabel('|e|')
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errevm = comm.EVM;
evm = errevm(tx,y)

evm = 10.1288

Plot the equalizer tap weights.

subplot(3,1,1);
stem(real(weights));
ylabel('real(weights)');
xlabel('Tap');
grid on;
axis([1 8 -0.5 1])
line([eq.NumForwardTaps+0.5 eq.NumForwardTaps+0.5], ...
    [-0.5 1],'Color','r','LineWidth',1)
title('Equalizer Tap Weights')
subplot(3,1,2);
stem(imag(weights));
ylabel('imag(weights)');
xlabel('Tap');
grid on;
axis([1 8 -0.5 1])
line([eq.NumForwardTaps+0.5 eq.NumForwardTaps+0.5], ...
    [-0.5 1],'Color','r','LineWidth',1)
subplot(3,1,3);
stem(abs(weights));
ylabel('abs(weights)');
xlabel('Tap');
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grid on;
axis([1 8 -0.5 1])
line([eq.NumForwardTaps+0.5 eq.NumForwardTaps+0.5], ...
    [-0.5 1],'Color','r','LineWidth',1)

Decision Feedback Equalize System Using Different Training Schemes

Demonstrate decision feedback equalization using the least mean squares (LMS) algorithm to recover
QPSK symbols passed through an AWGN channel. Apply different equalizer training schemes and
show the symbol error magnitude.

System Setup

Simulate a QPSK-modulated system subject to AWGN. Transmit packets composed of 200 training
symbols and 1800 random data symbols. Configure a decision feedback LMS equalizer to recover the
packet data.

M = 4;
numTrainSymbols = 200;
numDataSymbols = 1800;
SNR = 20;
trainingSymbols = ...
    pskmod(randi([0 M-1],numTrainSymbols,1),M,pi/4);
numPkts = 10;
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dfeq = comm.DecisionFeedbackEqualizer( ...
    'Algorithm','LMS', ...
    'NumForwardTaps',5, ...
    'NumFeedbackTaps',4, ...
    'ReferenceTap',3, ...
    'StepSize',0.01);

Train the Equalizer at the Beginning of Each Packet with Reset

Process each packet using prepended training symbols. Reset the equalizer after processing each
packet. Resetting the equalizer after each packet forces the equalizer to train taps with no a priori
knowledge. Equalizer error signal plots for the first, second, and last packet show higher symbol
errors at the start of each packet.

jj = 1;
figure
for ii = 1:numPkts
    b = randi([0 M-1],numDataSymbols,1);
    dataSym = pskmod(b,M,pi/4);
    packet = [trainingSymbols;dataSym];
    rx = awgn(packet,SNR);
    [~,err] = dfeq(rx,trainingSymbols);
    reset(dfeq)
    if (ii ==1 || ii == 2 ||ii == numPkts)
        subplot(3,1,jj)
        plot(abs(err))
        ylim([0 1])
        title(['Packet # ',num2str(ii)])
        xlabel('Symbols');
        ylabel('Error Magnitude');
        grid on;
        jj = jj+1;
    end
end
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Train the Equalizer at the Beginning of Each Packet Without Reset

Process each packet using prepended training symbols. Do not reset the equalizer after each packet
is processed. By not resetting after each packet, the equalizer retains tap weights from training prior
packets. Equalizer error signal plots for the first, second, and last packet show that after the initial
training on the first packet, subsequent packets have less symbol errors at the start of each packet.

release(dfeq)
jj = 1;
figure
for ii = 1:numPkts
    b = randi([0 M-1],numDataSymbols,1);
    dataSym = pskmod(b,M,pi/4);
    packet = [trainingSymbols;dataSym];
    channel = 1;
    rx = awgn(packet*channel,SNR);
    [~,err] = dfeq(rx,trainingSymbols);
    if (ii ==1 || ii == 2 ||ii == numPkts)
        subplot(3,1,jj)
        plot(abs(err))
        ylim([0 1])
        title(['Packet # ',num2str(ii)])
        xlabel('Symbols');
        ylabel('Error Magnitude');
        grid on;
        jj = jj+1;
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    end
end

Train the Equalizer Periodically

Systems with signals subject to time-varying channels require periodic equalizer training to maintain
lock on the channel variations. Specify a system that has 200 symbols of training for every 1800 data
symbols. Between training, the equalizer does not update tap weights. The equalizer processes 200
symbols per packet.

Rs = 1e6;
fd = 20;
spp = 200; % Symbols per packet
b = randi([0 M-1],numDataSymbols,1);
dataSym = pskmod(b,M,pi/4);
packet = [trainingSymbols; dataSym];
stream = repmat(packet,10,1);
tx = (0:length(stream)-1)'/Rs;
channel = exp(1i*2*pi*fd*tx);
rx = awgn(stream.*channel,SNR);

Set the AdaptAfterTraining property to false to stop the equalizer tap weight updates after the
training phase.

release(dfeq)
dfeq.AdaptAfterTraining = false
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dfeq = 
  comm.DecisionFeedbackEqualizer with properties:

                Algorithm: 'LMS'
           NumForwardTaps: 5
          NumFeedbackTaps: 4
                 StepSize: 0.0100
            Constellation: [0.7071 + 0.7071i -0.7071 + 0.7071i ... ]
             ReferenceTap: 3
               InputDelay: 0
    InputSamplesPerSymbol: 1
    TrainingFlagInputPort: false
       AdaptAfterTraining: false
     InitialWeightsSource: 'Auto'
       WeightUpdatePeriod: 1

Equalize the impaired data. Plot the angular error from the channel, the equalizer error signal, and
signal constellation. As the channel varies, the equalizer output does not remove the channel effects.
Also, the output constellation rotates out of sync, resulting in bit errors.

[y,err] = dfeq(rx,trainingSymbols);

figure
subplot(2,1,1)
plot(tx, unwrap(angle(channel)))
xlabel('Time (sec)')
ylabel('Channel Angle (rad)')
title('Angular Error Over Time')
subplot(2,1,2)
plot(abs(err))
xlabel('Symbols')
ylabel('Error Magnitude')
grid on
title('Time-Varying Channel Without Retraining')
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scatterplot(y)
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Set the TrainingInputPort property to true to configure the equalizer to retrain the taps when
signaled by the trainFlag input. The equalizer trains only when trainFlag is true. After every
2000 symbols, the equalizer retrains the taps and keeps lock on variations of the channel. Plot the
angular error from the channel, the equalizer error signal, and signal constellation. As the channel
varies, the equalizer output removes the channel effects. Also, the output constellation does not
rotate out of sync, and bit errors are reduced.

release(dfeq)
dfeq.TrainingFlagInputPort = true;
symbolCnt = 0;
numPackets = length(rx)/spp;
trainFlag = true;
trainingPeriod = 2000;
eVec = zeros(size(rx));
yVec = zeros(size(rx));
for p=1:numPackets
    [yVec((p-1)*spp+1:p*spp,1),eVec((p-1)*spp+1:p*spp,1)] = ...
        dfeq(rx((p-1)*spp+1:p*spp,1), ...
        trainingSymbols,trainFlag);
    symbolCnt = symbolCnt + spp;
    if symbolCnt >= trainingPeriod
        trainFlag = true;
        symbolCnt = 0;
    else
        trainFlag = false;
    end
end
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figure
subplot(2,1,1)
plot(tx, unwrap(angle(channel)))
xlabel('t (sec)')
ylabel('Channel Angle (rad)')
title('Angular Error Over Time')
subplot(2,1,2)
plot(abs(eVec))
xlabel('Symbols')
ylabel('Error Magnitude')
grid on
title('Time-Varying Channel With Retraining')

scatterplot(yVec)
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Decision Feedback Equalize Delayed Signal

Simulate a system with delay between the transmitted symbols and received samples. Typical
systems have transmitter and receiver filters that result in a delay. This delay must be accounted for
to synchronize the system. In this example, the system delay is introduced without transmit and
receive filters. Decision feedback equalization, using the least mean squares (LMS) algorithm,
recovers QPSK symbols.

Initialize simulation variables.

M = 4; % QPSK
numSymbols = 10000;
numTrainingSymbols = 1000;
mpChan = [1 0.5*exp(1i*pi/6) 0.1*exp(-1i*pi/8)];
systemDelay = dsp.Delay(20);
snr = 24;

Generate QPSK-modulated symbols. Apply multipath channel filtering, a system delay, and AWGN to
the transmitted symbols.

data = randi([0 M-1],numSymbols,1);
tx = pskmod(data,M,pi/4); % OQPSK
delayedSym = systemDelay(filter(mpChan,1,tx));
rx = awgn(delayedSym,snr,'measured');
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Create equalizer and EVM System objects. The equalizer System object specifies a decision feedback
equalizer using the LMS algorithm.

dfeq = comm.DecisionFeedbackEqualizer('Algorithm','LMS', ...
    'NumForwardTaps',9,'NumFeedbackTaps',6,'ReferenceTap',5);
evm = comm.EVM('ReferenceSignalSource', ...
    'Estimated from reference constellation');

Equalize Without Adjusting Input Delay

Equalize the received symbols.

[y1,err1,wts1] = dfeq(rx,tx(1:numTrainingSymbols,1));

Find the delay between the received symbols and the transmitted symbols by using the finddelay
function.

rxDelay = finddelay(tx,rx)

rxDelay = 20

Display the equalizer information. The latency value indicates the delay introduced by the equalizer.
Calculate the total delay as the sum of rxDelay and the equalizer latency.

eqInfo = info(dfeq)

eqInfo = struct with fields:
    Latency: 4

totalDelay = rxDelay + eqInfo.Latency;

Until the equalizer output converges, the symbol error rate is high. Plot the error output, err1, to
determine when the equalized output converges.

plot(abs(err1))
xlabel('Symbols')
ylabel('Error Magnitude')
title('Equalizer Error Signal')
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The plot shows excessive errors for the first 2000 symbols. When demodulating symbols and
computing symbol errors, account for the unconverged output and the system delay between the
equalizer output and transmitted symbols.

dataRec1 = pskdemod(y1(2000+totalDelay:end),M,pi/4);
symErrWithDelay = symerr(data(2000:end-totalDelay),dataRec1)

symErrWithDelay = 5977

evmWithDelay = evm(y1)

evmWithDelay = 26.3288

The error rate and EVM are high because the receive delay was not accounted for in the equalizer
System object.

Adjust Input Delay in Decision Feedback Equalizer

Equalize the received data by using the delay value to set the InputDelay property. Since
InputDelay is a nontunable property, you must release the dfeq System object to reconfigure the
InputDelay property. Equalize the received symbols.

release(dfeq)
dfeq.InputDelay = rxDelay

dfeq = 
  comm.DecisionFeedbackEqualizer with properties:
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                Algorithm: 'LMS'
           NumForwardTaps: 9
          NumFeedbackTaps: 6
                 StepSize: 0.0100
            Constellation: [0.7071 + 0.7071i -0.7071 + 0.7071i ... ]
             ReferenceTap: 5
               InputDelay: 20
    InputSamplesPerSymbol: 1
    TrainingFlagInputPort: false
       AdaptAfterTraining: true
     InitialWeightsSource: 'Auto'
       WeightUpdatePeriod: 1

[y2,err2,wts2] = dfeq(rx,tx(1:numTrainingSymbols,1));

Plot the tap weights and equalized error magnitude. A stem plot shows the equalizer tap weights
before and after the system delay is removed. A 2-D line plot shows the slower equalizer convergence
for the delayed signal, as compared to the signal with the delay removed.

subplot(2,1,1)
stem([real(wts1),real(wts2)])
xlabel('Taps')
ylabel('Tap Weight Real')
legend('rxDelayed','rxDelayRemoved')
grid on
subplot(2,1,2)
stem([imag(wts1),imag(wts2)])
xlabel('Taps')
ylabel('Tap Weight Imaginary')
legend('rxDelayed','rxDelayRemoved')
grid on
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figure
plot([abs(err1),abs(err2)])
xlabel('Symbols')
ylabel('Error Magnitude')
legend('rxDelayed','rxDelayRemoved')
grid on
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Plot error output of the equalized signals, rxDelayed and rxDelayRemoved. For the signal that has
the delay removed, the equalizer converges during the 1000 symbol training period. When
demodulating symbols and computing symbol errors, to account for the unconverged output and the
system delay between the equalizer output and transmitted symbols, skip the first 500 symbols.
Reconfiguring the equalizer to account for the system delay enables better equalization of the signal,
and reduces symbol errors and the EVM.

eqInfo = info(dfeq)

eqInfo = struct with fields:
    Latency: 4

totalDelay = rxDelay + eqInfo.Latency;
dataRec2 = pskdemod(y2(500+totalDelay:end),M,pi/4);
symErrDelayRemoved = symerr(data(500:end-totalDelay),dataRec2)

symErrDelayRemoved = 0

evmDelayRemoved = evm(y2(500+totalDelay:end))

evmDelayRemoved = 7.5200

Decision Feedback Equalize Symbols Using EVM-Based Training

Recover QPSK symbols with a decision equalizer, using the constant modulus algorithm (CMA) and
EVM-based taps training. When using blind equalizer algorithms, such as CMA, you can train the
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equalizer taps using the AdaptWeights property to start and stop training. Use helper functions to
generate plots and apply phase correction.

Initialize system variables.

rng(123456);
M = 4; % QPSK
numSymbols = 100;
numPackets = 5000;
refTap = 3;
nFwdTaps = 5;
nFdbkTaps = 4;
ttlTaps = nFwdTaps + nFdbkTaps;
raylChan = comm.RayleighChannel( ...
    'PathDelays',[0 1], ...
    'AveragePathGains',[0 -12], ...
    'MaximumDopplerShift',1e-5);
SNR = 50;
adaptWeights = true;

Create the equalizer and EVM System objects. The equalizer System object specifies a decision
feedback equalizer using the CMA adaptive algorithm. Call the helper function to initialize figure
plots.

dfeq = comm.DecisionFeedbackEqualizer( ...
    'Algorithm','CMA', ...
    'NumForwardTaps',nFwdTaps, ...
    'NumFeedbackTaps',nFdbkTaps, ...
    'ReferenceTap',refTap, ...
    'StepSize',0.03, ...
    'AdaptWeightsSource','Input port')

dfeq = 
  comm.DecisionFeedbackEqualizer with properties:

                Algorithm: 'CMA'
           NumForwardTaps: 5
          NumFeedbackTaps: 4
                 StepSize: 0.0300
            Constellation: [0.7071 + 0.7071i -0.7071 + 0.7071i ... ]
             ReferenceTap: 3
    InputSamplesPerSymbol: 1
       AdaptWeightsSource: 'Input port'
     InitialWeightsSource: 'Auto'
       WeightUpdatePeriod: 1

info(dfeq)

ans = struct with fields:
    Latency: 2

evm = comm.EVM('ReferenceSignalSource', ...
    'Estimated from reference constellation');
[errPlot,evmPlot,scatSym,adaptState] = ...
    initFigures(numPackets,ttlTaps);
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Equalization Loop

Follow these steps to implement the equalization loop.

1 Generate OQPSK data packets.
2 Apply Rayleigh fading and AWGN to the transmission data.
3 Apply equalization to the received data and phase correction to the equalizer output.
4 Estimate the EVM and toggle the adaptWeights flag to true or false based on the EVM level.
5 Update the figure plots.

for p=1:numPackets
    data = randi([0 M-1],numSymbols,1);
    tx = pskmod(data,M,pi/4);
    rx = awgn(raylChan(tx),SNR);
    rxDelay = finddelay(rx,tx);
    [y,err,wts] = dfeq(rx,adaptWeights);
    y = phaseCorrection(y);
    evmEst = evm(y);
    adaptWeights = (evmEst > 20);
    
    updateFigures(errPlot,evmPlot,scatSym,adaptState, ...
        wts,y(end),evmEst,adaptWeights,p,numPackets)
end

rxDelay
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rxDelay = 0

The figure plots show that, as the EVM varies, the equalizer toggles in and out of decision-directed
weight adaptation mode.

Helper Functions

This helper function initializes figures that show a quad plot of simulation results.

function [errPlot,evmPlot,scatter,adaptState] = ...
    initFigures(numPkts,ttlTaps)
yVec = nan(numPkts,1);
evmVec = nan(numPkts,1);
wVec = zeros(ttlTaps,1);
adaptVec = nan(numPkts,1);

figure
subplot(2,2,1)
evmPlot = stem(wVec);
grid on; axis([1 ttlTaps 0 1.8])
xlabel('Taps');
ylabel('|Weights|');
title('Tap Weight Magnitude')

subplot(2,2,2)
scatter = plot(yVec, '.');
axis square;
axis([-1.2 1.2 -1.2 1.2]);
grid on;
xlabel('In-phase');
ylabel('Quadrature');
title('Scatter Plot');
subplot(2,2,3)
adaptState = plot(adaptVec);
grid on;
axis([0 numPkts -0.2 1.2])
ylabel('Training');
xlabel('Symbols');
title('Adapt Weights Signal')
subplot(2,2,4)
errPlot = plot(evmVec);
grid on;
axis([1 numPkts 0 100])
xlabel('Symbols');
ylabel('EVM (%)');
title('EVM')
end

This helper function updates the figures.

function updateFigures(errPlot,evmPlot,scatSym, ...
    adaptState,w,y,evmEst,adaptWts,p,numFrames)
persistent yVec evmVec adaptVec

if p == 1
    yVec = nan(numFrames,1);
    evmVec = nan(numFrames,1);
    adaptVec = nan(numFrames,1);
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end

yVec(p) = y;
evmVec(p) = evmEst;
adaptVec(p) = adaptWts;

errPlot.YData = abs(evmVec);
evmPlot.YData = abs(w);
scatSym.XData = real(yVec);
scatSym.YData = imag(yVec);
adaptState.YData = adaptVec;
drawnow limitrate
end

This helper function applies phase correction.

function y = phaseCorrection(y)
a = angle(y((real(y) > 0) & (imag(y) > 0)));
a(a < 0.1) = a(a < 0.1) + pi/2;
theta = mean(a) - pi/4;
y = y * exp(-1i*theta);
end

Decision Feedback Equalize Packetized Signals in Fading Environments

Recover QPSK symbols in fading environments with a decision feedback equalizer, using the least
mean squares (LMS) algorithm. Use the reset object function to equalize independent packets. Use
helper functions to generate plots. This example also shows symbol-based processing and frame-
based processing.

Setup

Initialize system variables, create the equalizer System object, and initialize the plot figures.

M = 4; % QPSK
numSym = 1000;
numTrainingSym = 100;
numPackets = 5;
refTap = 5;
nFwdTaps = 9;
nFdbkTaps = 4;
ttlTaps = nFwdTaps + nFdbkTaps;
stepsz = 0.01;
ttlNumSym = numSym + numTrainingSym;
raylChan = comm.RayleighChannel( ...
    'PathDelays',[0 1], ...
    'AveragePathGains',[0 -9], ...
    'MaximumDopplerShift',0, ...
    'PathGainsOutputPort',true);
SNR = 35;
rxVec = zeros(ttlNumSym,numPackets);
txVec = zeros(ttlNumSym,numPackets);
yVec = zeros(ttlNumSym,1);
eVec = zeros(ttlNumSym,1);

dfeq1 = comm.DecisionFeedbackEqualizer( ...
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    'Algorithm','LMS', ...
    'NumForwardTaps',nFwdTaps, ...
    'NumFeedbackTaps',nFdbkTaps, ...
    'ReferenceTap',refTap, ...
    'StepSize',stepsz, ...
    'TrainingFlagInputPort',true);

[errPlot,wStem,hStem,scatPlot] = ...
    initFigures(ttlNumSym,ttlTaps, ...
    raylChan.AveragePathGains);

Symbol-Based Processing

For symbol-based processing, provide one symbol at the input of the equalizer. Reset the equalizer
state and channel after processing each packet.

for p = 1:numPackets
    trainingFlag = true;
    for q=1:ttlNumSym
        data = randi([0 M-1],1,1);
        tx = pskmod(data,M,pi/4);
        [xc,pg] = raylChan(tx);
        rx = awgn(xc,25);
        [y,err,wts] = dfeq1(rx,tx,trainingFlag);

Disable training after processing numTrainingSym training symbols.

        if q == numTrainingSym
            trainingFlag = false;
        end
        updateFigures(errPlot,wStem,hStem, ...
            scatPlot,err,wts,y,pg,q,ttlNumSym);
        txVec(q,p) = tx;
        rxVec(q,p) = rx;
    end

After processing each packet, reset the channel System object to get a new realization of channel
taps and the equalizer System object to restore the default taps weights.

    reset(raylChan)
    reset(dfeq1)
end
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Packet-Based Processing

For packet-based processing, provide one packet at the input of the equalizer. Each packet contains
ttlNumSym symbols. Because the training duration is less than the packet length, you do not need to
specify the start-training input.

yVecPkt = zeros(ttlNumSym,numPackets);
errVecPkt = zeros(ttlNumSym,numPackets);
wgtVecPkt = zeros(ttlTaps,numPackets);
dfeq2 = comm.DecisionFeedbackEqualizer( ...
    'Algorithm','LMS', ...
    'NumForwardTaps',nFwdTaps, ...
    'NumFeedbackTaps',nFdbkTaps, ...
    'ReferenceTap',refTap, ...
    'StepSize',stepsz);
for p = 1:numPackets
    [yVecPkt(:,p),errVecPkt(:,p),wgtVecPkt(:,p)] = ...
        dfeq2(rxVec(:,p),txVec(1:numTrainingSym,p));
    for q=1:ttlNumSym
        updateFigures(errPlot,wStem,hStem,scatPlot, ...
            errVecPkt(q,p),wgtVecPkt(:,p),yVecPkt(q,p), ...
            pg,q,ttlNumSym);
    end

After processing each packet, reset the channel System object to get a new realization of channel
taps and the equalizer System object to restore the default taps weights.
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    reset(raylChan)
    reset(dfeq2)
end

Helper Functions

This helper function initializes the figures.

function [errPlot,wStem,hStem,scatPlot] = ...
    initFigures(ttlNumSym,ttlTap,pg)
yVec = nan(ttlNumSym,1);
eVec = nan(ttlNumSym,1);
wVec = zeros(ttlTap,1);
figure;
subplot(2,2,1);
wStem = stem(wVec);
axis([1 ttlTap 0 1.8]);
grid on;
xlabel('Taps');
ylabel('|Weights|');
title('Tap Weight Magnitude')
subplot(2,2,2);
hStem = stem([0 abs(pg) 0]);
grid on;
xlabel('Taps');
ylabel('|Path Gain|');
title('Channel Path Gain Magnitude')
subplot(2,2,3);
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errPlot = plot(eVec);
axis([1 ttlNumSym 0 1.2]);
grid on
xlabel('Symbols');
ylabel('|Error Magnitude|');
title('Error Magnitude')
subplot(2,2,4);
scatPlot = plot(yVec,'.');
axis square;
axis([-1.2 1.2 -1.2 1.2]);
grid on;
xlabel('In-phase');
ylabel('Quadrature');
title(sprintf('Scatter Plot'));
end

This helper function updates the figures.

function updateFigures(errPlot,wStem,hStem,scatPlot, ...
    err,wts,y,pg,p,ttlNumSym)
persistent yVec eVec
if p == 1
    yVec = nan(ttlNumSym,1);
    eVec = nan(ttlNumSym,1);
end
yVec(p) = y;
eVec(p) = abs(err);
errPlot.YData = abs(eVec);
wStem.YData = abs(wts);
hStem.YData = [0 abs(pg) 0];
scatPlot.XData = real(yVec);
scatPlot.YData = imag(yVec);
drawnow limitrate
end

More About
Symbol Tap Spacing

You can configure the equalizer to operate as a symbol-spaced equalizer or as a fractional symbol-
spaced equalizer.

• To operate the equalizer at a symbol-spaced rate, specify the number of samples per symbol as 1.
Symbol-rate equalizers have taps spaced at the symbol duration. Symbol-rate equalizers are
sensitive to timing phase.

• To operate the equalizer at a fractional symbol-spaced rate, specify the number of input samples
per symbol as an integer greater than 1 and provide an input signal oversampled at that sampling
rate. Fractional symbol-spaced equalizers have taps spaced at an integer fraction of the input
symbol duration. Fractional symbol-spaced equalizers are not sensitive to timing phase.

Algorithms
Decision Feedback Equalizers

A decision feedback equalizer (DFE) is a nonlinear equalizer that reduces intersymbol interference
(ISI) in frequency-selective channels. If a null exists in the frequency response of a channel, DFEs do
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not enhance the noise. A DFE consists of a tapped delay line that stores samples from the input signal
and contains a forward filter and a feedback filter. The forward filter is similar to a linear equalizer.
The feedback filter contains a tapped delay line whose inputs are the decisions made on the equalized
signal. Once per symbol period, the equalizer outputs a weighted sum of the values in the delay line
and updates the weights to prepare for the next symbol period.

DFEs can be symbol-spaced or fractional symbol-spaced.

• For a symbol-spaced equalizer, the number of samples per symbol, K, is 1. The output sample rate
equals the input sample rate.

• For a fractional symbol-spaced equalizer, the number of samples per symbol, K, is an integer
greater than 1. Typically, K is 4 for fractional symbol-spaced equalizers. The output sample rate is
1/T and the input sample rate is K/T. Tap weight updating occurs at the output rate.

This schematic shows a fractional symbol-spaced DFE with a total of N weights, a symbol period of T,
and K samples per symbol. The filter has L forward weights and N-L feedback weights. The forward
filter is at the top, and the feedback filter is at the bottom. If K is 1, the result is a symbol-spaced DFE
instead of a fractional symbol-spaced DFE.

In each symbol period, the equalizer receives K input samples at the forward filter and one decision
or training sample at the feedback filter. The equalizer then outputs a weighted sum of the values in
the forward and feedback delay lines and updates the weights to prepare for the next symbol period.

Note The algorithm for the Adaptive Algorithm block in the schematic jointly optimizes the forward
and feedback weights. Joint optimization is especially important for convergence in the recursive
least square (RLS) algorithm.

For more information, see “Equalization”.
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Least Mean Square (LMS) Algorithm

For the LMS algorithm, in the previous schematic, w is a vector of all weights wi, and u is a vector of
all inputs ui. Based on the current set of weights, the LMS algorithm creates the new set of weights
as

wnew = wcurrent + (StepSize) ue*.

The step size used by the adaptive algorithm is specified as a positive scalar. Increasing the step size
reduces the equalizer convergence time but causes the equalized output signal to be less stable. To
determine the maximum step size allowed when using the LMS adaptive algorithm, use the maxstep
object function. The * operator denotes the complex conjugate and the error calculation e = d - y.

Recursive Least Square (RLS) Algorithm

For the RLS algorithm, in the previous schematic, w is the vector of all weights wi, and u is the vector
of all inputs ui. Based on the current set of inputs, u, and the inverse correlation matrix, P, the RLS
algorithm first computes the Kalman gain vector, K, as

K = Pu
(ForgettingFactor) + uHPu

.

The forgetting factor used by the adaptive algorithm is specified as a scalar in the range (0, 1].
Decreasing the forgetting factor reduces the equalizer convergence time but causes the equalized
output signal to be less stable. H denotes the Hermitian transpose. Based on the current inverse
correlation matrix, the new inverse correlation matrix is

Pnew =
(1 − KuH)Pcurrent
ForgettingFactor .

Based on the current set of weights, the RLS algorithm creates the new set of weights as
wnew = wcurrent+K*e.

The * operator denotes the complex conjugate and the error calculation e = d - y.

Constant Modulus Algorithm (CMA)

For the CMA adaptive algorithm, in the previous schematic, w is the vector of all weights wi, and u is
the vector of all inputs ui. Based on the current set of weights, the CMA adaptive algorithm creates
the new set of weights as

wnew = wcurrent + (StepSize) u*e.

The step size used by the adaptive algorithm is specified as a positive scalar. Increasing the step size
reduces the equalizer convergence time but causes the equalized output signal to be less stable. To
determine the maximum step size allowed by the CMA adaptive algorithm, use the maxstep object
function. The * operator denotes the complex conjugate and the error calculation e = y(R - |y|2),
where R is a constant related to the signal constellation.

Version History
Introduced in R2019a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
comm.LinearEqualizer | comm.MLSEEqualizer

Blocks
Decision Feedback Equalizer

Topics
“Equalization”
“Adaptive Equalizers”
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comm.LinearEqualizer
Package: comm

Equalize modulated signals using linear filtering

Description
The comm.LinearEqualizer System object uses a linear filter tap delay line with a weighted sum to
equalize modulated signals transmitted through a dispersive channel. The equalizer object adaptively
adjusts tap weights based on the selected algorithm. For more information, see “Algorithms” on page
3-448.

To equalize modulated signals using a linear filter:

1 Create the comm.LinearEqualizer object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
lineq = comm.LinearEqualizer
lineq = comm.LinearEqualizer(Name,Value)

Description

lineq = comm.LinearEqualizer creates a linear equalizer System object to adaptively equalize a
signal.

lineq = comm.LinearEqualizer(Name,Value) sets properties using one or more name-value
pairs. For example, comm.LinearEqualizer('Algorithm','RLS') configures the equalizer
object to update tap weights using the recursive least squares (RLS) algorithm. Enclose each
property name in quotes.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Algorithm — Adaptive algorithm
'LMS' (default) | 'RLS' | 'CMA'
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Adaptive algorithm used for equalization, specified as one of these values:

• 'LMS' — Update the equalizer tap weights using the “Least Mean Square (LMS) Algorithm” on
page 3-449.

• 'RLS' — Update the equalizer tap weights using the “Recursive Least Square (RLS) Algorithm”
on page 3-449.

• 'CMA' — Update the equalizer tap weights using the “Constant Modulus Algorithm (CMA)” on
page 3-449.

Data Types: char | string

NumTaps — Number of equalizer taps
5 (default) | positive integer

Number of equalizer taps, specified as a positive integer. The number of equalizer taps must be
greater than or equal to the value of the InputSamplesPerSymbol property.
Data Types: double

StepSize — Step size
0.01 (default) | positive scalar

Step size used by the adaptive algorithm, specified as a positive scalar. Increasing the step size
reduces the equalizer convergence time but causes the equalizer output estimates to be less stable.

Tip To determine the maximum step size allowed, use the maxstep object function.

Tunable: Yes

Dependencies

To enable this property, set Algorithm to 'LMS' or 'CMA'.
Data Types: double

ForgettingFactor — Forgetting factor
0.99 (default) | scalar in the range (0, 1]

Forgetting factor used by the adaptive algorithm, specified as a scalar in the range (0, 1]. Decreasing
the forgetting factor reduces the equalizer convergence time but causes the equalizer output
estimates to be less stable.

Tunable: Yes

Dependencies

To enable this property, set Algorithm to 'RLS'.
Data Types: double

InitialInverseCorrelationMatrix — Initial inverse correlation matrix
0.1 (default) | scalar | matrix
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Initial inverse correlation matrix, specified as a scalar or an NTaps-by-NTaps matrix. NTaps is equal to the
NumTaps property value. If you specify InitialInverseCorrelationMatrix as a scalar, a, the
equalizer sets the initial inverse correlation matrix to a times the identity matrix: a(eye(NTaps)).

Dependencies

To enable this property, set Algorithm to 'RLS'.
Data Types: double

Constellation — Signal constellation
pskmod(0:3,4,pi/4) (default) | vector

Signal constellation, specified as a vector. The default value is a QPSK constellation generated using
this code: pskmod(0:3,4,pi/4).
Data Types: double

ReferenceTap — Reference tap
3 (default) | positive integer

Reference tap, specified as a positive integer less than or equal to the NumTaps property value. The
equalizer uses the reference tap location to track the main energy of the channel.
Data Types: double

InputDelay — Input signal delay
0 (default) | nonnegative integer

Input signal delay in samples relative to the reset time of the equalizer, specified as a nonnegative
integer. If the input signal is a vector of length greater than 1, then the input delay is relative to the
start of the input vector. If the input signal is a scalar, then the input delay is relative to the first call
of the System object and to the first call of the System object after calling the release or reset
object function.
Data Types: double

InputSamplesPerSymbol — Number of input samples per symbol
1 (default) | positive integer

Number of input samples per symbol, specified as a positive integer. Setting this property to any
number greater than one effectively creates a fractionally spaced equalizer. For more information, see
“Symbol Tap Spacing” on page 3-447.
Data Types: double

TrainingFlagInputPort — Enable training control input
0 or false (default) | 1 or true

Enable training control input, specified as a logical 0 (false) or 1 (true). Setting this property to
true enables the equalizer training flag input tf.
Data Types: logical

AdaptAfterTraining — Update tap weights when not training
1 or true (default) | 0 or false

 comm.LinearEqualizer

3-409



Update tap weights when not training, specified as a logical 1 (true) or 0 (false). If this property is
set to true, the System object uses decision directed mode to update equalizer tap weights. If this
property is set to false, the System object keeps the equalizer tap weights unchanged after training.
Data Types: logical

AdaptWeightsSource — Source of adapt tap weights request
'Property' (default) | 'Input port'

Source of adapt tap weights request, specified as one of these values:

• 'Property' — Specify this value to use the AdaptWeights property to control when the System
object adapts tap weights.

• 'Input port' — Specify this value to use the aw input to control when the System object adapts
tap weights.

Dependencies

To enable this property, set Algorithm to 'CMA'.
Data Types: char | string

AdaptWeights — Adapt tap weights
1 or true (default) | 0 or false

Adapt tap weights, specified as a logical 1 (true) or 0 (false). If this property is set to true, the
System object updates the equalizer tap weights. If this property is set to false, the System object
keeps the equalizer tap weights unchanged.

Dependencies

To enable this property, set AdaptWeightsSource to 'Property' and set AdaptAfterTraining to true.
Data Types: logical

InitialWeightsSource — Source for initial tap weights
'Auto' (default) | 'Property'

Source for initial tap weights, specified as

• 'Auto' — Initialize the tap weights to the algorithm-specific default values, as described in the
InitialWeights property.

• 'Property' — Initialize the tap weights using the InitialWeights property value.

Data Types: char | string

InitialWeights — Initial tap weights
0 or [0;0;1;0;0] (default) | scalar | column vector

Initial tap weights used by the adaptive algorithm, specified as a scalar or vector. The default is 0
when the Algorithm property is set to 'LMS' or 'RLS'. The default is [0;0;1;0;0] when the
Algorithm property is set to 'CMA'.

If you specify InitialWeights as a vector, the vector length must be equal to the NumTaps
property value. If you specify InitialWeights as a scalar, the equalizer uses scalar expansion to
create a vector of length NumTaps with all values set to InitialWeights.
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Dependencies

To enable this property, set InitialWeightsSource to 'Property'.
Data Types: double

WeightUpdatePeriod — Tap weight update period
1 (default) | positive integer

Tap weight update period in symbols, specified as a positive integer. The equalizer updates the tap
weights after processing this number of symbols.
Data Types: double

Usage

Syntax
y = lineq(x,tsym)
y = lineq(x,tsym,tf)

y = lineq(x)
y = lineq(x,aw)

Description

y = lineq(x,tsym) equalizes input signal x by using training symbols tsym. The output is the
equalized symbols. To enable this syntax, set the Algorithm property to 'LMS' or 'RLS'.

y = lineq(x,tsym,tf) also specifies training flag tf. The System object starts training when tf
changes from false to true (at the rising edge). The System object trains until all symbols in tsym
are processed. The input tsym is ignored when tf is false. To enable this syntax, set the Algorithm
property to 'LMS' or 'RLS' and TrainingFlagInputPort property to true.

y = lineq(x) equalizes input signal x. To enable this syntax, set the Algorithm property to 'CMA'.

y = lineq(x,aw) also specifies adapts weights flag aw. If aw is true, the System object adapts the
equalizer tap weights. If aw is false, the System object keeps the weights unchanged. To enable this
syntax, set the Algorithm property to 'CMA' and AdaptWeightsSource property to 'Input port'.

[y,err] = lineq( ___ ) also returns error signal err using input arguments from any of the
previous syntaxes.

[y,err,weights] = lineq( ___ ) also returns weights, the tap weights from the last tap weight
update, using input arguments from any of the previous syntaxes.

Input Arguments

x — Input signal
column vector

Input signal, specified as a column vector. The input signal vector length must be equal to an integer
multiple of the InputSamplesPerSymbol property value. For more information, see “Symbol Tap
Spacing” on page 3-447.
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Data Types: double
Complex Number Support: Yes

tsym — Training symbols
column vector

Training symbols, specified as a column vector of length less than or equal to the length of input x.
The input tsym is ignored when tf is false.

Dependencies

To enable this argument, set the Algorithm property to 'LMS' or 'RLS'.
Data Types: double
Complex Number Support: Yes

tf — Training flag
1 or true | 0 or false

Training flag, specified as a logical 1 (true) or 0 (false). The System object starts training when tf
changes from false to true (at the rising edge). The System object trains until all symbols in tsym
are processed. The input tsym is ignored when tf is false.

Dependencies

To enable this argument, set the Algorithm property to 'LMS' or 'RLS' and TrainingFlagInputPort
property to true.
Data Types: logical

aw — Adapt weights flag
1 or true | 0 or false

Adapt weights flag, specified as a logical 1 (true) or 0 (false). If aw is true, the System object
adapts weights. If aw is false, the System object keeps the weights unchanged.

Dependencies

To enable this argument, set the Algorithm property to 'CMA' and AdaptWeightsSource property to
'Input port'.
Data Types: logical

Output Arguments

y — Equalized symbols
column vector

Equalized symbols, returned as a column vector that has the same length as input signal x.

err — Error signal
column vector

Error signal, returned as a column vector that has the same length as input signal x.

weights — Tap weights
column vector
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Tap weights, returned as a column vector that has NumTaps elements. weights contains the tap
weights from the last tap weight update.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to comm.LinearEqualizer
isLocked Determine if System object is in use
clone Create duplicate System object
info Characteristic information about the equalizer object
maxstep Maximum step size for LMS equalizer convergence
mmseweights Linear equalizer MMSE tap weights

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Linearly Equalize BPSK-Modulated Signal

Create a BPSK modulator and an equalizer System object™, specifying a linear LMS equalizer having
eight taps and a step size of 0.03.

bpsk = comm.BPSKModulator;
eqlms = comm.LinearEqualizer( ...
    'Algorithm','LMS', ...
    'NumTaps',8, ...
    'StepSize',0.03);

Change the reference tap index of the equalizer.

eqlms.ReferenceTap = 4;

Build a set of test data. Receive the data by convolving the signal.

x = bpsk(randi([0 1],1000,1));
rxsig = conv(x,[1 0.8 0.3]);

Use maxstep to find the maximum permitted step size.

mxStep = maxstep(eqlms,rxsig)

mxStep = 0.1384

Equalize the received signal. Use the first 200 symbols as the training sequence.
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y = eqlms(rxsig,x(1:200));

Linearly Equalize QPSK-Modulated Signal

Apply linear equalization using the least mean squares (LMS) algorithm to recover QPSK symbols
passed through a multipath AWGN channel.

Initialize simulation variables.

M = 4; % QPSK
numSymbols = 10000;
numTrainingSymbols = 1000;
chtaps = [1 0.5*exp(1i*pi/6) 0.1*exp(-1i*pi/8)];

Generate QPSK-modulated symbols. Apply multipath channel filtering and AWGN impairments to the
symbols.

data = randi([0 M-1],numSymbols,1);
tx = pskmod(data,M,pi/4);
rx = awgn(filter(chtaps,1,tx),25,'measured');

Create a linear equalizer System object and display the default configuration. Adjust the reference
tap to 1. Check the maximum permitted step size. Equalize the impaired symbols.

eq = comm.LinearEqualizer

eq = 
  comm.LinearEqualizer with properties:

                Algorithm: 'LMS'
                  NumTaps: 5
                 StepSize: 0.0100
            Constellation: [0.7071 + 0.7071i -0.7071 + 0.7071i ... ]
             ReferenceTap: 3
               InputDelay: 0
    InputSamplesPerSymbol: 1
    TrainingFlagInputPort: false
       AdaptAfterTraining: true
     InitialWeightsSource: 'Auto'
       WeightUpdatePeriod: 1

eq.ReferenceTap = 1;
mxStep = maxstep(eq,rx)

mxStep = 0.3171

[y,err,weights] = eq(rx,tx(1:numTrainingSymbols));

Plot the constellation of the impaired and equalized symbols.

constell = comm.ConstellationDiagram('NumInputPorts',2);
constell(rx,y);
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Plot the equalizer error signal and compute the error vector magnitude (EVM) of the equalized
symbols.

plot(abs(err));
grid on;
xlabel('Symbols');
ylabel('|e|');
title('Equalizer Error Signal');
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errevm = comm.EVM;
evm = errevm(tx,y)

evm = 11.7853

Plot the equalizer tap weights.

subplot(3,1,1); 
stem(real(weights));
ylabel('real(weights)');
xlabel('Tap');
grid on;
axis([0 6 -0.5 1]);
title('Equalizer Tap Weights');
subplot(3,1,2); 
stem(imag(weights));
ylabel('imag(weights)');
xlabel('Tap');
grid on;
axis([0 6 -0.5 1]);
subplot(3,1,3); 
stem(abs(weights));
ylabel('abs(weights)');
xlabel('Tap');
grid on;
axis([0 6 -0.5 1]);
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Linearly Equalize System by Using Different Training Schemes

Demonstrate linear equalization by using the least mean squares (LMS) algorithm to recover QPSK
symbols passed through an AWGN channel. Apply different equalizer training schemes and show the
symbol error magnitude.

System Setup

Simulate a QPSK-modulated system subject to AWGN. Transmit packets composed of 200 training
symbols and 1800 random data symbols. Configure a linear LMS equalizer to recover the packet data.

M = 4;
numTrainSymbols = 200;
numDataSymbols = 1800;
SNR = 20;
trainingSymbols = pskmod(randi([0 M-1],numTrainSymbols,1),M,pi/4);
numPkts = 10;
lineq = comm.LinearEqualizer('Algorithm','LMS', ...
    'NumTaps',5,'ReferenceTap',3,'StepSize',0.01);

Train the Equalizer at the Beginning of Each Packet with Reset
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Use prepended training symbols when processing each packet. After processing each packet, reset
the equalizer. This reset forces the equalizer to train the taps with no previous knowledge. Equalizer
error signal plots for the first, second, and last packet show higher symbol errors at the start of each
packet.

jj = 1;
figure
for ii = 1:numPkts
    b = randi([0 M-1],numDataSymbols,1);
    dataSym = pskmod(b,M,pi/4);
    packet = [trainingSymbols;dataSym];
    rx = awgn(packet,SNR);
    [~,err] = lineq(rx,trainingSymbols);
    reset(lineq)
    if (ii ==1 || ii == 2 ||ii == numPkts)
        subplot(3,1,jj)
        plot(abs(err))
        title(['Packet # ',num2str(ii)])
        xlabel('Symbols')
        ylabel('Error Magnitude')
        axis([0,length(packet),0,1])
        grid on;
        jj = jj+1;
    end
end
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Train the Equalizer at the Beginning of Each Packet Without Reset

Process each packet using prepended training symbols. Do not reset the equalizer after each packet
is processed. By not resetting after each packet, the equalizer retains tap weights from training prior
packets. Equalizer error signal plots for the first, second, and last packet show that after the initial
training on the first packet, subsequent packets have fewer symbol errors at the start of each packet.

release(lineq)
jj = 1;
figure
for ii = 1:numPkts
    b = randi([0 M-1],numDataSymbols,1);
    dataSym = pskmod(b,M,pi/4);
    packet = [trainingSymbols;dataSym];
    channel = 1;
    rx = awgn(packet*channel,SNR);
    [~,err] = lineq(rx,trainingSymbols);
    if (ii ==1 || ii == 2 ||ii == numPkts)
        subplot(3,1,jj)
        plot(abs(err))
        title(['Packet # ',num2str(ii)])
        xlabel('Symbols')
        ylabel('Error Magnitude')
        axis([0,length(packet),0,1])
        grid on;
        jj = jj+1;
    end
end
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Train the Equalizer Periodically

Systems with signals subject to time-varying channels require periodic equalizer training to maintain
lock on the channel variations. Specify a system that has 200 symbols of training for every 1800 data
symbols. Between training, the equalizer does not update tap weights. The equalizer processes 200
symbols per packet.

Rs = 1e6;
fd = 20;
spp = 200; % Symbols per packet
b = randi([0 M-1],numDataSymbols,1);
dataSym = pskmod(b,M,pi/4);
packet = [trainingSymbols; dataSym];
stream = repmat(packet,10,1);
tx = (0:length(stream)-1)'/Rs;
channel = exp(1i*2*pi*fd*tx);
rx = awgn(stream.*channel,SNR);

Set the AdaptAfterTraining property to false to stop the equalizer tap weight updates after the
training phase.

release(lineq)
lineq.AdaptAfterTraining = false

lineq = 
  comm.LinearEqualizer with properties:
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                Algorithm: 'LMS'
                  NumTaps: 5
                 StepSize: 0.0100
            Constellation: [0.7071 + 0.7071i -0.7071 + 0.7071i ... ]
             ReferenceTap: 3
               InputDelay: 0
    InputSamplesPerSymbol: 1
    TrainingFlagInputPort: false
       AdaptAfterTraining: false
     InitialWeightsSource: 'Auto'
       WeightUpdatePeriod: 1

Equalize the impaired data. Plot the angular error from the channel, the equalizer error signal, and
signal constellation. As the channel varies, the equalizer output does not remove the channel effects.
The output constellation rotates out of sync, resulting in bit errors.

[y,err] = lineq(rx,trainingSymbols);

figure
subplot(2,1,1)
plot(tx, unwrap(angle(channel)))
xlabel('Time (sec)')
ylabel('Channel Angle (rad)')
title('Angular Error Over Time')
subplot(2,1,2)
plot(abs(err))
xlabel('Symbols')
ylabel('Error Magnitude')
grid on
title('Time-Varying Channel Without Retraining')
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scatterplot(y)
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Set the TrainingInputPort property to true to configure the equalizer to retrain the taps when
signaled by the trainFlag input. The equalizer trains only when trainFlag is true. After every
2000 symbols, the equalizer retrains the taps and keeps lock on variations of the channel. Plot the
angular error from the channel, equalizer error signal, and signal constellation. As the channel
varies, the equalizer output removes the channel effects. The output constellation does not rotate out
of sync and bit errors are reduced.

release(lineq)
lineq.TrainingFlagInputPort = true;
symbolCnt = 0;
numPackets = length(rx)/spp;
trainFlag = true;
trainingPeriod = 2000;
eVec = zeros(size(rx));
yVec = zeros(size(rx));
for p=1:numPackets
    [yVec((p-1)*spp+1:p*spp,1),eVec((p-1)*spp+1:p*spp,1)] = ...
        lineq(rx((p-1)*spp+1:p*spp,1),trainingSymbols,trainFlag);
    symbolCnt = symbolCnt + spp;
    if symbolCnt >= trainingPeriod
        trainFlag = true;
        symbolCnt = 0;
    else
        trainFlag = false;
    end
end
figure
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subplot(2,1,1)
plot(tx, unwrap(angle(channel)))
xlabel('t (sec)')
ylabel('Channel Angle (rad)')
title('Angular Error Over Time')
subplot(2,1,2)
plot(abs(eVec))
xlabel('Symbols')
ylabel('Error Magnitude')
grid on
title('Time-Varying Channel With Retraining')

scatterplot(yVec)
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Linearly Equalize Delayed Signal

Simulate a system with delay between the transmitted symbols and received samples. Typical
systems have transmitter and receiver filters that result in a delay. This delay must be accounted for
to synchronize the system. In this example, the system delay is introduced without transmit and
receive filters. Linear equalization, using the least mean squares (LMS) algorithm, recovers QPSK
symbols.

Initialize simulation variables.

M = 4; % QPSK
numSymbols = 10000;
numTrainingSymbols = 1000;
mpChan = [1 0.5*exp(1i*pi/6) 0.1*exp(-1i*pi/8)];
systemDelay = dsp.Delay(20);
snr = 24;

Generate QPSK-modulated symbols. Apply multipath channel filtering, a system delay, and AWGN to
the transmitted symbols.

data = randi([0 M-1],numSymbols,1);
tx = pskmod(data,M,pi/4); % OQPSK
delayedSym = systemDelay(filter(mpChan,1,tx));
rx = awgn(delayedSym,snr,'measured');
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Create equalizer and EVM System objects. The equalizer System object specifies a linear equalizer
that uses the LMS algorithm.

lineq = comm.LinearEqualizer('Algorithm','LMS', ...
    'NumTaps',9,'ReferenceTap',5);
evm = comm.EVM('ReferenceSignalSource', ...
    'Estimated from reference constellation');

Equalize Without Adjusting Input Delay

Equalize the received symbols.

[y1,err1,wts1] = lineq(rx,tx(1:numTrainingSymbols,1));

Find the delay between the received symbols and the transmitted symbols by using the finddelay
function.

rxDelay = finddelay(tx,rx)

rxDelay = 20

Display the equalizer information. The latency value indicates the delay introduced by the equalizer.
Calculate the total delay as the sum of rxDelay and the equalizer latency.

eqInfo = info(lineq)

eqInfo = struct with fields:
    Latency: 4

totalDelay = rxDelay + eqInfo.Latency;

Until the equalizer output converges, the symbol error rate is high. Plot the error output, err1, to
determine when the equalized output converges.

plot(abs(err1))
xlabel('Symbols')
ylabel('Error Magnitude')
title('Equalizer Error Signal')
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The plot shows excessive errors beyond the 1000 symbols training period. When demodulating
symbols and computing symbol errors, to account for the unconverged output and the system delay
between the equalizer output and transmitted symbols, skip the first 2000 symbols.

dataRec1 = pskdemod(y1(2000+totalDelay:end),M,pi/4);
symErrWithDelay = symerr(data(2000:end-totalDelay),dataRec1)

symErrWithDelay = 5999

evmWithDelay = evm(y1)

evmWithDelay = 33.0110

The error rate and EVM are high because the receive delay was not accounted for in the equalizer
System object.

Adjust Input Delay in Equalizer

Equalize the received data by using the delay value to set the InputDelay property. Because
InputDelay is a nontunable property, you must release the lineq System object to reconfigure the
InputDelay property. Equalize the received symbols.

release(lineq)
lineq.InputDelay = rxDelay

lineq = 
  comm.LinearEqualizer with properties:
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                Algorithm: 'LMS'
                  NumTaps: 9
                 StepSize: 0.0100
            Constellation: [0.7071 + 0.7071i -0.7071 + 0.7071i ... ]
             ReferenceTap: 5
               InputDelay: 20
    InputSamplesPerSymbol: 1
    TrainingFlagInputPort: false
       AdaptAfterTraining: true
     InitialWeightsSource: 'Auto'
       WeightUpdatePeriod: 1

[y2,err2,wts2] = lineq(rx,tx(1:numTrainingSymbols,1));

Plot the tap weights and equalized error magnitude. A stem plot shows the equalizer tap weights
before and after the system delay is removed. A 2-D line plot shows the slower equalizer convergence
for the delayed signal as compared to the signal with the delay removed.

subplot(2,1,1)
stem([real(wts1),real(wts2)])
xlabel('Taps')
ylabel('Tap Weight Real')
legend('rxDelayed','rxDelayRemoved')
grid on
subplot(2,1,2)
stem([imag(wts1),imag(wts2)])
xlabel('Taps')
ylabel('Tap Weight Imaginary')
legend('rxDelayed','rxDelayRemoved')
grid on
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figure
plot([abs(err1),abs(err2)])
xlabel('Symbols')
ylabel('Error Magnitude')
legend('rxDelayed','rxDelayRemoved')
grid on
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Plot error output of the equalized signals, rxDelayed and rxDelayRemoved. For the signal that has
the delay removed, the equalizer converges during the 1000 symbol training period. When
demodulating symbols and computing symbol errors, to account for the unconverged output and the
system delay between the equalizer output and transmitted symbols, skip the first 500 symbols.
Reconfiguring the equalizer to account for the system delay enables better equalization of the signal,
and reduces symbol errors and the EVM.

eqInfo = info(lineq)

eqInfo = struct with fields:
    Latency: 4

totalDelay = rxDelay + eqInfo.Latency;
dataRec2 = pskdemod(y2(500+totalDelay:end),M,pi/4);
symErrDelayRemoved = symerr(data(500:end-totalDelay),dataRec2)

symErrDelayRemoved = 0

evmDelayRemoved = evm(y2(500+totalDelay:end))

evmDelayRemoved = 9.5660

Linearly Equalize Symbols By Using EVM-Based Training

Recover QPSK symbols with a linear equalizer by using the constant modulus algorithm (CMA) and
EVM-based taps training. When using blind equalizer algorithms, such as CMA, train the equalizer
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taps by using the AdaptWeights property to start and stop training. Helper functions are used to
generate plots and apply phase correction.

Initialize system variables.

rng(123456);
M = 4; % QPSK
numSymbols = 100;
numPackets = 5000;
raylChan = comm.RayleighChannel( ...
    'PathDelays',[0 1], ...
    'AveragePathGains',[0 -12], ...
    'MaximumDopplerShift',1e-5);
SNR = 50;
adaptWeights = true;

Create the equalizer and EVM System objects. The equalizer System object specifies a linear
equalizer by using the CMA adaptive algorithm. Call the helper function to initialize figure plots.

lineq = comm.LinearEqualizer( ...
    'Algorithm','CMA', ...
    'NumTaps',5, ...
    'ReferenceTap',3, ...
    'StepSize',0.03, ...
    'AdaptWeightsSource','Input port')

lineq = 
  comm.LinearEqualizer with properties:

                Algorithm: 'CMA'
                  NumTaps: 5
                 StepSize: 0.0300
            Constellation: [0.7071 + 0.7071i -0.7071 + 0.7071i ... ]
             ReferenceTap: 3
    InputSamplesPerSymbol: 1
       AdaptWeightsSource: 'Input port'
     InitialWeightsSource: 'Auto'
       WeightUpdatePeriod: 1

info(lineq)

ans = struct with fields:
    Latency: 2

evm = comm.EVM('ReferenceSignalSource', ...
    'Estimated from reference constellation');
[errPlot,evmPlot,scatSym,adaptState] = ...
    initFigures(numPackets,lineq);

Equalization Loop

To implement the equalization loop:

1 Generate PSK data packets.
2 Apply Rayleigh fading and AWGN to the transmission data.
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3 Apply equalization to the received data and phase correction to the equalizer output.
4 Estimate the EVM and toggle the adaptWeights flag to true or false based on the EVM level.
5 Update the figure plots.

for p=1:numPackets
    data = randi([0 M-1],numSymbols,1);
    tx = pskmod(data,M,pi/4);
    rx = awgn(raylChan(tx),SNR);
    rxDelay = finddelay(rx,tx);
    [y,err,wts] = lineq(rx,adaptWeights);
    y = phaseCorrection(y);
    evmEst = evm(y);
    adaptWeights = (evmEst > 20);
    
    updateFigures(errPlot,evmPlot,scatSym,adaptState, ...
        wts,y(end),evmEst,adaptWeights,p,numPackets)
end

rxDelay

rxDelay = 0

The figure plots show that, as the EVM varies, the equalizer toggles in and out of decision-directed
weight adaptation mode.
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Helper Functions

This helper function initializes figures that show a quad plot of simulation results.

function [errPlot,evmPlot,scatter,adaptState] = ...
    initFigures(numPkts,lineq)
yVec = nan(numPkts,1);
evmVec = nan(numPkts,1);
wVec = zeros(lineq.NumTaps,1);
adaptVec = nan(numPkts,1);

figure
subplot(2,2,1)
evmPlot = stem(wVec);
grid on; axis([1 lineq.NumTaps 0 1.8])
xlabel('Taps');
ylabel('|Weights|');
title('Tap Weight Magnitude')

subplot(2,2,2)
scatter = plot(yVec, '.');
axis square;
axis([-1.2 1.2 -1.2 1.2]);
grid on
xlabel('In-phase');
ylabel('Quadrature');
title('Scatter Plot');
subplot(2,2,3)
adaptState = plot(adaptVec);
grid on;
axis([0 numPkts -0.2 1.2])
ylabel('Training');
xlabel('Symbols');
title('Adapt Weights Signal')
subplot(2,2,4)
errPlot = plot(evmVec);
grid on;
axis([1 numPkts 0 100])
xlabel('Symbols');
ylabel('EVM (%)');
title('EVM')
end

This helper function updates figures.

function updateFigures(errPlot,evmPlot,scatSym, ...
    adaptState,w,y,evmEst,adaptWts,p,numFrames)
persistent yVec evmVec adaptVec

if p == 1
    yVec = nan(numFrames,1);
    evmVec = nan(numFrames,1);
    adaptVec = nan(numFrames,1);
end

yVec(p) = y;
evmVec(p) = evmEst;
adaptVec(p) = adaptWts;
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errPlot.YData = abs(evmVec);
evmPlot.YData = abs(w);
scatSym.XData = real(yVec);
scatSym.YData = imag(yVec);
adaptState.YData = adaptVec;
drawnow limitrate
end

This helper function applies phase correction.

function y = phaseCorrection(y)
a = angle(y((real(y) > 0) & (imag(y) > 0)));
a(a < 0.1) = a(a < 0.1) + pi/2;
theta = mean(a) - pi/4;
y = y * exp(-1i*theta);
end

Linearly Equalize Packetized Signals in Fading Environments

Recover QPSK symbols in fading environments with a linear equalizer, using the least mean squares
(LMS) algorithm. Use the reset object function to equalize independent packets. Use helper
functions to generate plots. This example also shows symbol-based processing and frame-based
processing.

Setup

Initialize system variables, create an equalizer System object, and initialize the plot figures.

M = 4; % QPSK
numSym = 1000;
numTrainingSym = 100;
numPackets = 5;
numTaps = 9;
ttlNumSym = numSym + numTrainingSym;
raylChan = comm.RayleighChannel( ...
    'PathDelays',[0 1], ...
    'AveragePathGains',[0 -9], ...
    'MaximumDopplerShift',0, ...
    'PathGainsOutputPort',true);
SNR = 35;
rxVec = zeros(ttlNumSym,numPackets);
txVec = zeros(ttlNumSym,numPackets);
yVec = zeros(ttlNumSym,1);
eVec = zeros(ttlNumSym,1);

lineq1 = comm.LinearEqualizer( ...
    'Algorithm','LMS', ...
    'NumTaps',numTaps, ...
    'ReferenceTap',5, ...
    'StepSize',0.01, ...
    'TrainingFlagInputPort',true);

[errPlot,wStem,hStem,scatPlot] = initFigures(ttlNumSym,lineq1, ...
    raylChan.AveragePathGains);
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Symbol-Based Processing

For symbol-based processing, provide one symbol at the input of the equalizer. Reset the equalizer
state and channel after processing each packet.

for p = 1:numPackets
    trainingFlag = true;
    for q=1:ttlNumSym
        data = randi([0 M-1],1,1);
        tx = pskmod(data,M,pi/4);
        [xc,pg] = raylChan(tx);
        rx = awgn(xc,25);
        [y,err,wts] = lineq1(rx,tx,trainingFlag);       

Disable training after processing numTrainingSym training symbols.

        if q == numTrainingSym
            trainingFlag = false;
        end        
        updateFigures(errPlot,wStem,hStem,scatPlot,err, ...
            wts,y,pg,q,ttlNumSym);
        txVec(q,p) = tx;
        rxVec(q,p) = rx;
    end 

After processing each packet, reset the channel System object to get a new realization of channel
taps and the equalizer System object to restore the default set of tap weights.

    reset(raylChan)
    reset(lineq1)
end
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Packet-Based Processing

For packet-based processing, provide one packet at the input of the equalizer. Each packet contains
ttlNumSym symbols. Because the training duration is less than the packet length, you do not need to
specify the start-training input.

yVecPkt = zeros(ttlNumSym,numPackets);
errVecPkt = zeros(ttlNumSym,numPackets);
wgtVecPkt = zeros(numTaps,numPackets);
lineq2 = comm.LinearEqualizer('Algorithm','LMS', ...
    'NumTaps',9,'ReferenceTap',6,'StepSize',0.01);
for p = 1:numPackets
    [yVecPkt(:,p),errVecPkt(:,p),wgtVecPkt(:,p)] = ...
        lineq2(rxVec(:,p),txVec(1:numTrainingSym,p));
    for q=1:ttlNumSym
        updateFigures(errPlot,wStem,hStem,scatPlot, ...
            errVecPkt(q,p),wgtVecPkt(:,p), ...
            yVecPkt(q,p),pg,q,ttlNumSym);
    end

After processing each packet, reset the channel System object to get a new realization of channel
taps and the equalizer System object to restore the default set of tap weights.

    reset(raylChan)
    reset(lineq2)
end
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Helper Functions

The helper function initializes the figures.

function [errPlot,wStem,hStem,scatPlot] = ...
    initFigures(ttlNumSym,lineq,pg)
yVec = nan(ttlNumSym,1);
eVec = nan(ttlNumSym,1);
wVec = zeros(lineq.NumTaps,1);
figure;
subplot(2,2,1);
wStem = stem(wVec);
axis([1 lineq.NumTaps 0 1.8]);
grid on;
xlabel('Taps');
ylabel('|Weights|');
title('Tap Weight Magnitude');
subplot(2,2,2);
hStem = stem([0 abs(pg) 0]);
grid on;
xlabel('Taps');
ylabel('|Path Gain|');
title('Channel Path Gain Magnitude');
subplot(2,2,3);
errPlot = plot(eVec);
axis([1 ttlNumSym 0 1.2]);
grid on;
xlabel('Symbols');
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ylabel('|Error Magnitude|');
title('Error Magnitude');
subplot(2,2,4);
scatPlot = plot(yVec,'.');
axis square;
axis([-1.2 1.2 -1.2 1.2]);
grid on;
xlabel('In-phase');
ylabel('Quadrature');
title(sprintf('Scatter Plot'));
end

This helper function updates the figures.

function updateFigures(errPlot,wStem,hStem,scatPlot, ...
    err,wts,y,pg,p,ttlNumSym)
persistent yVec eVec
if p == 1
    yVec = nan(ttlNumSym,1);
    eVec = nan(ttlNumSym,1);
end
yVec(p) = y;
eVec(p) = abs(err);
errPlot.YData = abs(eVec);
wStem.YData = abs(wts);
hStem.YData = [0 abs(pg) 0];
scatPlot.XData = real(yVec);
scatPlot.YData = imag(yVec);
drawnow limitrate
end

Nonadaptive Linear Equalization

Use the linear equalizer in nonadaptive mode. Use the mmseweights object function to calculate the
minimum mean squared error (MMSE) solution and use the weights returned as the set of tap
weights for the linear equalizer.

Initialize simulation variables.

M = 4; % QPSK
numSymbols = 10000;
numTrainingSymbols = 1000;
chtaps = [1 0.5*exp(1i*pi/6) 0.1*exp(-1i*pi/8)];
EbN0 = 20;

Generate QPSK modulated symbols. Apply delayed multipath channel filtering and AWGN
impairments to the symbols.

data = randi([0 M-1], numSymbols, 1);
tx = pskmod(data, M, pi/4);
rx = awgn(filter(chtaps,1,tx),25,'measured');

Create a linear equalizer System object configured to use CMA algorithm, set the AdaptWeights
property to false, and the InitialWeightsSource property to Property. Calculate the MMSE
weights. Set the initial tap weights to the calculated MMSE weights. Equalize the impaired symbols.
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eq = comm.LinearEqualizer( ...
    'Algorithm','CMA', ...
    'AdaptWeights',false, ...
    'InitialWeightsSource','Property')

eq = 
  comm.LinearEqualizer with properties:

                Algorithm: 'CMA'
                  NumTaps: 5
                 StepSize: 0.0100
            Constellation: [0.7071 + 0.7071i -0.7071 + 0.7071i ... ]
    InputSamplesPerSymbol: 1
       AdaptWeightsSource: 'Property'
             AdaptWeights: false
     InitialWeightsSource: 'Property'
           InitialWeights: [5x1 double]
       WeightUpdatePeriod: 1

wgts = mmseweights(eq,chtaps,EbN0)

wgts = 5×1 complex

   0.0005 - 0.0068i
   0.0103 + 0.0117i
   0.9694 - 0.0019i
  -0.3987 + 0.2186i
   0.0389 - 0.1756i

eq.InitialWeights = wgts;
[y,err,weights] = eq(rx);

Plot constellation of impaired and equalized symbols.

constell = comm.ConstellationDiagram('NumInputPorts',2);
constell(rx,y);
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Plot the equalizer error signal and compute the error vector magnitude of the equalized symbols.

plot(abs(err));
grid on;
xlabel('Symbols');
ylabel('|e|');
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errevm = comm.EVM;
evm = errevm(tx,y)

evm = 139.1636

Plot equalizer tap weights.

subplot(3,1,1);
stem(real(weights));
ylabel('real(weights)');
xlabel('Tap');
grid on;
axis([1 8 -0.5 1]);
line([eq.NumTaps+0.5 eq.NumTaps+0.5],[-0.5 1], ...
    'Color','r','LineWidth',1);
title('Equalizer Tap Weights');
subplot(3,1,2);
stem(imag(weights));
ylabel('imag(weights)');
xlabel('Tap');
grid on;
axis([1 8 -0.5 1]);
line([eq.NumTaps+0.5 eq.NumTaps+0.5],[-0.5 1], ...
    'Color','r','LineWidth',1);
subplot(3,1,3);
stem(abs(weights));
ylabel('abs(weights)');
xlabel('Tap');
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grid on;
axis([1 8 -0.5 1]);
line([eq.NumTaps+0.5 eq.NumTaps+0.5], ...
    [-0.5 1],'Color','r','LineWidth',1);

Linearly Equalize Signals Sample-by-Sample

Demonstrate linear equalization by using the least mean squares (LMS) algorithm to recover QPSK
symbols passed through an AWGN channel. Process the signal sample-by-sample.

System Setup

Simulate a QPSK-modulated system subject to AWGN. Transmit packets composed of 200 training
symbols and 1800 random data symbols. Configure a linear LMS equalizer to recover the packet data.

M = 4;
numTrainSymbols = 200;
numDataSymbols = 1800;
SNR = 20;
trainingSymbols = ...
    pskmod(randi([0 M-1],numTrainSymbols,1),M,pi/4);
numPkts = 10;
lineq = comm.LinearEqualizer( ...
    'Algorithm','LMS', ...
  'NumTaps',5, ...
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  'ReferenceTap',3, ...
  'StepSize',0.01, ...
  'TrainingFlagInputPort',true);

Main Loop

Use prepended training symbols when processing each packet. After processing each packet, reset
the equalizer. This reset forces the equalizer to train the taps with no previous knowledge. Equalize
the received signal sample-by-sample. For each packet, use the first 200 symbols for training.

subPlotCnt = 1;
figure
for ii = 1:numPkts
  b = randi([0 M-1],numDataSymbols,1);
  dataSym = pskmod(b,M,pi/4);
  packet = [trainingSymbols;dataSym];
  rx = awgn(packet,SNR);
  y = zeros(numDataSymbols+numTrainSymbols,1);
  err = zeros(numDataSymbols+numTrainSymbols,1);
  for jj = 1:numDataSymbols+numTrainSymbols
    if jj <= numTrainSymbols
      [y(jj),err(jj)] = ...
          lineq(rx(jj),trainingSymbols(jj),true);
    else
      [y(jj),err(jj)] = lineq(rx(jj),1i,false);
    end
  end
  reset(lineq)
  
  if (ii ==1 || ii == 2 ||ii == numPkts)
    subplot(3,1,subPlotCnt)
    plot(abs(err))
    title(['Packet # ',num2str(ii)])
    xlabel('Symbols')
    ylabel('Error Magnitude')
    axis([0,length(packet),0,1])
    grid on;
    subPlotCnt = subPlotCnt+1;
  end
end
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Linearly Equalize Packet Using Multiple Passes

Demonstrate linear equalization by using the least mean squares (LMS) algorithm to recover QPSK
symbols passed through an AWGN channel. Process a packet that has training symbols at the
beginning in multiple passes. Compare results to equalization processing the full packet in a single
pass.

System Setup

Simulate a QPSK-modulated system subject to AWGN. Transmit packets composed of 200 training
symbols and 1800 random data symbols. Configure a linear LMS equalizer to recover the packet data.

M = 4;
numTrainSymbols = 200;
numDataSymbols = 1800;
SNR = 20;
trainingSymbols = ...
    pskmod(randi([0 M-1],numTrainSymbols,1),M,pi/4);
b = randi([0 M-1],numDataSymbols,1);
dataSym = pskmod(b,M,pi/4);
packet = [trainingSymbols;dataSym];
rx = awgn(packet,SNR);
lineq = comm.LinearEqualizer( ...
    'Algorithm','LMS', ...
    'NumTaps',5, ...
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    'ReferenceTap',3, ...
    'StepSize',0.01);

Process Packet in One Pass

Use prepended training symbols when processing each packet. After processing each packet, reset
the equalizer. This reset forces the equalizer to train the taps with no previous knowledge. Equalize
the received signal sample-by-sample. For each packet, use the first 200 symbols for training.

subPlotCnt = 1;
figure
[y1,err1] = lineq(rx,trainingSymbols);
reset(lineq)

plot(abs(err1))
title("Single Pass Processing")
xlabel('Symbols')
ylabel('Error Magnitude')
axis([0,length(packet),0,1])
grid on;

Process Packet in Multiple Passes
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Use prepended training symbols when processing each packet. After processing each packet, reset
the equalizer. This reset forces the equalizer to train the taps with no previous knowledge. Equalize
the received signal sample-by-sample. For each packet, use the first 200 symbols for training.

lineq = comm.LinearEqualizer( ...
    'Algorithm','LMS', ...
    'NumTaps',5, ...
    'ReferenceTap',3, ...
    'StepSize',0.01, ...
    'TrainingFlagInputPort',true);

frameLen = 100;
numFrames = (numDataSymbols+numTrainSymbols) / frameLen;

figure
y2 = zeros(numDataSymbols+numTrainSymbols,1);
err2 = zeros(numDataSymbols+numTrainSymbols,1);
idx = 1:frameLen;
symbolCnt = 0;
for jj = 1:numFrames
    if symbolCnt < numTrainSymbols
        [y2(idx),err2(idx)] = ...
            lineq(rx(idx),trainingSymbols(idx),true);
    else
        [y2(idx),err2(idx)] = ...
            lineq(rx(idx),1i*ones(frameLen,1),false);
    end
    idx = idx + frameLen;
    symbolCnt = symbolCnt + frameLen;
end
reset(lineq)

plot(abs(err2))
title("Multipass Processing")
xlabel('Symbols')
ylabel('Error Magnitude')
axis([0,length(packet),0,1])
grid on;
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Results from equalization using single pass and multipass approaches match.

outputsEqual = isequal(y1,y2)

outputsEqual = logical
   1

errorsEqual = isequal(err1,err2)

errorsEqual = logical
   1

More About
Symbol Tap Spacing

You can configure the equalizer to operate as a symbol-spaced equalizer or as a fractional symbol-
spaced equalizer.

• To operate the equalizer at a symbol-spaced rate, specify the number of samples per symbol as 1.
Symbol-rate equalizers have taps spaced at the symbol duration. Symbol-rate equalizers are
sensitive to timing phase.

• To operate the equalizer at a fractional symbol-spaced rate, specify the number of input samples
per symbol as an integer greater than 1 and provide an input signal oversampled at that sampling
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rate. Fractional symbol-spaced equalizers have taps spaced at an integer fraction of the input
symbol duration. Fractional symbol-spaced equalizers are not sensitive to timing phase.

Algorithms
Linear Equalizers

Linear equalizers can remove intersymbol interference (ISI) when the frequency response of a
channel has no null. If a null exists in the frequency response of a channel, linear equalizers tend to
enhance the noise. In this case, use decision feedback equalizers to avoid enhancing the noise.

A linear equalizer consists of a tapped delay line that stores samples from the input signal. Once per
symbol period, the equalizer outputs a weighted sum of the values in the delay line and updates the
weights to prepare for the next symbol period.

Linear equalizers can be symbol-spaced or fractional symbol-spaced.

• For a symbol-spaced equalizer, the number of samples per symbol, K, is 1. The output sample rate
equals the input sample rate.

• For a fractional symbol-spaced equalizer, the number of samples per symbol, K, is an integer
greater than 1. Typically, K is 4 for fractionally spaced equalizers. The output sample rate is 1/T
and the input sample rate is K/T, where T is the symbol period. Tap-weight updating occurs at the
output rate.

This schematic shows a linear equalizer with L weights, a symbol period of T, and K samples per
symbol. If K is 1, the result is a symbol-spaced linear equalizer instead of a fractional symbol-spaced
linear equalizer.
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In each symbol period, the equalizer receives K input samples at the tapped delay line. The equalizer
then outputs a weighted sum of the values in the tapped delay line and updates the weights to
prepare for the next symbol period.

For more information, see “Equalization”.

Least Mean Square (LMS) Algorithm

For the LMS algorithm, in the previous schematic, w is a vector of all weights wi, and u is a vector of
all inputs ui. Based on the current set of weights, the LMS algorithm creates the new set of weights
as

wnew = wcurrent + (StepSize) ue*.

The step size used by the adaptive algorithm is specified as a positive scalar. Increasing the step size
reduces the equalizer convergence time but causes the equalized output signal to be less stable. To
determine the maximum step size allowed when using the LMS adaptive algorithm, use the maxstep
object function. The * operator denotes the complex conjugate and the error calculation e = d - y.

Recursive Least Square (RLS) Algorithm

For the RLS algorithm, in the previous schematic, w is the vector of all weights wi, and u is the vector
of all inputs ui. Based on the current set of inputs, u, and the inverse correlation matrix, P, the RLS
algorithm first computes the Kalman gain vector, K, as

K = Pu
(ForgettingFactor) + uHPu

.

The forgetting factor used by the adaptive algorithm is specified as a scalar in the range (0, 1].
Decreasing the forgetting factor reduces the equalizer convergence time but causes the equalized
output signal to be less stable. H denotes the Hermitian transpose. Based on the current inverse
correlation matrix, the new inverse correlation matrix is

Pnew =
(1 − KuH)Pcurrent
ForgettingFactor .

Based on the current set of weights, the RLS algorithm creates the new set of weights as
wnew = wcurrent+K*e.

The * operator denotes the complex conjugate and the error calculation e = d - y.

Constant Modulus Algorithm (CMA)

For the CMA adaptive algorithm, in the previous schematic, w is the vector of all weights wi, and u is
the vector of all inputs ui. Based on the current set of weights, the CMA adaptive algorithm creates
the new set of weights as

wnew = wcurrent + (StepSize) u*e.

The step size used by the adaptive algorithm is specified as a positive scalar. Increasing the step size
reduces the equalizer convergence time but causes the equalized output signal to be less stable. To
determine the maximum step size allowed by the CMA adaptive algorithm, use the maxstep object
function. The * operator denotes the complex conjugate and the error calculation e = y(R - |y|2),
where R is a constant related to the signal constellation.
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Version History
Introduced in R2019a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
comm.DecisionFeedback | comm.MLSEEqualizer

Blocks
Linear Equalizer

Topics
“Equalization”
“Adaptive Equalizers”
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comm.EVM
Package: comm

Measure error vector magnitude (EVM) of received signal

Description
The comm.EVM System object measures the root mean squared (RMS) EVM, maximum EVM, and
percentile EVM of a received signal.

To measure the EVM of a received signal:

1 Create the comm.EVM object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation
Syntax
evm = comm.EVM
evm = comm.EVM(Name=Value)

Description

evm = comm.EVM creates an EVM measurement System object.

evm = comm.EVM(Name=Value) sets properties using one or more name-value arguments. For
example, ReferenceSignalSource="Estimated from reference constellation"
configures the object to measure the EVM of a received signal relative to a reference constellation.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Normalization — Normalization method
'Average reference signal power' (default) | 'Average constellation power' | 'Peak
constellation power'

Normalization method used in EVM calculation, specified as 'Average reference signal
power', 'Average constellation power', or 'Peak constellation power'.
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Data Types: char | string

AverageConstellationPower — Average constellation power
1 (default) | positive scalar

Average constellation power in Watts, specified as a positive scalar.
Dependencies

To enable this property, set the Normalization property to 'Average constellation power'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

PeakConstellationPower — Peak constellation power
1 (default) | positive scalar

Peak constellation power in Watts, specified as a positive scalar.
Dependencies

To enable this property, set the Normalization property to 'Peak constellation power'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ReferenceSignalSource — Reference signal source
'Input port' (default) | 'Estimated from reference constellation'

Reference signal source, specified as 'Input port' or 'Estimated from reference
constellation'. To provide an explicit reference signal against which to measure received signal,
set this property to 'Input port'. To measure the EVM of the received signal against a reference
constellation, set this property to 'Estimated from reference constellation'.
Data Types: char | string

ReferenceConstellation — Reference constellation
[0.7071 - 0.7071i; -0.7071 - 0.7071i; -0.7071 + 0.7071i; 0.7071 + 0.7071i]
(default) | vector

Reference constellation, specified as a vector. The default value corresponds to a quadrature phase-
shift keying (QPSK) constellation with unit average power. You can derive constellation points by
using modulation functions or objects. For example, to derive the reference constellation for a 16-
point quadrature amplitude modulated (16-QAM) signal, use the qammod function.
Example: qammod(0:15,16)
Dependencies

To enable this property, set the ReferenceSignalSource property to 'Estimated from
reference constellation'.
Data Types: double
Complex Number Support: Yes

MeasurementIntervalSource — Measurement interval source
'Input length' (default) | 'Entire history' | 'Custom' | 'Custom with periodic reset'
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Measurement interval source for RMS and maximum EVM measurements, specified as one of these
values.

• 'Input length' — Measure EVM using only the current samples.
• 'Entire history' — Measure EVM for all samples.
• 'Custom' — Measure EVM over an interval you specify and use a sliding window.
• 'Custom with periodic reset' — Measure EVM over an interval you specify and reset the

object after measuring over each interval.

Data Types: char | string

MeasurementInterval — Measurement interval
100 (default) | positive integer

Measurement interval, specified as a positive integer.
Dependencies

To enable this property, set the MeasurementIntervalSource property to 'Custom' or 'Custom
with periodic reset'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

AveragingDimensions — Averaging dimensions
1 (default) | vector of integers in the range [1, 3]

Averaging dimensions over which the object averages the EVM measurements, specified as a vector
of integers in the range [1, 3]. For example, to average across the rows, set this property to 2.

This object supports variable-size inputs of the dimensions across which the averaging takes place.
However, the input size for the non-averaged dimensions must remain constant between calls to the
object. For example, if the input has size [1000 3 2] and you set this property to [1 3], the output
size is [1 3 1], and the number of elements in the second dimension must remain fixed at 3.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

MaximumEVMOutputPort — Option to return maximum EVM measurements
false or 0 (default) | true or 1

Option to return maximum EVM measurements, specified as a logical 1 (true) or 0 (false).
Data Types: logical

XPercentileEVMOutputPort — Option to return X-percentile EVM measurements
false or 0 (default) | true or 1

Option to return X-percentile EVM measurements, that is, the value below which X% of EVM
measurements fall, specified as a logical 1 (true) or 0 (false). When you set this property to 1
(true), X-percentile EVM measurements persist until you reset the object. The object performs these
measurements by using all of the input frames since the last reset.
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Data Types: logical

XPercentileValue — Value below which X% of EVM measurements fall
95 (default) | scalar in the range [0, 100]

Value below which X% of EVM measurements fall, specified as a scalar in the range [0, 100].

Dependencies

To enable this property, set the XPercentileEVMOutputPort property to true.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

SymbolCountOutputPort — Option to return number of accumulated symbols
false or 0 (default) | true or 1

Option to return the number of accumulated symbols that the object uses to measure the X-percentile
EVM since the last reset, specified as a logical 1 (true) or 0 (false).

Dependencies

To enable this property, set the XPercentileEVMOutputPort property to true.
Data Types: logical

Usage

Syntax
rmsEVM = evm(refSym,rxSym)
[rmsEVM,maxEVM] = evm(refSym,rxSym)
[ ___ ,xEVM] = evm(refSym,rxSym)
[ ___ ,numSym] = evm(refSym,rxSym)
[ ___ ] = evm(rxSym)

Description

rmsEVM = evm(refSym,rxSym) measures the percentage RMS EVM of received signal rxSym
relative to reference signal refSym over the measurement interval specified in the
MeasurementIntervalSource and MeasurementInterval properties.

[rmsEVM,maxEVM] = evm(refSym,rxSym) also measures the maximum percentage EVM over the
configured measurement interval.

To use this syntax, set the MaximumEVMOutputPort property to true.

[ ___ ,xEVM] = evm(refSym,rxSym) also measures the value below which X% of EVM
measurements fall using all input frames since the last reset, regardless of measurement interval
configuration. Set the value of X in the XPercentileValue property. For example, if you set the
XPercentileValue to 95, then 95% of all EVM measurements since the last reset fall below the
value of xEVM. You can use this syntax with any previous output argument combination.

To use this syntax, set the XPercentileEVMOutputPort property to true.
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[ ___ ,numSym] = evm(refSym,rxSym) also returns the number of symbols used to measure the
X-percentile EVM. To use this syntax, set the XPercentileEVMOutputPort and
SymbolCountOutputPort properties to true.

[ ___ ] = evm(rxSym) measures the EVM of the received signal relative to the reference signal
specified in the ReferenceConstellation property. You can use this syntax with any previous
output argument combination.

To use this syntax, set the ReferenceSignalSource property to 'Estimated from reference
constellation' and the ReferenceConstellation property to a vector of length equal to that of
the rxSym input.

Input Arguments

refSym — Reference signal
scalar | vector | matrix | 3-D array

Reference signal, specified as a scalar, vector, matrix, or 3-D array. If you specify this input, the object
measures the EVM of the rxSym input by using this input as a reference constellation.

The dimensions of this input must match those of the rxSym input. The object uses each element of
this input as the reference symbol for the corresponding element of the rxSym input.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64
Complex Number Support: Yes

rxSym — Received signal
scalar | vector | matrix | 3-D array

Received signal, specified as a scalar, vector, matrix, or 3-D array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64
Complex Number Support: Yes

Output Arguments

rmsEVM — Percentage RMS EVM of received signal
scalar in the range [0, 100]

Percentage RMS EVM of the received signal over the configured measurement interval, returned as a
scalar in the range [0, 100].
Data Types: double

maxEVM — Maximum percentage EVM
scalar in the range [0, 100]

Maximum percentage EVM over the configured measurement interval, returned as a scalar in the
range [0, 100].
Data Types: double

xEVM — Value below which X% of EVM measurements fall
scalar in the range [0, 100]

Value below which X% of EVM measurements fall since the last reset, returned as a scalar in the
range [0, 100]. Set the value of X in the XPercentileValue property.
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Data Types: double

numSym — Number of symbols
positive integer

Number of symbols that the object uses to measure the xEVM output, returned as a positive integer.
Data Types: double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Measure EVM Using Reference Constellation

Generate random data symbols and apply 8-PSK modulation.

d = randi([0 7],2000,1);
txSig = pskmod(d,8,pi/8);

Pass the modulated signal through an additive white Gaussian noise (AWGN) channel.

rxSig = awgn(txSig,30);

Create an EVM object. Measure the RMS EVM using the transmitted signal as the reference.

evm = comm.EVM;
rmsEVM1 = evm(txSig,rxSig);

Release the EVM measurement System object. Configure the object to estimate the EVM of the
received signal against a reference constellation.

release(evm)
evm.ReferenceSignalSource = "Estimated from reference constellation";
evm.ReferenceConstellation = pskmod(0:7,8,pi/8);

Measure the RMS EVM using only the received signal as an input, and then verify that the two EVM
results match.

rmsEVM2 = evm(rxSig);
isequal(rmsEVM1,rmsEVM2)
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ans = logical
   1

Measure EVM Across Different Dimensions

Create OFDM modulator and demodulator System objects.

ofdmmod = comm.OFDMModulator(FFTLength=32,NumSymbols=4);
ofdmdemod = comm.OFDMDemodulator(FFTLength=32,NumSymbols=4);

Determine the number of subcarriers and symbols in the OFDM signal.

ofdmDims = info(ofdmmod);
numSC = ofdmDims.DataInputSize(1);
numSym = ofdmDims.DataInputSize(2);

Generate random symbols and apply QPSK modulation.

msg = randi([0 3],numSC,numSym);
rxSym = pskmod(msg,4,pi/4);

OFDM modulate the QPSK signal. Pass the signal through an AWGN channel. Demodulate the noisy
signal.

txSig = ofdmmod(rxSym);
rxSig = awgn(txSig,10,"measured");
refSym = ofdmdemod(rxSig);

Configure an EVM measurement System object to average the EVM measurement over the
subcarriers. Measure the EVM. The four entries correspond to each of the four OFDM symbols.

evm = comm.EVM(AveragingDimensions=1);
rmsEVM = evm(refSym,rxSym)

rmsEVM = 1×4

   28.3317   25.7689   21.7944   23.5579

Configure the EVM measurement System object to average the EVM measurement over the OFDM
symbols. Measure the EVM. The 21 entries correspond to each of the 21 subcarriers.

evm = comm.EVM(AveragingDimensions=2);
rmsEVM = evm(refSym,rxSym);
disp(rmsEVM')

  Columns 1 through 7

   28.5667   16.3509   21.3003   22.6700   25.4878   26.7996   28.4253

  Columns 8 through 14

   32.7493   34.5155   19.7745   18.7687   21.5631   20.2539   12.2082

  Columns 15 through 21
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   25.3397   43.9916   26.8119   22.6613   29.5975   19.3420   16.1452

Measure the EVM and average over both the subcarriers and the OFDM symbols.

evm = comm.EVM(AveragingDimensions=[1 2]);
rmsEVM = evm(refSym,rxSym)

rmsEVM = 24.8838

Plot Time-Varying EVM for OFDM Signal

Calculate and plot the EVM of an OFDM signal. The signal consists of two packets separated by an
interval.

Create System objects to:

• OFDM-modulate a signal.
• Introduce phase noise.
• Plot time-varying signals.

ofdmmod = comm.OFDMModulator(FFTLength=256,NumSymbols=2);

pnoise = comm.PhaseNoise(Level=-60,FrequencyOffset=20,SampleRate=1000);

tscope = timescope(YLabel="EVM (%)",YLimits=[0 40], ...
    SampleRate=1000,TimeSpanSource="Property",TimeSpan=1.2, ...
    ShowGrid=true);

Configure an EVM measurement System object to generate a time-varying estimate of the EVM.

evm = comm.EVM(MaximumEVMOutputPort=false, ...
    ReferenceSignalSource="Input port", ...
    AveragingDimensions=2);

Determine the input data dimensions of the OFDM modulator.

modDims = info(ofdmmod);

Create QPSK-modulated random data for the first packet. Apply OFDM modulation.

data = randi([0 3],modDims.DataInputSize);
qpskSig = pskmod(data,4,pi/4);
txSig1 = ofdmmod(qpskSig);

Create a second data packet.

data = randi([0 3],modDims.DataInputSize);
qpskSig = pskmod(data,4,pi/4);
txSig2 = ofdmmod(qpskSig);

Concatenate the two packets and include an interval with no transmitted data.

txSig = [txSig1; zeros(112,1); txSig2];

Apply I/Q amplitude and phase imbalance to the transmitted signal.
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rxSigIQimb = iqimbal(txSig,2,5);

Apply phase noise.

rxSig = pnoise(rxSigIQimb);

Measure and plot the EVM of the received signal.

e = evm(txSig,rxSig);
tscope(e)

Measure EVM of Noisy 16-QAM Modulated Signal

Configure an EVM object to output maximum EVM, 90th percentile EVM, and symbol count.

evm = comm.EVM(MaximumEVMOutputPort=true, ...
    XPercentileEVMOutputPort=true,XPercentileValue=90, ...
    SymbolCountOutputPort=true);

Generate random data symbols. Apply 16-QAM modulation. The modulated signal serves as the
reference for the subsequent EVM measurements.

data = randi([0 15],1000,1);
refSym = qammod(data,16,UnitAveragePower=true);

 comm.EVM

3-459



Pass the modulated signal through an AWGN channel.

rxSym = awgn(refSym,20);

Measure the EVM of the noisy signal.

[rmsEVM,maxEVM,pctEVM,numSym] = evm(refSym,rxSym)

rmsEVM = 9.8775

maxEVM = 26.8385

pctEVM = 14.9750

numSym = 1000

Measure EVM Using Custom Measurement Interval

Measure the EVM of a noisy 8-PSK signal using two types of custom measurement interval and
display the results.

Set the number of frames, M, and the number of subframes per frame, K.

M = 2;
K = 5;

Set the number of symbols in a subframe. Calculate the corresponding frame length.

sfLen = 100;
frmLen = K*sfLen;

Create an EVM measurement System object, specifying a custom measurement interval equal to the
frame length.

evm1 = comm.EVM(MeasurementIntervalSource="Custom", ...
    MeasurementInterval=frmLen);

Configure the object to measure EVM using an 8-PSK reference constellation.

evm1.ReferenceSignalSource = "Estimated from reference constellation";
evm1.ReferenceConstellation = pskmod(0:7,8,pi/8);

Create an EVM measurement System object, specifying a 500-symbol measurement interval with a
periodic reset. Configure the object to measure EVM using an 8-PSK reference constellation.

evm2 = comm.EVM(...
    MeasurementIntervalSource="Custom with periodic reset", ...
    MeasurementInterval=frmLen);
evm2.ReferenceSignalSource = ...
    "Estimated from reference constellation";
evm2.ReferenceConstellation = pskmod(0:7,8,pi/8);

Initialize the EVM and signal-to-noise ratio (SNR) arrays.

rmsEVM1 = zeros(K,M);
rmsEVM2 = zeros(K,M);
snrdB = zeros(K,M);
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Measure the EVM for a noisy 8-PSK signal using both objects. The SNR increases by 1 dB from
subframe to subframe. The evm1 object uses the 500 most recent symbols to compute the estimate.
In this case, the object uses a sliding window so that it processes an entire frame of data. The evm2
object clears the symbols each time it begins processing a new frame.

for m = 1:M
    for k = 1:K
        data = randi([0 7],sfLen,1);
        txSig = pskmod(data,8,pi/8);
        snrdB(k,m) = k + (m-1)*K + 7;
        rxSig = awgn(txSig,snrdB(k,m));
        rmsEVM1(k,m) = evm1(rxSig);
        rmsEVM2(k,m) = evm2(rxSig);
    end
end

Display the EVM measured using the two approaches. The windowing used in the first case provides
an averaging across the subframes. In the second case, the EVM object resets after the first frame so
that the calculated EVM values more accurately reflect the current SNR.

stairs(snrdB(:),[rmsEVM1(:) rmsEVM2(:)])
xlabel('SNR (dB)')
ylabel('EVM (%)')
legend('No reset','Periodic reset')
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Estimate Received EVM

Generate filtered QAM data and pass it through an AWGN channel. Compute the symbol error rate,
and estimate the EVM of the received signal.

Create channel and filter System objects.

M = 16;
refConst = qammod(0:M-1,M);
channel = comm.AWGNChannel( ...
    NoiseMethod="Signal to noise ratio (SNR)", ...
    SNR=15,SignalPower=10);

txfilter = comm.RaisedCosineTransmitFilter(OutputSamplesPerSymbol=4);
rxfilter = comm.RaisedCosineReceiveFilter(InputSamplesPerSymbol=4, ...
    DecimationFactor=4);

Create an EVM measurement System object to calculate RMS and maximum EVM.

evm = comm.EVM(MaximumEVMOutputPort=true, ...
    ReferenceSignalSource="Estimated from reference constellation", ...
    ReferenceConstellation=refConst);

Create an error rate measurement System object and account for the signal delay through the
transmit and receive filters. For a filter, the group delay is equal to half of the
FilterSpanInSymbols property.

rxd = (txfilter.FilterSpanInSymbols + rxfilter.FilterSpanInSymbols)/2;
errorRate = comm.ErrorRate(ReceiveDelay=rxd);

Perform these channel operations:

• Generate random data symbols.
• Apply 16-QAM.
• Filter the modulated data through a raised cosine transmit filter.
• Pass the transmitted signal through an AWGN channel.
• Filter the received data through a raised cosine receive filter.
• Demodulate the filtered data.

txData = randi([0 15],1000,1);
modData = qammod(txData,M);
txSig = txfilter(modData);
rxSig = channel(txSig);
filtSig = rxfilter(rxSig);
rxData = qamdemod(filtSig,M);

Calculate the error statistics and display the symbol error rate.

errStats = errorRate(txData,rxData);
symErrRate = errStats(1)

symErrRate = 0.0222

Measure and display the received RMS EVM and maximum EVM values. Take the filter delay into
account by deleting the first rxd+1 symbols. Because the received signal contains symbol errors, the
EVM might not be totally accurate.

3 System Objects

3-462



[rmsEVM,maxEVM] = evm(filtSig(rxd+1:end))

rmsEVM = 17.2966

maxEVM = 40.1595

Measure EVM of OFDM Signal with Nonlinear Impairment

Measure the RMS and maximum EVM of a distorted OFDM waveform and visualize the received
symbols by using a constellation diagram.

Generate an OFDM waveform with 64-QAM for random data.

M = 64;
nfft = 64;
nSym = 10;
cpLen = 10;
data = randi([0 (M - 1)]',nfft,nSym);
txSym = qammod(data,M,UnitAveragePower=1);
txWaveform = ofdmmod(txSym,nfft,cpLen);

Apply nonlinear distortion to the signal by creating a memoryless nonlinearity System object.

gain = 2;
nonlinearity = comm.MemorylessNonlinearity(Method="Rapp model", ... 
    LinearGain=gain);
rxWaveform = nonlinearity(txWaveform);

Recover the distorted symbols by performing OFDM demodulation.

rxSym = ofdmdemod(rxWaveform,nfft,cpLen);

Measure the RMS and maximum EVM per OFDM symbol of the received signal.

refSym = qammod((0:(M - 1))',M,UnitAveragePower=1);
evm = comm.EVM(MaximumEVMOutputPort=1, ...
    ReferenceSignalSource="Estimated from reference constellation", ...
    ReferenceConstellation=refSym, ...
    Normalization="Average constellation power");
[rmsEVM,maxEVM] = evm(rxSym);
disp(rmsEVM')

    8.0933
    7.4962
    7.7542
    7.7335
    7.5719
    7.9262
    7.7042
    8.6034
    8.0817
    7.6852

disp(maxEVM')

   18.8246
   15.6412
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   15.9905
   13.0713
   14.0164
   15.5771
   17.0201
   19.4699
   18.2106
   16.7549

Visualize the received symbols on a constellation diagram.

constellation = comm.ConstellationDiagram( ...
    Name="Constellation Diagram of Received Symbols", ...
    ReferenceConstellation=refSym(:));
constellation(rxSym(:))
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Algorithms
The implementation supports three normalization methods. You can normalize measurements
according to the average power of the reference signal, average constellation power, or peak
constellation power. Different industry standards follow one of these normalization methods.

The algorithm calculates the RMS EVM value differently for each normalization method.

EVM Normalization Method Algorithm
Reference signal

EVMRMS =

1
N ∑k = 1

N
(ek)

1
N ∑k = 1

N
(Ik2 + Qk

2)
× 100

Average power

EVMRMS(%) = 100

1
N ∑k = 1

N
(ek)

Pavg

Peak power

EVMRMS(%) = 100

1
N ∑k = 1

N
(ek)

Pmax

In these equations:

• ek = ek = (Ik− I k)2 + (Qk− Qk)2

• Ik is the in-phase measurement of the kth symbol in the burst.
• Qk is the quadrature phase measurement of the kth symbol in the burst.
• N is the input vector length.
• Pavg is the average constellation power.
• Pmax is the peak constellation power.
• Ik and Qk represent ideal (reference) values. I k and Qk represent measured (received) symbols.

The maximum EVM is the maximum EVM value in a frame or EVMmax = max
k ∈ [1, ..., N]

EVMk , where k

is the kth symbol in a burst of length N.

The definition for EVMk depends on which normalization method you select for computing
measurements. The implementation supports these algorithms.

EVM Normalization Method Algorithm
Reference signal

EVMk =
ek

1
N ∑k = 1

N
(Ik2 + Qk

2)
× 100
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EVM Normalization Method Algorithm
Average power

EVMk = 100
ek

Pavg

Peak power
EVMk = 100

ek
Pmax

The implementation computes the X-percentile EVM by creating a histogram of the incoming EVMk
values. This output provides the EVM value below which X% of the EVM values fall.

Version History
Introduced in R2012a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
comm.MER | comm.ACPR | comm.CCDF

Blocks
EVM Measurement

Topics
“Measure Modulation Accuracy”
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comm.EyeDiagram
Package: comm

(Removed) Display eye diagram of time-domain signals

Note  has been removed. To display the eye diagram of a signal, use the eyediagram function
instead. For more details on the recommended workflow, see “Compatibility Considerations”.

Description
The comm.EyeDiagram System object displays multiple traces of a modulated signal to produce an
eye diagram. You can use the object to reveal the modulation characteristics of the signal, such as the
effects of pulse shaping or channel distortions. The eye diagram can measure signal characteristics
and plot horizontal and vertical bathtub curves when the jitter and noise comply with the dual-Dirac
model [1].

To display the eye diagram of an input signal:

1 Create the comm.EyeDiagram object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation
Syntax
ed = comm.EyeDiagram
ed = comm.EyeDiagram(Name,Value)

Description

ed = comm.EyeDiagram creates an eye diagram System object with default property values.

ed = comm.EyeDiagram(Name,Value) sets properties using one or more name-value pair
argument. Enclose each property name in single quotes. Unspecified properties have default values.
Example: comm.EyeDiagram('SampleRate',2,'DisplayMode','2D color histogram')

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.
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Name — Title of eye diagram window
'Eye Diagram' (default) | character vector

Title of eye diagram window, specified as a character vector.

Tunable: Yes
Data Types: char

SampleRate — Sample rate of input signal
1 (default) | positive real-valued scalar

Sample rate of the input signal in hertz, specified as a positive real-valued scalar.
Data Types: double

SamplesPerSymbol — Number of samples per symbol
8 (default) | positive integer

Number of samples per symbol, specified as a positive integer.

Tunable: Yes
Data Types: double

SampleOffset — Number of samples to skip before plotting the first point
0 (default) | nonnegative integer

Number of samples to skip before plotting the first point, specified as a nonnegative integer. To avoid
irregular behavior, specify the offset to be less than the product of the SamplesPerSymbol and
SymbolsPerTrace properties.

Tunable: Yes
Data Types: double

SymbolsPerTrace — Number of symbols per trace
2 (default) | positive integer

Number of symbols per trace, specified as a positive integer. To obtain eye measurements and
visualize bathtub curves, use the default value of 2.

Tunable: Yes
Data Types: double

TracesToDisplay — Number of traces to display
40 (default) | positive integer

Number of traces to display, specified as a positive integer.

Tunable: Yes

Dependencies

To enable this property, set DisplayMode property to 'Line plot'.
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Data Types: double

DisplayMode — Eye diagram display mode
'Line plot' (default) | '2D color histogram'

Eye diagram display mode, specified as one of these values.

• 'Line plot' — Overlay traces by plotting one line for each of the last TracesToDisplay traces.
• '2D color histogram' — Display a color gradient that shows how often the input matches
different time and amplitude values.

Tunable: Yes
Data Types: char

EnableMeasurements — Option to enable eye diagram measurements
false (default) | true

Option to enable eye diagram measurements, specified as true or false. Set this property to true
to display the measurement pane and calculations in the eye diagram.

Tunable: Yes
Data Types: logical

ShowBathtub — Option to enable visualization of bathtub curves
'None' (default) | 'Horizontal' | 'Vertical' | 'Both'

Option to enable visualization of bathtub curves, specified as 'None', 'Horizontal', 'Vertical',
or 'Both'.

Tunable: Yes

Dependencies

To enable this property, set the EnableMeasurements property to true.
Data Types: char

OverlayHistogram — Histogram overlay
'None' (default) | 'Jitter' | 'Noise'

Histogram overlay, specified as 'None', 'Jitter', or 'Noise'.

• To overlay a horizontal histogram on the eye diagram, set this property to 'Jitter'.
• To overlay a vertical histogram on the eye diagram, set this property to 'Noise'.
• To display no histogram overlay, set this property to 'None'.

Tunable: Yes

Dependencies

To enable this property, set the DisplayMode property to '2D color histogram' and
EnableMeasurements property to true.
Data Types: char
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DecisionBoundary — Amplitude level threshold
0 (default) | real-valued scalar

Amplitude level threshold in volts, specified as a real-valued scalar. This property separates the
different signaling regions for horizontal (jitter) histograms. Jitter histograms reset when this
property changes.

For non-return-to-zero (NRZ) signals, set DecisionBoundary to 0. For return-to-zero (RZ) signals,
set DecisionBoundary to half the maximum amplitude.

Tunable: Yes
Dependencies

To enable this property, set the EnableMeasurements property to true.
Data Types: double

EyeLevelBoundaries — Time range for calculating eye levels
[40 60] (default) | two-element row vector

Time range for calculating eye levels, specified as a two-element row vector. Specify the vector values
as percentages of the symbol duration.

Tunable: Yes
Dependencies

To enable this property, set the EnableMeasurements property to true.
Data Types: double

RiseFallThresholds — Amplitude levels of the rise and fall transitions
[10 90] (default) | two-element row vector

Amplitude levels of the rise and fall transitions, specified as a two-element row vector. Specify the
vector values as percentages of the eye amplitude. The crossing histograms of the rise and fall
thresholds reset when this property changes.

Tunable: Yes
Dependencies

To enable this property, set the EnableMeasurements property to true.
Data Types: double

Hysteresis — Amplitude tolerance of the horizontal crossings
0 (default) | real-valued scalar

Amplitude tolerance of the horizontal crossings in volts, specified as a real-valued scalar. Increase
this value to provide more tolerance to spurious crossings due to noise. Jitter and the rise and fall
histograms reset when this property changes.

Tunable: Yes
Dependencies

To enable this property, set the EnableMeasurements property to true.
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Data Types: double

BERThreshold — BER used for eye measurements
1e-12 (default) | scalar in the range [0, 0.5]

Bit error rate (BER) used for eye measurements, specified as a scalar in the range [0, 0.5]. The
System object uses this value to measure the random jitter, the total jitter, horizontal eye openings,
and vertical eye openings.

Tunable: Yes
Dependencies

To enable this property, set the EnableMeasurements property to true.
Data Types: double

BathtubBER — BER values used to calculate openings of bathtub curves
[0.5 10.^-(1:12)] (default) | vector

BER values used to calculate the openings of bathtub curves, specified as a vector of elements in the
range [0, 0.5]. Horizontal and vertical eye openings are calculated for each of the values specified by
this property.

Tunable: Yes
Dependencies

To enable this property, set the EnableMeasurements property to true and ShowBathtub property to
'Both', 'Horizontal', or 'Vertical'.
Data Types: double

MeasurementDelay — Duration of initial data discarded from measurements
0 (default) | nonnegative scalar

Duration of initial data discarded from measurements in seconds, specified as a nonnegative scalar.
Dependencies

To enable this property, set the EnableMeasurements property to true.
Data Types: double

OversamplingMethod — Oversampling method
'None' (default) | 'Input interpolation' | 'Histogram interpolation'

Oversampling method, specified as 'None', 'Input interpolation', or 'Histogram
interpolation'.

To plot eye diagrams as quickly as possible, set OversamplingMethod to 'None'. The drawback to
not oversampling is that the plots look pixelated when the number of symbols per trace is small.

To create smoother, less-pixelated plots using a small number of symbols per trace, set
OversamplingMethod to'Input interpolation' or 'Histogram interpolation'. In this
case, 'Input interpolation' is the faster interpolation method and produces good results when
the signal-to-noise ratio (SNR) is high. With a low SNR, this oversampling method is not
recommended because it introduces a bias to the centers of the histogram ranges. 'Histogram
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interpolation' is not as fast as the other techniques, but it provides good results even when the
SNR is low.

Tunable: Yes

Dependencies

To enable this property, set the DisplayMode property to '2D color histogram'.
Data Types: char

ColorScale — Color scale of the histogram
'Linear' (default) | 'Logarithmic'

Color scale of the histogram, specified as 'Linear' or 'Logarithmic'. Change this property if
certain areas of the histogram include a disproportionate number of points. Use the 'Logarithmic'
option for eye diagrams with sharp peaks, where the signal repetitively matches specific time and
amplitude values.

Tunable: Yes

Dependencies

To enable this property, set the DisplayMode property to '2D color histogram'.
Data Types: char

ColorFading — Color fading
false (default) | true

Color fading, specified as true or false. To fade the points in the display as the interval of time
after they are first plotted increases, set this property to true. This animation resembles an
oscilloscope.

Tunable: Yes

Dependencies

To enable this property, set the DisplayMode property to 'Line plot'.
Data Types: logical

ShowImaginaryEye — Show imaginary signal component
false (default) | true

Show imaginary signal component, specified as true or false. To view the imaginary or quadrature
component of the input signal, set this property to true.

Tunable: Yes

Dependencies

To enable this property, set the EnableMeasurements property to false.
Data Types: logical

YLimits — Y-axis limits
[-1.1 1.1] (default) | two-element row vector
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Y-axis limits of the eye diagram in volts, specified as a two-element vector. The first element
corresponds to ymin and the second to ymax. The second element must be greater than the first.

Tunable: Yes
Data Types: double

ShowGrid — Option to enable grid display
false (default) | true

Option to enable grid display on the eye diagram, specified as true or false. To display a grid on
the eye diagram, set this property to true.

Tunable: Yes
Data Types: logical

Position — Scope window position
four-element row vector

Scope window position in pixels, specified as a four-element row vector of the form [left bottom width
height].

Tunable: Yes
Data Types: double

Usage

Syntax
ed(x)

Description

ed(x) displays and analyzes input signal x in an eye diagram.

Input Arguments

x — Input signal
vector | matrix

Input signal to be analyzed and displayed in the eye diagram, specified as a vector or matrix. x can be
either a real or complex vector, or a real two-column matrix.
Data Types: double
Complex Number Support: Yes

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)
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Specific to comm.EyeDiagram
show Show scope window
hide Hide scope window
horizontalBathtub (Removed) Horizontal bathtub curve
verticalBathtub (Removed) Vertical bathtub curve
jitterHistogram (Remove) Jitter histogram
noiseHistogram (Removed) Noise histogram
measurements (Removed) Measure eye diagram parameters

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Eye Diagram of Filtered QPSK Signal

Specify the sample rate and the number of output samples per symbol parameters.

fs = 1000;
sps = 4;

Create transmit filter and eye diagram objects.

txfilter = comm.RaisedCosineTransmitFilter(...
    'OutputSamplesPerSymbol',sps);
ed = comm.EyeDiagram('SampleRate',fs*sps,'SamplesPerSymbol',sps);

Generate random symbols and apply QPSK modulation. Then filter the modulated signal and display
the eye diagram.

data = randi([0 3],1000,1);
modSig = pskmod(data,4,pi/4);

txSig = txfilter(modSig);
ed(txSig)
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More About
Measurements

Measurements assume that the eye diagram object has valid data. A valid eye diagram has two
distinct eye crossing points and two distinct eye levels.

To open the measurements pane, click on the Eye Measurements button or select Tools >
Measurements > Eye Measurements from the toolbar menu.

Note

• For amplitude measurements, at least one bin per vertical histogram must reach 10 hits before the
measurement is taken, ensuring higher accuracy.

• For time measurements, at least one bin per horizontal histogram must reach 10 hits before the
measurement is taken.
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• When an eye crossing time measurement falls within the [-0.5/Fs, 0) seconds interval, the time
measurement wraps to the end of the eye diagram, i.e., the measurement wraps by 2×Ts seconds
(where Ts is the symbol time). For a complex signal case, the analyze method issues a warning if
the crossing time measurement of the in-phase branch wraps while that of the quadrature branch
does not (or vice versa). To avoid time-wrapping or a warning, add a half-symbol duration delay to
the current value in the MeasurementDelay property of the eye diagram object. This additional
delay repositions the eye in the approximate center of the scope.

Eye Levels - Amplitude level used to represent data bits
Eye level is the amplitude level used to represent data bits. For the displayed NRZ signal, the
levels are –1 V and +1 V. The eye levels are calculated by averaging the 2-D histogram within the
eye level boundaries. For example, when the EyeLevelBoundaries property is set to [40 60],
that is, 40% and 60% of the symbol duration, the eye levels are calculated by estimating the mean
value of the vertical histogram in this window marked by the eye level boundaries.

Eye Amplitude - Distance between eye levels
Eye amplitude is the distance in V between the mean value of two eye levels.
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Eye Height - Statistical minimum distance between eye levels

Eye height is the distance between μ – 3σ of the upper eye level and μ + 3σ of the lower eye level.
μ is the mean of the eye level, and σ is the standard deviation.

Vertical Opening - Distance between BER threshold points

The vertical opening is the distance between the two points that correspond to the BERThreshold
property. For example, for a BER threshold of 10–12, these points correspond to the 7σ distance
from each eye level.
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Eye SNR - Signal-to-noise ratio

The eye SNR is the ratio of the eye level difference to the difference of the vertical standard
deviations corresponding to each eye level:

SNR =
L1− L0
σ1− σ0

,

where L1 and L0 represent the means of the upper and lower eye levels and σ1 and σ0 represent
their standard deviations.

Q Factor - Quality factor

The Q factor is the quality factor and is calculated using the same formula as the eye SNR.
However, the standard deviations of the vertical histograms are replaced with those computed
with the dual-Dirac analysis.

Crossing Levels - Amplitude levels for eye crossings

The crossing levels are the amplitude levels at which the eye crossings occur.

The level at which the input signal crosses the amplitude value is specified by the
DecisionBoundary property.
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Crossing Times - Times for which crossings occur

The crossing times are the times at which the crossings occur. The times are computed as the
mean values of the horizontal (jitter) histograms.

Eye Delay - Mean time between eye crossings

Eye delay is the midpoint between the two crossing times.
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Eye Width - Statistical minimum time between eye crossings

Eye width is the horizontal distance between μ + 3σ of the left crossing time and μ – 3σ of the
right crossing time. μ is the mean of the jitter histogram, and σ is the standard deviation.

Horizontal Opening - Time between BER threshold points

The horizontal opening is the distance between the two points that correspond to the
BERThreshold property. For example, for a 10–12 BER, these two points correspond to the 7σ
distance from each crossing time.
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Rise Time - Time to transition from low to high

Rise time is the mean time between the low and high rise/fall thresholds defined in the eye
diagram. The default thresholds are 10% and 90% of the eye amplitude.

Fall Time - Time to transition from high to low
Fall time is the mean time between the high and low rise/fall thresholds defined in the eye
diagram. The default thresholds are 10% and 90% of the eye amplitude.
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Deterministic Jitter - Deterministic deviation from ideal signal timing
Jitter is the deviation of a signal’s timing event from its intended (ideal) occurrence in time [2].
Jitter can be represented with a dual-Dirac model. A dual-Dirac model assumes that the jitter has
two components: deterministic jitter (DJ) and random jitter (RJ).

DJ is the distance between the two peaks of the dual-Dirac histograms. The probability density
function (PDF) of DJ is composed of two delta functions.

3 System Objects

3-482



Random Jitter - Random deviation from ideal signal timing

RJ is the Gaussian unbounded jitter component. The random component of jitter is modeled as a
zero-mean Gaussian random variable with a specified standard-deviation of σ. The RJ is computed
as:

RJ = (QL + QR)σ ,

where

Q = 2erfc−1 2BER
ρ .

BER is the specified BER threshold. ρ is the amplitude of the left and right Dirac function, which
is determined from the bin counts of the jitter histograms.

Total Jitter - Deviation from ideal signal timing

Total jitter (TJ) is the sum of the deterministic and random jitter, such that TJ = DJ + RJ.
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The total jitter PDF is the convolution of the DJ PDF and the RJ PDF.
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RMS Jitter - Standard deviation of jitter

RMS jitter is the standard deviation of the jitter calculated in the horizontal (jitter) histogram at
the decision boundary.

Peak-to-Peak Jitter - Distance between extreme data points of histogram

Peak-to-peak jitter is the maximum horizontal distance between the left and right nonzero values
in the horizontal histogram of each crossing time.
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Version History
Introduced in R2016b

comm.EyeDiagram has been removed
Errors starting in R2022a

comm.EyeDiagram has been removed. To display the eye diagram of a signal, use the eyediagram
function instead.

References
[1] Stephens, Ransom. "Jitter analysis: The dual-Dirac model, RJ/DJ, and Q-scale." Agilent Technical

Note (2004).

[2] Ou, N., T. Farahmand, A. Kuo, S. Tabatabaei, and A. Ivanov. “Jitter Models for the Design and Test
of Gbps-Speed Serial Interconnects.” IEEE Design and Test of Computers 21, no. 4 (July
2004): 302–13. https://doi.org/10.1109/MDT.2004.34.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Supports MEX code generation by treating the calls to the object as extrinsic. Does not support
code generation for standalone applications.

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
comm.ConstellationDiagram

Blocks
Eye Diagram

Functions
eyediagram
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hide
System object: comm.EyeDiagram
Package: comm

(Removed) Hide scope window

Syntax
hide(ed)

Description
hide(ed) hides the eye diagram window associated with System object ed.

Version History
Introduced in R2016b

comm.EyeDiagram has been removed
Errors starting in R2022a

hide has been removed. To display the eye diagram of a signal, use the eyediagram function instead.

See Also
show

 hide
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horizontalBathtub
Package: comm

(Removed) Horizontal bathtub curve

Syntax
s = horizontalBathtub(ed)

Description
s = horizontalBathtub(ed) returns a structure containing information of horizontalBathtub
curve for the System object.

Note This method is available when both of these conditions apply:

• EnableMeasurements is true
• ShowBathtub is 'Horizontal' or 'Both'

Examples

Horizontal and Vertical Bathtub Curve Methods

Display the eye diagram for a waveform having dual-dirac and random jitter. Generate and plot the
horizontal and vertical bathtub curves.

Specify the sample rate, the samples per symbol, and the number of traces parameters.

fs = 1000;
sps = 200;
numTraces = 1000;

Create an eye diagram object.

ed = comm.EyeDiagram('SampleRate',fs,'SamplesPerSymbol',sps, ...
    'SampleOffset',sps/2,'DisplayMode','2D color histogram', ...
    'ColorScale','Logarithmic','EnableMeasurements',true, ...
    'ShowBathtub','Both','YLimits',[-1.2 1.2]);

Generate a waveform having dual-dirac and random jitter. Specify 3 ms rise and fall times.

src = commsrc.pattern('SamplesPerSymbol',sps, ...
    'RiseTime',3e-3,'FallTime', 3e-3);
src.Jitter = commsrc.combinedjitter('RandomJitter','on', ...
    'DiracJitter','on','DiracDelta',[-5e-04 5e-04],'RandomStd',2e-4);

Generate two symbols for each trace.

x = src.generate(numTraces*2);
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Pass the signal through an AWGN channel with a fixed seed for repeatable results.

randStream = RandStream('mt19937ar','Seed',5489);
y = awgn(x,30,'measured',randStream);

Display the eye diagram.

ed(y)

Generate the horizontal bathtub data for the eye diagram. Plot the curve.

hb = horizontalBathtub(ed)
semilogy([hb.LeftThreshold],[hb.BER],'b', ...
    [hb.RightThreshold],[hb.BER],'b')
grid

hb = 

  1x13 struct array with fields:

    BER
    LeftThreshold
    RightThreshold
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Generate the vertical bathtub data for the eye diagram. Plot the curve.

vb = verticalBathtub(ed)
semilogx([vb.BER],[vb.LowerThreshold],'b', ...
    [vb.BER],[vb.UpperThreshold],'b')
grid

vb = 

  1x13 struct array with fields:

    BER
    UpperThreshold
    LowerThreshold

3 System Objects

3-490



Input Arguments
ed — Eye Diagram System object
System object

Eye Diagram System object, where you get the bathtub curve information from.

Output Arguments
s — Structure containing information
struct

Structure containing information about the horizontal bathtub curve.

BER — Bit error rate values
scalar

Bit error rate values, mapped on the Y-axis of the horizontalBathtub plot against the corresponding
LeftThreshold and RightThreshold values on the x-axis, specified as a scalar.
Data Types: double

LeftThreshold — Left threshold values
scalar
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Left threshold values, mapped on the x-axis in the plot against corresponding BER values on the x-
axis.
Data Types: double

RightThreshold — Right threshold values
scalar

Right threshold values, mapped on the x-axis in the plot against corresponding BER values on the x-
axis.
Data Types: double

Version History
Introduced in R2016b

comm.EyeDiagram has been removed
Errors starting in R2022a

horizontalBathtub has been removed. To display the eye diagram of a signal, use the eyediagram
function instead.

See Also
verticalBathtub
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jitterHistogram
Package: comm

(Remove) Jitter histogram

Syntax
jh = jitterHistogram(ed)

Description
jh = jitterHistogram(ed) returns the bin counts for decision boundary crossings set in eye
diagram System object.

Note This method is available when EnableMeasurements is true.

Examples

Jitter and Noise Histogram Methods

Display the eye diagram for a waveform having dual-dirac and random jitter. Plot the jitter and noise
histograms.

Specify the sample rate, the samples per symbol, and the number of traces parameters.

fs = 1000;
sps = 200;
numTraces = 1000;

Create an eye diagram object.

ed = comm.EyeDiagram('SampleRate',fs,'SamplesPerSymbol',sps, ...
    'SampleOffset',sps/2, ...
    'DisplayMode','2D color histogram','ColorScale','Logarithmic', ...
    'EnableMeasurements',true,'YLimits',[-1.2 1.2]);

Generate a waveform having dual-dirac and random jitter. Specify 3 ms rise and fall times.

src = commsrc.pattern('SamplesPerSymbol',sps, ...
    'RiseTime',3e-3,'FallTime', 3e-3);
src.Jitter = commsrc.combinedjitter('RandomJitter','on', ...
    'DiracJitter','on','DiracDelta',[-10e-04 10e-04],'RandomStd',5e-4);

Generate two symbols for each trace.

x = src.generate(numTraces*2);

Pass the signal through an AWGN channel with a fixed seed for repeatable results.
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randStream = RandStream('mt19937ar','Seed',5489);
y = awgn(x,30,'measured',randStream);
ed(y)

Calculate the jitter histogram count for each bin by using the jitterHistogram method. Plot the
histogram.

jbins = jitterHistogram(ed);
plot(jbins)
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Calculate the noise histogram count for each bin by using the noiseHistogram method. Plot the
histogram.

nbins = noiseHistogram(ed);
plot(nbins)
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Input Arguments
ed — Eye Diagram System object
System object

Eye Diagram System object, where the count for decision boundary crossings is set.

Output Arguments
jh — Jitter histogram
nonnegative integer

Jitter histogram, which represent the counts for decision boundary crossings, specified as a
nonnegative integer.
Data Types: double

Version History
Introduced in R2016b

comm.EyeDiagram has been removed
Errors starting in R2022a
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jitterHistogram has been removed. To display the eye diagram of a signal, use the eyediagram
function instead.

See Also
noiseHistogram
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measurements
Package: comm

(Removed) Measure eye diagram parameters

Syntax
m = measurements(ed)

Description
m = measurements(ed) returns the parameter measurements calculated by eye diagram System
object.

Note This method is available when EnableMeasurements is true.

Examples

Rise and Fall Time of NRZ Signal

Create a combined jitter object having random jitter with a 2e-4 standard deviation.

jtr = commsrc.combinedjitter('RandomJitter','on','RandomStd',2e-4);

Generate an NRZ signal having random jitter and 3 ms rise and fall times.

genNRZ = commsrc.pattern('Jitter',jtr,'RiseTime',3e-3,'FallTime',3e-3);
x = generate(genNRZ,2000);

Pass the signal through an AWGN channel with fixed seed for repeatable results.

randStream = RandStream('mt19937ar','Seed',5489);
y = awgn(x,30,'measured',randStream);

Create an eye diagram object. Enable the measurements.

ed = comm.EyeDiagram('SamplesPerSymbol',genNRZ.SamplesPerSymbol, ...
    'SampleRate',genNRZ.SamplingFrequency, ...
    'SampleOffset',genNRZ.SamplesPerSymbol/2, ...
    'EnableMeasurements',true,'DisplayMode','2D color histogram', ...
    'OversamplingMethod','Input interpolation', ...
    'ColorScale','Logarithmic','YLimits',[-1.2 1.2]);

To compute the rise and fall times, determine the rise and fall thresholds from the eye level and eye
amplitude measurements. Plot the eye diagram to calculate these parameters.

ed(y)

3 System Objects

3-498



Pass the signal through the eye diagram object again to measure the rise and fall times.

ed(y)
hide(ed)

Display the data by using the measurements method.

eyestats = measurements(ed);
riseTime = eyestats.RiseTime
fallTime = eyestats.FallTime

riseTime =

    0.0030

fallTime =

    0.0030

The measured values match the 3 ms specification.

Input Arguments
ed — Eye Diagram System object
System object
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Eye Diagram System object, where the parameter measurements are calculated.

Output Arguments
m — Eye Diagram parameters measurement
struct

Eye Diagram parameters measurement, returned as a structure containing all 18 parameters
mentioned in “Measurements” on page 3-475, along with their values.
Data Types: double

Version History
Introduced in R2016b

comm.EyeDiagram has been removed
Errors starting in R2022a

measurements has been removed. To display the eye diagram of a signal, use the eyediagram
function instead.

See Also
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noiseHistogram
Package: comm

(Removed) Noise histogram

Syntax
nh = noiseHistogram(ed)

Description
nh = noiseHistogram(ed) returns the bin counts for the signal values at the vertical opening (eye
delay) as set in eye diagram System object.

Note This method is available when both of these conditions apply:

• EnableMeasurements is true
• DisplayMode is '2D color histogram'

Examples

Jitter and Noise Histogram Methods

Display the eye diagram for a waveform having dual-dirac and random jitter. Plot the jitter and noise
histograms.

Specify the sample rate, the samples per symbol, and the number of traces parameters.

fs = 1000;
sps = 200;
numTraces = 1000;

Create an eye diagram object.

ed = comm.EyeDiagram('SampleRate',fs,'SamplesPerSymbol',sps, ...
    'SampleOffset',sps/2, ...
    'DisplayMode','2D color histogram','ColorScale','Logarithmic', ...
    'EnableMeasurements',true,'YLimits',[-1.2 1.2]);

Generate a waveform having dual-dirac and random jitter. Specify 3 ms rise and fall times.

src = commsrc.pattern('SamplesPerSymbol',sps, ...
    'RiseTime',3e-3,'FallTime', 3e-3);
src.Jitter = commsrc.combinedjitter('RandomJitter','on', ...
    'DiracJitter','on','DiracDelta',[-10e-04 10e-04],'RandomStd',5e-4);

Generate two symbols for each trace.

x = src.generate(numTraces*2);
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Pass the signal through an AWGN channel with a fixed seed for repeatable results.

randStream = RandStream('mt19937ar','Seed',5489);
y = awgn(x,30,'measured',randStream);
ed(y)

Calculate the jitter histogram count for each bin by using the jitterHistogram method. Plot the
histogram.

jbins = jitterHistogram(ed);
plot(jbins)
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Calculate the noise histogram count for each bin by using the noiseHistogram method. Plot the
histogram.

nbins = noiseHistogram(ed);
plot(nbins)
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Input Arguments
ed — Eye Diagram System object
System object

Eye Diagram System object, where the counts for signal values at the eye delay is set.

Output Arguments
nh — Noise histogram
nonnegative integer

Noise histogram, which represent the counts for the signal values at the vertical opening (eye delay),
specified as a nonnegative integer.
Data Types: double

Version History
Introduced in R2016b

comm.EyeDiagram has been removed
Errors starting in R2022a
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noiseHistogram has been removed. To display the eye diagram of a signal, use the eyediagram
function instead.

See Also
jitterHistogram

 noiseHistogram
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show
System object: comm.EyeDiagram
Package: comm

(Removed) Make scope window visible

Syntax
show(ed)

Description
show(ed) makes the eye diagram window associated with System object ed visible.

Version History
Introduced in R2016b

comm.EyeDiagram has been removed
Errors starting in R2022a

show has been removed. To display the eye diagram of a signal, use the eyediagram function
instead.

See Also
hide
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verticalBathtub
Package: comm

(Removed) Vertical bathtub curve

Syntax
s = verticalBathtub(ed)

Description
s = verticalBathtub(ed) returns a structure containing information of verticalBathtub curve for
the System object.

Note This method is available when both of these conditions apply:

• EnableMeasurements is true
• ShowBathtub is 'Vertical' or 'Both'

Examples

Horizontal and Vertical Bathtub Curve Methods

Display the eye diagram for a waveform having dual-dirac and random jitter. Generate and plot the
horizontal and vertical bathtub curves.

Specify the sample rate, the samples per symbol, and the number of traces parameters.

fs = 1000;
sps = 200;
numTraces = 1000;

Create an eye diagram object.

ed = comm.EyeDiagram('SampleRate',fs,'SamplesPerSymbol',sps, ...
    'SampleOffset',sps/2,'DisplayMode','2D color histogram', ...
    'ColorScale','Logarithmic','EnableMeasurements',true, ...
    'ShowBathtub','Both','YLimits',[-1.2 1.2]);

Generate a waveform having dual-dirac and random jitter. Specify 3 ms rise and fall times.

src = commsrc.pattern('SamplesPerSymbol',sps, ...
    'RiseTime',3e-3,'FallTime', 3e-3);
src.Jitter = commsrc.combinedjitter('RandomJitter','on', ...
    'DiracJitter','on','DiracDelta',[-5e-04 5e-04],'RandomStd',2e-4);

Generate two symbols for each trace.

x = src.generate(numTraces*2);
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Pass the signal through an AWGN channel with a fixed seed for repeatable results.

randStream = RandStream('mt19937ar','Seed',5489);
y = awgn(x,30,'measured',randStream);

Display the eye diagram.

ed(y)

Generate the horizontal bathtub data for the eye diagram. Plot the curve.

hb = horizontalBathtub(ed)
semilogy([hb.LeftThreshold],[hb.BER],'b', ...
    [hb.RightThreshold],[hb.BER],'b')
grid

hb = 

  1x13 struct array with fields:

    BER
    LeftThreshold
    RightThreshold
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Generate the vertical bathtub data for the eye diagram. Plot the curve.

vb = verticalBathtub(ed)
semilogx([vb.BER],[vb.LowerThreshold],'b', ...
    [vb.BER],[vb.UpperThreshold],'b')
grid

vb = 

  1x13 struct array with fields:

    BER
    UpperThreshold
    LowerThreshold
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Input Arguments
ed — Eye Diagram System object
System object

Eye Diagram System object, where you get the bathtub curve information from.

Output Arguments
s — Structure containing information
struct

Structure containing information about the vertical bathtub curve.

BER — Bit error rate values
scalar

Bit error rate values, mapped on the Y-axis of the verticalBathtub plot against the corresponding
UpperThreshold and LowerThreshold values on the x-axis, specified as a scalar.
Data Types: double

UpperThreshold — Upper threshold value
scalar
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Upper threshold value, mapped on the x-axis in the plot against its corresponding BER value on the x-
axis.
Data Types: double

LowerThreshold — Lower threshold value
scalar

Lower threshold value, mapped on the x-axis in the plot against its corresponding BER value on the x-
axis.
Data Types: double

Version History
Introduced in R2016b

comm.EyeDiagram has been removed
Errors starting in R2022a

verticalBathtub has been removed. To display the eye diagram of a signal, use the eyediagram
function instead.

See Also
horizontalBathtub
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comm.FMBroadcastDemodulator
Package: comm

Demodulate broadcast FM audio signal

Description
The comm.FMBroadcastDemodulator System object demodulates a complex broadcast FM-
modulated signal and filters the signal with a de-emphasis filter to produce an audio signal. For more
details, see “Algorithms” on page 3-518.

To demodulate a broadcast FM audio signal:

1 Create the comm.FMBroadcastDemodulator object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
fmbdemodulator = comm.FMBroadcastDemodulator
fmbdemodulator = comm.FMBroadcastDemodulator(Name,Value)
fmbdemodulator = comm.FMBroadcastDemodulator(fmbmodulator)

Description

fmbdemodulator = comm.FMBroadcastDemodulator creates an FM broadcast demodulator
System object.

fmbdemodulator = comm.FMBroadcastDemodulator(Name,Value) sets properties using one or
more name-value arguments. For example, fmbdemodulator =
comm.FMBroadcastDemodulator('SampleRate',400e3) specifies a sample rate of 400 kHz.

fmbdemodulator = comm.FMBroadcastDemodulator(fmbmodulator) sets properties based on
the configuration of the input comm.FMBroadcastModulator System object, fmbmodulator.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.
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SampleRate — Sample rate
240e3 (default) | positive scalar

Sample rate of the input of the demodulator in Hz, specified as a positive scalar. The sample rate
must be greater than twice the frequency deviation (that is, SampleRate >
2×FrequencyDeviation).
Data Types: double

FrequencyDeviation — Peak deviation of the input signal frequency
75e3 (default) | positive scalar

Peak deviation of the input signal frequency in Hz, specified a positive scalar. The frequency deviation
must be less than half the sample rate (that is, FrequencyDeviation < SampleRate/2).

The system bandwidth BT = 2×(FrequencyDeviation + BM), where BM is the message bandwidth in
Hz. For more information, see “Algorithms” on page 3-518.

FM broadcast standards specify a value of 75 kHz in the United States and 50 kHz in Europe.
Data Types: double

FilterTimeConstant — De-emphasis highpass filter time constant
7.5e-05 (default) | positive scalar

De-emphasis highpass filter time constant in seconds, specified as a positive scalar. FM broadcast
standards specify a value of 75 μs in the United States and 50 μs in Europe.
Data Types: double

Stereo — Option to enable stereo demodulation
false or 0 (default) | true or 1

Option to enable stereo demodulation, specified as a logical 0 (false) or 1 (true).

• false — The output is mono audio.
• true — The object performs stereo decoding and outputs stereo audio.

For more information, see “Multiplexed Stereo and RDS (or RBDS) FM Signal” on page 3-519.
Data Types: logical

PlaySound — Option to enable audio playback
false or 0 (default) | true or 1

Option to enable audio playback, specified as a logical 0 (false) or 1 (true). To playback the output
signal on the default audio device connected to the computer, set this property to true.
Data Types: logical

AudioSampleRate — Sample rate of output audio signal
48000 (default) | positive scalar
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Sample rate of the output audio signal in Hz, specified as a positive scalar.
Data Types: double

BufferSize — Size of buffer
4096 (default) | positive integer

Size of the buffer in samples, specified as a positive integer. This property specifies the size of the
buffer used by the System object for communication with the audio device.

Dependencies

To enable this property, set the PlaySound property to true.
Data Types: double

RBDS — Option to enable RDS (or RBDS) waveform demodulation
false or 0 (default) | true or 1

Option to enable RDS (or RBDS) waveform demodulation, specified as a logical 0 (false) or 1
(true). If you set this property set to true, the object demodulates the RDS (or RBDS) waveform. For
more information, see “Multiplexed Stereo and RDS (or RBDS) FM Signal” on page 3-519.
Data Types: logical

RBDSSamplesPerSymbol — Oversampling factor of RDS (or RBDS) output signal
10 (default) | positive integer

Oversampling factor of the RDS (or RBDS) output signal, specified as a positive integer. The sample
rate of RDS (or RBDS) broadcast data is 1187.5 Hz. The RDS (or RBDS) signal sample rate is
RBDSSamplesPerSymbol × 1187.5 Hz.

Dependencies

To enable this property, set the RBDS property to true.
Data Types: double

RBDSCostasLoop — Option to recover phase of RDS (or RBDS) signal
false or 0 (default) | true or 1

Option to recover phase of the RDS (or RBDS) signal, specified as a logical 0 (false) or 1 (true).

To recover the phase of the RDS (or RBDS) signal by using a Costas loop, set this property to true.
For radio stations that do not lock the 57 kHz RDS (or RBDS) signal in phase with the third harmonic
of the 19 kHz pilot tone, a Costas loop helps recover the phase of the RDS (or RBDS) signal.

Dependencies

To enable this property, set the RBDS property to true.
Data Types: logical
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Usage

Syntax
audiosig = fmbdemodulator(insig)
[audiosig,rbdssig] = fmbdemodulator(insig)

Description

audiosig = fmbdemodulator(insig) demodulates an FM-modulated baseband audio signal and
filters this signal with a de-emphasis filter to produce an audio signal.

[audiosig,rbdssig] = fmbdemodulator(insig) also demodulates a baseband RBDS signal at
57 kHz. To enable this syntax, set the RBDS property to true.

Input Arguments

insig — FM-modulated baseband audio signal
column vector

FM-modulated baseband audio signal, specified as a column vector. For information about signal
length restrictions, see “Limitations” on page 3-518.
Data Types: double | single
Complex Number Support: Yes

Output Arguments

audiosig — Audio signal
N-element column vector | M-by-N matrix

Audio signal, returned as a column vector or an M-by-N matrix. M is the number of stereo channels.
N is the number of samples in the audio signal per channel. The output has the same data type as the
input signal, insig.

If you set the Stereo property to true, the audio signal must have at least two channels and the
System object performs stereo encoding before de-emphasis filtering. The length of the output is N ×
(AudioSampleRate/SampleRate).

rbdssig — RBDS signal
column vector

RBDS signal, returned as a column vector with the same data type as the input signal.
Data Types: double | single
Complex Number Support: Yes

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)
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Specific to comm.FMBroadcastDemodulator
info Information about FM broadcast modulator or demodulator

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

FM Broadcast Streaming Audio Signal

Play back an audio file after applying FM broadcast modulation and demodulation using System
objects to process the data in streaming mode.

Load the audio file guitartune.wav by using an audio file reader System object™ with the samples
per frame set to 4410.

audiofilereader = dsp.AudioFileReader('guitartune.wav', ...
    'SamplesPerFrame',4410);

Create FM broadcast modulator and demodulator objects. Set the sample rate of the output audio
signal to match the sample rate of the input audio signal. Set the sample rate of the demodulator to
match the specified sample rate of the modulator. Enable audio playback for the broadcast
demodulator.

fmbMod = comm.FMBroadcastModulator( ...
    'AudioSampleRate',audiofilereader.SampleRate, ...
    'SampleRate',240e3);
fmbDemod = comm.FMBroadcastDemodulator( ...
    'AudioSampleRate',audiofilereader.SampleRate, ...
    'SampleRate',240e3,'PlaySound',true);

Read the audio data in frames of length 4410, apply FM broadcast modulation, demodulate the FM
signal, and play back the demodulated signal (demodData).

while ~isDone(audiofilereader)
    audioData = audiofilereader();
    modData = fmbMod(audioData);
    demodData = fmbDemod(modData); % Demodulate and play signal
end

FM Broadcast Modulate and Demodulate an RBDS Waveform

Generate an RBDS waveform, FM broadcast modulate the RBDS waveform with an audio signal, and
FM broadcast demodulate the FM signal.

Specify parameters for an RBDS waveform with 19 groups per frame and 10 samples per symbol. The
sample rate of the RBDS waveform is given by 1187.5 x 10. Set the audio sample rate to 1187.5 x 40.
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groupLen = 104;
sps = 10;
groupsPerFrame = 19;
rbdsFrameLen = groupLen*sps*groupsPerFrame;
afrRate = 40*1187.5;
rbdsRate = 1187.5*sps;
outRate = 4*57000;

Load the audio file guitartune.wav by using an audio file reader System object™ while setting the
samples per frame. Create RBDS waveform generator, FM broadcast modulator, FM broadcast
demodulator, and time scope System objects. Configure the modulator and demodulator objects to
process a stereo audio file and an RBDS waveform.

afr = dsp.AudioFileReader( ...
    'rbds_capture_47500.wav', ...
    'SamplesPerFrame',rbdsFrameLen*afrRate/rbdsRate);
rbds = comm.RBDSWaveformGenerator( ...
    'GroupsPerFrame',groupsPerFrame, ...
    'SamplesPerSymbol',sps);

fmMod = comm.FMBroadcastModulator( ...
    'AudioSampleRate',afr.SampleRate, ...
    'SampleRate',outRate,...
    'Stereo',true, ...
    'RBDS',true, ...
    'RBDSSamplesPerSymbol',sps);
fmDemod = comm.FMBroadcastDemodulator( ...
    'SampleRate',outRate,...
    'Stereo',true, ...
    'RBDS',true, ...
    'PlaySound',true);
scope = timescope( ...
    'SampleRate',outRate, ...
    'YLimits',10^-2*[-1 1]);

Read the audio signal. Generate RBDS information at the same configured rate as audio. FM
broadcast modulate the stereo audio signal with RBDS information. Add additive white Gaussian
noise. FM-demodulate the audio signal and RBDS waveforms. View the waveforms in a time scope.

for idx = 1:7
    input = afr();                         
    rbdsWave = rbds();                     
    yFM = fmMod([input input],rbdsWave);  
    rcv = awgn(yFM,40);                   
    [audioRcv, rbdsRcv] = fmDemod(rcv);    
    scope(rbdsRcv);
end
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Limitations
The length of the input signal, insig, must be an integer multiple of the AudioDecimationFactor
property. If you set the RBDS property to true, the length of the input signal, insig, also must be an
integer multiple of RBDSDecimationFactor. For more information on the
AudioDecimationFactor and RBDSDecimationFactor properties, see the info object function.

Algorithms
The comm.FMBroadcastDemodulator System object includes the functionality of the
comm.FMDemodulator System object, plus de-emphasis filtering and the ability to receive
stereophonic signals.

Filtering

FM amplifies high-frequency noise and degrades the overall signal-to-noise ratio. To compensate, FM
broadcasters insert a pre-emphasis filter before FM modulation to amplify the high-frequency
content. The FM receiver has a reciprocal de-emphasis filter after the FM demodulator to attenuate
high-frequency noise and restore a flat signal spectrum. This figure shows the order of processing
operations.
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The pre-emphasis filter has a highpass characteristic transfer function given by

Hp(f ) = 1 + j2πfτs ,

where τs is the filter time constant. The time constant is 75 μs in the United States and 50 μs in
Europe. Similarly, the transfer function for the lowpass de-emphasis filter is given by

Hd(f ) = 1
1 + j2πfτs

.

For an audio sample rate of 44.1 kHz, the de-emphasis filter has the response shown in this figure.

Multiplexed Stereo and RDS (or RBDS) FM Signal

FM broadcast supports stereophonic and monophonic operations. To support stereo transmission:

• The Left+Right channel information is assigned to the mono portion of the spectrum (0 to 15 kHz).
• The Left-Right channel information is amplitude modulated onto the 23 to 53 kHz region of the

baseband spectrum using a 38 kHz subcarrier signal.

A pilot tone at 19 kHz in the multiplexed signal enables the FM receiver to coherently demodulate the
stereo and RDS (or RBDS) signals.
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This figure shows the spectrum of the multiplex baseband signal.

The multiplex message signal, m(t) is given by

m(t) = C0 L(t) + R(t) + C1cos(2π × 19kHz × t) + C0 L(t) − R(t) cos(2π × 38kHz × t) + C2RBDS(t
)cos(2π × 57kHz × t) ,

where C0, C1, and C2 are gains. To generate the appropriate modulation level, these gains scale the
amplitudes of the L(t)±R(t) signals, the 19 kHz pilot tone, and the RDS (or RBDS) subcarrier,
respectively.

The demodulator applies m(t) to three bandpass filters with center frequencies at 19, 38, and 57 kHz
and to a lowpass filter with a 3 dB cutoff frequency of 15 kHz. The 19 kHz bandpass filter extracts the
pilot tone from the modulated signal. The recovered pilot tone is doubled and tripled in frequency to
produce the 38 kHz and 57 kHz signals, which demodulate the (L – R) and RDS (or RBDS) signals,
respectively. To generate a scaled version of the left and right channels that produces the stereo
sound, the object adds and subtracts the (L + R) and (L – R) signals. To recover the RDS (or RBDS)
signal, m(t) is mixed with the 57 kHz signal.

This figure shows the multiplexing (MPX) decoder block diagram of the FM broadcast demodulator.
L(t) and R(t) are the left and right audio signal components of the time-domain waveforms. RBDS(t) is
the time-domain waveform of the RDS (or RBDS) signal.
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Version History
Introduced in R2015a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
comm.RBDSWaveformGenerator | comm.FMBroadcastModulator | comm.FMDemodulator |
comm.FMModulator
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Blocks
FM Broadcast Demodulator Baseband | FM Demodulator Baseband

Topics
“Analog Baseband Modulation”
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comm.FMBroadcastModulator
Package: comm

Modulate broadcast FM audio signal

Description
The comm.FMBroadcastModulator System object pre-emphasizes an audio signal and modulates it
onto a baseband FM signal. For more information, see “Algorithms” on page 3-532.

To modulate a broadcast FM audio signal:

1 Create the comm.FMBroadcastModulator object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation
Syntax
fmbmodulator = comm.FMBroadcastModulator
fmbmodulator = comm.FMBroadcastModulator(Name,Value)
fmbmodulator = comm.FMBroadcastModulator(fmbdemodulator)

Description

fmbmodulator = comm.FMBroadcastModulator creates a FM broadcast modulator System
object.

fmbmodulator = comm.FMBroadcastModulator(Name,Value) sets properties using one or
more name-value arguments. For example, 'SampleRate',400e3 specifies a sample rate of 400
kHz.

fmbmodulator = comm.FMBroadcastModulator(fmbdemodulator) sets properties based on
configuration of the input comm.FMBroadcastDemodulator System object, fmbdemodulator.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

SampleRate — Sample rate
240e3 (default) | positive scalar
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Sample rate of the output of the modulator in Hz, specified as a positive scalar. The sample rate must
be greater than twice the frequency deviation (that is, SampleRate > 2×FrequencyDeviation).
Data Types: double

FrequencyDeviation — Peak deviation of the output signal frequency
75e3 (default) | positive scalar

Peak deviation of the output signal frequency in Hz, specified a positive scalar. The frequency
deviation must be less than half the sample rate (that is, FrequencyDeviation < SampleRate/2).

The system bandwidth BT = 2×(FrequencyDeviation + BM), where BM is the message bandwidth in
Hz. For more information, see “Algorithms” on page 3-532.

FM broadcast standards specify a value of 75 kHz in the United States and 50 kHz in Europe.
Data Types: double

FilterTimeConstant — Pre-emphasis highpass filter time constant
7.5e-05 (default) | positive scalar

Pre-emphasis highpass filter time constant in seconds, specified as a positive scalar. FM broadcast
standards specify a value of 75 μs in the United States and 50 μs in Europe.
Data Types: double

AudioSampleRate — Sample rate of input audio signal
48000 (default) | positive scalar

Sample rate of the input audio signal in Hz, specified as a positive scalar.
Data Types: double

Stereo — Option to enable stereo modulation
false or 0 (default) | true or 1

Option to enable stereo modulation, specified as a logical 0 (false) or 1 (true).

• Set this property to false for monophonic audio signals.
• Set this property to true for stereophonic audio signals. The object modulates the audio input (L –

R) in the 38 kHz band in addition to modulating the audio signal in the baseband (L + R).

For more information, see “Multiplexed Stereo and RDS (or RBDS) FM Signal” on page 3-533.
Data Types: logical

RBDS — Option to enable RDS (or RBDS) waveform modulation
false or 0 (default) | true or 1

Option to enable RDS (or RBDS) waveform modulation, specified as a logical 0 (false) or 1 (true). If
you set this property to true, the object accepts the baseband RDS (or RBDS) waveform as its
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second input and modulates the RDS (or RBDS) signal at 57 kHz. For more information, see
“Multiplexed Stereo and RDS (or RBDS) FM Signal” on page 3-533.
Data Types: logical

RBDSSamplesPerSymbol — Oversampling factor of RDS (or RBDS) input signal
10 (default) | positive integer

Oversampling factor of the RDS (or RBDS) input signal, specified as a positive integer. The sample
rate of RDS (or RBDS) broadcast data is 1187.5 Hz. The RDS (or RBDS) signal sample rate is
RBDSSamplesPerSymbol × 1187.5 Hz.
Dependencies

To enable this property, set the RBDS property to true.
Data Types: double

Usage

Syntax
outsig = fmbmodulator(audiosig)
outsig = fmbmodulator(audiosig,rbdssig)

Description

outsig = fmbmodulator(audiosig) pre-emphasizes the input audio signal and modulates the
pre-emphasized signal onto an FM-modulated baseband audio signal.

outsig = fmbmodulator(audiosig,rbdssig) also modulates a baseband RBDS signal at 57
kHz. To enable this syntax, set the RBDS property to true.

Input Arguments

audiosig — Audio signal
N-element column vector | M-by-N matrix

Audio signal, specified as one of these options.

• N-element column vector for mono signals — If you set the Stereo property to false, you must
specify the audio signal as a column vector. N is the number of samples in the audio signal.

• M-by-N matrix for stereo signals — M is the number of stereo channels. N is the number of
samples in the audio signal per channel.

For information about signal length restrictions, see “Limitations” on page 3-532.

If you set the Stereo property to true, the audio signal must have at least two channels and the
System object performs stereo encoding after pre-emphasis filtering.
Data Types: double | single
Complex Number Support: Yes

rbdssig — RBDS signal
column vector
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RBDS signal, specified as a column vector. For information about RBDS signal length restrictions, see
“Limitations” on page 3-532.

To generate the RBDS signal, use the comm.RBDSWaveformGenerator System object.
Data Types: double | single
Complex Number Support: Yes

Output Arguments

outsig — FM-modulated baseband signal
column vector

FM-modulated baseband signal, returned as a column vector of complex values of the same data type
as the input signal, audiosig. The length of this output is length(audiosig) × (SampleRate/
AudioSampleRate).

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to comm.FMBroadcastModulator
info Information about FM broadcast modulator or demodulator

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

FM Broadcast Streaming Audio Signal

Play back an audio file after applying FM broadcast modulation and demodulation using System
objects to process the data in streaming mode.

Load the audio file guitartune.wav by using an audio file reader System object™ with the samples
per frame set to 4410.

audiofilereader = dsp.AudioFileReader('guitartune.wav', ...
    'SamplesPerFrame',4410);

Create FM broadcast modulator and demodulator objects. Set the sample rate of the output audio
signal to match the sample rate of the input audio signal. Set the sample rate of the demodulator to
match the specified sample rate of the modulator. Enable audio playback for the broadcast
demodulator.

fmbMod = comm.FMBroadcastModulator( ...
    'AudioSampleRate',audiofilereader.SampleRate, ...
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    'SampleRate',240e3);
fmbDemod = comm.FMBroadcastDemodulator( ...
    'AudioSampleRate',audiofilereader.SampleRate, ...
    'SampleRate',240e3,'PlaySound',true);

Read the audio data in frames of length 4410, apply FM broadcast modulation, demodulate the FM
signal, and play back the demodulated signal (demodData).

while ~isDone(audiofilereader)
    audioData = audiofilereader();
    modData = fmbMod(audioData);
    demodData = fmbDemod(modData); % Demodulate and play signal
end

Modulate and Demodulate Streaming Audio Signals Using FM Broadcast Method

Modulate and demodulate an audio signal with the FM broadcast modulator and demodulator System
objects. Plot the frequency responses to compare the input and demodulated audio signals.

Load the audio file guitartune.wav by using an audio file reader System object™. Set the samples
per frame to 44,100, which is large enough to include the entire audio file.

audiofilereader = dsp.AudioFileReader("guitartune.wav", ...
    SamplesPerFrame=44100);
x = audiofilereader();

Create spectrum analyzer System objects to plot the spectra of the modulated and demodulated
signals.

saFM = spectrumAnalyzer( ...
    SampleRate=152e3, ...
    Title="FM Broadcast Signal");
saAudio = spectrumAnalyzer( ...
    SampleRate=44100, ...
    ShowLegend=true, ...
    Title="Audio Signal", ...
    ChannelNames=["Input signal" "Demodulated signal"]);

Create FM broadcast modulator and demodulator objects. Set the sample rate of the output audio
signal to match the sample rate of the input audio signal. Configure the demodulator to match the
specified modulator.

fmbMod = comm.FMBroadcastModulator( ...
    AudioSampleRate=audiofilereader.SampleRate, ...
    SampleRate=200e3);
fmbDemod = comm.FMBroadcastDemodulator(fmbMod)

fmbDemod = 
  comm.FMBroadcastDemodulator with properties:

            SampleRate: 200000
    FrequencyDeviation: 75000
    FilterTimeConstant: 7.5000e-05
       AudioSampleRate: 44100
             PlaySound: false
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                Stereo: false
                  RBDS: false

The length of the sequence input to the object must be an integer multiple of the decimation factor.
To determine the audio decimation factor of the filter in the modulator and demodulator, use the
info object function.

info(fmbMod)

ans = struct with fields:
       AudioDecimationFactor: 441
    AudioInterpolationFactor: 2000
        RBDSDecimationFactor: 19
     RBDSInterpolationFactor: 320

info(fmbDemod)

ans = struct with fields:
       AudioDecimationFactor: 50
    AudioInterpolationFactor: 57
        RBDSDecimationFactor: 50
     RBDSInterpolationFactor: 57

The audio decimation factor of the modulator is a multiple of the audio frame length of 44,100. The
audio decimation factor of the demodulator is an integer multiple of the 200,000 samples data
sequence length of the modulator output.

Modulate the audio signal and plot the spectrum of the modulated signal.

y = fmbMod(x);
saFM(y)
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Demodulate the modulated audio signal and plot the resultant spectrum. Compare the input signal
spectrum with the demodulated signal spectrum. The spectra are similar except that the demodulated
signal has smaller high-frequency components.

z = fmbDemod(y);
saAudio([x z])
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FM Broadcast Modulate and Demodulate an RBDS Waveform

Generate an RBDS waveform, FM broadcast modulate the RBDS waveform with an audio signal, and
FM broadcast demodulate the FM signal.

Specify parameters for an RBDS waveform with 19 groups per frame and 10 samples per symbol. The
sample rate of the RBDS waveform is given by 1187.5 x 10. Set the audio sample rate to 1187.5 x 40.

groupLen = 104;
sps = 10;
groupsPerFrame = 19;
rbdsFrameLen = groupLen*sps*groupsPerFrame;
afrRate = 40*1187.5;
rbdsRate = 1187.5*sps;
outRate = 4*57000;

Load the audio file guitartune.wav by using an audio file reader System object™ while setting the
samples per frame. Create RBDS waveform generator, FM broadcast modulator, FM broadcast
demodulator, and time scope System objects. Configure the modulator and demodulator objects to
process a stereo audio file and an RBDS waveform.

afr = dsp.AudioFileReader( ...
    'rbds_capture_47500.wav', ...
    'SamplesPerFrame',rbdsFrameLen*afrRate/rbdsRate);
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rbds = comm.RBDSWaveformGenerator( ...
    'GroupsPerFrame',groupsPerFrame, ...
    'SamplesPerSymbol',sps);

fmMod = comm.FMBroadcastModulator( ...
    'AudioSampleRate',afr.SampleRate, ...
    'SampleRate',outRate,...
    'Stereo',true, ...
    'RBDS',true, ...
    'RBDSSamplesPerSymbol',sps);
fmDemod = comm.FMBroadcastDemodulator( ...
    'SampleRate',outRate,...
    'Stereo',true, ...
    'RBDS',true, ...
    'PlaySound',true);
scope = timescope( ...
    'SampleRate',outRate, ...
    'YLimits',10^-2*[-1 1]);

Read the audio signal. Generate RBDS information at the same configured rate as audio. FM
broadcast modulate the stereo audio signal with RBDS information. Add additive white Gaussian
noise. FM-demodulate the audio signal and RBDS waveforms. View the waveforms in a time scope.

for idx = 1:7
    input = afr();                         
    rbdsWave = rbds();                     
    yFM = fmMod([input input],rbdsWave);  
    rcv = awgn(yFM,40);                   
    [audioRcv, rbdsRcv] = fmDemod(rcv);    
    scope(rbdsRcv);
end
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Limitations
• If you set the RBDS to true, both the audio and RDS (or RBDS) inputs must satisfy this equation.

audioLength
audioSampleRate = RBDSLength

RBDSSampleRate
• The RDS (or RBDS) signal sample rate is RBDSSamplesPerSymbol × 1187.5 Hz.
• The length of the input RDS (or RBDS) signal, rbdssig, must be an integer multiple of the

RBDSDecimationFactor property. The input length of the audio signal,audiosig, must be an
integer multiple of the AudioDecimationFactor property. For more information on
RBDSDecimationFactor and AudioDecimationFactor, see the info object function.

Algorithms
The comm.FMBroadcastModulator System object includes the functionality of the
comm.FMModulator System object, plus de-emphasis filtering and the ability to receive stereophonic
signals.

Filtering

FM amplifies high-frequency noise and degrades the overall signal-to-noise ratio. To compensate, FM
broadcasters insert a pre-emphasis filter before FM modulation to amplify the high-frequency
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content. The FM receiver has a reciprocal de-emphasis filter after the FM demodulator to attenuate
high-frequency noise and restore a flat signal spectrum. This figure shows the order of processing
operations.

The pre-emphasis filter has a highpass characteristic transfer function given by

Hp(f ) = 1 + j2πfτs ,

where τs is the filter time constant. The time constant is 75 μs in the United States and 50 μs in
Europe. Similarly, the transfer function for the lowpass de-emphasis filter is given by

Hd(f ) = 1
1 + j2πfτs

.

For an audio sample rate of 44.1 kHz, the de-emphasis filter has the response shown in this figure.

Multiplexed Stereo and RDS (or RBDS) FM Signal

FM broadcast supports stereophonic and monophonic operations. To support stereo transmission:

• The Left+Right channel information is assigned to the mono portion of the spectrum (0 to 15 kHz).
• The Left-Right channel information is amplitude modulated onto the 23 to 53 kHz region of the

baseband spectrum using a 38 kHz subcarrier signal.
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A pilot tone at 19 kHz in the multiplexed signal enables the FM receiver to coherently demodulate the
stereo and RDS (or RBDS) signals.

This figure shows the spectrum of the multiplex baseband signal.

The multiplex message signal, m(t) is given by

m(t) = C0 L(t) + R(t) + C1cos(2π × 19kHz × t) + C0 L(t) − R(t) cos(2π × 38kHz × t) + C2RBDS(t
)cos(2π × 57kHz × t) ,

where C0, C1, and C2 are gains. To generate the appropriate modulation level, these gains scale the
amplitudes of the L(t)±R(t) signals, the 19 kHz pilot tone, and the RDS (or RBDS) subcarrier,
respectively.

This figure shows the multiplexing (MPX) encoder block diagram of the FM broadcast modulator,
which is used to generate the multiplex baseband signal. L(t) and R(t) are the left and right audio
signal components of the time-domain waveforms. RBDS(t) is the time-domain waveform of the RDS
(or RBDS) signal.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
comm.RBDSWaveformGenerator | comm.FMBroadcastDemodulator | comm.FMModulator |
comm.FMDemodulator

Blocks
FM Broadcast Modulator Baseband | FM Modulator Baseband
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Topics
“Analog Baseband Modulation”
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comm.FMDemodulator
Package: comm

Demodulate baseband FM signal

Description
The comm.FMDemodulator System object demodulates a baseband FM signal.

To demodulate a baseband FM signal:

1 Create the comm.FMDemodulator object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
fmdemodulator = comm.FMDemodulator
fmdemodulator = comm.FMDemodulator(Name,Value)
fmdemodulator = comm.FMDemodulator(fmmodulator)

Description

fmdemodulator = comm.FMDemodulator creates an FM demodulator System object.

fmdemodulator = comm.FMDemodulator(Name,Value) sets properties using one or more name-
value arguments. For example, 'Samplerate',400e3 specifies a sample rate of 400 kHz.

fmdemodulator = comm.FMDemodulator(fmmodulator) sets properties based on the
configuration of the input comm.FMModulator System object, fmmodulator.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

SampleRate — Sample rate
240e3 (default) | positive scalar
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Sample rate of the input signal in Hz, specified as a positive scalar. This property specifies the sample
rate at the output of a modulator or at the input of a demodulator. The sample rate must be greater
than twice the frequency deviation (that is, SampleRate > 2×FrequencyDeviation).
Data Types: double

FrequencyDeviation — Peak deviation of output signal frequency
75e3 (default) | positive scalar

Peak deviation of the output signal frequency in Hz, specified a positive scalar. The frequency
deviation must be less than half the sample rate (that is, FrequencyDeviation < SampleRate/2).

The system bandwidth is BT = 2×(FrequencyDeviation + BM), where BM is the message bandwidth
in Hz. For more information, see “Algorithms” on page 3-543.
Data Types: double

Usage

Syntax
outsig = fmdemodulator(insig)

Description

outsig = fmdemodulator(insig) demodulates a baseband FM signal and outputs message data.

Input Arguments

insig — Baseband FM signal
scalar | column vector

Baseband FM signal, specified as a scalar or column vector.
Data Types: double | single | fi
Complex Number Support: Yes

Output Arguments

outsig — Message data
scalar | column vector

Message data, returned as a scalar or column vector of the same data type and size as the input
insig.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)
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Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Play FM-Demodulated Audio File

Play back an audio file after applying FM modulation and demodulation by using System objects to
process the data in streaming mode.

Load the audio file guitartune.wav by using an audio file reader System object™.

audiofilereader = dsp.AudioFileReader('guitartune.wav', ...
    'SamplesPerFrame',4410);

Create an audio device writer System object for audio playback.

audioplayer = audioDeviceWriter;

Create default FM modulator and demodulator System objects.

fmmod = comm.FMModulator;
fmdemod = comm.FMDemodulator;

Read the audio data, FM-modulate the audio data, FM-demodulate the FM-modulated signal, and play
back the demodulated signal (z).

while ~isDone(audiofilereader)
    x = audiofilereader();
    y = fmmod(x);
    z = fmdemod(y);
    audioplayer(z);
end

Modulate and Demodulate Sinusoidal Signal Using FM Method

Modulate and demodulate a sinusoidal signal. Plot the demodulated signal and compare it to the
original signal.

Initialize parameters for the example.

fs = 100;  % Sample rate (Hz)
ts = 1/fs; % Sample period (s)
fd = 25;   % Frequency deviation (Hz)

Create a sinusoidal signal with a duration of 0.5 s and frequency of 4 Hz.

t = (0:ts:0.5-ts)';
x = sin(2*pi*4*t);
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Create an FM modulator System object™, setting the sample rate and frequency deviation. Then,
create an FM demodulator System object, using the FM modulator configuration to set the
demodulator properties.

fmmodulator = comm.FMModulator( ...
    'SampleRate',fs, ...
    'FrequencyDeviation',fd);
fmdemodulator = comm.FMDemodulator(fmmodulator);

FM-modulate the signal and plot the real component of the complex signal. The frequency of the
modulated signal changes with the amplitude of the input signal.

y = fmmodulator(x);
plot(t,[x real(y)])
title('Input Sinusoid and FM-Modulated Signals')
xlabel('Time (seconds)'); ylabel('Amplitude')
legend('Input signal','Modulated signal (real component)')

Demodulate the FM-modulated signal.

z = fmdemodulator(y);

Plot the original and demodulated signals. The demodulator output signal exactly aligns with the
original signal.

plot(t,x,'r',t,z,'ks')
legend('Original signal','Demodulated signal')
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xlabel('Time (s)')
ylabel('Amplitude')

Create FM Demodulator from FM Modulator

Create an FM demodulator System object™ from an FM modulator System object. Modulate and
demodulate audio data loaded from a file and compare the spectrum for the demodulated data and
the input data.

Initialize parameters for the example.

fd = 50e3;  % Frequency deviation (Hz)
fs = 300e3; % Sample rate (Hz)

Create an FM modulator System object.

mod = comm.FMModulator( ...
    FrequencyDeviation=fd, ...
    SampleRate=fs);

Create an FM demodulator object by using the modulator to configure it.

demod = comm.FMDemodulator(mod);

Verify that the properties are identical in the two System objects.
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mod

mod = 
  comm.FMModulator with properties:

            SampleRate: 300000
    FrequencyDeviation: 50000

demod

demod = 
  comm.FMDemodulator with properties:

            SampleRate: 300000
    FrequencyDeviation: 50000

Load audio data into the workspace.

S = load("handel.mat");
data = S.y;
fsamp = S.Fs;

Create a spectrum analyzer System object.

sa = spectrumAnalyzer( ...
    SampleRate=fsamp, ...
    ShowLegend=true);

FM-modulate and -demodulate the audio data.

modData = mod(data);
demodData = demod(modData);

Verify that the spectrum plot of the input data (Channel 1) aligns with that of the demodulated data
(Channel 2).

sa([data demodData])
release(sa)
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Algorithms
A frequency-modulated passband signal, Y(t), is given as

Y(t) = Acos 2πfct + 2πfΔ∫0 t
x(τ)dτ ,

where:

• A is the carrier amplitude.
• fc is the carrier frequency.
• x(τ) is the baseband input signal.
• fΔ is the frequency deviation in Hz.

The frequency deviation is the maximum shift from fc in one direction, assuming |x(τ)| ≤ 1.

A baseband FM signal can be derived from the passband representation by downconverting the
passband signal by fc such that

ys(t) = Y(t)e− j2πfct = A
2 e j 2πfct + 2πfΔ∫0t

x(τ)dτ + e− j 2πfct + 2πfΔ∫0t
x(τ)dτ e− j2πfct

= A
2 e j2πfΔ∫0t

x(τ)dτ + e− j4πfct − j2πfΔ∫0t
x(τ)dτ .
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Removing the component at -2fc from yS(t) leaves the baseband signal representation, y(t), which is
given as

y(t) = A
2 e j2πfΔ∫0t

x(τ)dτ .

The expression for y(t) can be rewritten as y(t) = A
2 e jϕ(t), where ϕ(t) = 2πfΔ∫0 t

x(τ)dτ. Expressing y(t)
this way implies that the input signal is a scaled version of the derivative of the phase, ϕ(t).

To recover the input signal from y(t), use a baseband delay demodulator, as this figure shows.

Version History
Introduced in R2015a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
comm.FMModulator | comm.FMBroadcastDemodulator | comm.FMBroadcastModulator

Blocks
FM Demodulator Baseband | FM Broadcast Demodulator Baseband
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comm.FMModulator
Package: comm

Modulate signal using FM method

Description
The comm.FMModulator System object applies baseband frequency modulation to a signal. For more
information, see “Algorithms” on page 3-552.

To modulate a signal using the FM method:

1 Create the comm.FMModulator object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
fmmodulator = comm.FMModulator
fmmodulator = comm.FMModulator(Name,Value)
fmmodulator = comm.FMModulator(fmdemodulator)

Description

fmmodulator = comm.FMModulator creates an FM modulator System object.

fmmodulator = comm.FMModulator(Name,Value) sets properties using one or more name-value
arguments. For example, 'SampleRate,400e3' specifies a sample rate of 400 kHz.

fmmodulator = comm.FMModulator(fmdemodulator) sets properties based on the configuration
of the input comm.FMDemodulator System object, fmdemodulator.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

SampleRate — Sample rate
240e3 (default) | positive scalar
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Sample rate of the input signal in Hz, specified as a positive scalar. This property specifies the sample
rate at the output of a modulator or at the input of a demodulator. The sample rate must be greater
than twice the frequency deviation (that is, SampleRate > 2×FrequencyDeviation).
Data Types: double

FrequencyDeviation — Peak deviation of output signal frequency
75e3 (default) | positive scalar

Peak deviation of the output signal frequency in Hz, specified a positive scalar. The frequency
deviation must be less than half the sample rate (that is, FrequencyDeviation < SampleRate/2).

The system bandwidth is BT = 2×(FrequencyDeviation + BM), where BM is the message bandwidth
in Hz. For more information, see “Algorithms” on page 3-552.
Data Types: double

Usage

Syntax
outsig = fmmodulator(insig)

Description

outsig = fmmodulator(insig) modulates the input message signal and outputs a baseband FM
signal.

Input Arguments

insig — Input signal
scalar | column vector

Input signal, specified as a scalar or column vector.
Data Types: double | single | fi
Complex Number Support: Yes

Output Arguments

outsig — Modulated baseband FM signal
scalar | column vector

Modulated baseband FM signal, returned as a scalar or column vector with complex values. The
output signal has the same data type and size as the input insig.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)
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Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

FM-Modulate Sinusoidal Signal

Apply baseband modulation to a sine wave. Plot the sine wave and the modulated signals.

Set parameters for the example.

fs = 1e3;  % Sample rate (Hz)
ts = 1/fs; % Sample period (s)
fd = 50;   % Frequency deviation (Hz)

Create a sinusoidal signal with a duration of 0.5 s and frequency of 4 Hz.

t = (0:ts:0.5-ts)';
x = sin(2*pi*4*t);

Create an FM modulator System object™, setting the sample rate and frequency deviation.

fmmodulator = comm.FMModulator( ...
    'SampleRate',fs, ...
    'FrequencyDeviation',fd);

FM-modulate the signal and plot its real part. The frequency of the modulated signal changes with
the amplitude of the input signal.

y = fmmodulator(x);
plot(t,[x real(y)])
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Plot Spectrum of Baseband FM-Modulated Signal

Apply baseband FM modulation to a white Gaussian noise source and plot the spectrum of the
modulated signal.

Initialize parameters for the example.

fs = 1e3;  % Sample rate (Hz)
ts = 1/fs; % Sample period (s)
fd = 10;   % Frequency deviation (Hz)

Create a white Gaussian noise source with a duration of 5 seconds.

t = (0:ts:5-ts)';
x = wgn(length(t),1,0);

Create two FM modulator System objects, setting the sample rate and frequency deviation. Set the
frequency deviation of the second FM modulator object five times higher than the first FM modulator.

fmmod1 = comm.FMModulator( ...
    SampleRate=fs, ...
    FrequencyDeviation=fd);
fmmod2 = comm.FMModulator( ...
    SampleRate=fs, ...
    FrequencyDeviation=5*fd);
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Use the FM modulators to apply FM modulation to the signal x.

y1 = fmmod1(x);
y2 = fmmod2(x);

Plot the spectra of the two modulated signals. The larger frequency deviation associated with channel
2 results in a noise level that is 10 dB higher than the first channel.

specanalyzer = spectrumAnalyzer(SampleRate=fs,ShowLegend=true);
specanalyzer([y1 y2])
release(specanalyzer)

Modulate and Demodulate Sinusoidal Signal Using FM Method

Modulate and demodulate a sinusoidal signal. Plot the demodulated signal and compare it to the
original signal.

Initialize parameters for the example.

fs = 100;  % Sample rate (Hz)
ts = 1/fs; % Sample period (s)
fd = 25;   % Frequency deviation (Hz)

Create a sinusoidal signal with a duration of 0.5 s and frequency of 4 Hz.
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t = (0:ts:0.5-ts)';
x = sin(2*pi*4*t);

Create an FM modulator System object™, setting the sample rate and frequency deviation. Then,
create an FM demodulator System object, using the FM modulator configuration to set the
demodulator properties.

fmmodulator = comm.FMModulator( ...
    'SampleRate',fs, ...
    'FrequencyDeviation',fd);
fmdemodulator = comm.FMDemodulator(fmmodulator);

FM-modulate the signal and plot the real component of the complex signal. The frequency of the
modulated signal changes with the amplitude of the input signal.

y = fmmodulator(x);
plot(t,[x real(y)])
title('Input Sinusoid and FM-Modulated Signals')
xlabel('Time (seconds)'); ylabel('Amplitude')
legend('Input signal','Modulated signal (real component)')

Demodulate the FM-modulated signal.

z = fmdemodulator(y);

Plot the original and demodulated signals. The demodulator output signal exactly aligns with the
original signal.
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plot(t,x,'r',t,z,'ks')
legend('Original signal','Demodulated signal')
xlabel('Time (s)')
ylabel('Amplitude')

Algorithms
A frequency-modulated passband signal, Y(t), is given as

Y(t) = Acos 2πfct + 2πfΔ∫0 t
x(τ)dτ ,

where:

• A is the carrier amplitude.
• fc is the carrier frequency.
• x(τ) is the baseband input signal.
• fΔ is the frequency deviation in Hz.

The frequency deviation is the maximum shift from fc in one direction, assuming |x(τ)| ≤ 1.

A baseband FM signal can be derived from the passband representation by downconverting the
passband signal by fc such that
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ys(t) = Y(t)e− j2πfct = A
2 e j 2πfct + 2πfΔ∫0t

x(τ)dτ + e− j 2πfct + 2πfΔ∫0t
x(τ)dτ e− j2πfct

= A
2 e j2πfΔ∫0t

x(τ)dτ + e− j4πfct − j2πfΔ∫0t
x(τ)dτ .

Removing the component at -2fc from yS(t) leaves the baseband signal representation, y(t), which is
given as

y(t) = A
2 e j2πfΔ∫0t

x(τ)dτ .

The expression for y(t) can be rewritten as y(t) = A
2 e jϕ(t), where ϕ(t) = 2πfΔ∫0 t

x(τ)dτ. Expressing y(t)
this way implies that the input signal is a scaled version of the derivative of the phase, ϕ(t).

To recover the input signal from y(t), use a baseband delay demodulator, as this figure shows.

Subtracting a delayed and conjugated copy of the received signal from the signal itself results in this
equation.

w(t) = A2

4 e jϕ(t)e− jϕ(t − T) = A2

4 e j ϕ(t) − ϕ(t − T) ,

where T is the sample period. In discrete terms,

wn = w(nT),

wn = A2

4 e j ϕn − ϕn−1 , and

vn = ϕn− ϕn−1 .

The signal vn is the approximate derivative of ϕn such that vn ≈ xn.

Version History
Introduced in R2015a

References
[1] Hatai, I., and I. Chakrabarti. “A New High-Performance Digital FM Modulator and Demodulator

for Software-Defined Radio and Its FPGA Implementation.” International Journal of
Reconfigurable Computing (December 25, 2011): 1–10. https://doi.org/10.1155/2011/342532.

[2] Taub, H., and D. Schilling. Principles of Communication Systems. McGraw-Hill Series in Electrical
Engineering. New York: McGraw-Hill, 1971, pp. 142–155.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
comm.FMDemodulator | comm.FMBroadcastModulator | comm.FMBroadcastDemodulator

Blocks
FM Modulator Baseband | FM Broadcast Modulator Baseband

Topics
“Analog Baseband Modulation”
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comm.FSKDemodulator
Package: comm

Demodulate using M-ary FSK method

Description
The comm.FSKDemodulator System object noncoherently demodulates a signal that was modulated
using the M-ary frequency shift keying (M-FSK) method. The input is a baseband representation of
the modulated signal. The input and output for this object are discrete-time signals. For more
information, see “Algorithms” on page 3-561.

To demodulate a signal that was modulated using frequency shift keying:

1 Create the comm.FSKDemodulator object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation
Syntax
fskdemodulator = comm.FSKDemodulator
fskdemodulator = comm.FSKDemodulator(Name=Value)
fskdemodulator = comm.FSKDemodulator(M,freqSep,RS,Name=Value)

Description

fskdemodulator = comm.FSKDemodulator creates a demodulator System object that
demodulates an M-FSK modulated signal by using a noncoherent energy detector.

fskdemodulator = comm.FSKDemodulator(Name=Value) creates an FSK demodulator object
and sets properties using one or more name-value arguments. For example,
comm.FSKDemodulator(BitOutput=true) configures the object to return binary output values.

fskdemodulator = comm.FSKDemodulator(M,freqSep,RS,Name=Value) creates an M-FSK
demodulator object with the ModulationOrder property set to M, the FrequencySeparation
property set to freqSep, the SymbolRate property set to RS, and optional name-value arguments.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.
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ModulationOrder — Number of frequencies in modulated signal
8 (default) | positive integer ≥ 2

Number of frequencies in the modulated signal, specified as a positive integer ≥ 2.

Note The modulation order, M, must be a power of two, such that M = 2K, where K is a positive
integer when you set SymbolMapping to 'Gray' or you set BitOutput to true.

Data Types: double

BitOutput — Option to provide output as integers or groups of bit values
0 or false (default) | 1 or true

Option to provide the output as integers or groups of bit values, specified as a numeric or logical 0
(false) or 1 (true).
Data Types: logical

SymbolMapping — Symbol encoding mapping
'Gray' (default) | 'Binary'

Symbol encoding mapping, specified as 'Gray' or 'Binary'. Each integer or group of log2(M) bits
corresponds to one symbol. M represents the value of the ModulationOrder property.

• When you set this property to 'Gray', the object maps symbols to a Gray-encoded ordering.
• When you set this property to 'Binary', the object maps symbols to a natural binary-encoded

ordering.

For either type of mapping, the object maps the lowest frequency to the integer 0 and maps the
highest frequency to the integer (M – 1). In baseband simulation, the lowest frequency is the negative
frequency with the largest absolute value.

FrequencySeparation — Frequency separation between successive tones
6 (default) | positive scalar

Frequency separation between successive tones in the modulated signal in hertz, specified as a
positive scalar value. For more information, see “Avoid Output Signal Aliasing” on page 3-561.
Data Types: double

SamplesPerSymbol — Number of samples per input symbol
17 (default) | positive integer

Number of samples per input symbol, specified as positive integer. For more information, see “Avoid
Output Signal Aliasing” on page 3-561.
Data Types: double

SymbolRate — Symbol rate in symbols per second
100 (default) | positive scalar
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Symbol rate in symbols per second, specified as a positive scalar. The symbol duration remains the
same, regardless of whether the output signal is bits or integers. For more information, see “Avoid
Output Signal Aliasing” on page 3-561.
Data Types: double

OutputDataType — Data type of output
"double" (default) | "logical" | "int8" | ...

Data type of output

Specify the output data type as one of "double", "logical", "int8", "uint8", "int16",
"uint16", "int32", or "uint32".

• When you set the BitOutput property to false and the ModulationOrder property to 2, you
can set this property to "logical".

• When you set the BitOutput property to true, the output data type must be set to "logical"
or "double".

Usage

Syntax
y = fskdemodulator(x)

Description

y = fskdemodulator(x) demodulates the input signal by using the FSK method. The output is the
modulated FSK baseband signal.

Input Arguments

x — Modulated input signal
column vector

Modulated input signal, specified as a column vector. The length of x must be an integer multiple of
the SamplesPerSymbol property value.
Data Types: double | single

Output Arguments

y — Output signal
column vector

Output signal, returned as an integer or bit-valued column vector.

• When you set BitOutput to false, the object returns an N / NSPS-by-1 vector. N is the length of
the input signal x and NSPS is the value of the SamplesPerSymbol property. The elements of the
output vector are integers in the range [0, (M – 1)]. M represents the value of the
ModulationOrder property.
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• When you set BitOutput to true, the object returns a column vector of length equal to N ×
log2(M). The output vector contains bit representations of integers in the range [0, (M – 1)].
Groups of log2(M) bits are mapped onto a symbol, with the first bit representing the MSB and the
last bit representing the LSB.

The OutputDataType property specifies the data type of the output.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

FSK Modulation and Demodulation in AWGN

Modulate and demodulate a signal using 8-FSK modulation with a frequency separation of 100 Hz.

Create FSK modulator and demodulator System objects with modulation order 8 and 100 Hz
frequency separation.

M = 8;
freqSep = 100;
fskmodulator = comm.FSKModulator(M,freqSep);
fskdemodulator = comm.FSKDemodulator(M,freqSep);

Create an additive white Gaussian noise channel with a signal-to-noise ratio of -2 dB.

awgnchan = comm.AWGNChannel( ...
    NoiseMethod="Signal to noise ratio (SNR)", ...
    SNR=-2);

Create an error rate calculator object.

errRate = comm.ErrorRate;

Transmit one hundred 50-symbol frames using 8-FSK modulation in an AWGN channel.

for counter = 1:100
    data = randi([0 M-1],50,1);
    modSignal = fskmodulator(data);
    noisySignal = awgnchan(modSignal);
    receivedData = fskdemodulator(noisySignal);
    errorStats = errRate(data,receivedData);
end
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Display the error statistics.

es1 = 'Error rate = %4.2e\n';
es2 = 'Number of errors = %d\n';
es3 = 'Number of symbols = %d\n';
fprintf([es1 es2 es3],errorStats)

Error rate = 1.40e-02
Number of errors = 70
Number of symbols = 5000

Display Lengths for FSK Modulation and Demodulation of Binary and Integer Signals

The FSK modulator System object can be configured to modulate data input as integer values or as
binary values. The FSK demodulator System object can be configured to demodulate symbols and
output as integer values or as binary values. Each integer or group of log2(M) bits corresponds to one
symbol. M represents the value of the ModulationOrder property. Compute the expected signal
lengths for input and output of FSK modulation and demodulation of the integer and binary signals.
Display the resulting signal lengths for input and output of the FSK modulated and demodulated
integer and binary signals.

Define variable to use when configuring FSK modulator and demodulator objects.

M = 8;         % Modulation order   
freqSep = 100; % Frequency separation
nspf = 21;     % Number of samples per frame
sps = 10;      % Samples per symbol

fskmod_bit = comm.FSKModulator(M,freqSep, ...
    BitInput=true, ...
    SamplesPerSymbol=sps);
fskmod_bif = comm.FSKModulator(M,freqSep, ...
    BitInput=false, ...
    SamplesPerSymbol=sps);
fskdemod_bot = comm.FSKDemodulator(M,freqSep, ...
    BitOutput=true, ...
    SamplesPerSymbol=sps);
fskdemod_bof = comm.FSKDemodulator(M,freqSep, ...
    BitOutput=false, ...
    SamplesPerSymbol=sps);

Generate integer data and modulate data by using an FSK modulator object configured to accept bit
data (BitInput=true).

bindata = randi([0 1],nspf*M,1);
modSignal = fskmod_bit(bindata);

Demodulate the data, and then output binary data from the first demodulator object and integer data
from the second demodulator. Compute the expected and resulting input and output signal lengths.

rxData_bot = fskdemod_bot(modSignal);
rxData_bof = fskdemod_bof(modSignal);

Compute expected input and output lengths for a binary input signal.
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Nbit = length(bindata);
Nsym = sps*length(bindata)/log2(M);
Nbot = (length(modSignal)/sps)*log2(M);
Nbof = length(modSignal)/sps;
expLen = sprintf(' Nbit  Nsym  Nbot  Nbof\n  %d   %d   %d   %d', ...
    length(bindata),length(modSignal), ...
    length(rxData_bot),length(rxData_bof))

expLen = 
    ' Nbit  Nsym  Nbot  Nbof
       168   560   168   56'

Display input and output lengths for a binary input signal.

sigLen = sprintf(' bit   sym   bot   bof\n %d   %d   %d   %d', ...
    length(bindata),length(modSignal), ...
    length(rxData_bot),length(rxData_bof))

sigLen = 
    ' bit   sym   bot   bof
      168   560   168   56'

Generate integer data and modulate data by using an FSK modulator object configured to accept
integer data (BitInput=false).

data = randi([0 M-1],nspf,1);
modSignal = fskmod_bif(data);

Because the input length changes, you must release the demodulator objects before reusing them.
Demodulate the data, and then output binary data from the first demodulator object and integer data
from the second demodulator. Compute the expected and resulting input and output signal lengths.

release(fskdemod_bot)
release(fskdemod_bof)
rxData_bot = fskdemod_bot(modSignal);
rxData_bof = fskdemod_bof(modSignal);

Compute expected input and output lengths for an integer input signal.

Nbif = length(data);
Nsym = sps*length(data);
Nbot = (length(modSignal)/sps)*log2(M);
Nbof = length(modSignal)/sps;
expLen = sprintf('Nbif  Nsym  Nbot  Nbof\n  %d   %d   %d   %d', ...
    length(data),length(modSignal), ...
    length(rxData_bot),length(rxData_bof))

expLen = 
    'Nbif  Nsym  Nbot  Nbof
       21   210   63   21'

Display input and output lengths for an integer input signal.

sigLen = sprintf(' bif  sym  bot  bof\n %d   %d   %d   %d', ...
    length(data),length(modSignal), ...
    length(rxData_bot),length(rxData_bof))
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sigLen = 
    ' bif  sym  bot  bof
      21   210   63   21'

More About
Avoid Output Signal Aliasing

To avoid output signal aliasing, the output sampling rate (specifically, the product of
SamplesPerSymbol and SymbolRate) must be greater than the product of ModulationOrder and
FrequencySeparation.

Algorithms
Demodulation of M-FSK modulated signals is performed by using a noncoherent detection, which
configures an energy detector that does not exploit phase measurements. The demodulator knows
that M possible waveforms were transmitted and must decide which is received during each time
duration T.

As described in Sklar [1], the general analytical expression for M-FSK modulation is

si(t) = 2E
T cos(ωit + ϕ)

0 ≤ t ≤ T
i=1,...,M

• E is the symbol energy.
• T is the symbol time duration.
• ωi is the frequency term that has M discreet values.
• M is the modulation order and specifies the number of waveforms.
• ϕ is the phase offset.

The noncoherent energy detector of the M-FSK demodulator selects decision regions for each ωi
waveform based on which decision region yields the maximum output.

For more details, see the Noncoherent Detection of FSK section in Sklar, [1].

Version History
Introduced in R2012a

References
[1] Sklar, Bernard. Digital Communications: Fundamentals and Applications. 2nd ed. Upper Saddle

River, N.J: Prentice-Hall PTR, 2001.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
comm.FSKModulator | comm.CPFSKModulator | comm.CPFSKDemodulator

Functions
fskdemod | fskmod

Blocks
M-FSK Demodulator Baseband | CPFSK Demodulator Baseband
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comm.FSKModulator
Package: comm

Modulate using M-ary FSK method

Description
The comm.FSKModulator System object modulates a signal using the M-ary frequency shift keying
(M-FSK) method. The output is a baseband representation of the modulated signal. For more
information, see “Algorithms” on page 3-570.

To modulate a signal using frequency shift keying:

1 Create the comm.FSKModulator object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
fskmodulator = comm.FSKModulator
fskmodulator = comm.FSKModulator(Name=Value)
fskmodulator = comm.FSKModulator(M,freqSep,RS,Name=Value)

Description

fskmodulator = comm.FSKModulator creates a modulator System object that modulates the
input signal using the M-ary frequency shift keying method.

fskmodulator = comm.FSKModulator(Name=Value) creates an FSK modulator object and sets
properties using one or more name-value arguments. For example,
comm.FSKModulator(BitInput=true) that specifies input values must be binary.

fskmodulator = comm.FSKModulator(M,freqSep,RS,Name=Value) creates an M-FSK
modulator object with the ModulationOrder property set to M, the FrequencySeparation
property set to freqSep, the SymbolRate property set to RS, and optional name-value arguments.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.
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ModulationOrder — Number of frequencies in modulated signal
8 (default) | positive integer

Number of frequencies in the modulated signal, specified as a positive integer ≥ 2.

Note The modulation order, M, must be a power of two, such that M = 2K, where K is a positive
integer when you set SymbolMapping to 'Gray' or you set BitInput to true.

Data Types: double

BitInput — Option to provide input in bits
0 or false (default) | 1 or true

Option to provide input in bits, specified as a numeric or logical 0 (false) or 1 (true).

• When you set this property to false,the input values must be integers in the range [0, (M – 1)]. If
M equals 2, the input vector can be logical values. M represents the value of the
ModulationOrder property.

• When you set this property to true, the input values must be a column vector of bit values. The
data type of the input values must be double-precision or logical. The input vector length must be
an integer multiple of the number of bits per symbol, log2(M). This vector contains bit
representations of integers in the range [0, (M – 1)] and M must be a power of two. Groups of
log2(M) bits are mapped onto a symbol, with the first bit representing the MSB and the last bit
representing the LSB.

Data Types: logical

SymbolMapping — Symbol encoding mapping
'Gray' (default) | 'Binary'

Symbol encoding mapping, specified as 'Gray' or 'Binary'. Each integer or group of log2(M) bits
corresponds to one symbol. M represents the value of the ModulationOrder property.

• When you set this property to 'Gray', the object maps symbols to a Gray-encoded ordering.
• When you set this property to 'Binary', the object maps symbols to a natural binary-encoded

ordering.

For either type of mapping, the object maps the lowest frequency to the integer 0 and maps the
highest frequency to the integer M – 1. In baseband simulation, the lowest frequency is the negative
frequency with the largest absolute value.

FrequencySeparation — Frequency separation between successive tones
6 (default) | positive scalar

Frequency separation between successive tones in the modulated signal in hertz, specified as a
positive scalar value. For more information, see “Avoid Output Signal Aliasing” on page 3-570.
Data Types: double
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ContinuousPhase — Phase continuity
1 or true (default) | 0 or false

Phase continuity, specified as a numeric or logical 0 (false) or 1 (true).

• When you set this property to true, the modulated signal maintains continuous phase, even when
its frequency changes.

• When you set this property to false, the modulated signal comprises portions of M sinusoids of
different frequencies. In this case, a change in the input value can cause a discontinuous change
in the phase of the modulated signal. M represents the value of the ModulationOrder property.

Data Types: logical

SamplesPerSymbol — Number of samples per output symbol
17 (default) | positive integer

Number of samples per output symbol for each integer or binary word in the input, specified as a
positive integer. For more information, see “Avoid Output Signal Aliasing” on page 3-570.
Data Types: double

SymbolRate — Symbol rate in symbols per second
100 (default) | positive scalar

Symbol rate in symbols per second, specified as a positive scalar. The symbol duration remains the
same, regardless of whether the input signal is bits or integers. For more information, see “Avoid
Output Signal Aliasing” on page 3-570.
Data Types: double

OutputDataType — Data type of output
"double" (default) | "single"

Data type of output, specified as either "double" or "single".

Usage

Syntax
y = fskmodulator(x)

Description

y = fskmodulator(x) modulates the input signal by using the FSK method. The output is the
modulated FSK baseband signal.

Input Arguments

x — Input signal
column vector
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Input signal, specified as an integer or bit-valued column vector with numeric or logical data types.
The BitInput property specifies the expected input type and vector length constraints.

Output Arguments

y — Modulated output signal
column vector

Modulated output signal, returned as a column vector.

• When you set BitInput to false, the object returns a column vector with (N × NSPS) elements.
N represents the length of the input signal x and NSPS represents the value of the
SamplesPerSymbol property.

• When you set BitInput to true, the object returns a column vector with (N × NSPS) / log2(M)
elements. M represents the value of the ModulationOrder property.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

FSK Modulation and Demodulation in AWGN

Modulate and demodulate a signal using 8-FSK modulation with a frequency separation of 100 Hz.

Create FSK modulator and demodulator System objects with modulation order 8 and 100 Hz
frequency separation.

M = 8;
freqSep = 100;
fskmodulator = comm.FSKModulator(M,freqSep);
fskdemodulator = comm.FSKDemodulator(M,freqSep);

Create an additive white Gaussian noise channel with a signal-to-noise ratio of -2 dB.

awgnchan = comm.AWGNChannel( ...
    NoiseMethod="Signal to noise ratio (SNR)", ...
    SNR=-2);

Create an error rate calculator object.

errRate = comm.ErrorRate;
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Transmit one hundred 50-symbol frames using 8-FSK modulation in an AWGN channel.

for counter = 1:100
    data = randi([0 M-1],50,1);
    modSignal = fskmodulator(data);
    noisySignal = awgnchan(modSignal);
    receivedData = fskdemodulator(noisySignal);
    errorStats = errRate(data,receivedData);
end

Display the error statistics.

es1 = 'Error rate = %4.2e\n';
es2 = 'Number of errors = %d\n';
es3 = 'Number of symbols = %d\n';
fprintf([es1 es2 es3],errorStats)

Error rate = 1.40e-02
Number of errors = 70
Number of symbols = 5000

Visualize FSK Modulated Symbol Mapping

Visualize symbol mapping of an FSK modulated signal with a spectrogram.

Specify 20 samples for each symbol. The symbol 0 maps to -50 kHz (negative phase slope) and the
symbol 1 maps to +50 kHz (positive phase slope).

mod = comm.FSKModulator(ModulationOrder=2, ...
    FrequencySeparation=1e5, ...
    SamplesPerSymbol=20, ...
    SymbolRate=1e4);
x = mod([0 1 0 1 0 1]');
figure 
subplot(1,2,1)
plot(unwrap(angle(x)),0:length(x)-1)
grid on
xlabel("Phase")
ylabel("Samples")
subplot(1,2,2)
spectrogram(x,20,0,[], ...
    mod.SymbolRate*mod.SamplesPerSymbol,"centered")
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Display Lengths for FSK Modulation and Demodulation of Binary and Integer Signals

The FSK modulator System object can be configured to modulate data input as integer values or as
binary values. The FSK demodulator System object can be configured to demodulate symbols and
output as integer values or as binary values. Each integer or group of log2(M) bits corresponds to one
symbol. M represents the value of the ModulationOrder property. Compute the expected signal
lengths for input and output of FSK modulation and demodulation of the integer and binary signals.
Display the resulting signal lengths for input and output of the FSK modulated and demodulated
integer and binary signals.

Define variable to use when configuring FSK modulator and demodulator objects.

M = 8;         % Modulation order   
freqSep = 100; % Frequency separation
nspf = 21;     % Number of samples per frame
sps = 10;      % Samples per symbol

fskmod_bit = comm.FSKModulator(M,freqSep, ...
    BitInput=true, ...
    SamplesPerSymbol=sps);
fskmod_bif = comm.FSKModulator(M,freqSep, ...
    BitInput=false, ...
    SamplesPerSymbol=sps);
fskdemod_bot = comm.FSKDemodulator(M,freqSep, ...
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    BitOutput=true, ...
    SamplesPerSymbol=sps);
fskdemod_bof = comm.FSKDemodulator(M,freqSep, ...
    BitOutput=false, ...
    SamplesPerSymbol=sps);

Generate integer data and modulate data by using an FSK modulator object configured to accept bit
data (BitInput=true).

bindata = randi([0 1],nspf*M,1);
modSignal = fskmod_bit(bindata);

Demodulate the data, and then output binary data from the first demodulator object and integer data
from the second demodulator. Compute the expected and resulting input and output signal lengths.

rxData_bot = fskdemod_bot(modSignal);
rxData_bof = fskdemod_bof(modSignal);

Compute expected input and output lengths for a binary input signal.

Nbit = length(bindata);
Nsym = sps*length(bindata)/log2(M);
Nbot = (length(modSignal)/sps)*log2(M);
Nbof = length(modSignal)/sps;
expLen = sprintf(' Nbit  Nsym  Nbot  Nbof\n  %d   %d   %d   %d', ...
    length(bindata),length(modSignal), ...
    length(rxData_bot),length(rxData_bof))

expLen = 
    ' Nbit  Nsym  Nbot  Nbof
       168   560   168   56'

Display input and output lengths for a binary input signal.

sigLen = sprintf(' bit   sym   bot   bof\n %d   %d   %d   %d', ...
    length(bindata),length(modSignal), ...
    length(rxData_bot),length(rxData_bof))

sigLen = 
    ' bit   sym   bot   bof
      168   560   168   56'

Generate integer data and modulate data by using an FSK modulator object configured to accept
integer data (BitInput=false).

data = randi([0 M-1],nspf,1);
modSignal = fskmod_bif(data);

Because the input length changes, you must release the demodulator objects before reusing them.
Demodulate the data, and then output binary data from the first demodulator object and integer data
from the second demodulator. Compute the expected and resulting input and output signal lengths.

release(fskdemod_bot)
release(fskdemod_bof)
rxData_bot = fskdemod_bot(modSignal);
rxData_bof = fskdemod_bof(modSignal);
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Compute expected input and output lengths for an integer input signal.

Nbif = length(data);
Nsym = sps*length(data);
Nbot = (length(modSignal)/sps)*log2(M);
Nbof = length(modSignal)/sps;
expLen = sprintf('Nbif  Nsym  Nbot  Nbof\n  %d   %d   %d   %d', ...
    length(data),length(modSignal), ...
    length(rxData_bot),length(rxData_bof))

expLen = 
    'Nbif  Nsym  Nbot  Nbof
       21   210   63   21'

Display input and output lengths for an integer input signal.

sigLen = sprintf(' bif  sym  bot  bof\n %d   %d   %d   %d', ...
    length(data),length(modSignal), ...
    length(rxData_bot),length(rxData_bof))

sigLen = 
    ' bif  sym  bot  bof
      21   210   63   21'

More About
Avoid Output Signal Aliasing

To avoid output signal aliasing, the output sampling rate (specifically, the product of
SamplesPerSymbol and SymbolRate) must be greater than the product of ModulationOrder and
FrequencySeparation.

Algorithms
As described in Sklar [1], the general analytical expression for M-FSK modulation is

si(t) = 2E
T cos(ωit + ϕ)

0 ≤ t ≤ T
i=1,...,M

• E is the symbol energy.
• T is the symbol time duration.
• ωi is the frequency term that has M discreet values.
• M is the modulation order and specifies the number of waveforms.
• ϕ is the phase offset.

Version History
Introduced in R2012a
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References
[1] Sklar, Bernard. Digital Communications: Fundamentals and Applications. 2nd ed. Upper Saddle

River, N.J: Prentice-Hall PTR, 2001.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
comm.FSKDemodulator | comm.CPFSKModulator | comm.CPFSKDemodulator

Functions
fskdemod | fskmod

Blocks
M-FSK Modulator Baseband | CPFSK Modulator Baseband
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comm.GeneralQAMDemodulator
Package: comm

Demodulate using arbitrary QAM constellation

Description
The GeneralQAMDemodulator object demodulates a signal that was modulated using quadrature
amplitude modulation. The input is a baseband representation of the modulated signal.

To demodulate a signal that was modulated using quadrature amplitude modulation:

1 Define and set up your QAM demodulator object. See “Construction” on page 3-572.
2 Call step to demodulate a signal according to the properties of comm.GeneralQAMModulator.

The behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
H = comm.GeneralQAMDemodulator creates a demodulator System object, H. This object
demodulates the input signal using a general quadrature amplitude modulation (QAM) method.

H = comm.GeneralQAMDemodulator(Name,Value) creates a general QAM demodulator object, H,
with each specified property set to the specified value. You can specify additional name-value pair
arguments in any order as (Name1,Value1,...,NameN,ValueN).

H = comm.GeneralQAMDemodulator(CONST,Name,Value) creates a general QAM demodulator
object, H. This object has the Constellation property set to CONST, and the other specified
properties set to the specified values.

Properties
Constellation

Signal constellation

Specify the constellation points as a real or complex, double-precision data type vector. The default is
exp(2 × π × 1i × (0:7) 8). The length of the vector determines the modulation order.

When you set the BitOutput property to false, the step method outputs a vector with integer
values. These integers are between 0 and M–1, where M is the length of this property vector. The
length of the output vector equals the length of the input signal.
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When you set the BitOutput property to true, the output signal contains bits. For bit outputs, the
size of the signal constellation requires an integer power of two and the output length is an integer
multiple of the number of bits per symbol.

BitOutput

Output data as bits

Specify whether the output consists of groups of bits or integer symbol values. The default is false.

When you set this property to true the step method outputs a column vector of bit values with
length equal to log2(M) times the number of demodulated symbols, where M is the length of the
signal constellation specified in the Constellation property. The length M determines the
modulation order.

When you set this property to false, the step method outputs a column vector, of length equal to
the input data vector. The vector contains integer symbol values between 0 and M–1.

DecisionMethod

Demodulation decision method

Specify the decision method the object uses as one of Hard decision | Log-likelihood ratio |
Approximate log-likelihood ratio. The default is Hard decision. When you set the
BitOutput property to false the object always performs hard decision demodulation. This property
applies when you set the BitOutput property to true.

VarianceSource

Source of noise variance

Specify the source of the noise variance as one of Property | Input port. The default is
Property. This property applies when you set the DecisionMethod property to Log-likelihood
ratio or Approximate log-likelihood ratio.

Variance

Noise variance

Specify the variance of the noise as a nonzero, real scalar value. The default is 1.

The LLR algorithm involves computing exponentials of very large or very small numbers using finite
precision arithmetic and would yield:

• Inf to -Inf if the variance is very high
• NaN if the variance and signal power are both very small

In such cases, use approximate LLR because the algorithm does not involve computing exponentials.

This property applies when you set the VarianceSource property to Property. This property is
nontunable for fixed-point inputs.
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Tips

The exact LLR algorithm computes exponentials using finite precision arithmetic. For computations
involving very large positive or negative magnitudes, the exact LLR algorithm yields:

• Inf or -Inf if the noise variance is a very large value
• NaN if the noise variance and signal power are both very small values

The approximate LLR algorithm does not compute exponentials. You can avoid Inf, -Inf, and NaN
results by using the approximate LLR algorithm.

OutputDataType

Data type of output

Specify the output data type as one of Full precision | Smallest unsigned integer | double
| single | int8 | uint8 | int16 | uint16 | int32 | uint32. The default is Full precision .

This property applies only when you set the BitOutput property to false or when you set the
BitOutput property to true and the DecisionMethod property to Hard decision or
Approximate log-likelihood ratio. In this case, when you set the OutputDataType property
to Full precision, the output data type is the same as that of the input when the input data has a
single or double-precision data type.

When the input data is of a fixed-point type, the output data type works as if you had set the
OutputDataType property to Smallest unsigned integer.

When the input signal is an integer data type, you must have a Fixed-Point Designer user license to
use this property in Smallest unsigned integer or Full precision mode.

When you set the BitOutput property to true, and the DecisionMethod property to Hard
Decision the data type logical becomes a valid option.

When you set the BitOutput property to true and the DecisionMethod property to Approximate
log-likelihood ratio you may only set this property to Full precision | Custom.

If you set the BitOutput property to true and the DecisionMethod property to Log-likelihood
ratio, the output data has the same type as that of the input. In this case, that value can be only
single or double precision.

Fixed-Point Properties

FullPrecisionOverride

Full precision override for fixed-point arithmetic

Specify whether to use full precision rules. If you set FullPrecisionOverride to true, which is
the default, the object computes all internal arithmetic and output data types using full precision
rules. These rules provide the most accurate fixed-point numerics. It also turns off the display of
other fixed-point properties because they do not apply individually. These rules guarantee that no
quantization occurs within the object. Bits are added, as needed, to ensure that no roundoff or
overflow occurs. If you set FullPrecisionOverride to false, fixed-point data types are controlled
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through individual fixed-point property settings. For more information, see “Full Precision for Fixed-
Point System Objects” on page 3-579.

RoundingMethod

Rounding of fixed-point numeric values

Specify the rounding method as one of Ceiling | Convergent | Floor | Nearest | Round |
Simplest | Zero. The default is Floor. This property applies when the object is not in a full
precision configuration. This property does not apply when you set BitOutput to true and
DecisionMethod to Log-likelihood ratio.

OverflowAction

Action when fixed-point numeric values overflow

Specify the overflow action as one of Wrap | Saturate. The default is Wrap. This property applies
when the object is not in a full precision configuration. This property does not apply when you set the
BitOutput property to true and the DecisionMethod property to Log-likelihood ratio.

ConstellationDataType

Data type of signal constellation

Specify the constellation fixed-point data type as one of Same word length as input | Custom.
The default is Same word length as input. This property does not apply when you set the
BitOutput property to true and the DecisionMethod property to Log-likelihood ratio.

CustomConstellationDataType

Fixed-point data type of signal constellation

Specify the constellation fixed-point type as an unscaled numerictype object with a Signedness of
Auto. The default is numerictype([],16). This property applies when you set the
ConstellationDataType property to Custom.

Accumulator1DataType

Data type of accumulator 1

Specify the accumulator 1 fixed-point data type as one of Full precision | Custom. The default is
Full precision. This property applies when you set the FullPrecisionOverride property to
false. This property does not apply when you set the BitOutput property to true and the
DecisionMethod property to Log-likelihood ratio.

CustomAccumulator1DataType

Fixed-point data type of accumulator 1
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Specify the accumulator 1 fixed-point type as a scaled numerictype object with a Signedness of
Auto. The default is numerictype([],32,30). This property applies when you set the
Accumulator1DataType property to Custom.

ProductInputDataType

Data type of product

Specify the product input fixed-point data type as one of Same as accumulator 1 | Custom. The
default is Same as accumulator 1. This property applies when you set the
FullPrecisionOverride property to false, the BitOutput property to true and the
DecisionMethod property to Log-likelihood ratio.

CustomProductInputDataType

Fixed-point data type of product

Specify the product input fixed-point type as a scaled numerictype object with a Signedness of Auto.
The default is numerictype([],32,30). This property applies when you set the
FullPrecisionOverride property to false and the ProductInputDataType property to Custom.

ProductOutputDataType

Data type of product output

Specify the product output fixed-point data type as one of Full precision | Custom. The default is
Full precision . This property applies when you set the FullPrecisionOverride property to
false, the BitOutput property to true and the DecisionMethod property to Log-likelihood
ratio.

CustomProductOutputDataType

Fixed-point data type of product output

Specify the product output fixed-point type as a scaled numerictype object with a Signedness of
Auto. The default is numerictype([],32,30). This property applies when you set the
FullPrecisionOverride property to false and the ProductOutputDataType property to Custom.

Accumulator2DataType

Data type of accumulator 2

Specify the accumulator 2 fixed-point data type as one of Full precision | Custom. The default is
Full precision . This property applies when you set the FullPrecisionOverride property to
false, the BitOutput property to true and the DecisionMethod property to Log-likelihood
ratio.

CustomAccumulator2DataType
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Fixed-point data type accumulator 2

Specify the accumulator 2 fixed-point data type as a scaled numerictype object with a Signedness of
Auto. The default is numerictype([],32,30). This property applies when you set the
FullPrecisionOverride property to false and the Accumulator2DataType property to Custom.

Accumulator3DataType

Data type of accumulator 3

Specify the accumulator 3 fixed-point data type as one of Full precision | Custom. The default is
Full precision . This property applies when you set the FullPrecisionOverride property to
false, the BitOutput property to true and the DecisionMethod property to Approximate log-
likelihood ratio.

CustomAccumulator3DataType

Fixed-point data type of accumulator 3

Specify the accumulator 3 fixed-point type as a scaled numerictype object with a Signedness of
Auto. The default is numerictype([],32,30). This property applies when you set the
FullPrecisionOverride property to false and the Accumulator3DataType property to Custom.

NoiseScalingInputDataType

Data type of noise-scaling input

Specify the noise-scaling input fixed-point data type as one of Same as accumulator 3 | Custom.
The default is Same as accumulator 3. This property applies when you set the
FullPrecisionOverride property to false, the BitOutput property to true and the
DecisionMethod property to Approximate log-likelihood ratio.

CustomNoiseScalingInputDataType

Fixed-point data type of noise-scaling input

Specify the noise-scaling input fixed-point type as a scaled numerictype object with a Signedness of
Auto. The default is numerictype([],32,30). This property applies when you set the
FullPrecisionOverride property to false and the NoiseScalingInputDataType property to
Custom.

InverseVarianceDataType

Data type of inverse noise variance

Specify the inverse noise variance fixed-point data type as one of Same word length as input |
Custom. The default is Same word length as input. This property applies when you set the
BitOutput property to true, the DecisionMethod property to Approximate log-likelihood
ratio, and the VarianceSource property to Property.

 comm.GeneralQAMDemodulator

3-577



CustomInverseVarianceDataType

Fixed-point data type of inverse noise variance

Specify the inverse noise variance fixed-point type as a numerictype object with a Signedness of
Auto. The default is numerictype([],16,8). This property applies when you set the
InverseVarianceDataType property to Custom.

CustomOutputDataType

Data type of output

Specify the output fixed-point type as a scaled numerictype object with a Signedness of Auto. The
default is numerictype([],32,30). This property applies when you set the
FullPrecisionOverride property to false and the OutputDataType property to Custom.

Methods

step Demodulate using arbitrary QAM constellation

Common to All System Objects
release Allow System object property value changes

Examples
Modulate and demodulate data using an arbitrary three-point constellation.

 % Setup a three point constellation
 c = [1 1i -1];
 hQAMMod = comm.GeneralQAMModulator(c);
 hAWGN = comm.AWGNChannel('NoiseMethod', ...
     'Signal to noise ratio (SNR)','SNR',15,'SignalPower',0.89);
 hQAMDemod = comm.GeneralQAMDemodulator(c);

 %Create an error rate calculator
 hError = comm.ErrorRate;
 for counter = 1:100
     % Transmit a 50-symbol frame
     data = randi([0 2],50,1);
     modSignal = step(hQAMMod, data);
     noisySignal = step(hAWGN, modSignal);
     receivedData = step(hQAMDemod, noisySignal);
     errorStats = step(hError, data, receivedData);
 end
 fprintf('Error rate = %f\nNumber of errors = %d\n', ...
      errorStats(1), errorStats(2))
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More About
Full Precision for Fixed-Point System Objects

FullPrecisionOverride is a convenience property that, when you set to true, automatically sets
the appropriate properties for an object to use full-precision to process fixed-point input.

For System objects, full precision, fixed-point operation refers to growing just enough additional bits
to compute the ideal full precision result. This operation has no minimum or maximum range overflow
nor any precision loss due to rounding or underflow. It is also independent of any hardware-specific
settings. The data types chosen are based only on known data type ranges and not on actual numeric
values. Full precision for System objects does not optimize coefficient values. When you set the
FullPrecisionOverride property to true, the other fixed-point properties it controls no longer
apply and any of their non-default values are ignored. These properties are also hidden. To specify
individual fixed-point properties, first set FullPrecisionOverride to false.

Algorithms
This object implements the algorithm, inputs, and outputs described on the General QAM
Demodulator Baseband block reference page. The object properties correspond to the block
parameters.

Version History
Introduced in R2012a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The Variance property is nontunable when using code generation.
• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Functions
qammod | qamdemod | genqamdemod

Objects
comm.GeneralQAMModulator | comm.RectangularQAMDemodulator
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step
System object: comm.GeneralQAMDemodulator
Package: comm

Demodulate using arbitrary QAM constellation

Syntax
Y = step(H,X)
Y = step(H,X,VAR)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Y = step(H,X) demodulates the input data, X, with the general QAM demodulator System object, H,
and returns Y. Input X must be a scalar or a column vector with double or single precision data type.
When you set the BitOutput property to true and the DecisionMethod property to 'Log-likelihood
ratio' the input data type must be single or double precision. Depending on the BitOutput property
value, output Y can be integer or bit valued.

Y = step(H,X,VAR) uses soft decision demodulation and noise variance VAR. This syntax applies
when you set the BitOutput property to true, the DecisionMethod property to Approximate
log-likelihood ratio or Log-likelihood ratio, and the VarianceSource property to 'Input
port'.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This initialization
locks nontunable properties and input specifications. For more information on changing property
values, see “System Design in MATLAB Using System Objects”.
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comm.GeneralQAMModulator
Package: comm

Modulate using arbitrary QAM constellation

Description
The GeneralQAMModulator object modulates using quadrature amplitude modulation. The output is
a baseband representation of the modulated signal.

To modulate a signal using quadrature amplitude modulation:

1 Define and set up your QAM modulator object. See “Construction” on page 3-581.
2 Call step to modulate a signal according to the properties of comm.GeneralQAMModulator.

The behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
H = comm.GeneralQAMModulator creates a modulator System object, H. This object modulates the
input signal using a general quadrature amplitude modulation (QAM) method.

H = comm.GeneralQAMModulator(Name,Value) creates a QAM modulator object, H, with each
specified property set to the specified value. You can specify additional name-value pair arguments in
any order as (Name1,Value1,...,NameN,ValueN).

H = comm.GeneralQAMModulator(CONST,Name,Value) creates a General QAM modulator
object, H. This object has the Constellation property set to CONST, and the other specified
properties set to the specified values.

Properties
Constellation

Signal constellation

Specify the constellation points as a vector of real or complex double-precision data type. The default
is exp(2 × π × 1i × (0:7) 8). The length of the vector determines the modulation order. The step
method inputs requires integers between 0 and M–1, where M indicates the length of this property
vector. The object maps an input integer m to the (m+1)st value in the Constellation vector.

OutputDataType
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Data type of output

Specify the output data type as one of double | single | Custom. The default is double.

Fixed-Point Properties

CustomOutputDataType

Fixed-point data type of output

Specify the output fixed-point type as a numerictype object with a signedness of Auto. The default is
numerictype([],16). This property applies when you set the OutputDataType on page 3-0
property to Custom.

Methods

step Modulate using arbitrary QAM constellation

Common to All System Objects
release Allow System object property value changes

Examples
Modulate data using an arbitrary 3-point constellation. Then, visualize the data in a scatter plot

       hQAMMod = comm.GeneralQAMModulator;     
  % Setup a three point constellation
       hQAMMod.Constellation = [1 1i -1];
       data = randi([0 2],100,1);
       modData = step(hQAMMod, data);
       scatterplot(modData)

Algorithms
This object implements the algorithm, inputs, and outputs described on the General QAM Modulator
Baseband block reference page. The object properties correspond to the block parameters.

Version History
Introduced in R2012a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).
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See Also
Functions
qammod | qamdemod | genqamdemod

Objects
comm.GeneralQAMDemodulator

 comm.GeneralQAMModulator

3-583



step
System object: comm.GeneralQAMModulator
Package: comm

Modulate using arbitrary QAM constellation

Syntax
Y = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Y = step(H,X) modulates input data, X, with the general QAM modulator System object, H. It
returns the baseband modulated output, Y. The input must be an integer scalar or an integer-valued
column vector. The data type of the input can be numeric or unsigned fixed point of word length
ceil(log2(ModulationOrder)) (fi object).

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This initialization
locks nontunable properties and input specifications. For more information on changing property
values, see “System Design in MATLAB Using System Objects”.
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comm.GeneralQAMTCMDemodulator
Package: comm

Demodulate convolutionally encoded data mapped to arbitrary QAM constellation

Description
The GeneralQAMTCMDemodulator object uses the Viterbi algorithm to decode a trellis-coded
modulation (TCM) signal that was previously modulated using an arbitrary signal constellation.

To demodulate a signal that was modulated using a trellis-coded, general quadrature amplitude
modulator:

1 Define and set up your general QAM TCM modulator object. See “Construction” on page 3-585.
2 Call step to demodulate a signal according to the properties of

comm.GeneralQAMTCMDemodulator. The behavior of step is specific to each object in the
toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
H = comm.GeneralQAMTCMDemodulator creates a trellis-coded, general quadrature amplitude
(QAM TCM) demodulator System object, H. This object demodulates convolutionally encoded data
that has been mapped to an arbitrary QAM constellation.

H = comm.GeneralQAMTCMDemodulator(Name,Value) creates a general QAM TCM demodulator
object, H, with each specified property set to the specified value. You can specify additional name-
value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

H = comm.GeneralQAMTCMDemodulator(TRELLIS,Name,Value) creates a general QAM TCM
demodulator object, H. This object has the TrellisStructure property set to TRELLIS, and the
other specified properties set to the specified values.

Properties
TrellisStructure

Trellis structure of convolutional code

Specify trellis as a MATLAB structure that contains the trellis description of the convolutional code.
Use the istrellis function to check if a structure is a valid trellis structure. The default is the value
that results from poly2trellis([1 3], [1 0 0; 0 5 2]).

TerminationMethod
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Termination method of encoded frame

Specify the termination method as one of Continuous | Truncated | Terminated. The default is
Continuous.

When you set this property to Continuous, the object saves the internal state metric at the end of
each frame. The next frame uses the same state metric. The object treats each traceback path
independently. If the input signal contains only one symbol, use Continuous mode.

When you set this property to Truncated, the object treats each input vector independently. The
traceback path starts at the state with the best metric and always ends in the all-zeros state.

When you set this property to Terminated, the object treats each input vector independently, and
the traceback path always starts and ends in the all-zeros state.

TracebackDepth

Traceback depth for Viterbi decoder

Specify the scalar, integer number of trellis branches to construct each traceback path. The default is
21. The Traceback depth parameter influences the decoding accuracy and delay. The decoding delay
indicates the number of zero symbols that precede the first decoded symbol in the output.

When you set the TerminationMethod on page 3-0  property to Continuous, the decoding delay
consists of TracebackDepth zero symbols or TracebackDepth×K zero bits for a rate K/N
convolutional code.

When you set the TerminationMethod property to Truncated or Terminated, no output delay
occurs and the traceback depth must be less than or equal to the number of symbols in each input
vector.

ResetInputPort

Enable demodulator reset input

Set this property to true to enable an additional input to the step method. The default is false.
When this additional reset input is a nonzero value, the internal states of the encoder reset to their
initial conditions. This property applies when you set the TerminationMethod on page 3-0
property to Continuous.

Constellation

Signal constellation

Specify a double- or single-precision complex vector. This vector lists the points in the signal
constellation that were used to map the convolutionally encoded data. The constellation must be
specified in set-partitioned order. See documentation for the General TCM Encoder block for more
information on set-partitioned order. The length of the constellation vector must equal the number of
possible input symbols to the convolutional decoder of the general QAM TCM demodulator object.
This corresponds to 2N for a rate K/N convolutional code. The default corresponds to a set-partitioned
order for the points of an 8-PSK signal constellation. This value is expressed as
exp(2 × π × j × [0 4 2 6 1 5 3 7] 8).
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OutputDataType

Data type of output

Specify output data type as one of logical | double. The default is double.

Methods
step Demodulate convolutionally encoded data mapped to arbitrary QAM constellation

Common to All System Objects
release Allow System object property value changes
reset Reset internal states of System object

Examples

Modulate and Demodulate Data Using QAM TCM

Modulate and demodulate noisy data using QAM TCM modulation with an arbitrary 4-point
constellation. Estimate the resultant BER.

Define a trellis structure with two input symbols and four output symbols using a [171 133] generator
polynomial. Define an arbitrary four-point constellation.

qamTrellis = poly2trellis(7,[171 133]);
refConst = exp(pi*1i*[1 2 3 6]/4);

Create a QAM TCM modulator and demodulator System object™ pair using qamTrellis and
refConst.

qamtcmod = comm.GeneralQAMTCMModulator( ...
    qamTrellis, ...
    Constellation=refConst);
qamtcdemod = comm.GeneralQAMTCMDemodulator( ...
    qamTrellis, ...
    Constellation=refConst);

Create an AWGN channel object in which the noise is set by using a signal-to-noise ratio.

awgnchan = comm.AWGNChannel( ...
    NoiseMethod='Signal to noise ratio (SNR)', ...
    SNR=4);

Create an error rate calculator with delay (in bits) equal to the product of TracebackDepth and the
number of bits per symbol

errorrate = comm.ErrorRate( ...
    ReceiveDelay=qamtcdemod.TracebackDepth * ...
    log2(qamTrellis.numInputSymbols));

Generate random binary data and apply QAM TCM modulation. Pass the signal through an AWGN
channel and demodulate. Collect the error statistics.
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for counter = 1:10
    % Generate binary data
    data = randi([0 1],500,1);
    % Modulate
    modSignal = qamtcmod(data);
    % Pass through an AWGN channel
    noisySignal = awgnchan(modSignal);
    % Demodulate
    receivedData = qamtcdemod(noisySignal);
    % Calculate the error statistics
    errorStats = errorrate(data,receivedData);
end

Display the BER and the number of bit errors.

fprintf('Error rate = %5.2e\nNumber of errors = %d\n', ...
    errorStats(1), errorStats(2))

Error rate = 1.16e-02
Number of errors = 58

Algorithms
This object implements the algorithm, inputs, and outputs described on the General TCM Decoder
block reference page. The object properties correspond to the block parameters.

Version History
Introduced in R2012a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.GeneralQAMTCMModulator | comm.RectangularQAMTCMDemodulator |
comm.ViterbiDecoder
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step
System object: comm.GeneralQAMTCMDemodulator
Package: comm

Demodulate convolutionally encoded data mapped to arbitrary QAM constellation

Syntax
Y = step(H,X)
Y = step(H,X,R)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Y = step(H,X) demodulates the general QAM modulated input data, X, and uses the Viterbi
algorithm to decode the resulting demodulated convolutionally encoded bits. X must be a complex
double or single precision column vector. The step method outputs a demodulated binary column
data vector, Y. When the convolutional encoder represents a rate K/N code, the length of the output
vector equals K×L, where L is the length of the input vector, X.

Y = step(H,X,R) resets the decoder states of the general QAM TCM demodulator System object to
the all-zeros state when you input a non-zero reset signal, R. R must be a double precision or logical
scalar integer. This syntax applies when you set the ResetInputPort property to true.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This initialization
locks nontunable properties and input specifications. For more information on changing property
values, see “System Design in MATLAB Using System Objects”.
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comm.GeneralQAMTCMModulator
Package: comm

Convolutionally encode binary data and map using arbitrary QAM constellation

Description
The GeneralQAMTCMModulator object implements trellis-coded modulation (TCM) by
convolutionally encoding the binary input signal. The object then maps the result to an arbitrary
signal constellation. The Signal constellation property lists the signal constellation points in set-
partitioned order.

To modulate a signal using a trellis-coded, general quadrature amplitude modulator:

1 Define and set up your general QAM TCM modulator object. See “Construction” on page 3-590.
2 Call step to modulate a signal according to the properties of

comm.GeneralQAMTCMModulator. The behavior of step is specific to each object in the
toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
H = comm.GeneralQAMTCMModulator creates a trellis-coded, general quadrature amplitude (QAM
TCM) modulator System object, H. This object convolutionally encodes a binary input signal and maps
the result using QAM modulation with a signal constellation specified in the Constellation property.

H = comm.GeneralQAMTCMModulator(Name,Value) creates a general QAM TCM modulator
System object, H, with each specified property set to the specified value. You can specify additional
name-value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

H = comm.GeneralQAMTCMModulator(TRELLIS,Name,Value) creates a general QAM TCM
modulator System object, H. This object has the TrellisStructure property set to TRELLIS, and
the other specified properties set to the specified values.

Properties
TrellisStructure

Trellis structure of convolutional code

Specify trellis as a MATLAB structure that contains the trellis description of the convolutional code.
Use the istrellis function to check if a structure is a valid trellis structure. The default is the
result of poly2trellis([1 3], [1 0 0; 0 5 2]).
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TerminationMethod

Termination method of encoded frame

Specify the termination method as one of Continuous | Truncated | Terminated. The default is
Continuous.

When you set this property to Continuous, the object retains the encoder states at the end of each
input vector for use with the next input vector.

When you set this property to Truncated, the object treats each input vector independently. The
encoder is reset to the all-zeros state at the start of each input vector.

When you set this property to Terminated, the object treats each input vector independently. For
each input vector, the object uses extra bits to set the encoder to the all-zeros state at the end of the
vector. For a rate K/N code, the step method outputs the vector with length y = N × (L + S) K, where
S = constraintLength–1. In the case of multiple constraint lengths, S = sum(constraintLength(i)–1)).
L represents the length of the input to the step method.

ResetInputPort

Enable modulator reset input

Set this property to true to enable an additional input to the step method. The default is false.
When this additional reset input is a nonzero value, the internal states of the encoder reset to their
initial conditions. This property applies when you set the TerminationMethod on page 3-0
property to Continuous.

Constellation

Signal constellation

Specify a double- or single-precision complex vector that lists the points in the signal constellation
that were used to map the convolutionally encoded data. You must specify the constellation in set-
partitioned order. See documentation for the General TCM Encoder block for more information on
set-partitioned order. The length of the constellation vector must equal the number of possible input
symbols to the convolutional decoder of the general QAM TCM demodulator object. This corresponds
to 2N for a rate K/N convolutional code. The default corresponds to a set-partitioned order for the
points of an 8-PSK signal constellation. This value is expressed exp(2 × π × j × [0 4 2 6 1 5 3 7] 8).

OutputDataType

Data type of output

Specify the output data type as one of double | single. The default is double.
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Methods
step Convolutionally encode binary data and map using arbitrary QAM constellation

Common to All System Objects
release Allow System object property value changes
reset Reset internal states of System object

Examples

Modulate Data Using QAM TCM with an Arbitrary Constellation

Modulate data using QAM TCM modulation with an arbitrary 4-point constellation. Display a scatter
plot of the modulated data.

Create binary data.

data = randi([0 1],1000,1);

Use the trellis structure with generating polynomial [171 133] and 4-point arbitrary constellation
{ e jπ/4, e jπ/2, e j3π/4, e j3π/2 } to perform QAM TCM modulation.

t = poly2trellis(7,[171 133]);
hMod = comm.GeneralQAMTCMModulator(t,...
    'Constellation',exp(pi*1i*[1 2 3 6]/4));

Modulate and plot the data.

modData = step(hMod,data);
scatterplot(modData);
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Algorithms
This object implements the algorithm, inputs, and outputs described on the General TCM Encoder
block reference page. The object properties correspond to the block parameters.

Version History
Introduced in R2012a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.GeneralQAMTCMDemodulator | comm.GeneralQAMModulator | comm.PSKTCMModulator |
comm.ConvolutionalEncoder
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step
System object: comm.GeneralQAMTCMModulator
Package: comm

Convolutionally encode binary data and map using arbitrary QAM constellation

Syntax
Y = step(H,X)
Y = step(H,X,R)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Y = step(H,X) convolutionally encodes and modulates the input data, X, and returns the encoded
and modulated data, Y. X must be of data type numeric, logical, or unsigned fixed point of word
length 1 (fi object). When the convolutional encoder represents a rate K/N code, the length of the
input vector, X, must be K×L, for some positive integer L. The step method outputs a complex
column vector, Y, of length L.

Y = step(H,X,R) resets the encoder of the general QAM TCM modulator object to the all-zeros
state when you input a non-zero reset signal, R. R must be a double precision or logical scalar integer.
This syntax applies when you set the ResetInputPort property to true.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This initialization
locks nontunable properties and input specifications. For more information on changing property
values, see “System Design in MATLAB Using System Objects”.
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comm.GMSKDemodulator
Package: comm

Demodulate GMSK-modulated signal using Viterbi algorithm

Description
The comm.GMSKDemodulator System object uses a Viterbi algorithm to demodulate a signal that
was modulated using the Gaussian minimum shift keying (GMSK) method. The input is a baseband
representation of the modulated signal.

To demodulate a GMSK-modulated signal using the Viterbi algorithm:

1 Create the comm.GMSKDemodulator object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
gmskdemodulator = comm.GMSKDemodulator
gmskdemodulator = comm.GMSKDemodulator(Name,Value)

Description

gmskdemodulator = comm.GMSKDemodulator creates a demodulator System object that
demodulates the input GMSK-modulated data by using the Viterbi algorithm.

gmskdemodulator = comm.GMSKDemodulator(Name,Value) sets properties on page 3-595
using one or more name-value pairs. For example, gmskdemodulator =
comm.GMSKDemodulator('PulseLength',6) specifies the length of the Gaussian pulse shape as 6
symbol intervals.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

BitOutput — Option to output data as bits
false or 0 (default) | true or 1
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Option to output data as bits, specified as a numeric or logical 0 (false) or 1 (true).

• When you set this property to false, the output of the System object call is a column vector of
elements -1 or 1.

• When you set this property to true, the output of the System object call is a binary column vector
of elements 0 or 1.

Data Types: logical

BandwidthTimeProduct — Product of bandwidth and symbol time
0.3 (default) | positive scalar

Product of the bandwidth and symbol time for the Gaussian pulse shape, specified as a positive scalar
value. For more details, see Algorithms on page 3-599.
Data Types: double

PulseLength — Pulse length
4 (default) | positive integer

Pulse length, specified as a positive integer. The pulse length value represents the length of the
Gaussian pulse shape in symbol intervals.
Data Types: double

SymbolPrehistory — Symbol prehistory
1 (default) | -1 | vector

Symbol prehistory, specified as -1, 1, or a vector with elements equal those values. The symbol
prehistory indicates the data symbols that the modulator uses prior to the first call of the object, in
reverse chronological order.

• A scalar value expands to a vector of length PulseLength – 1.
• For a vector, the length must be PulseLength – 1.

Data Types: double

InitialPhaseOffset — Initial phase offset
0 (default) | numeric scalar

Initial phase offset of the modulated waveform in radians, specified as a numeric scalar.
Data Types: double

SamplesPerSymbol — Number of samples per output symbol
8 (default) | positive integer

Number of samples per symbol, specified as a positive integer. The number of samples per symbol
represents the upsampling factor from input samples to output samples.
Data Types: double
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TracebackDepth — Traceback depth
16 (default) | positive integer

Traceback depth for the Viterbi algorithm, specified as a positive integer.

The traceback depth is the number of trellis branches that the Viterbi algorithm uses to construct
each traceback path. The number of zero symbols that precede the first decoded symbol in the output
represent a decoding delay.
Data Types: double

OutputDataType — Output data type
double (default) | int8 | int16 | int32 | logical

Output data type, specified as one of these values.

• int8, int16, int32, or double — Use one of these values when you set the BitOutput property
to false.

• logical or double — Use one of these values when you set the BitOutput property to true.

Usage

Syntax
Y = gmskdemodulator(X)

Description

Y = gmskdemodulator(X) applies GMSK demodulation to the GMSK-modulated waveform and
returns the demodulated input signal.

Input Arguments

X — GMSK-modulated baseband signal
column vector

GMSK-modulated input signal, specified as a column vector.

The length of the input signal must be an integer multiple of the SamplesPerSymbol property.
Data Types: double | single

Output Arguments

Y — Demodulated signal
column vector

Demodulated signal, returned as a column vector with length equal to N / SamplesPerSymbol. N is
the length of the input signal, X. For more information about the output datatype, see the
OutputDataType property.

• When you set the BitOutput property to false, Y is returned as a column vector of elements -1
or 1.
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• When you set the BitOutput property to true, Y is returned as a binary column vector of
elements 0 or 1.

Data Types: double | logical

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

GMSK Signal in AWGN

Create a GMSK modulator and demodulator pair. Create an AWGN channel object.

gmskmodulator = comm.GMSKModulator('BitInput',true, ...
                             'InitialPhaseOffset',pi/4);
channel = comm.AWGNChannel('NoiseMethod', ...
                           'Signal to noise ratio (SNR)', ...
                           'SNR',0);
gmskdemodulator = comm.GMSKDemodulator('BitOutput',true, ...
                                 'InitialPhaseOffset',pi/4);

Create an error rate calculator and account for the delay between the modulator and demodulator,
caused by the Viterbi algorithm.

errorRate = comm.ErrorRate('ReceiveDelay', ...
                            gmskdemodulator.TracebackDepth);

Process 100 frames of data looping through these steps.

1 Generate vectors with 300 elements of random binary data.
2 GMSK-modulate the data.
3 Pass the modulated data through the AWGN channel.
4 GMSK-demodulate the data.
5 Collect error statistics on the frames of data.

for counter = 1:100
   % Transmit 100 3-bit words
   data = randi([0 1],300,1);
   modSignal = gmskmodulator(data);
   noisySignal = channel(modSignal);
   receivedData = gmskdemodulator(noisySignal);
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   errorStats = errorRate(data, receivedData);
end

Display the error statistics.

fprintf('Error rate = %f\nNumber of errors = %d\n', ...
         errorStats(1), errorStats(2))

Error rate = 0.000133
Number of errors = 4

Algorithms
The BandwidthTimeProduct property represents bandwidth multiplied by time. Use this property
to reduce the bandwidth at the expense of increased intersymbol interference. The PulseLength
property measures the length of the Gaussian pulse shape in symbol intervals. These equations define
the frequency pulse shape. Bb represents the bandwidth of the pulse and T is the symbol durations.
Q(t) is the complementary cumulative distribution function.

g(t) = 1
2T Q 2πBb

t − T
2

ln(2) − Q 2πBb
t + T

2
ln(2)

Q(t) = ∫
t

∞
1
2πe−τ2/2dτ

For this System object, an input symbol of 1 causes a phase shift of π/2 radians, which corresponds to
a modulation index of 0.5.

Version History
Introduced in R2012a

References
[1] Anderson, John B., Tor Aulin, and Carl-Erik Sundberg. Digital Phase Modulation. New York:

Plenum Press, 1986.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
comm.GMSKModulator | comm.CPMModulator | comm.CPMDemodulator
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Blocks
GMSK Demodulator Baseband | GMSK Modulator Baseband
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comm.GMSKModulator
Package: comm

Modulate using GMSK method

Description
The comm.GMSKModulator System object modulates using the Gaussian minimum shift keying
(GMSK) method. The output is a baseband representation of the modulated signal. For more detail,
see “Algorithms” on page 3-611.

To modulate a signal by using the GMSK method:

1 Create the comm.GMSKModulator object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation
Syntax
gmskmodulator = comm.GMSKModulator
gmskmodulator = comm.GMSKModulator(Name,Value)

Description

gmskmodulator = comm.GMSKModulator creates a modulator System object that modulates the
input signal using the GMSK modulation method.

gmskmodulator = comm.GMSKModulator(Name,Value) sets properties on page 3-601 using
one or more name-value arguments. For example, 'PulseLength',6 specifies the length of the
Gaussian pulse shape as 6 symbol intervals.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

BitInput — Option to provide input in bits
false or 0 (default) | true or 1

Option to provide input in bits, specified as a numeric or logical 0 (false) or 1 (true).
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• When you set this property to false, the input to the System object call requires a double-
precision or signed integer data type column vector with values of -1 or 1.

• When you set this property to true, the input to the System object call requires a double-
precision or logical data type column vector of 0s and 1s.

Data Types: logical

BandwidthTimeProduct — Product of bandwidth and symbol time
0.3 (default) | positive scalar

Product of the bandwidth and symbol time for the Gaussian pulse shape, specified as a positive scalar
value. For more detail, see “Algorithms” on page 3-611.

To observe the effect of this property on the modulated signal, see the “Effect of Bandwidth Time
Product on GMSK Modulated Signal” on page 3-606 example.
Data Types: double

PulseLength — Pulse length
4 (default) | positive integer

Pulse length, specified as a positive integer. The pulse length value represents the length of the
Gaussian pulse shape in symbol intervals.
Data Types: double

SymbolPrehistory — Symbol prehistory
1 (default) | -1 | vector

Symbol prehistory, specified as -1, 1, or a vector with elements equal those values. This property
defines the data symbols that the modulator uses prior to the first call of the object, in reverse
chronological order.

• A scalar value expands to a vector of length PulseLength – 1.
• For a vector, the length must be PulseLength – 1.

Data Types: double

InitialPhaseOffset — Initial phase offset
0 (default) | numeric scalar

Initial phase offset of the modulated waveform in radians, specified as a numeric scalar.
Data Types: double

SamplesPerSymbol — Number of samples per output symbol
8 (default) | positive integer

Number of samples per symbol, specified as a positive integer. The number of samples per symbol
represents the upsampling factor from input samples to output samples.
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Data Types: double

OutputDataType — Output data type
double (default) | single

Output data type, specified as either double or single.

Usage

Syntax
Y = gmskmodulator(X)

Description

Y = gmskmodulator(X) applies GMSK modulation to the input data and returns the modulated
GMSK baseband signal.

Input Arguments

X — Input data
integer | column vector

Input data, specified as an integer or column vector of integers or bits.

The setting of the BitInput property determines the interpretation of the input data.
Data Types: double | logical

Output Arguments

Y — GMSK-modulated baseband signal
vector

GMSK-modulated baseband signal, returned as a vector.

The length of the vector is equal to the number of input samples times the SamplesPerSymbol
property. For more information about the output data type, see the OutputDataType property.
Data Types: double | single

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics

 comm.GMSKModulator

3-603



reset Reset internal states of System object

Examples

Map Binary Data to GMSK Signal

Map binary sequences of zeros and ones to the output of a GMSK modulator. This mapping also
applies for MSK modulation.

Create a GMSK modulator that accepts binary inputs and has pulse length and samples per symbol
values of 1.

gmskmodulator = comm.GMSKModulator('BitInput',true,'PulseLength',1, ...
                          'SamplesPerSymbol',1);

Create an input sequence of all zeros. Modulate the sequence.

x = zeros(5,1);
y = gmskmodulator(x)

y = 5×1 complex

   1.0000 + 0.0000i
  -0.0000 - 1.0000i
  -1.0000 + 0.0000i
   0.0000 + 1.0000i
   1.0000 - 0.0000i

Determine the phase angle for each point. Use the unwrap function to show the trend.

theta = unwrap(angle(y))

theta = 5×1

         0
   -1.5708
   -3.1416
   -4.7124
   -6.2832

A sequence of zeros causes the phase to shift by -π/2 between samples.

Reset the modulator. Modulate an input sequence of all ones.

reset(gmskmodulator)
x = ones(5,1);
y = gmskmodulator(x)

y = 5×1 complex

   1.0000 + 0.0000i
  -0.0000 + 1.0000i
  -1.0000 - 0.0000i
   0.0000 - 1.0000i
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   1.0000 + 0.0000i

Determine the phase angle for each point. Use the unwrap function to show the trend.

theta = unwrap(angle(y))

theta = 5×1

         0
    1.5708
    3.1416
    4.7124
    6.2832

A sequence of ones causes the phase to shift by +π/2 between samples.

GMSK Signal in AWGN

Create a GMSK modulator and demodulator pair. Create an AWGN channel object.

gmskmodulator = comm.GMSKModulator('BitInput',true, ...
                             'InitialPhaseOffset',pi/4);
channel = comm.AWGNChannel('NoiseMethod', ...
                           'Signal to noise ratio (SNR)', ...
                           'SNR',0);
gmskdemodulator = comm.GMSKDemodulator('BitOutput',true, ...
                                 'InitialPhaseOffset',pi/4);

Create an error rate calculator and account for the delay between the modulator and demodulator,
caused by the Viterbi algorithm.

errorRate = comm.ErrorRate('ReceiveDelay', ...
                            gmskdemodulator.TracebackDepth);

Process 100 frames of data looping through these steps.

1 Generate vectors with 300 elements of random binary data.
2 GMSK-modulate the data.
3 Pass the modulated data through the AWGN channel.
4 GMSK-demodulate the data.
5 Collect error statistics on the frames of data.

for counter = 1:100
   % Transmit 100 3-bit words
   data = randi([0 1],300,1);
   modSignal = gmskmodulator(data);
   noisySignal = channel(modSignal);
   receivedData = gmskdemodulator(noisySignal);
   errorStats = errorRate(data, receivedData);
end

Display the error statistics.
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fprintf('Error rate = %f\nNumber of errors = %d\n', ...
         errorStats(1), errorStats(2))

Error rate = 0.000133
Number of errors = 4

Effect of Bandwidth Time Product on GMSK Modulated Signal

This example demonstrates the effect of bandwidth time (BT) product on a GMSK modulated signal.

Create a binary data vector and apply GMSK modulation to the data.

d = [0 1 1 0 1 0 0 1 1 1]';
a = comm.GMSKModulator(BitInput=true,SamplesPerSymbol=10)

a = 
  comm.GMSKModulator with properties:

                BitInput: true
    BandwidthTimeProduct: 0.3000
             PulseLength: 4
        SymbolPrehistory: 1
      InitialPhaseOffset: 0
        SamplesPerSymbol: 10
          OutputDataType: 'double'

x = a(d);
BTa = sprintf('BT=%2.1f',a.BandwidthTimeProduct);

Plot the phase angles and use the unwrap function to show the trend better.

plot(unwrap(angle(x)),'red-');
title('Bandwidth Time Product Effect')
hold on; 
plot(1:10:length(x),unwrap(angle(x(1:10:end))),'*');
grid on

Set the BT product to 1 and plot the phase angles in the same plot.

a = comm.GMSKModulator(BitInput=true, ...
    SamplesPerSymbol=10,BandwidthTimeProduct=1)

a = 
  comm.GMSKModulator with properties:

                BitInput: true
    BandwidthTimeProduct: 1
             PulseLength: 4
        SymbolPrehistory: 1
      InitialPhaseOffset: 0
        SamplesPerSymbol: 10
          OutputDataType: 'double'

x = a(d);
BTb = sprintf('BT=%2.1f',a.BandwidthTimeProduct);
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plot(unwrap(angle(x)),'blue-.');
plot(1:10:length(x),unwrap(angle(x(1:10:end))),'o');

Set the BT product to 0.1 and plot the phase angles in the same plot.

a = comm.GMSKModulator(BitInput=true, ...
    SamplesPerSymbol=10,BandwidthTimeProduct=0.1)

a = 
  comm.GMSKModulator with properties:

                BitInput: true
    BandwidthTimeProduct: 0.1000
             PulseLength: 4
        SymbolPrehistory: 1
      InitialPhaseOffset: 0
        SamplesPerSymbol: 10
          OutputDataType: 'double'

BTc = sprintf('BT=%2.1f',a.BandwidthTimeProduct);

The spread of this pulse is inversely proportional to the BT product and a lower BT causes a wider
spread over the bit symbol period. The peak amplitude of the pulse is directly proportional to the BT
product and a lower peak amplitude causes narrower spread over the bit symbol period. As the
bandwidth of the pulse decreases, the pulse duration increases.

x = a(d);
plot(unwrap(angle(x)),'green--');
plot(1:10:length(x),unwrap(angle(x(1:10:end))),'x');
legend(BTa,'',BTb,'',BTc,'')
hold off;
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Compare GMSK and MSK Modulation

Compare Gaussian minimum shift keying (GMSK) and minimum shift keying (MSK) modulation
schemes by plotting the eye diagram for GMSK with different pulse lengths and for MSK.

Set the samples per symbol variable.

sps = 8;

Generate random binary data.

data = randi([0 1],1000,1);

Create GMSK and MSK modulators that accept binary inputs. Set the PulseLength property of the
GMSK modulator to 1.

gmskMod = comm.GMSKModulator('BitInput',true,'PulseLength',1, ...
    'SamplesPerSymbol',sps);
mskMod = comm.MSKModulator('BitInput',true,'SamplesPerSymbol',sps);

Modulate the data using the GMSK and MSK modulators.

modSigGMSK = gmskMod(data);
modSigMSK = mskMod(data);
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Pass the modulated signals through an AWGN channel having an SNR of 30 dB.

rxSigGMSK = awgn(modSigGMSK,30);
rxSigMSK = awgn(modSigMSK,30);

Use the eyediagram function to plot the eye diagrams of the noisy signals. With the GMSK pulse
length set to 1, the eye diagrams are nearly identical.

eyediagram(rxSigGMSK,sps,1,sps/2)

eyediagram(rxSigMSK,sps,1,sps/2)
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Set the PulseLength property for the GMSK modulator object to 3. Because the property is
nontunable, the object must be released first.

release(gmskMod)
gmskMod.PulseLength = 3;

Generate a modulated signal using the updated GMSK modulator object and pass it through the
AWGN channel.

modSigGMSK = gmskMod(data);
rxSigGMSK = awgn(modSigGMSK,30);

With continuous phase modulation (CPM) waveforms, such as GSMK, the waveform depends on
values of the previous symbols as well as the present symbol. Plot the eye diagram of the GMSK
signal to see that the increased pulse length results in an increase in the number of paths in the eye
diagram.

eyediagram(rxSigGMSK,sps,1,sps/2)
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Experiment by changing the PulseLength parameter of the GMSK modulator object to other values.
If you set the property to an even number, you should set gmskMod.InitialPhaseOffset to pi/4
and update the offset argument of the eyediagram function from sps/2 to 0 for a better view of the
modulated signal. In order to more clearly view the Gaussian pulse shape, you must use scopes that
display the phase of the signal, as described in the “View CPM Phase Tree Using Simulink” example.

Algorithms
The BandwidthTimeProduct property represents the bandwidth multiplied by time. Use this
property to reduce the bandwidth at the expense of increased intersymbol interference. The
PulseLength property measures the length of the Gaussian pulse shape in symbol intervals. These
equations define the frequency pulse shape. Bb represents the bandwidth of the pulse and T is the
symbol durations. Q(t) is the complementary cumulative distribution function.
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g(t) = 1
2T Q 2πBb

t − T
2

ln(2) − Q 2πBb
t + T

2
ln(2)

Q(t) = ∫
t

∞
1
2πe−τ2/2dτ

For this System object, an input symbol of 1 causes a phase shift of π/2 radians, which corresponds to
a modulation index of 0.5.

Version History
Introduced in R2012a

References
[1] Anderson, John B., Tor Aulin, and Carl-Erik Sundberg. Digital Phase Modulation. New York:

Plenum Press, 1986.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
comm.GMSKDemodulator | comm.CPMModulator | comm.CPMDemodulator

Blocks
GMSK Modulator Baseband | GMSK Demodulator Baseband
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comm.GMSKTimingSynchronizer
Package: comm

Recover symbol timing phase using fourth-order nonlinearity method

Description
The GMSKTimingSynchronizer object recovers the symbol timing phase of the input signal using a
fourth-order nonlinearity method. This block implements a general non-data-aided feedback method.
This timing synchronization is a non-data-aided feedback method that is independent of carrier phase
recovery, but requires prior compensation for the carrier frequency offset. You can use this block for
systems that use Gaussian minimum shift keying (GMSK) modulation.

To recover the symbol timing phase of the input signal:

1 Define and set up your GMSK timing synchronizer object. See “Construction” on page 3-613.
2 Call step to recover the symbol timing phase of the input signal according to the properties of

comm.GMSKTimingSynchronizer. The behavior of step is specific to each object in the
toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
H = comm.GMSKTimingSynchronizer creates a timing phase synchronizer System object, H. This
object recovers the symbol timing phase of the GMSK input signal using a fourth-order nonlinearity
method.

H = comm.GMSKTimingSynchronizer(Name,Value) creates a GMSK timing synchronizer object,
H, with each specified property set to the specified value. You can specify additional name-value pair
arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties
SamplesPerSymbol

Number of samples representing each symbol

Specify the number of samples that represent each symbol in the input signal as an integer-valued
scalar value greater than 1. The default is 4.

ErrorUpdateGain

Error update step size
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Specify the step size for updating successive timing phase estimates as a positive real scalar value.
Typically, this number is less than 1/SamplesPerSymbol on page 3-0 , which corresponds to a
slowly varying timing phase. The default is 0.05. This property is tunable.

ResetInputPort

Enable synchronization reset input

Set this property to true to enable resetting the timing phase recovery process based on an input
argument value. The default is false.

When you set this property to true, you must specify a reset input value to the step method.

When you specify a nonzero value as the reset input, the object restarts the timing phase recovery
process. When you set this property to false, the object does not restart.

ResetCondition

Condition for timing phase recovery reset

Specify the conditions to reset the timing phase recovery process as one of Never | Every frame.
The default is Never.

When you set this property to Never, the phase recovery process never restarts. The object operates
continuously, retaining information from one symbol to the next.

When you set this property to Every frame, the timing phase recovery restarts at the start of each
frame of data. In this case, the restart occurs at each step method call. This property applies when
you set the ResetInputPort on page 3-0  property to false.

Methods
step Recover symbol timing phase using fourth-order nonlinearity method

Common to All System Objects
release Allow System object property value changes
reset Reset internal states of System object

Examples

Recover Timing Phase of GMSK Signal

Create GMSK modulator, variable fractional delay, and GMSK timing synchronizer System objects.

gmskMod = comm.GMSKModulator('BitInput', true, ...
    'SamplesPerSymbol', 14);
timingOffset = 0.2;
varDelay = dsp.VariableFractionalDelay;
gmskTimingSync = comm.GMSKTimingSynchronizer('SamplesPerSymbol', 14, ...
    'ErrorUpdateGain', 0.05);
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Main processing loop:

phEst = zeros(50,1);
for i = 1:50
    data = randi([0 1],100,1); % Generate data
    modData = gmskMod(data);   % Modulate data
    
    % Apply timing offset error
    impairedData = varDelay(modData,timingOffset*14);
    % Perform timing phase recovery
    [~,phase] = gmskTimingSync(impairedData);
    phEst(i) = phase(1)/14;
end

Plot the results.

plot(1:50,[0.2*ones(50,1) phEst])
legend( 'Original','Estimated')
title('Original and Estimated timing phases')

Algorithms
This object implements the algorithm, inputs, and outputs described on the MSK-Type Signal Timing
Recovery block reference page. The object properties correspond to the block parameters, except:
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• The object corresponds to the MSK-Type Signal Timing Recovery block with the Modulation type
parameter set to GMSK.

• The Reset parameter corresponds to the ResetInputPort on page 3-0  and
ResetCondition on page 3-0  properties.

Version History
Introduced in R2012a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.SymbolSynchronizer
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step
System object: comm.GMSKTimingSynchronizer
Package: comm

Recover symbol timing phase using fourth-order nonlinearity method

Syntax
[Y,PHASE] = step(H,X)
[Y,PHASE] = step(H,X,R)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

[Y,PHASE] = step(H,X) performs timing phase recovery and returns the time-synchronized
signal, Y, and the estimated timing phase, PHASE, for input signal X. X must be a double or single
precision complex column vector.

[Y,PHASE] = step(H,X,R) restarts the timing phase recovery process when you input a reset
signal, R, that is non-zero. R must be a logical or double scalar. This syntax applies when you set the
ResetInputPort property to true.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This initialization
locks nontunable properties and input specifications. For more information on changing property
values, see “System Design in MATLAB Using System Objects”.
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comm.GoldSequence
Package: comm

Generate Gold sequence from set of sequences

Description
The comm.GoldSequence System object generates a binary sequence with small periodic cross-
correlation properties from a bounded set of sequences. For more information, see “Gold Sequences”
on page 3-628.

To generate a Gold sequence from set of sequences:

1 Create the comm.GoldSequence object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
goldseq = comm.GoldSequence
goldseq = comm.GoldSequence(Name,Value)

Description

goldseq = comm.GoldSequence creates a Gold sequence generator System object. This object
generates a pseudorandom Gold sequence of binary numbers.

goldseq = comm.GoldSequence(Name,Value) sets properties using one or more name-value
arguments. Enclose each property name in quotes. For example, goldseq =
comm.GoldSequence('Shift',1) specifies a one sample offset of the output sequence from the
starting point.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

FirstPolynomial — Generator polynomial for first preferred PN sequence
'z^6 + z + 1' (default) | character vector | string scalar | binary-valued row vector | integer-
valued row vector
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Generator polynomial for the first preferred PN sequence, specified as one of these options:

• Character vector or string scalar of a polynomial whose constant term is 1. For more information,
see “Representation of Polynomials in Communications Toolbox”.

• Binary-valued row vector that represents the coefficients of the polynomial in order of descending
powers. The length of this vector must be N + 1, where N is the degree of the polynomial. The
first and last entries must be 1, indicating the leading term with degree N and a constant term of
1.

• Integer-valued row vector of elements that represent the exponents for the nonzero terms of the
polynomial in order of descending powers. The last entry must be 0, indicating a constant term of
1.

This property determines the feedback connections for the shift register of the first preferred PN
sequence generator. The degree of the first generator polynomial must equal the degree of the
second generator polynomial specified by the SecondPolynomial property. For more information,
see “Preferred Pairs of Sequences” on page 3-629.
Example: 'z^8 + z^2 + 1', [1 0 0 0 0 0 1 0 1], and [8 2 0] represent the same
polynomial, p(z) = z8 + z2 + 1.
Data Types: double | char

FirstInitialConditions — Initial conditions used for shift register of first preferred PN
sequence generator
[0 0 0 0 0 1] (default) | binary-valued scalar | binary-valued vector

Initial conditions used for the shift register of the first preferred PN sequence generator when the
simulation starts, specified as a binary-valued scalar or binary-valued vector.

• If you set this property to a scalar, the initial value of all cells in the shift register are the specified
scalar value.

• If you set this property to a vector, each element of the vector corresponds to the initial value of
the corresponding cell in the shift register. The length of the vector must equal the degree of the
generator polynomial specified by the FirstPolynomial property.

Note For the object to generate a nonzero sequence, at least one element of the initial conditions for
the first or second preferred PN sequence generator must be nonzero. Specifically, the initial state of
at least one of the shift registers must be nonzero.

Data Types: double

SecondPolynomial — Generator polynomial for second preferred PN sequence
'z^6 + z^5 + z^2 + z + 1' (default) | character vector | string scalar | binary-valued row vector
| integer-valued row vector

Generator polynomial for the first preferred PN sequence, specified as one of these options:

• Character vector or string scalar of a polynomial whose constant term is 1. For more information,
see “Representation of Polynomials in Communications Toolbox”.
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• Binary-valued row vector that represents the coefficients of the polynomial in order of descending
powers. The length of this vector must be N + 1, where N is the degree of the polynomial. The
first and last entries must be 1, indicating the leading term with degree N and a constant term of
1.

• Integer-valued row vector of elements that represent the exponents for the nonzero terms of the
polynomial in order of descending powers. The last entry must be 0, indicating a constant term of
1.

This property determines the feedback connections for the shift register of the second preferred PN
sequence generator. The degree of the second generator polynomial must equal the degree of the
first generator polynomial specified by the FirstPolynomial property. For more information, see
“Preferred Pairs of Sequences” on page 3-629.
Data Types: double | char

SecondInitialConditionsSource — Source of initial conditions used for shift register of
second preferred PN sequence generator
'Property' (default) | 'Input port'

Source of the initial conditions used for the shift register of the second preferred PN sequence
generator, specified as one of these values:

• 'Property' — Specify PN sequence generator initial conditions by using the
SecondInitialConditions property.

• 'Input port' — Specify PN sequence generator initial conditions by using the
secondinitcond input argument.

Data Types: string | char

SecondInitialConditions — Initial conditions used for shift register of second preferred
PN sequence generator
[0 0 0 0 0 1] (default) | binary-valued scalar | binary-valued vector

Initial conditions used for the shift register of the second preferred PN sequence generator when the
simulation starts, specified as a binary-valued scalar or binary-valued vector.

• If you set this property to a scalar, the initial value of all cells in the shift register are the specified
scalar value.

• If you set this property to a vector, each element of the vector corresponds to the initial value of
the corresponding cell in the shift register. The length of the vector must equal the degree of the
generator polynomial specified by the SecondPolynomial property.

Note For the object to generate a nonzero sequence, at least one element of the initial conditions for
the first or second preferred PN sequence generator must be nonzero. Specifically, the initial state of
at least one of the shift registers must be nonzero.

Dependencies

To enable this property set the SecondInitialConditionsSource property to 'Property'.
Data Types: double
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Index — Sequence index
0 (default) | integer

Sequence index of the output sequence from the set of Gold sequences, specified as an integer in the
range [–2, 2n–2]. n is the degree of the preferred polynomials. For more information, see “Sequence
Index” on page 3-630 and “Gold Sequences” on page 3-628.
Data Types: double

Shift — Offset of output sequence from starting point
0 (default) | integer

Offset of the output sequence from the starting point, specified as an integer. Units are in samples.
The object wraps shift values that are negative or greater than the length of the Gold sequence. For
an example using shift, see “Generate Gold Sequences with Various Shift Values” on page 3-625.

Note Calculate the mask vector by using the shift2mask function.

Data Types: double

VariableSizeOutput — Enable variable-size outputs
false (default) | true

Enable variable-size outputs, specified as a numeric or logical 0 (false) or 1 (true). To enable
variable-size outputs by using the outputsize input argument, set this property to true. The
enabled input specifies the output size of the Gold sequence. The input value must be less than or
equal to the value of the MaximumOutputSize property.

When you set this property to false, the SamplesPerFrame property specifies the number of output
samples.
Data Types: logical | double

MaximumOutputSize — Maximum output frame size
[10 1] (default) | vector of the form [m 1]

Maximum output frame size, specified as a vector of the form [m 1], where m is a positive integer.
The first element of the vector indicates the maximum length of the output frame and the second
element of the vector must be 1.
Example: [20 1] specifies a maximum frame output size of 20-by-1.
Dependencies

To enable this property, set the VariableSizeOutput property to true.
Data Types: double

SamplesPerFrame — Number of samples output per frame
1 (default) | positive integer

Number of samples output per frame, specified as a positive integer. If you set this property to a
value of M, the object outputs M samples of a Gold sequence that has a period of N = 2n – 1, where n
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is the degree of the generator polynomials specified by the FirstPolynomial and
SecondPolynomial properties.

Dependencies

To enable this property, set the VariableSizeOutput property to false.
Data Types: double

ResetInputPort — Enable generator reset input
false (default) | true

Enable the generator reset input, specified as a numeric or logical 0 (false) or 1 (true). To enable
the ability to reset the sequence generator using the resetseq input argument, set this property to
true. This input resets the states of the two shift registers of the Gold sequence generator to the
initial conditions specified by the FirstInitialConditions and SecondInitialConditions
properties. For an example using the resetseq input, see “Generate Gold Sequences with Various
Reset Values” on page 3-626.

Dependencies

To enable this property, set the SecondInitialConditionsSource property to 'Property'.
Data Types: logical | double

OutputDataType — Data type of output
'double' (default) | 'logical' | 'Smallest unsigned integer' | 'Smallest integer'

Data type of the output, specified as 'double', 'logical', 'Smallest unsigned integer', or
'Smallest integer'.

To use the Smallest unsigned integer option, you must have the Fixed-Point Designer product.
Data Types: string | char

Usage

Syntax
outSequence = goldseq()
outSequence = goldseq(secondinitcond)
outSequence = goldseq(outputsize)
outSequence = goldseq(resetseq)
outSequence = goldseq(secondinitcond,outputsize)
outSequence = goldseq(outputsize,resetseq)

Description

outSequence = goldseq() outputs a frame of the Gold sequence in a column vector based on the
configured object.

outSequence = goldseq(secondinitcond) uses secondinitcond as the initial conditions for
the second PN sequence.
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To enable this syntax, set the SecondInitialConditionsSource property to 'Input port' and
the ResetInputPort property to false.

outSequence = goldseq(outputsize) uses outputsize as the output size.

To enable this syntax, set the VariableSizeOutput property to true.

outSequence = goldseq(resetseq) uses resetseq as the reset signal.

To enable this syntax, set the ResetInputPort property to true and the
SecondInitialConditionsSource property to 'Property'.

outSequence = goldseq(secondinitcond,outputsize) specifies inputs for the second PN
sequence initial conditions and the output size.

To enable this syntax, set the SecondInitialConditionsSource property to 'Input port', the
ResetInputPort property to false, and set the VariableSizeOutput property to true.

outSequence = goldseq(outputsize,resetseq) specifies inputs for the output size and a reset
signal.

To enable this syntax, set the VariableSizeOutput property to true, the
SecondInitialConditionsSource property to 'Property', and the ResetInputPort property
to true.

Input Arguments

secondinitcond — Initial conditions used for shift register of second sequence polynomial
binary scalar | binary vector

Initial conditions used for the shift register of the second preferred PN sequence generator when the
simulation starts, specified as a binary-valued scalar or binary-valued vector.

• If you set this input to a scalar, the initial value of all cells in the shift register are the specified
scalar value.

• If you set this input to a vector, each element of the vector corresponds to the initial value of the
corresponding cell in the shift register. The length of the vector must equal the degree of the
generator polynomial specified by the SecondPolynomial property.

Note For the object to generate a nonzero sequence, at least one element of the initial conditions for
the first or second preferred PN sequence generator must be nonzero. Specifically, the initial state of
at least one of the shift registers must be nonzero.

Dependencies

To enable this input argument, set the SecondInitialConditionsSource property to 'Input
port'.
Data Types: double

outputsize — Length of output sequence
nonnegative integer | vector of the form [n 1]

 comm.GoldSequence

3-623



Length of the output sequence, specified as a nonnegative integer, n, or a vector of the form [n 1],
where n is a positive integer. The first element of the vector indicates the length of the output frame
and the second element of the vector must be 1.

The scalar or the first element of the row vector must be less than or equal to the first element of the
MaximumOutputSize property value.

Dependencies

To enable this input argument, set the VariableSizeOutput property to true.
Data Types: double

resetseq — Reset sequence generator
scalar | column vector

Reset sequence generator, specified as a scalar or a column vector with length equal to the number of
samples per frame specified by the SamplesPerFrame property.

• When you specify this input as a nonzero scalar, the object resets to the specified initial conditions
and then generates a new output frame.

• When you specify this input as a column vector, the object resets to the specified initial conditions
at each sample in the output frame that aligns with a nonzero value in the reset vector.

For an example using reset, see “Generate Gold Sequences with Various Reset Values” on page 3-
626.

Dependencies

To enable this input argument, set the ResetInputPort property to true.
Data Types: double | logical

Output Arguments

outSequence — Gold sequence
column vector

Gold sequence, returned as a column vector. For more information, see “Gold Sequences” on page 3-
628.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object
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Examples

Generate Gold Sequence Samples

Generate 10 samples of a Gold sequence with a period of 25− 1.

goldseq = comm.GoldSequence('FirstPolynomial','x^5+x^2+1', ...
    'SecondPolynomial','x^5+x^4+x^3+x^2+1', ...
    'FirstInitialConditions',[0 0 0 0 1], ...
    'SecondInitialConditions',[0 0 0 0 1], ...
    'Index',4,'SamplesPerFrame',10);
x = goldseq()

x = 10×1

     1
     1
     1
     0
     0
     0
     0
     0
     0
     1

Generate Gold Sequences with Various Shift Values

Generate Gold sequences using different values for the shift input to demonstrate that the object
wraps shift values that are negative or greater than the sequence length.

Create a Gold sequence System object™, specifying 15 samples per frame and no shift. Generate the
7-sample Gold sequence. The output frame begins at the start of the Gold sequence.

goldseq = comm.GoldSequence( ...
    "FirstPolynomial","x^3+x^2+1", ...
    "SecondPolynomial","x^3+x+1", ...
    "FirstInitialConditions",[0 0 1], ...
    "SecondInitialConditions",[0 1 1], ...
    "Index",3, ...
    "SamplesPerFrame",15)

goldseq = 
  comm.GoldSequence with properties:

                  FirstPolynomial: "x^3+x^2+1"
           FirstInitialConditions: [0 0 1]
                 SecondPolynomial: "x^3+x+1"
    SecondInitialConditionsSource: 'Property'
          SecondInitialConditions: [0 1 1]
                            Index: 3
                            Shift: 0
               VariableSizeOutput: false
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                  SamplesPerFrame: 15
                   ResetInputPort: false
                   OutputDataType: 'double'

outseq = goldseq()'

outseq = 1×15

     1     1     0     0     0     0     0     1     1     0     0     0     0     0     1

Release the object, adjust the shift to -1, and generate the shifted output. Repeat this process for shift
values of 6 and 13. For each of these shift settings, the output frame begins at the 6th sample of this
7-sample long Gold sequence.

release(goldseq);
goldseq.Shift = -1;
outseq = goldseq()'

outseq = 1×15

     0     1     1     0     0     0     0     0     1     1     0     0     0     0     0

release(goldseq);
goldseq.Shift = 6;
outseq = goldseq()'

outseq = 1×15

     0     1     1     0     0     0     0     0     1     1     0     0     0     0     0

release(goldseq);
goldseq.Shift = 13;
outseq = goldseq()'

outseq = 1×15

     0     1     1     0     0     0     0     0     1     1     0     0     0     0     0

Generate Gold Sequences with Various Reset Values

Generate Gold sequences using different values for the reset input.

Create a Gold sequence System object™, specifying 15 samples per frame and enabling the reset
input. Generate the 7-sample Gold sequence. To observe the starting point of frames output by the
object relative to the generated Gold sequence, the samples per frame value includes one sample
more than two times the sequence length.

goldseq = comm.GoldSequence( ...
    "FirstPolynomial","x^3+x^2+1", ...
    "SecondPolynomial","x^3+x+1", ...
    "FirstInitialConditions",[0 0 1], ...
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    "SecondInitialConditions",[0 1 1], ...
    "Index",3, ...
    "ResetInputPort",true, ...
    "SamplesPerFrame",15);

So that the object does not reset the sequence to the initial conditions, specify a scalar reset input
value of 0. Display consecutive 15-sample frames of the sequence. The second frame continues the
sequence from where the first frame left off, with the second element of the Gold sequence.

resetseq = 0;
x1 = goldseq(resetseq)'

x1 = 1×15

     1     1     0     0     0     0     0     1     1     0     0     0     0     0     1

x2 = goldseq(resetseq)'

x2 = 1×15

     1     0     0     0     0     0     1     1     0     0     0     0     0     1     1

To reset the sequence to the initial conditions, specify a scalar reset input value of 1. Display
consecutive 15-sample frames of the sequence. The second frame now begins with the first element
of the Gold sequence.

resetseq = 1;
x3 = goldseq(resetseq)'

x3 = 1×15

     1     1     0     0     0     0     0     1     1     0     0     0     0     0     1

x4 = goldseq(resetseq)'

x4 = 1×15

     1     1     0     0     0     0     0     1     1     0     0     0     0     0     1

To reconfigure the reset input of the object to accept a vector, release the object. Specify a reset input
vector filled with 0s. Display consecutive 15-sample frames of the sequence. Since the object does not
reset the sequence to the initial conditions, the second frame begins with the second element of the
Gold sequence.

release(goldseq)
resetseq = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]';
x5 = goldseq(resetseq)'

x5 = 1×15

     1     1     0     0     0     0     0     1     1     0     0     0     0     0     1

x6 = goldseq(resetseq)'
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x6 = 1×15

     1     0     0     0     0     0     1     1     0     0     0     0     0     1     1

Specify a reset input vector that has two elements with nonzero values. Display consecutive 15-
sample frames of the sequence. The second and third frames continue the sequence from the prior
frame but reset the sequence at the third and ninth samples of the frame due to the position of the
nonzero entries in the vector specified for the reset input.

resetseq = [0 0 1 0 0 0 0 0 1 0 0 0 0 0 0]';
x7 = goldseq(resetseq)'

x7 = 1×15

     0     0     1     1     0     0     0     0     1     1     0     0     0     0     0

x8 = goldseq(resetseq)'

x8 = 1×15

     1     1     1     1     0     0     0     0     1     1     0     0     0     0     0

x9 = goldseq(resetseq)'

x9 = 1×15

     1     1     1     1     0     0     0     0     1     1     0     0     0     0     0

More About
Gold Sequences

The characteristic cross-correlation properties of Gold sequences make them useful when multiple
devices are broadcasting in the same frequency range. The Gold sequences are defined using a
specified pair of sequences, u and v, called a preferred pair, as defined in “Preferred Pairs of
Sequences” on page 3-629. The u and v pair of sequences has a period N = 2n – 1, where n is the
degree of the generator polynomials specified by the FirstPolynomial and SecondPolynomial
properties. The set G(u, v) of Gold sequences is defined by

G(u, v) = u, v, u⊕ v, u⊕ Tv, u⊕ T2v, ..., u⊕ TN − 1v

T represents the operator that shifts vectors cyclically to the left by one place, and ⊕ represents
addition modulo 2. G(u,v) contains N + 2 sequences of period N.

Gold sequences have the property that the cross-correlation between any two sequences or between
shifted versions of the sequences takes on one of three values: –t(n), –1, or t(n) – 2, where

t(n) =
1 + 2(n + 1)/2 n even

1 + 2(n + 2)/2 n odd
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The object uses two PN sequence generators to generate a preferred pair of sequences. The object
then XORs these sequences to produce the output Gold sequence, as shown in this figure.

The FirstPolynomial and SecondPolynomial properties determine the preferred pair of
sequences and the feedback connections for the shift registers used by the PN sequence generators
to generate their output. For more details on PN sequence generation, see the “Simple Shift Register
Generator” on page 3-1036 section on the comm.PNSequence System object reference page.

This table provides examples of preferred pairs.

Degree of
Generator
Polynomials (n)

Pair of Sequences
Period (N)

FirstPolynomial
Property Value

SecondPolynomial
Property Value

5 31 [5 2 0] [5 4 3 2 0]
6 63 [6 1 0] [6 5 2 1 0]
7 127 [7 3 0] [7 3 2 1 0]
9 511 [9 4 0] [9 6 4 3 0]
10 1023 [10 3 0] [10 8 3 2 0]
11 2047 [11 2 0] [11 8 5 2 0]

The FirstInitialConditions property and SecondInitialConditions property (or
secondinitcond input argument) are values that specify the initial values of the shift registers
corresponding to FirstPolynomial and SecondPolynomial, respectively.

Note For the object to generate a nonzero sequence, at least one element of one of the initial
conditions vectors must be nonzero. Specifically, the initial state of at least one of the shift registers
must be nonzero.

You can offset the starting point of the Gold sequence by setting the Shift property to a nonzero
value. For an example that adjusts the shift setting, see “Generate Gold Sequences with Various Shift
Values” on page 3-625.

Preferred Pairs of Sequences

Preferred pairs of sequences, u and v, comprise the set of Gold sequences G(u, v).

For a pair of sequences, u and v, of period N = 2n–1 to be a preferred pair, they must satisfy these
requirements:
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• n is the degree of the generator polynomials specified by the FirstPolynomial and
SecondPolynomial properties.

• n is not divisible by 4.
• v = u[q], where

• q is odd.
• q = 2k+1 or q = 22k–2k+1.
• v is obtained by sampling every qth symbol of u.

•
gcd(n, k) =

1 n ≡ 1mod2
2 n ≡ 2mod4

For more details on PN sequence generation, see the “Simple Shift Register Generator” on page 3-
1036 section on the comm.PNSequence System object reference page.

Sequence Index

The sequence index specified by the Index property specifies which Gold sequence in the set G(u, v)
is output.

The set of available Gold sequences is

G(u, v) = u, v, u⊕ v, u⊕ Tv, u⊕ T2v, ..., u⊕ TN − 1v

u and v are the two preferred PN sequences, T is the operator that shifts vectors cyclically to the left
by one place, and ⊕ represents addition modulo 2. G(u,v) contains N+2 Gold sequences of period N =
2n–1.

The range of Index is [–2, 2n–2], where n is the degree of the generator polynomials specified by the
FirstPolynomial and SecondPolynomial properties. The index values -2 and -1 correspond to
the first and second preferred PN sequences as generated by FirstPolynomial and
SecondPolynomial, respectively. This table shows the correspondence between the sequence index
and the output sequence.

Index Property Value Output Sequence
–2 u
–1 v
0 u⊕ v
1 u⊕ Tv
2 u⊕ T2v
... ...
2n –2

u⊕ T2n− 2v

Version History
Introduced in R2008a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
comm.KasamiSequence | comm.PNSequence

Functions
shift2mask | mask2shift

Blocks
Gold Sequence Generator
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comm.gpu.AWGNChannel
Package: comm

Add white Gaussian noise to input signal with GPU

Note To use this object, you must install Parallel Computing Toolbox™ and have access to a
supported GPU. If the host computer has a GPU configured, processing uses the GPU. Otherwise,
processing uses the CPU. For more information about GPUs, see “GPU Computing” (Parallel
Computing Toolbox).

Description
The comm.gpu.AWGNChannel System object adds white Gaussian noise to an input signal using a
graphics processing unit (GPU).

To add white Gaussian noise to an input signal:

1 Create the comm.gpu.AWGNChannel object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
gpuawgnchan = comm.gpu.AWGNChannel
gpuawgnchan = comm.gpu.AWGNChannel(Name=Value)

Description

gpuawgnchan = comm.gpu.AWGNChannel creates a GPU-based channel System object that adds
white Gaussian noise to the input signal.

gpuawgnchan = comm.gpu.AWGNChannel(Name=Value) sets properties using one or more name-
value arguments. For example, SamplesPerSymbol=4 specifies the samples per symbol value as 4.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.
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NoiseMethod — Noise level method
"Signal to noise ratio (Eb/No)" (default) | "Signal to noise ratio (Es/No)" |
"Signal to noise ratio (SNR)" | "Variance"

Noise level method, specified as "Signal to noise ratio (Eb/No)", "Signal to noise
ratio (Es/No)", "Signal to noise ratio (SNR)", or "Variance". For more information, see
“Relationship Between Eb/No, Es/No, and SNR Modes” on page 3-638 and “Specifying Variance
Directly or Indirectly” on page 3-639.

EbNo — Ratio of energy per bit to noise power spectral density
10 (default) | scalar | row vector

Ratio of energy per bit to noise power spectral density (Eb/No) in decibels, specified as a scalar or 1-
by-NC vector. NC is the number of channels.

Tunable: Yes
Dependencies

To enable this property, set NoiseMethod to "Signal to noise ratio (Eb/No)".
Data Types: double

EsNo — Ratio of energy per symbol to noise power spectral density
10 (default) | scalar | row vector

Ratio of energy per symbol to noise power spectral density (Es/No) in decibels, specified as a scalar
or 1-by-NC vector. NC is the number of channels.

Tunable: Yes
Dependencies

To enable this property, set NoiseMethod to "Signal to noise ratio (Es/No)".
Data Types: double

SNR — Ratio of signal power to noise power
10 (default) | scalar | row vector

Ratio of signal power to noise power in decibels, specified as a scalar or 1-by-NC vector. NC is the
number of channels.

Tunable: Yes
Dependencies

To enable this property, set NoiseMethod to "Signal to noise ratio (SNR)".
Data Types: double

BitsPerSymbol — Number of bits per symbol
1 (default) | positive integer

Number of bits per symbol, specified as a positive integer.
Dependencies

To enable this property, set NoiseMethod to "Signal to noise ratio (Eb/No)".
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Data Types: double

SignalPower — Input signal power
1 (default) | positive scalar | row vector

Input signal power in watts, specified as a positive scalar or 1-by-NC vector. NC is the number of
channels. The object assumes a nominal impedance of 1 ohms.

Tunable: Yes
Dependencies

To enable this property, set NoiseMethod to "Signal to noise ratio (Eb/No)", "Signal to
noise ratio (Es/No)", or "Signal to noise ratio (SNR)".
Data Types: double

SamplesPerSymbol — Number of samples per symbol
1 (default) | positive integer | row vector

Number of samples per symbol, specified as a positive integer or 1-by-NC vector. NC is the number of
channels.
Dependencies

To enable this property, set NoiseMethod to "Signal to noise ratio (Eb/No)" or "Signal
to noise ratio (Es/No)".
Data Types: double

VarianceSource — Source of noise variance
"Property" (default) | "Input port"

Source of noise variance, specified as "Property" or "Input port".

• To specify the noise variance value using the Variance property, set VarianceSource to
"Property".

• To specify the noise variance value using an input to the object, when you call it as a function, set
VarianceSource to "Input port".

For more information, see “Specifying Variance Directly or Indirectly” on page 3-639.
Dependencies

To enable this property, set NoiseMethod to "Variance".

Variance — White Gaussian noise variance
1 (default) | positive scalar | row vector

White Gaussian noise variance, specified as a positive scalar or 1-by-NC vector. NC is the number of
channels.

Tunable: Yes
Dependencies

To enable this property, set NoiseMethod to "Variance" and set VarianceSource to
"Property".
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Data Types: double

RandomStream — Source of random number stream
"Global stream" (default)

Source of random number stream, specified as "Global stream". When you set RandomStream to
"Global stream", the object uses the MATLAB default random stream to generate random
numbers. To generate reproducible numbers using this object, use the rng function.

For a complex input signal, the object creates the random data as follows:

noise = randn(NS,NC)+1i(randn(NS,NC))

NS is the number of samples and NC is the number of channels.

Dependencies

To enable this property, set NoiseMethod to "Variance".

Seed — Initial seed
67 (default) | nonnegative integer

Initial seed of the mt19937ar random number stream, specified as a nonnegative integer. For each
call to the reset function, the object reinitializes the mt19937ar random number stream to the Seed
value.

Dependencies

To enable this property, set RandomStream to "mt19937ar with seed".
Data Types: double

Usage

Syntax
y = gpuawgnchan(x)
y = gpuawgnchan(x,var)

Description

y = gpuawgnchan(x) adds white Gaussian noise, as specified by gpuawgnchan, to the input signal.
The result is returned in y.

y = gpuawgnchan(x,var) specifies the variance of the white Gaussian noise. This syntax applies
when you set NoiseMethod to "Variance" and VarianceSource to "Input port".

For example:

gpuawgnchan = comm.AWGNChannel('NoiseMethod','Variance', ...
     'VarianceSource','Input port');
var = 12;
...
y = gpuawgnchan(x,var);
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Input Arguments

x — Input signal
scalar | vector | matrix

Input signal, specified as a scalar, an NS-element vector, or an NS-by-NC matrix. NS is the number of
samples and NC is the number of channels.
Data Types: double | single
Complex Number Support: Yes

var — Variance of additive white Gaussian noise
positive scalar | row vector

Variance of additive white Gaussian noise, specified as a positive scalar or 1-by-NC vector. NC is the
number of channels, as determined by the number of columns in the input signal matrix.
Data Types: double | single

Output Arguments

y — Output signal
matrix

Output signal, returned with the same dimensions as x.
Data Types: double | single
Complex Number Support: Yes

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

GPU AWGN Channel

Specify the modulation order and generate PSK-modulated random data.

M = 8;
modData = pskmod(randi([0 M-1],1000,1),M,pi/M);

Create an AWGN channel object that uses a GPU. Pass the modulated data through the channel.
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gpuChannel = comm.gpu.AWGNChannel('EbNo',15,'BitsPerSymbol', ...
                log2(M));
channelOutput = gpuChannel(modData);

Visualize the noiseless and noisy data in scatter plots.

scatterplot(modData)
scatterplot(channelOutput)
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More About
Array Processing with GPU-Based System Objects

A GPU-based System object accepts typical MATLAB arrays or gpuArray objects. The output signal
data type matches the input signal data type.

• When the input signal to the GPU-based System object is a gpuArray object, calculations take
place entirely on the GPU, the data remains on the GPU, and the output signal is a gpuArray
object. Passing gpuArray arguments minimizes data transfer latency by limiting the number of
data transfers between the CPU and the GPU when your simulation runs. For more information,
see “Establish Arrays on a GPU” (Parallel Computing Toolbox).

• When the input signal is a MATLAB array, the GPU-based System object transfers the data
between the CPU and the GPU for each object call. The output signal is a MATLAB array and data
transfer latency occurs.

Algorithms
Relationship Between Eb/No, Es/No, and SNR Modes

For uncoded complex input signals, comm.gpu.AWGNChannel relates Eb/N0, Es/N0, and SNR
according to these equations:

Es/N0 = Nsps × SNR
Es/N0 = Eb/N0 + 10log10(k) in dB
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where

• Es represents the signal energy in joules.
• Eb represents the bit energy in joules.
• N0 represents the noise power spectral density in watts/Hz.
• Nsps represents the number of samples per symbol, SamplesPerSymbol.
• k represents the number of information bits per input symbol, BitsPerSymbol.

For real signal inputs, the comm.gpu.AWGNChannel relates Es/N0 and SNR according to this
equation:

Es/N0 = 0.5 (Nsps) × SNR

Note

• All values of power assume a nominal impedance of 1 ohm.
• The equation for the real case differs from the corresponding equation for the complex case by a

factor of 2. Specifically, the object uses a noise power spectral density of N0/2 watts/Hz for real
input signals, versus N0 watts/Hz for complex signals.

For more information, see AWGN Channel Noise Level.

Specifying Variance Directly or Indirectly

To directly specify the variance of the noise generated by comm.gpu.AWGNChannel, specify
VarianceSource as:

• "Property", then set NoiseMethod to "Variance" and specify the variance with the Variance
property.

• "Input port", then specify the variance level for the object as an input with an input argument,
var.

To specify variance indirectly, that is, to have it calculated by comm.gpu.AWGNChannel, specify
VarianceSource as "Property" and the NoiseMethod as:

• "Signal to noise ratio (Eb/No)", where the object uses these properties to calculate the
variance:

• EbNo, the ratio of bit energy to noise power spectral density
• BitsPerSymbol
• SignalPower, the actual power of the input signal samples
• SamplesPerSymbol

• "Signal to noise ratio (Es/No)", where the object uses these properties to calculate the
variance:

• EsNo, the ratio of signal energy to noise power spectral density
• SignalPower, the actual power of the input signal samples
• SamplesPerSymbol
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• "Signal to noise ratio (SNR)", where the object uses these properties to calculate the
variance:

• SNR, the ratio of signal power to noise power
• SignalPower, the actual power of the input signal samples

Changing the number of samples per symbol (SamplesPerSymbol) affects the variance of the noise
added per sample, which also causes a change in the final error rate.

NoiseVariance = SignalPower × SamplesPerSymbol / 10(EsNo/10)

Tip Select the number of samples per symbol based on what constitutes a symbol and the
oversampling applied to it. For example, a symbol could have 3 bits and be oversampled by 4. For
more information, see AWGN Channel Noise Level.

Version History
Introduced in R2012a

References
[1] Proakis, John G. Digital Communications. 4th ed. New York: McGraw Hill, 2001.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This System object runs on a GPU, and also supports GPU array inputs. For more information, see
“Accelerate Simulation Using GPUs”.

See Also
Objects
comm.AWGNChannel

Functions
awgn

Topics
GPU Arrays Support List for System Objects
“GPU Computing” (Parallel Computing Toolbox)
“Accelerate Simulation Using GPUs”
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comm.gpu.BlockDeinterleaver
Package: comm

Restore original ordering of block interleaved sequence with GPU

Note To use this object, you must install Parallel Computing Toolbox™ and have access to a
supported GPU. If the host computer has a GPU configured, processing uses the GPU. Otherwise,
processing uses the CPU. For more information about GPUs, see “GPU Computing” (Parallel
Computing Toolbox).

Description
The comm.gpu.BlockDeinterleaver System object restores the original ordering of a sequence
that was interleaved using the block interleaver System object.

To deinterleave the input vector:

1 Create the comm.gpu.BlockDeinterleaver object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
gpublockdeinterleaver = comm.gpu.BlockDeinterleaver
gpublockdeinterleaver = comm.gpu.BlockDeinterleaver(Name=Value)
gpublockdeinterleaver = comm.gpu.BlockDeinterleaver(permvec)

Description

gpublockdeinterleaver = comm.gpu.BlockDeinterleaver creates a GPU-based block
deinterleaver System object that restores the original ordering of a sequence that was block
interleaved.

gpublockdeinterleaver = comm.gpu.BlockDeinterleaver(Name=Value) creates a GPU-
based block deinterleaver object and sets properties using one or more name-value arguments. For
example, gpublockinterleaver =
comm.gpu.BlockDeinterleaver(PermutationVector=[2;1;4;3]) specifies the permutation
vector for a four-element input signal.

gpublockdeinterleaver = comm.gpu.BlockDeinterleaver(permvec) creates a GPU-based
block deinterleaver object and sets the PermutationVector property to permvec.
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Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

PermutationVectorSource — Permutation vector source
'Property'

This property is read-only.

Permutation vector source, specified as 'Property'.

PermutationVector — Permutation vector
[5;4;3;2;1] (default) | column vector of integers

Permutation vector, specified as a column vector of integers. This input vector specifies the mapping
used to permute the input signal. The permutation vector length must equal the input signal length
and contain each integer in the range [1 length(x)].
Data Types: double

Usage

Syntax
y = gpublockdeinterleaver(x)

Description

y = gpublockdeinterleaver(x) restores the original ordering of the input signal, which was
interleaved using a block interleaver as specified by the PermutationVector property.

Input Arguments

x — Input signal
column vector

Input signal, specified as column vector.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | logical | fi
Complex Number Support: Yes

Output Arguments

y — Output signal
column vector
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Output signal, returned as a column vector with the same length and data type as the input signal, x.
The output contains the element from the input signal mapped as y(PermutationVector(k)) = x(k)
for each integer k in the range [1 length(x)].

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics

Examples

Block Interleaving and Deinterleaving with GPU

Create GPU-based interleaver and deinterleaver objects.

Set Specific Permutation Vector

interleaver = comm.gpu.BlockInterleaver([3 4 1 2]');
deinterleaver = comm.gpu.BlockDeinterleaver([3 4 1 2]');

Pass random data through the interleaver and deinterleaver. The length of the input data vector must
equal the length of the PermutationVector property. Generate a 4-by-1 column vector of input data
filled with integer values in the range [1, 7] by using the randi function.

data = randi(7,length(interleaver.PermutationVector),1);
intData = interleaver(data);
deintData = deinterleaver(intData);

Display the original sequence, interleaved sequence, and restored sequence.

[data intData deintData]

ans = 4×3

     6     1     6
     7     7     7
     1     6     1
     7     7     7

Confirm that the original and deinterleaved data are identical.

isequal(data,deintData)

ans = logical
   1
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Set Random Permutation Vector

Generate a random 8-by-1 vector of unique integers to use as the permutation vector by using the
randperm function.

permVec = randperm(8)';

Specify permVec as the permutation vector for GPU-based interleaver and deinterleaver objects.

interleaver = comm.gpu.BlockInterleaver(permVec);
deinterleaver = comm.gpu.BlockDeinterleaver(permVec);

Pass random data through the interleaver and deinterleaver.

data = randi(10,length(interleaver.PermutationVector),1);
intData = interleaver(data);
deintData = deinterleaver(intData);

Display the original sequence, interleaved sequence, and restored sequence.

[data intData deintData]

ans = 8×3

    10     5    10
     5     8     5
     9     9     9
     2     2     2
     5    10     5
    10     5    10
     8    10     8
    10    10    10

Confirm that the original and deinterleaved data are identical.

isequal(data,deintData)

ans = logical
   1

More About
Array Processing with GPU-Based System Objects

A GPU-based System object accepts typical MATLAB arrays or gpuArray objects. The output signal
data type matches the input signal data type.

• When the input signal to the GPU-based System object is a gpuArray object, calculations take
place entirely on the GPU, the data remains on the GPU, and the output signal is a gpuArray
object. Passing gpuArray arguments minimizes data transfer latency by limiting the number of
data transfers between the CPU and the GPU when your simulation runs. For more information,
see “Establish Arrays on a GPU” (Parallel Computing Toolbox).
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• When the input signal is a MATLAB array, the GPU-based System object transfers the data
between the CPU and the GPU for each object call. The output signal is a MATLAB array and data
transfer latency occurs.

Version History
Introduced in R2012a

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This System object runs on a GPU, and also supports GPU array inputs. For more information, see
“Accelerate Simulation Using GPUs”.

See Also
Objects
comm.gpu.BlockInterleaver | gpuArray

Functions
intrlv | deintrlv | randperm

Blocks
General Block Deinterleaver

Topics
GPU Arrays Support List for System Objects
“GPU Computing” (Parallel Computing Toolbox)
“Accelerate Simulation Using GPUs”
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comm.gpu.BlockInterleaver
Package: comm

Create block interleaved sequence with GPU

Note To use this object, you must install Parallel Computing Toolbox™ and have access to a
supported GPU. If the host computer has a GPU configured, processing uses the GPU. Otherwise,
processing uses the CPU. For more information about GPUs, see “GPU Computing” (Parallel
Computing Toolbox).

Description
The comm.gpu.BlockInterleaver System object permutes the input signal using a graphics
processing unit (GPU).

To interleave the input signal:

1 Create the comm.gpu.BlockInterleaver object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
gpublockinterleaver = comm.gpu.BlockInterleaver
gpublockinterleaver = comm.gpu.BlockInterleaver(Name=Value)
gpublockinterleaver = comm.gpu.BlockInterleaver(permvec)

Description

gpublockinterleaver = comm.gpu.BlockInterleaver creates a GPU-based block interleaver
System object that permutes the input signal based on a permutation vector.

gpublockinterleaver = comm.gpu.BlockInterleaver(Name=Value) creates a GPU-based
block interleaver object and sets properties using one or more name-value arguments. For example,
gpublockinterleaver = comm.gpu.BlockInterleaver(PermutationVector=[2;1;4;3])
specifies the permutation vector for a four-element input signal.

gpublockinterleaver = comm.gpu.BlockInterleaver(permvec) creates a GPU-based block
interleaver object and sets the PermutationVector property to permvec.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.
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If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

PermutationVectorSource — Permutation vector source
'Property'

This property is read-only.

Permutation vector source, specified as 'Property'.

PermutationVector — Permutation vector
[5;4;3;2;1] (default) | column vector of integers

Permutation vector, specified as a column vector of integers. This input vector specifies the mapping
used to permute the input signal. The permutation vector length must equal the input signal length
and contain each integer in the range [1 length(x)].
Data Types: double

Usage

Syntax
y = gpublockinterleaver(x)

Description

y = gpublockinterleaver(x) permutes the input signal as specified by the
PermutationVector property.

Input Arguments

x — Input signal
column vector

Input signal, specified as column vector.

To decrease data transfer latency, format the input signal as a gpuArray object. For more
information, see “Array Processing with GPU-Based System Objects” on page 3-649.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | logical | fi
Complex Number Support: Yes

Output Arguments

y — Output signal
column vector

Output signal, returned as a column vector with the same length and data type as the input signal, x.
The output contains elements from the input signal mapped as y(k) = x(PermutationVector(k)) for
each integer k in the range [1 length(x)].
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Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics

Examples

Block Interleaving and Deinterleaving with GPU

Create GPU-based interleaver and deinterleaver objects.

Set Specific Permutation Vector

interleaver = comm.gpu.BlockInterleaver([3 4 1 2]');
deinterleaver = comm.gpu.BlockDeinterleaver([3 4 1 2]');

Pass random data through the interleaver and deinterleaver. The length of the input data vector must
equal the length of the PermutationVector property. Generate a 4-by-1 column vector of input data
filled with integer values in the range [1, 7] by using the randi function.

data = randi(7,length(interleaver.PermutationVector),1);
intData = interleaver(data);
deintData = deinterleaver(intData);

Display the original sequence, interleaved sequence, and restored sequence.

[data intData deintData]

ans = 4×3

     6     1     6
     7     7     7
     1     6     1
     7     7     7

Confirm that the original and deinterleaved data are identical.

isequal(data,deintData)

ans = logical
   1

Set Random Permutation Vector

Generate a random 8-by-1 vector of unique integers to use as the permutation vector by using the
randperm function.
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permVec = randperm(8)';

Specify permVec as the permutation vector for GPU-based interleaver and deinterleaver objects.

interleaver = comm.gpu.BlockInterleaver(permVec);
deinterleaver = comm.gpu.BlockDeinterleaver(permVec);

Pass random data through the interleaver and deinterleaver.

data = randi(10,length(interleaver.PermutationVector),1);
intData = interleaver(data);
deintData = deinterleaver(intData);

Display the original sequence, interleaved sequence, and restored sequence.

[data intData deintData]

ans = 8×3

    10     5    10
     5     8     5
     9     9     9
     2     2     2
     5    10     5
    10     5    10
     8    10     8
    10    10    10

Confirm that the original and deinterleaved data are identical.

isequal(data,deintData)

ans = logical
   1

More About
Array Processing with GPU-Based System Objects

A GPU-based System object accepts typical MATLAB arrays or gpuArray objects. The output signal
data type matches the input signal data type.

• When the input signal to the GPU-based System object is a gpuArray object, calculations take
place entirely on the GPU, the data remains on the GPU, and the output signal is a gpuArray
object. Passing gpuArray arguments minimizes data transfer latency by limiting the number of
data transfers between the CPU and the GPU when your simulation runs. For more information,
see “Establish Arrays on a GPU” (Parallel Computing Toolbox).

• When the input signal is a MATLAB array, the GPU-based System object transfers the data
between the CPU and the GPU for each object call. The output signal is a MATLAB array and data
transfer latency occurs.
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Version History
Introduced in R2012a

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This System object runs on a GPU, and also supports GPU array inputs. For more information, see
“Accelerate Simulation Using GPUs”.

See Also
Objects
comm.gpu.BlockDeinterleaver | gpuArray

Functions
intrlv | deintrlv | randperm

Blocks
General Block Interleaver

Topics
GPU Arrays Support List for System Objects
“GPU Computing” (Parallel Computing Toolbox)
“Accelerate Simulation Using GPUs”
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comm.gpu.ConvolutionalEncoder
Package: comm.gpu

Convolutionally encode binary data with GPU

Note To use this object, you must install Parallel Computing Toolbox™ and have access to a
supported GPU. If the host computer has a GPU configured, processing uses the GPU. Otherwise,
processing uses the CPU. For more information about GPUs, see “GPU Computing” (Parallel
Computing Toolbox).

Description
The comm.gpu.ConvolutionalEncoder System object convolutionally encodes a sequence of
binary input vectors to produce a sequence of binary output vectors by using a graphics processing
unit (GPU).

To convolutionally encode a binary signal:

1 Create the comm.gpu.ConvolutionalEncoder object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
gpuConvEncoder = comm.gpu.ConvolutionalEncoder
gpuConvEncoder = comm.gpu.ConvolutionalEncoder(trellis)
gpuConvEncoder = comm.gpu.ConvolutionalEncoder( ___ ,Name,Value)

Description

gpuConvEncoder = comm.gpu.ConvolutionalEncoder creates a GPU-based convolutional
encoder System object.

gpuConvEncoder = comm.gpu.ConvolutionalEncoder(trellis) sets the
TrellisStructure property to trellis.

gpuConvEncoder = comm.gpu.ConvolutionalEncoder( ___ ,Name,Value) sets “Properties”
on page 3-652 using one or more name-value arguments in addition to any of the input argument
combinations in previous syntaxes. For example, 'TerminationMethod','Continuous' specifies
the termination method as continuous to retain the encoder states at the end of each input vector for
use with the next input vector.
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Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

TrellisStructure — Trellis structure of convolutional code
poly2trellis(7,[171 133]) (default) | structure

Trellis structure of the convolutional code, specified as a structure that contains the trellis
description for a rate K ∕ N code. K is the number of input bit streams, and N is the number of output
bit streams.

You can either use the poly2trellis function to create the trellis structure or create it manually.
For more about this structure, see “Trellis Description of a Convolutional Code” and the istrellis
function.

The trellis structure contains these fields.

numInputSymbols — Number of symbols input to encoder
2K

Number of symbols input to the encoder, specified as an integer equal to 2K, where K is the number of
input bit streams.
Data Types: double

numOutputSymbols — Number of symbols output from encoder
2N

Number of symbols output from the encoder, specified as an integer equal to 2N, where N is the
number of output bit streams.
Data Types: double

numStates — Number of states in encoder
power of 2

Number of states in the encoder, specified as a power of 2.
Data Types: double

nextStates — Next states
matrix of integers

Next states for all combinations of current states and current inputs, specified as a matrix of integers.
The matrix size must be numStates by 2K.
Data Types: double

outputs — Outputs
matrix of octal numbers
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Outputs for all combinations of current states and current inputs, specified as a matrix of octal
numbers. The matrix size must be numStates by 2K.
Data Types: double

Data Types: struct

TerminationMethod — Termination method of encoded frame
'Continuous' (default) | 'Truncated' | 'Terminated'

Termination method of the encoded frame, specified as one of these values.

• 'Continuous' — The System object retains the encoder states at the end of each input vector for
use with the next input vector.

• 'Truncated' — The System object treats each input vector independently. The encoder states
are reset at the start of each input vector. If you set the InitialStateInputPort property to 0
(false), the object resets its states to the all-zeros state. If you set the
InitialStateInputPort property to 1 (true), the object resets its states to the values you
specify in the InitialStateInputPort input.

• 'Terminated' — The System object treats each input vector independently. For each input
vector, the object uses extra bits to set the encoder states to the all-zeros states at the end of the
vector. For a rate K/N code, the object outputs a vector of length (N ✕ (L + S))/K. In this
calculation, S = constraintLength – 1 (or, in the case of multiple constraint lengths, S =
sum(constraintLength(i) – 1). L is the length of the input. constraintLength – 1 is defined as
log2(NumStates).

Data Types: char | string

ResetInputPort — Option to enable encoder reset input
false or 0 (default)

Option to enable the encoder reset input, specified as a numeric or logical 0 (false). The only valid
setting is false.
Data Types: logical | numeric

DelayedResetAction — Option to delay output reset
false or 0 (default)

Option to delay the output reset, specified as a numeric or logical 0 (false). The only valid setting is
false.
Data Types: logical | numeric

InitialStateInputPort — Option to enable initial state input
false or 0 (default)

Option to enable the initial state input, specified as a numeric or logical 0 (false). The only valid
setting is false.
Data Types: logical | numeric
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FinalStateOutputPort — Option to enable final state output
false or 0 (default)

Option to enable the final state output, specified as a numeric or logical 0 (false). The only valid
setting is false.
Data Types: logical | numeric

PuncturePatternSource — Source of puncture pattern
'None' (default) | 'Property'

Source of the puncture pattern, specified as one of these values.

• 'None' — The object does not apply puncturing.
• 'Property' — The object punctures the code. This puncturing is based on the puncture pattern

vector that you specify for the PuncturePattern property.

Dependencies

To enable this property, set the TerminationMethod property to 'Continuous' or 'Truncated'.
Data Types: char | string

PuncturePattern — Puncture pattern vector
[1; 1; 0; 1; 0; 1] (default) | column vector

Puncture pattern vector to puncture the encoded data, specified as a column vector. The vector must
contain 1s and 0s, where 0 indicates the position of punctured bits or excluded bits.

Dependencies

To enable this property, set the TerminationMethod property to 'Continuous' or 'Truncated'
and the PuncturePatternSource property to 'Property'.
Data Types: double

NumFrames — Number of independent frames
1 (default) | integer

Number of independent frames present in the input and output data vectors, specified as an integer.

The object segments the input vector into NumFrames segments and encodes them independently.
The output contains NumFrames encoded segments.

Dependencies

To enable this property, set the TerminationMethod property to 'Truncated' or 'Terminated'.
Data Types: double
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Usage

Syntax
codeword = gpuConvEncoder(message)

Description

codeword = gpuConvEncoder(message) convolutionally encodes the input message specified by
the trellis structure and returns the encoded codeword.

Input Arguments

message — Input message
binary-valued column vector

Input message, specified as a binary-valued column vector.

To decrease data transfer latency, format the input signal as a gpuArray object. For more
information, see “Array Processing with GPU-based System Objects” on page 3-656.
Data Types: double | single | logical

Output Arguments

codeword — Convolutionally encoded message
binary-valued column vector

Convolutionally encoded message, returned as a binary-valued column vector. This output vector has
the same data type and orientation as input message.

When the convolutional encoder represents a rate K/N code, the length of the input vector equals
K×L for some positive integer L. The object sets the length of this output vector to L×N.
Data Types: double | single | logical

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples
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GPU-Based Convolutionally Encode and Viterbi Decode 8-PSK Modulated Data

Create a GPU-based convolutional encoder System object.

conEnc = comm.gpu.ConvolutionalEncoder;

Create a GPU-based phase shift keying (PSK) modulator System object that accepts a bit input signal.

modPSK = comm.gpu.PSKModulator(BitInput=true);

Create a GPU-based additive white Gaussian noise (AWGN) channel System object with a signal-to-
noise ratio of seven.

chan = comm.gpu.AWGNChannel( ...
    NoiseMethod='Signal to noise ratio (SNR)', ...
    SNR=7);

Create a GPU-based PSK demodulator System object that outputs a column vector of bit values.

demodPSK = comm.gpu.PSKDemodulator(BitOutput=true);

Create a GPU-based Viterbi decoder System object that accepts an input vector of hard decision
values, which are zeros or ones.

vDec = comm.gpu.ViterbiDecoder(InputFormat='Hard');

Create an error rate System object that ignores 3 data samples before making comparisons. The
received data lags behind the transmitted data by 34 samples.

error = comm.ErrorRate(ComputationDelay=3,ReceiveDelay=34);

Run the simulation by using this for-loop to process data.

for counter = 1:20
    data = randi([0 1],30,1);
    encodedData = conEnc(gpuArray(data));
    modSignal = modPSK(encodedData);
    receivedSignal = chan(modSignal);
    demodSignal = demodPSK(receivedSignal);
    receivedBits = vDec(demodSignal);
    errors = error(data,gather(receivedBits));
end

Display the number of errors.

errors(2)

ans = 26

More About
Array Processing with GPU-based System Objects

A GPU-based System object accepts typical MATLAB arrays or gpuArray objects. The output signal
data type matches the input signal data type.
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• When the input signal to the GPU-based System object is a gpuArray object, calculations take
place entirely on the GPU, the data remains on the GPU, and the output signal is a gpuArray
object. Passing gpuArray arguments minimizes data transfer latency by limiting the number of
data transfers between the CPU and the GPU when your simulation runs. For more information,
see “Establish Arrays on a GPU” (Parallel Computing Toolbox).

• When the input signal is a MATLAB array, the GPU-based System object transfers the data
between the CPU and the GPU for each object call. The output signal is a MATLAB array and data
transfer latency occurs.

Version History
Introduced in R2012a

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This System object runs on a GPU, and also supports GPU array inputs. For more information, see
“Accelerate Simulation Using GPUs”.

See Also
Functions
distspec | poly2trellis | istrellis | vitdec | convenc

Objects
comm.ConvolutionalEncoder | comm.ViterbiDecoder | comm.gpu.ViterbiDecoder

Topics
GPU Arrays Support List for System Objects
“GPU Computing” (Parallel Computing Toolbox)
“Accelerate Simulation Using GPUs”
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comm.gpu.ConvolutionalInterleaver
Package: comm

Permute input symbols using shift registers with GPU

Note To use this object, you must install Parallel Computing Toolbox™ and have access to a
supported GPU. If the host computer has a GPU configured, processing uses the GPU. Otherwise,
processing uses the CPU. For more information about GPUs, see “GPU Computing” (Parallel
Computing Toolbox).

Description
The comm.gpu.ConvolutionalInterleaver System object permutes the symbols in the input
sequence with a graphics processing unit (GPU).

To permute the symbols in the input sequence:

1 Create the comm.gpu.ConvolutionalInterleaver object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
intrlvr = comm.gpu.ConvolutionalInterleaver
intrlvr = comm.gpu.ConvolutionalInterleaver(Name=Value)
intrlvr = comm.gpu.ConvolutionalInterleaver(m,b,ic)

Description

intrlvr = comm.gpu.ConvolutionalInterleaver creates a GPU-based convolutional
interleaver System object.

intrlvr = comm.gpu.ConvolutionalInterleaver(Name=Value) sets properties using one or
more name-value arguments. For example, NumRegisters=10 specifies the number of internal shift
registers.

intrlvr = comm.gpu.ConvolutionalInterleaver(m,b,ic) sets the NumRegisters property
to m, the RegisterLengthStep property to b, and the InitialConditions property to ic.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.
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If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

NumRegisters — Number of internal shift registers
6 (default) | positive integer

Number of internal shift registers, specified as a positive integer.
Data Types: double

RegisterLengthStep — Number of additional symbols that fit in each successive shift
register
2 (default) | positive integer

Number of additional symbols that fit in each successive shift register, specified as a positive integer.
The first register holds zero symbols.
Data Types: double

InitialConditions — Initial conditions of shift registers
0 (default) | numeric scalar | column vector

Initial conditions of the shift registers, specified as one of these values.

• Scalar — All shift registers, except the first one, store the same specified value.
• Column vector — If the length of the column vector equals the value of the NumRegisters

property, then the kth shift register stores the kth element of the specified vector.

You do not need to specify a value for the first shift register, which has zero delay. Because the first
shift register has zero delay, the object ignores the first element of this property.
Data Types: double

Usage

Syntax
intrlvseq = intrlvr(inputseq)

Description

intrlvseq = intrlvr(inputseq) permutes the input sequence of symbols inputseq by using a
set of shift registers. If the host computer has a GPU configured, processing uses the GPU. Otherwise,
processing uses the CPU. The output is the interleaved sequence.

For information about delays, see “Delays of Convolutional Interleaving and Deinterleaving” on page
3-661.
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Input Arguments

inputseq — Sequence of symbols
column vector

Sequence of symbols, specified as a column vector.
Data Types: double | single | uint32 | int32 | logical

Output Arguments

intrlvseq — Interleaved sequence of symbols
column vector

Interleaved sequence of symbols, returned as a column vector with the same data type and size as the
inputseq input.
Data Types: double | single | uint32 | int32 | logical

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

GPU-Based Convolutionally Interleave and Deinterleave Sequence

Create GPU-based convolutional interleaver and deinterleaver System objects.

intrlvr = comm.gpu.ConvolutionalInterleaver('NumRegisters',2, ...
    'RegisterLengthStep',3);
deintrlvr = comm.gpu.ConvolutionalDeinterleaver('NumRegisters',2, ...
    'RegisterLengthStep',3);

Generate a random data sequence. Pass the data sequence through the interleaver and then the
deinterleaver.

data = (0:20)';
intrlvData = intrlvr(data);
deintrlvData = deintrlvr(intrlvData);

Display the original sequence, interleaved sequence, and restored sequence.

[data intrlvData deintrlvData]
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ans = 21×3

     0     0     0
     1     0     0
     2     2     0
     3     0     0
     4     4     0
     5     0     0
     6     6     0
     7     1     1
     8     8     2
     9     3     3
      ⋮

The delay through the interleaver and deinterleaver pair is equal to the product of the
NumRegisters and RegisterLengthStep properties.

intrlvDelay = intrlvr.NumRegisters * intrlvr.RegisterLengthStep

intrlvDelay = 6

After accounting for this delay, verify that the original and deinterleaved data are identical.

numSymErrors = symerr(data(1:end-intrlvDelay), ...
    deintrlvData(1+intrlvDelay:end))

numSymErrors = 0

More About
Delays of Convolutional Interleaving and Deinterleaving

The total delay due to a convolutional interleaver and deinterleaver pair is N × slope × (N – 1).

• N is the number of registers and equals the value of the NumRegisters property
• slope is the register length step and equals the value of the RegisterLengthStep property

This diagram shows the structure of a general convolutional interleaver comprised of a set of shift
registers, each having a specified delay shown as D(1), D(2),..., D(N), and a commutator to switch
input and output symbols through registers. The kth shift register holds D(k) symbols, where k = 1, 2,
3, … N. The kth shift register has a delay value of ((k–1) × slope). With each new input symbol, the
commutator switches to a new register and shifts in the new symbol while shifting out the oldest
symbol in that register. When the commutator reaches the Nth register, upon the next new input, the
commutator returns to the first register.
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Array Processing with GPU-based System Objects

A GPU-based System object accepts typical MATLAB arrays or gpuArray objects. The output signal
data type matches the input signal data type.

• When the input signal to the GPU-based System object is a gpuArray object, calculations take
place entirely on the GPU, the data remains on the GPU, and the output signal is a gpuArray
object. Passing gpuArray arguments minimizes data transfer latency by limiting the number of
data transfers between the CPU and the GPU when your simulation runs. For more information,
see “Establish Arrays on a GPU” (Parallel Computing Toolbox).

• When the input signal is a MATLAB array, the GPU-based System object transfers the data
between the CPU and the GPU for each object call. The output signal is a MATLAB array and data
transfer latency occurs.

Version History
Introduced in R2012a

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This System object runs on a GPU, and also supports GPU array inputs. For more information, see
“Accelerate Simulation Using GPUs”.

See Also
Objects
comm.gpu.ConvolutionalDeinterleaver | comm.ConvolutionalDeinterleaver |
comm.ConvolutionalInterleaver | gpuArray

Functions
convintrlv | convdeintrlv

Blocks
Convolutional Interleaver | Convolutional Deinterleaver
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Topics
“Interleaving”
GPU Arrays Support List for System Objects
“GPU Computing” (Parallel Computing Toolbox)
“Accelerate Simulation Using GPUs”
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comm.gpu.ConvolutionalDeinterleaver
Package: comm

Deinterleave symbols using set of shift registers with GPU

Note To use this object, you must install Parallel Computing Toolbox™ and have access to a
supported GPU. If the host computer has a GPU configured, processing uses the GPU. Otherwise,
processing uses the CPU. For more information about GPUs, see “GPU Computing” (Parallel
Computing Toolbox).

Description
The comm.gpu.ConvolutionalDeinterleaver System object deinterleaves the symbols in the
input sequence with a graphics processing unit (GPU).

To deinterleave the symbols in the input sequence with GPU:

1 Create the comm.gpu.ConvolutionalDeinterleaver object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
deintrlvr = comm.gpu.ConvolutionalDeinterleaver
deintrlvr = comm.gpu.ConvolutionalDeinterleaver(Name=Value)
intrlvr = comm.gpu.ConvolutionalDeinterleaver(m,b,ic)

Description

deintrlvr = comm.gpu.ConvolutionalDeinterleaver creates a default convolutional
deinterleaver System object.

deintrlvr = comm.gpu.ConvolutionalDeinterleaver(Name=Value) sets “Properties” on
page 3-664 using one or more name-value arguments. For example, NumRegisters=10 specifies
the number of internal shift registers.

intrlvr = comm.gpu.ConvolutionalDeinterleaver(m,b,ic) sets the NumRegisters
property to m, the RegisterLengthStep property to b, and the InitialConditions property to
ic.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.
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If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

NumRegisters — Number of internal shift registers
6 (default) | positive integer

Number of internal shift registers, specified as a positive integer.
Data Types: double

RegisterLengthStep — Number of additional symbols that fit in each successive shift
register
2 (default) | positive integer

Number of additional symbols that fit in each successive shift register, specified as a positive integer.
The first register holds zero symbols.
Data Types: double

InitialConditions — Initial conditions of shift registers
0 (default) | numeric scalar | column vector

Initial conditions of the shift registers, specified as one of these values.

• Scalar — All shift registers, except the last one, store the same specified value.
• Column vector — If the length of the column vector equals the value of the NumRegisters

property, then the kth shift register stores the (N–k+1)th element of the specified vector. N is the
total number of shift registers.

You do not need to specify a value for the first shift register, which has zero delay. Because the first
shift register has zero delay, the object ignores the first element of this property.
Data Types: double

Usage

Syntax
deintrlvseq = deintrlvr(intrlvseq)

Description

deintrlvseq = deintrlvr(intrlvseq) deinterleaves the input sequence of symbols inputseq
by using a set of shift registers. The output is the deinterleaved sequence.

For information about delays, see “Delays of Convolutional Interleaving and Deinterleaving” on page
3-667.
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Input Arguments

intrlvseq — Interleaved sequence of symbols
column vector

Interleaved sequence of symbols, specified as a column vector. This sequence must be one that was
interleaved using the comm.gpu.ConvolutionalInterleaver System object or
comm.ConvolutionalInterleaver System object.

To decrease data transfer latency, format the input signal as a gpuArray object. For more
information, see “Array Processing with GPU-based System Objects” on page 3-668.
Data Types: double | single | uint32 | int32

Output Arguments

deintrlvseq — Deinterleaved sequence of symbols
column vector

Deinterleaved sequence of symbols, returned as a column vector with the same data type and size as
the intrlvseq input.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

GPU-Based Convolutionally Interleave and Deinterleave Sequence

Create GPU-based convolutional interleaver and deinterleaver System objects.

intrlvr = comm.gpu.ConvolutionalInterleaver('NumRegisters',2, ...
    'RegisterLengthStep',3);
deintrlvr = comm.gpu.ConvolutionalDeinterleaver('NumRegisters',2, ...
    'RegisterLengthStep',3);

Generate a random data sequence. Pass the data sequence through the interleaver and then the
deinterleaver.

data = (0:20)';
intrlvData = intrlvr(data);
deintrlvData = deintrlvr(intrlvData);

Display the original sequence, interleaved sequence, and restored sequence.
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[data intrlvData deintrlvData]

ans = 21×3

     0     0     0
     1     0     0
     2     2     0
     3     0     0
     4     4     0
     5     0     0
     6     6     0
     7     1     1
     8     8     2
     9     3     3
      ⋮

The delay through the interleaver and deinterleaver pair is equal to the product of the
NumRegisters and RegisterLengthStep properties.

intrlvDelay = intrlvr.NumRegisters * intrlvr.RegisterLengthStep

intrlvDelay = 6

After accounting for this delay, verify that the original and deinterleaved data are identical.

numSymErrors = symerr(data(1:end-intrlvDelay), ...
    deintrlvData(1+intrlvDelay:end))

numSymErrors = 0

More About
Delays of Convolutional Interleaving and Deinterleaving

The total delay due to a convolutional interleaver and deinterleaver pair is N × slope × (N – 1).

• N is the number of registers and equals the value of the NumRegisters property
• slope is the register length step and equals the value of the RegisterLengthStep property

This diagram shows the structure of a general convolutional interleaver comprised of a set of shift
registers, each having a specified delay shown as D(1), D(2),..., D(N), and a commutator to switch
input and output symbols through registers. The kth shift register holds D(k) symbols, where k = 1, 2,
3, … N. The kth shift register has a delay value of ((k–1) × slope). With each new input symbol, the
commutator switches to a new register and shifts in the new symbol while shifting out the oldest
symbol in that register. When the commutator reaches the Nth register, upon the next new input, the
commutator returns to the first register.
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Array Processing with GPU-based System Objects

A GPU-based System object accepts typical MATLAB arrays or gpuArray objects. The output signal
data type matches the input signal data type.

• When the input signal to the GPU-based System object is a gpuArray object, calculations take
place entirely on the GPU, the data remains on the GPU, and the output signal is a gpuArray
object. Passing gpuArray arguments minimizes data transfer latency by limiting the number of
data transfers between the CPU and the GPU when your simulation runs. For more information,
see “Establish Arrays on a GPU” (Parallel Computing Toolbox).

• When the input signal is a MATLAB array, the GPU-based System object transfers the data
between the CPU and the GPU for each object call. The output signal is a MATLAB array and data
transfer latency occurs.

Version History
Introduced in R2012a

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This System object runs on a GPU, and also supports GPU array inputs. For more information, see
“Accelerate Simulation Using GPUs”.

See Also
Objects
comm.gpu.ConvolutionalInterleaver | comm.ConvolutionalDeinterleaver |
comm.ConvolutionalInterleaver | gpuArray

Functions
convintrlv | convdeintrlv

Blocks
Convolutional Interleaver | Convolutional Deinterleaver
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Topics
“Interleaving”
GPU Arrays Support List for System Objects
“GPU Computing” (Parallel Computing Toolbox)
“Accelerate Simulation Using GPUs”
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comm.gpu.LDPCDecoder
Package: comm

Decode binary low-density parity-check (LDPC) code with GPU

Note To use this object, you must install Parallel Computing Toolbox™ and have access to a
supported GPU. If the host computer has a GPU configured, processing uses the GPU. Otherwise,
processing uses the CPU. For more information about GPUs, see “GPU Computing” (Parallel
Computing Toolbox).

Description
The comm.gpu.LDPCDecoder System object uses the belief propagation algorithm to decode a
binary LDPC code, which is input to the object as the soft-decision output (log-likelihood ratio of
received bits) from demodulation. The object decodes generic binary LDPC codes where no patterns
in the parity-check matrix are assumed. For more information, see “Belief Propagation Decoding” on
page 3-676.

To decode an LDPC-encoded signal:

1 Create the comm.gpu.LDPCDecoder object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
gpu_ldpcdecoder = comm.gpu.LDPCDecoder
gpu_ldpcdecoder = comm.gpu.LDPCDecoder(parity)
gpu_ldpcdecoder = comm.gpu.LDPCDecoder( ___ ,Name,Value)

Description

gpu_ldpcdecoder = comm.gpu.LDPCDecoder creates a GPU-based binary LDPC decoder System
object. This object performs LDPC decoding based on the specified parity-check matrix.

gpu_ldpcdecoder = comm.gpu.LDPCDecoder(parity) sets the ParityCheckMatrix property
to parity and creates a GPU-based LDPC decoder System object. The parity input must be
specified as described by the ParityCheckMatrix property.

gpu_ldpcdecoder = comm.gpu.LDPCDecoder( ___ ,Name,Value) sets properties using one or
more name-value pairs, in addition to inputs from any of the prior syntaxes. For example,
comm.LDPCDecoder('DecisionMethod','Soft decision') configures an LDPC decoder
System object to decode data using the soft-decision method and output log-likelihood ratios of data
type double. Enclose each property name in quotes.
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Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

ParityCheckMatrix — Parity-check matrix
dvbs2ldpc(1/2) (default) | sparse binary matrix | nonsparse index matrix

Parity-check matrix, specified as a sparse (N – K)-by-N binary-valued matrix. N is the length of the
received signal and must be in the range (0, 231). K is the length of the uncoded message and must be
less than N. The last (N – K) columns in the parity-check matrix must be an invertible matrix in the
Galois field of order 2, gf(2).

You can also specify the parity-check matrix as a two-column nonsparse index matrix, I, that defines
the row and column indices of the 1s in the parity-check matrix such that
sparse(I(:,1),I(:,2),1).

This property accepts numeric data types. When you set this property to a sparse binary matrix, this
property also accepts the logical data type.

The default value uses the dvbs2ldpc function to configure a sparse parity-check matrix for half-rate
LDPC coding, as specified in the DVB-S.2 standard.
Example: dvbs2ldpc(R,'indices') configures the index matrix for the DVB-S.2 standard, where R
is the code rate, and 'indices' specifies the output format of dvbs2ldpc as a two-column double-
precision matrix that defines the row and column indices of the 1s in the parity-check matrix.
Data Types: double | logical

OutputValue — Output value format
'Information part' (default) | 'Whole codeword'

Output value format, specified as one of these values:

• 'Information part' — The object outputs a K-by-1 column vector containing only the
information-part of the received log-likelihood ratio vector. K is the length of the uncoded
message.

• 'Whole codeword' — The object outputs an N-by-1 column vector containing the whole log-
likelihood ratio vector. N is the length of the received signal.

N and K must align with the dimension of the (N–K)-by-K parity-check matrix.

Data Types: char

DecisionMethod — Decision method
'Hard decision' (default) | 'Soft decision'

Decision method used for decoding, specified as one of these values:
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• 'Hard decision' — The object outputs decoded data of data type logical.
• 'Soft decision' — The object outputs log-likelihood ratios of data type double.

Data Types: char

IterationTerminationCondition — Condition for iteration termination
'Maximum iteration count' (default) | 'Parity check satisfied'

Condition for iteration termination, specified as one of these values:

• 'Maximum iteration count' — Decoding terminates after the number of iterations specified
by the MaximumIterationCount property.

• 'Parity check satisfied' — Decoding terminates after all parity checks are satisfied. If not
all parity checks are satisfied, decoding terminates after the number of iterations specified by the
MaximumIterationCount property.

Data Types: char

MaximumIterationCount — Maximum number of decoding iterations
50 (default) | positive integer

Maximum number of decoding iterations, specified as a positive integer.
Data Types: double

NumIterationsOutputPort — Output number of iterations performed
false (default) | true

Output number of iterations executed, specified as false or true. To output the number of iterations
executed, set this property to true.
Data Types: logical

FinalParityChecksOutputPort — Output final parity checks
false (default) | true

Output final parity checks, specified as false or true. To output the final calculated parity checks,
set this property to true.
Data Types: logical

Usage

Syntax
y = gpu_ldpcdecoder(x)
[y,numiter] = gpu_ldpcdecoder(x)
[y,parity] = gpu_ldpcdecoder(x)
[y,numiter,parity] = gpu_ldpcdecoder(x)
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Description

y = gpu_ldpcdecoder(x) decodes input data using an LDPC code based on the default parity-
check matrix.

[y,numiter] = gpu_ldpcdecoder(x) returns the decoded data, y, and number of iterations
performed, numiter. To use this syntax, set the NumIterationsOutputPort property to true.

[y,parity] = gpu_ldpcdecoder(x) returns the decoded data, y, and final parity checks,
parity. To use this syntax, set the FinalParityChecksOutputPort property to true.

[y,numiter,parity] = gpu_ldpcdecoder(x) returns the decoded data, number of iterations
performed, and final parity checks. To use this syntax, set the NumIterationsOutputPort and
FinalParityChecksOutputPort properties to true.

Input Arguments

x — Log-likelihood ratios
column vector

Log-likelihood ratios, specified as an N-by-1 column vector containing the soft-decision output from
demodulation. N is the number of bits in the LDPC codeword before modulation. Each element is the
log-likelihood ratio for a received bit. Element values are more likely to be 0 if the log-likelihood ratio
is positive. The first K elements correspond to the information-part of the input message.

To decrease data transfer latency, format the input signal as a gpuArray object. For more
information, see “Array Processing with GPU-based System Objects” on page 3-676.
Data Types: double

Output Arguments

y — Decoded data
column vector

Decoded data, returned as a column vector. The DecisionMethod property specifies whether the
object outputs hard decisions or soft decisions (log-likelihood ratios).

• If the OutputValue property is set to 'Information part', the output includes only the
information-part of the received log-likelihood ratio vector.

• If the OutputValue property is set to 'Whole codeword', the output includes the whole log-
likelihood ratio vector.

Data Types: double | logical

numiter — Number of executed decoding iterations
positive integer

Number of executed decoding iterations, returned as a positive integer.

Dependencies

To enable this output, set the NumIterationsOutputPort property to true.

parity — Final parity checks
column vector
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Final parity checks after decoding the input LDPC code, returned as an (N-K)-by-1 column vector. N is
the number of bits in the LDPC codeword before modulation. K is the length of the uncoded message.
Dependencies

To enable this output, set the FinalParityChecksOutputPort property to true.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

LDPC Encode and Decode QPSK-Modulated Signal Using GPU

Using a comm.gpu.LDPCDecoder System Object™ to decode the signal, transmit an LDPC-encoded,
QPSK-modulated bit stream through an AWGN channel. After adding AWGN, demodulate and decode
the received signal. Compute the error statistics for the reception of uncoded and LDPC-coded
signals. For more information, see “Accelerate Simulation Using GPUs”.

Define simulation variables. Create an LDPC encoder configuration object and System objects for the
LDPC decoder, QPSK modulator, and QPSK demodulators.

M = 4; % Modulation order (QPSK)
snr = [0.25,0.5,0.75,1.0,1.25];
numFrames = 10;
gpuldpcDecoder = comm.gpu.LDPCDecoder;
encoderCfg = ldpcEncoderConfig(gpuldpcDecoder.ParityCheckMatrix);
pskMod = comm.PSKModulator(M,'BitInput',true);
pskDemod = comm.PSKDemodulator(M,'BitOutput',true,...
    'DecisionMethod','Approximate log-likelihood ratio');
pskuDemod = comm.PSKDemodulator(M,'BitOutput',true,...
    'DecisionMethod','Hard decision');
errRate = zeros(1,length(snr));
uncErrRate = zeros(1,length(snr));

For each SNR setting and all frames, compute the error statistics for uncoded and LDPC-coded
signals.

for ii = 1:length(snr)
    ttlErr = 0;
    ttlErrUnc = 0;
    pskDemod.Variance = 1/10^(snr(ii)/10); % Set variance
    for counter = 1:numFrames
        data = logical(randi([0 1],32400,1));
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        % Transmit and receiver uncoded signal data
        mod_uncSig = pskMod(data);
        rx_uncSig = awgn(mod_uncSig,snr(ii),'measured');
        demod_uncSig = pskuDemod(rx_uncSig);
        numErrUnc = biterr(data,demod_uncSig);
        ttlErrUnc = ttlErrUnc + numErrUnc;
        % Transmit and receive LDPC coded signal data
        encData = ldpcEncode(data,encoderCfg);
        modSig = pskMod(encData);
        rxSig = awgn(modSig,snr(ii),'measured');
        demodSig = pskDemod(rxSig);
        rxBits = gpuldpcDecoder(demodSig);
        numErr = biterr(data,rxBits);
        ttlErr = ttlErr + numErr;
    end
    ttlBits = numFrames*length(rxBits);
    uncErrRate(ii) = ttlErrUnc/ttlBits;
    errRate(ii) = ttlErr/ttlBits;
end

Plot the error statistics for uncoded and LDPC-coded data.

plot(snr,uncErrRate,snr,errRate)
legend('Uncoded','LDPC coded')
xlabel('SNR (dB)')
ylabel('BER')
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Limitations
• The comm.gpu.LDPCDecoder System object cannot be included in MATLAB System blocks.

More About
Array Processing with GPU-based System Objects

A GPU-based System object accepts typical MATLAB arrays or gpuArray objects. The output signal
data type matches the input signal data type.

• When the input signal to the GPU-based System object is a gpuArray object, calculations take
place entirely on the GPU, the data remains on the GPU, and the output signal is a gpuArray
object. Passing gpuArray arguments minimizes data transfer latency by limiting the number of
data transfers between the CPU and the GPU when your simulation runs. For more information,
see “Establish Arrays on a GPU” (Parallel Computing Toolbox).

• When the input signal is a MATLAB array, the GPU-based System object transfers the data
between the CPU and the GPU for each object call. The output signal is a MATLAB array and data
transfer latency occurs.

Algorithms
This object performs LDPC decoding using the belief propagation algorithm, also known as a
message-passing algorithm.

Belief Propagation Decoding

The implementation of the belief propagation algorithm is based on the decoding algorithm presented
by Gallager [2].

For transmitted LDPC-encoded codeword c = c0, c1, …, cn-1, the input to the LDPC decoder is the log-

likelihood ratio (LLR) value L(ci) = log
Pr(ci = 0 channel output for ci)
Pr(ci = 1 channel output for ci)

.

In each iteration, the key components of the algorithm are updated based on these equations:

L(r ji) = 2 atanh ∏
i′ ∈ V j\i

tanh 1
2L(qi′ j) ,

L(qi j) = L(ci) + ∑
j′ ∈ Ci\ j

L(r j′i), initialized as L(qi j) = L(ci) before the first iteration, and

L(Qi) = L(ci) + ∑
j′ ∈ Ci

L(r j′i).
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At the end of each iteration, L(Qi) contains the updated estimate of the LLR value for transmitted bit
ci. The value L(Qi) is the soft-decision output for ci. If L(Qi) < 0, the hard-decision output for ci is 1.
Otherwise, the hard-decision output for ci is 0.

If decoding is configured to stop when all of the parity checks are satisfied, the algorithm verifies the
parity-check equation (H c' = 0) at the end of each iteration. When all of the parity checks are
satisfied, or if the maximum number of iterations is reached, decoding stops.

Index sets Ci\ j and V j\i are based on the parity-check matrix (PCM). Index sets Ci and Vj correspond
to all nonzero elements in column i and row j of the PCM, respectively.

This figure shows the computation of these index sets in a given PCM for i = 5 and j = 3.

To avoid infinite numbers in the algorithm equations, atanh(1) and atanh(–1) are set to 19.07 and –
19.07, respectively. Due to finite precision, MATLAB returns 1 for tanh(19.07) and –1 for tanh(-19.07).

Version History
Introduced in R2012a

References
[1] Gallager, Robert G. Low-Density Parity-Check Codes. Cambridge, MA: MIT Press, 1963.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This System object runs on a GPU, and also supports GPU array inputs. For more information, see
“Accelerate Simulation Using GPUs”.
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See Also
Objects
ldpcDecoderConfig | comm.BCHDecoder | gpuArray

Functions
ldpcEncode | ldpcDecode | dvbs2ldpc

Blocks
LDPC Decoder

Topics
GPU Arrays Support List for System Objects
“GPU Computing” (Parallel Computing Toolbox)
“Accelerate Simulation Using GPUs”
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comm.gpu.PSKDemodulator
Package: comm

Demodulate signals using M-ary PSK method with GPU

Note To use this object, you must install Parallel Computing Toolbox™ and have access to a
supported GPU. If the host computer has a GPU configured, processing uses the GPU. Otherwise,
processing uses the CPU. For more information about GPUs, see “GPU Computing” (Parallel
Computing Toolbox).

Description
The comm.gpu.PSKDemodulator object demodulates a signal that was modulated using the M-ary
phase shift keying (M-PSK) method implemented on a graphics processing unit (GPU). The input is a
baseband representation of the modulated signal.

To demodulate a signal that was modulated using the M-PSK method:

1 Create the comm.gpu.PSKDemodulator object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
gpumpskdemod = comm.PSKDemodulator
gpumpskdemod = comm.PSKDemodulator(Name=Value)
gpumpskdemod = comm.PSKDemodulator(M,phase,Name=Value)

Description

gpumpskdemod = comm.PSKDemodulator creates a GPU-based demodulator System object that
demodulates the input signal using the M-PSK method.

gpumpskdemod = comm.PSKDemodulator(Name=Value) sets properties using one or more name-
value arguments. For example, comm.gpu.PSKDemodulator(DecisionMethod="Hard
decision") specifies demodulation using the hard-decision method.

gpumpskdemod = comm.PSKDemodulator(M,phase,Name=Value) sets the ModulationOrder
property to M, sets the PhaseOffset property to phase, and sets optional name-value arguments.
Specify phase in radians.

 comm.gpu.PSKDemodulator

3-679



Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

ModulationOrder — Number of points in signal constellation
8 (default) | positive integer

Number of points in signal constellation, specified as a positive integer.
Data Types: double

PhaseOffset — Phase of zeroth point in constellation
pi/8 (default) | scalar

Phase of the zeroth point in the constellation in radians, specified as a scalar.
Example: PhaseOffset=0 aligns the QPSK signal constellation points on the axes {(1,0), (0,j), (-1,0),
(0,-j)}.
Data Types: double

BitOutput — Option to output data as bits
0 or false (default) | 1 or true

Option to output data as bits, specified as a logical 0 (false) or 1 (true).

• Set this property to false to output data as integer values in the range [0, (ModulationOrder –
1)] with length equal to the input data vector.

• Set this property to true to output data as a column vector of bit values with length equal to
log2(ModulationOrder) times the number of demodulated symbols.

Data Types: logical

SymbolMapping — Symbol encoding mapping of constellation bits
'Gray' (default) | 'Binary' | 'Custom'

Symbol encoding mapping of the constellation bits, specified as 'Gray', 'Binary', or 'Custom'.
Each integer or group of log2(ModulationOrder) bits corresponds to one symbol.

• When you set this property to 'Gray', the object maps symbols to a Gray-encoded signal
constellation.

• When you set this property to 'Binary', the object maps symbols to a natural binary-encoded
signal constellation. Specifically, the complex value ej(PhaseOffset + (2πm/ModulationOrder)), where m is an
integer in the range [0, (ModulationOrder – 1)].
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• When you set this property to 'Custom', the object maps symbols to the signal constellation
defined in the CustomSymbolMapping property.

CustomSymbolMapping — Custom symbol encoding
0:7 (default) | integer vector

Custom symbol encoding, specified as an integer vector with length equal to the value of
ModulationOrder and unique values in the range [0, (ModulationOrder – 1)]. The first element of
this vector corresponds to the constellation point at an angle of 0 + PhaseOffset, with subsequent
elements running counterclockwise. The last element corresponds to the constellation point at an
angle of –2π/ModulationOrder + PhaseOffset.

Dependencies

To enable this property, set the SymbolMapping property to 'Custom'.
Data Types: double

DecisionMethod — Demodulation decision method
'Hard decision' (default) | 'Log-likelihood ratio' | 'Approximate log-likelihood
ratio'

Demodulation decision method, specified as 'Hard decision', 'Log-likelihood ratio', or
'Approximate log-likelihood ratio'. When you set the BitOutput property to false, the
object always performs hard-decision demodulation.

Dependencies

To enable this property, set the BitOutput property to true.

VarianceSource — Source of noise variance
'Property' (default) | 'Input port'

Source of noise variance, specified as 'Property' or 'Input port'.

Dependencies

To enable this property, set the BitOutput property to true and the DecisionMethod property to
'Log-likelihood ratio' or 'Approximate log-likelihood ratio'.

Variance — Noise variance
1 (default) | positive scalar

Noise variance, specified as a positive scalar.

Tips

The exact LLR algorithm computes exponentials using finite precision arithmetic. For computations
involving very large positive or negative magnitudes, the exact LLR algorithm yields:

• Inf or -Inf if the noise variance is a very large value
• NaN if the noise variance and signal power are both very small values
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The approximate LLR algorithm does not compute exponentials. You can avoid Inf, -Inf, and NaN
results by using the approximate LLR algorithm.

Dependencies

To enable this property, set the BitOutput property to true, the DecisionMethod property to
'Log-likelihood ratio' or 'Approximate log-likelihood ratio', and the
VarianceSource property to 'Property'.
Data Types: double

OutputDataType — Data type of output
'Full precision' (default)

This property is read-only.

Data type of the output, specified as 'Full precision'. The output data type matches the input
data type.

Usage

Syntax
y = gpumpskdemod(x)
y = gpumpskdemod(x,var)

Description

y = gpumpskdemod(x) applies M-PSK demodulation to the input signal and returns the
demodulated signal.

y = gpumpskdemod(x,var) uses soft decision demodulation and noise variance var. This syntax
applies when you set the BitOutput property to true, the DecisionMethod property to
'Approximate log-likelihood ratio' or 'Log-likelihood ratio', and the
VarianceSource property to 'Input port'.

Input Arguments

x — M-PSK-modulated signal
scalar | column vector

M-PSK-modulated signal, specified as a scalar or column vector.

To decrease data transfer latency, format the input signal as a gpuArray object. For more
information, see “Array Processing with GPU-Based System Objects” on page 3-692.
Data Types: double | single

var — Noise variance
scalar

Noise variance, specified as a scalar.
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Dependencies

To enable this argument, set the VarianceSource property to 'Input port', the BitOutput
property to true, and the DecisionMethod property to 'Approximate log-likelihood ratio'
or 'Log-likelihood ratio'.
Data Types: single | double

Output Arguments

y — Output signal
scalar | column vector

Output signal, returned as a scalar or column vector. To specify whether the object outputs values as
integers or bits, use the BitOutput property. The output data type matches the input data type.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to comm.gpu.PSKDemodulator
constellation Calculate or plot ideal signal constellation

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

GPU PSK Demodulator

Create a GPU PSK modulator and demodulator pair.

gpuMod = comm.gpu.PSKModulator;
gpuDemod = comm.gpu.PSKDemodulator;

Generate random data symbols. Modulate the data.

txData = randi([0 7],1000,1);
txSig = gpuMod(txData);

Pass the signal through an AWGN channel.

rxSig = awgn(txSig,20);

Demodulate the received signal.

rxData = gpuDemod(rxSig);
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Determine the number of symbol errors.

numSymErrors = symerr(txData,rxData)

numSymErrors =

     0

Pass Data to GPU-Based System Objects Using gpuarray Input

In this example, you transmit 1/2 rate convolutionally encoded 16-PSK-modulated data through an
AWGN channel, demodulate and decode the received data, and assess the error rate of the received
data. For this implementation, you use the GPU-based Viterbi decoder System object™ to process
multiple signal frames in a single call and then use gpuArray (Parallel Computing Toolbox) objects to
pass data into and out of the GPU-based System objects.

Create GPU-based System objects for PSK modulation and demodulation, convolutional encoding,
Viterbi decoding, and AWGN. Create a System object for error rate calculation.

M = 16; % Modulation order
numframes = 100;

gpuconvenc = comm.gpu.ConvolutionalEncoder;
gpupskmod = comm.gpu.PSKModulator(M,pi/16,BitInput=true);
gpupskdemod = comm.gpu.PSKDemodulator(M,pi/16,BitOutput=true);
gpuawgn = comm.gpu.AWGNChannel( ...
    NoiseMethod='Signal to noise ratio (SNR)',SNR=30);
gpuvitdec = comm.gpu.ViterbiDecoder( ...
    InputFormat='Hard', ...
    TerminationMethod='Truncated', ...
    NumFrames=numframes);
errorrate = comm.ErrorRate(ComputationDelay=0,ReceiveDelay=0);

Due to the computational complexity of the Viterbi decoding algorithm, loading multiple frames of
signal data on the GPU and processing them in one call can reduce overall simulation time. To enable
this implementation, the GPU-based Viterbi decoder System object contains a NumFrames property.
Instead of using an external for-loop to process individual frames of data, you use the NumFrames
property to configure the GPU-based Viterbi decoder System object to process multiple data frames.
Generate numframes of binary data frames. To efficiently manage the data frames for processing by
the GPU-based System objects, represent the transmission data frames as a gpuArray object.

numsymbols = 50;
rate = 1/2; 
dataA = gpuArray.randi([0 1],rate*numsymbols*log2(M),numframes);

The error rate object does not support gpuArray objects or multichannel data, so you must retrieve
the array from the GPU by using the gather (Parallel Computing Toolbox) function to compute the
error rate on each frame of data in a for-loop. Perform the GPU-based encoding, modulation, AWGN,
and demodulation inside a for-loop.

for ii = 1:numframes
    encodedData = gpuconvenc(dataA(:,ii));
    modsig = gpupskmod(encodedData);
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    noisysig = gpuawgn(modsig);
    demodsig(:,ii) = gpupskdemod(noisysig);
end

The GPU-based Viterbi decoder performs multiframe processing without a for-loop.

rxbits = gpuvitdec(demodsig(:));

errorStats = errorrate(gather(dataA(:)),gather(rxbits));
fprintf('BER = %f\nNumber of errors = %d\nTotal bits = %d', ...
    errorStats(1), errorStats(2), errorStats(3))

BER = 0.009800
Number of errors = 98
Total bits = 10000

More About
Hard-Decision BPSK Demodulation

The signal preprocessing required for BPSK demodulation depends on the configuration.

This figure shows the hard-decision BPSK demodulation signal diagram for the trivial phase offset
(multiple of π/2) configuration.

This figure shows the hard-decision BPSK demodulation floating-point signal diagram for the
nontrivial phase offset configuration.
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This figure shows the hard-decision BPSK demodulation fixed-point signal diagram for the nontrivial
phase offset configuration.

3 System Objects

3-686



Hard-Decision QPSK Demodulation

The signal preprocessing required for QPSK demodulation depends on the configuration.

This figure shows the hard-decision QPSK demodulation signal diagram for the trivial phase offset
(odd multiple of π/4) configuration.
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This figure shows the hard-decision QPSK demodulation floating-point signal diagram for the
nontrivial phase offset configuration.
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This figure shows the hard-decision QPSK demodulation fixed-point signal diagram for the nontrivial
phase offset configuration.

Hard-Decision Higher-Order PSK

The signal preprocessing required for higher order PSK demodulation depends on the configuration.

This figure shows the hard-decision 8-PSK demodulation signal diagram for the trivial phase offset
(odd multiple of π/8) configuration.

 comm.gpu.PSKDemodulator

3-689



This figure shows the hard-decision 8-PSK demodulation fixed-point signal diagram for trivial phase
offset (odd multiple of π/8) configuration.
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This figure shows the hard-decision M-PSK demodulation floating-point signal diagram for the
nontrivial phase offset configuration.
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For M > 8, to improve speed and implementation costs, no derotation arithmetic is performed for
trivial case (specifically, when phase offset is 0, π/2, π, or 3π/2).

Also, for M > 8, only double and single input types are supported.

Array Processing with GPU-Based System Objects

A GPU-based System object accepts typical MATLAB arrays or gpuArray objects. The output signal
data type matches the input signal data type.

• When the input signal to the GPU-based System object is a gpuArray object, calculations take
place entirely on the GPU, the data remains on the GPU, and the output signal is a gpuArray
object. Passing gpuArray arguments minimizes data transfer latency by limiting the number of
data transfers between the CPU and the GPU when your simulation runs. For more information,
see “Establish Arrays on a GPU” (Parallel Computing Toolbox).
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• When the input signal is a MATLAB array, the GPU-based System object transfers the data
between the CPU and the GPU for each object call. The output signal is a MATLAB array and data
transfer latency occurs.

Version History
Introduced in R2012a

References
[1] Proakis, John G. Digital Communications. 4th ed. New York: McGraw Hill, 2001.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This System object runs on a GPU, and also supports GPU array inputs. For more information, see
“Accelerate Simulation Using GPUs”.

See Also
Functions
pskmod | pskdemod

Objects
comm.PSKDemodulator | comm.gpu.PSKModulator | gpuArray

Blocks
M-PSK Demodulator Baseband

Topics
GPU Arrays Support List for System Objects
“GPU Computing” (Parallel Computing Toolbox)
“Accelerate Simulation Using GPUs”
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comm.gpu.PSKModulator
Package: comm

Modulate signals using M-PSK method with GPU

Note To use this object, you must install Parallel Computing Toolbox™ and have access to a
supported GPU. If the host computer has a GPU configured, processing uses the GPU. Otherwise,
processing uses the CPU. For more information about GPUs, see “GPU Computing” (Parallel
Computing Toolbox).

Description
The comm.gpu.PSKModulator object modulates a signal using the M-ary phase shift keying (M-PSK)
method implemented on a graphics processing unit (GPU). The output is a baseband representation
of the modulated signal.

To modulate a signal by using the M-PSK method:

1 Create the comm.gpu.PSKModulator object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
gpumpskmod = comm.gpu.PSKModulator
gpumpskmod = comm.gpu.PSKModulator(Name=Value)
gpumpskmod = comm.gpu.PSKModulator(M,Name=Value)
gpumpskmod = comm.gpu.PSKModulator(M,phase,Name=Value)

Description

gpumpskmod = comm.gpu.PSKModulator creates a GPU-based modulator System object, that
modulates the input signal using the M-PSK method.

gpumpskmod = comm.gpu.PSKModulator(Name=Value) sets properties using one or more name-
value arguments. For example, comm.gpu.PSKModulator(BitInput=true) specifies that input
values must be binary.

gpumpskmod = comm.gpu.PSKModulator(M,Name=Value) sets the ModulationOrder property
to M and sets optional name-value arguments.

gpumpskmod = comm.gpu.PSKModulator(M,phase,Name=Value) sets the ModulationOrder
property to M, sets the PhaseOffset property to phase, and sets optional name-value arguments.
Specify phase in radians.
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Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

ModulationOrder — Number of points in signal constellation
8 (default) | positive integer

Number of points in the signal constellation, specified as a positive integer.
Data Types: double

PhaseOffset — Phase of zeroth point of constellation
pi/8 (default) | scalar

Phase of the zeroth point of the constellation in radians, specified as a scalar.
Example: PhaseOffset=0 aligns the QPSK signal constellation points on the axes {(1,0), (0,j), (-1,0),
(0,-j)}.
Data Types: double

BitInput — Option to provide input in bits
0 or false (default) | 1 or true

Option to provide input in bits, specified as a numeric or logical 0 (false) or 1 (true).

• If you set this property to false, the input values must be integers in the range [0,
(ModulationOrder – 1)].

• If you set this property to true, the input values must be binary and the input vector length must
be an integer multiple of the number of bits per symbol, log2(ModulationOrder).

Data Types: logical

SymbolMapping — Symbol encoding mapping of constellation bits
'Gray' (default) | 'Binary' | 'Custom'

Symbol encoding mapping of the constellation bits, specified as 'Gray', 'Binary', or 'Custom'.
Each integer or group of log2(ModulationOrder) bits corresponds to one symbol.

• When you set this property to 'Gray', the object maps symbols to a Gray-encoded signal
constellation.

• When you set this property to 'Binary', the object maps symbols to a natural binary-encoded
signal constellation. Specifically, the complex value ej(PhaseOffset + (2πm/ModulationOrder)), where m is an
integer in the range [0, (ModulationOrder – 1)].
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• When you set this property to 'Custom', the object maps symbols to the signal constellation
defined in the CustomSymbolMapping property.

CustomSymbolMapping — Custom constellation encoding
0:7 (default) | integer vector

Custom symbol encoding, specified as an integer vector with length equal to the value of
ModulationOrder and unique values in the range [0, (ModulationOrder – 1)]. The first element of
this vector corresponds to the constellation point at an angle of 0 + PhaseOffset, with subsequent
elements running counterclockwise. The last element corresponds to the constellation point at an
angle of –2π/ModulationOrder + PhaseOffset.

Dependencies

To enable this property, set the SymbolMapping property to 'Custom'.
Data Types: double

OutputDataType — Output datatype
'double' (default) | 'single'

Output data type, specified as either 'double' or 'single'.

Usage

Syntax
y = gpumpskmod(x)

Description

y = gpumpskmod(x) modulates the input signal by using the M-PSK method. The output is the
modulated M-PSK baseband signal.

Input Arguments

x — Input signal
column vector

Input signal, specified as a column vector of integers or bits. The BitInput property specifies the
expected input values and vector length.

To decrease data transfer latency, format the input signal as a gpuArray object. For more
information, see “Array Processing with GPU-Based System Objects” on page 3-700.
Data Types: double | single

Output Arguments

y — M-PSK modulated baseband signal
vector

M-PSK modulated baseband signal, returned as a scalar or vector of complex-valued constellation
symbols. The OutputDataType property specifies the data type of the output.
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Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to comm.gpu.PSKModulator
constellation Calculate or plot ideal signal constellation

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

GPU PSK Modulator

Create binary data for 100, 4-bit symbols.

data = randi([0 1],400,1);

Create a 16-PSK modulator System object™ with bits as inputs and Gray-coded signal constellation.
Change the phase offset to π/16.

gpupskmod = comm.gpu.PSKModulator(16,'BitInput',true);
gpupskmod.PhaseOffset = pi/16;

Modulate and plot the data. Also, use the constellation object function to display the configured
constellation.

modData = gpupskmod(data);
scatterplot(modData)
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constellation(gpupskmod)
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Pass Data to GPU-Based System Objects Using gpuarray Input

In this example, you transmit 1/2 rate convolutionally encoded 16-PSK-modulated data through an
AWGN channel, demodulate and decode the received data, and assess the error rate of the received
data. For this implementation, you use the GPU-based Viterbi decoder System object™ to process
multiple signal frames in a single call and then use gpuArray (Parallel Computing Toolbox) objects to
pass data into and out of the GPU-based System objects.

Create GPU-based System objects for PSK modulation and demodulation, convolutional encoding,
Viterbi decoding, and AWGN. Create a System object for error rate calculation.

M = 16; % Modulation order
numframes = 100;

gpuconvenc = comm.gpu.ConvolutionalEncoder;
gpupskmod = comm.gpu.PSKModulator(M,pi/16,BitInput=true);
gpupskdemod = comm.gpu.PSKDemodulator(M,pi/16,BitOutput=true);
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gpuawgn = comm.gpu.AWGNChannel( ...
    NoiseMethod='Signal to noise ratio (SNR)',SNR=30);
gpuvitdec = comm.gpu.ViterbiDecoder( ...
    InputFormat='Hard', ...
    TerminationMethod='Truncated', ...
    NumFrames=numframes);
errorrate = comm.ErrorRate(ComputationDelay=0,ReceiveDelay=0);

Due to the computational complexity of the Viterbi decoding algorithm, loading multiple frames of
signal data on the GPU and processing them in one call can reduce overall simulation time. To enable
this implementation, the GPU-based Viterbi decoder System object contains a NumFrames property.
Instead of using an external for-loop to process individual frames of data, you use the NumFrames
property to configure the GPU-based Viterbi decoder System object to process multiple data frames.
Generate numframes of binary data frames. To efficiently manage the data frames for processing by
the GPU-based System objects, represent the transmission data frames as a gpuArray object.

numsymbols = 50;
rate = 1/2; 
dataA = gpuArray.randi([0 1],rate*numsymbols*log2(M),numframes);

The error rate object does not support gpuArray objects or multichannel data, so you must retrieve
the array from the GPU by using the gather (Parallel Computing Toolbox) function to compute the
error rate on each frame of data in a for-loop. Perform the GPU-based encoding, modulation, AWGN,
and demodulation inside a for-loop.

for ii = 1:numframes
    encodedData = gpuconvenc(dataA(:,ii));
    modsig = gpupskmod(encodedData);
    noisysig = gpuawgn(modsig);
    demodsig(:,ii) = gpupskdemod(noisysig);
end

The GPU-based Viterbi decoder performs multiframe processing without a for-loop.

rxbits = gpuvitdec(demodsig(:));

errorStats = errorrate(gather(dataA(:)),gather(rxbits));
fprintf('BER = %f\nNumber of errors = %d\nTotal bits = %d', ...
    errorStats(1), errorStats(2), errorStats(3))

BER = 0.009800
Number of errors = 98
Total bits = 10000

More About
Array Processing with GPU-Based System Objects

A GPU-based System object accepts typical MATLAB arrays or gpuArray objects. The output signal
data type matches the input signal data type.

• When the input signal to the GPU-based System object is a gpuArray object, calculations take
place entirely on the GPU, the data remains on the GPU, and the output signal is a gpuArray
object. Passing gpuArray arguments minimizes data transfer latency by limiting the number of
data transfers between the CPU and the GPU when your simulation runs. For more information,
see “Establish Arrays on a GPU” (Parallel Computing Toolbox).
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• When the input signal is a MATLAB array, the GPU-based System object transfers the data
between the CPU and the GPU for each object call. The output signal is a MATLAB array and data
transfer latency occurs.

Algorithms
For binary-encoding, the output baseband signal maps input bits or integers to complex symbols
according to:

sn(t) = exp jπ 2n + 1
M ; n ∈ 0, 1, …, M − 1 .

When the input is configured for bits, groups of log2(M) bits represent the complex symbols for the
configured symbol mapping. The mapping can be binary encoded, Gray encoded, or custom encoded.

Gray coding has the advantage that only one bit changes between adjacent constellation points,
which results in better bit error rate performance. This table shows the mapping between the input
and output symbols for 8-PSK modulation with Gray coding.

Input Output
0 0 (000)
1 1 (001)
2 3 (011)
3 2 (010)
4 6 (110)
5 7 (111)
6 5 (101)
7 4 (100)

This constellation diagram shows the corresponding symbols and their binary values.
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Version History
Introduced in R2012a

References
[1] Proakis, John G. Digital Communications. 4th ed. New York: McGraw Hill, 2001.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This System object runs on a GPU, and also supports GPU array inputs. For more information, see
“Accelerate Simulation Using GPUs”.
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See Also
Functions
pskmod | pskdemod

Objects
comm.gpu.PSKDemodulator | comm.PSKModulator | gpuArray

Blocks
M-PSK Modulator Baseband

Topics
GPU Arrays Support List for System Objects
“GPU Computing” (Parallel Computing Toolbox)
“Accelerate Simulation Using GPUs”
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comm.gpu.TurboDecoder
Package: comm.gpu

Decode input signal using turbo decoding with GPU

Note To use this object, you must install Parallel Computing Toolbox™ and have access to a
supported GPU. If the host computer has a GPU configured, processing uses the GPU. Otherwise,
processing uses the CPU. For more information about GPUs, see “GPU Computing” (Parallel
Computing Toolbox).

Description
The comm.gpu.TurboDecoder System object decodes the input signal by using a parallel
concatenated decoding scheme on a graphics processing unit (GPU). This decoding scheme uses the
a-posteriori probability (APP) decoder as the constituent decoder. The constituent decoders use the
same trellis structure and algorithm.

To decode an input signal using a turbo decoding scheme:

1 Create the comm.gpu.TurboDecoder object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
gpuTurboDec = comm.gpu.TurboDecoder
gpuTurboDec = comm.gpu.TurboDecoder(trellis,interlvrIndices,numIter)
gpuTurboDec = comm.gpu.TurboDecoder( ___ ,Name,Value)

Description

gpuTurboDec = comm.gpu.TurboDecoder creates a GPU-based turbo decoder System object.
This object uses an APP constituent decoder to iteratively decode the parallel-concatenated
convolutionally encoded input data.

gpuTurboDec = comm.gpu.TurboDecoder(trellis,interlvrIndices,numIter) sets the
TrellisStructure property to trellis, the InterleaverIndices property to
interlvrIndices, and the NumIterations property to numIter.

gpuTurboDec = comm.gpu.TurboDecoder( ___ ,Name,Value) sets properties using one or
more name-value arguments in addition to any of the input argument combinations in previous
syntaxes. For example, 'NumIterations',10 specifies the number of decoding iterations used for
each call to the System object.
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Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

TrellisStructure — Trellis description of constituent convolutional code
poly2trellis(4, [13 15], 13) (default) | structure

Trellis description of the constituent convolutional code, specified as a structure that contains the
trellis description for a rate K ∕ N code. K is the number of input bit streams, and N is the number of
output bit streams.

Note K must be 1 for the turbo coder. For more information, see “Coding Rate” on page 3-1374.

You can either use the poly2trellis function to create the trellis structure or create it manually.
For more about this structure, see “Trellis Description of a Convolutional Code” and the istrellis
function.

The trellis structure contains these fields.

numInputSymbols — Number of symbols input to encoder
2K

Number of symbols input to the encoder, specified as an integer equal to 2K, where K is the number of
input bit streams.
Data Types: double

numOutputSymbols — Number of symbols output from encoder
2N

Number of symbols output from the encoder, specified as an integer equal to 2N, where N is the
number of output bit streams.
Data Types: double

numStates — Number of states in encoder
power of 2

Number of states in the encoder, specified as a power of 2.
Data Types: double

nextStates — Next states
matrix of integers

Next states for all combinations of current states and current inputs, specified as a matrix of integers.
The matrix size must be numStates by 2K.
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Data Types: double

outputs — Outputs
matrix of octal numbers

Outputs for all combinations of current states and current inputs, specified as a matrix of octal
numbers. The matrix size must be numStates by 2K.
Data Types: double

Data Types: struct

InterleaverIndicesSource — Source of interleaver indices
'Property' (default)

Source of interleaver indices, specified as 'Property'. The only valid setting for this property is
Property, which uses the interleaver indices that you specify in the InterleaverIndices
property.
Data Types: char | string

InterleaverIndices — Interleaver indices
(64:-1:1)' (default) | column vector of integers

Interleaver indices that define the mapping used to permute the codeword bits input to the decoder,
specified as a column vector of integers. The vector must be of length L. Each element of the vector
must be an integer in the range [1, L] and must be unique. L is the length of the decoded output
message, dec.
Data Types: double

Algorithm — Decoding algorithm
'True APP' (default)

Decoding algorithm, specified as 'True APP'. The only valid setting is 'True APP', which
implements true APP decoding.
Data Types: char | string

NumIterations — Number of decoding iterations
6 (default) | positive integer

Number of decoding iterations, specified as a positive integer. This property sets the number of
decoding iterations used for each call to the object.
Data Types: double

NumFrames — Number of independent frames
1 (default) | positive integer

Number of independent frames present in the input and output data vectors, specified as a positive
integer.
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The object segments the input vector into NumFrames segments and decodes them independently.
The output contains NumFrames decoded segments.
Data Types: double

Usage

Syntax
dec = gpuTurboDec(codeword)

Description

dec = gpuTurboDec(codeword) decodes the input data by using the parallel concatenated
convolutional coding scheme. If the host computer has a GPU configured, the processing utilizes the
GPU. Otherwise, the processing uses the CPU. The output is the decoded data.

Input Arguments

codeword — Parallel concatenated codeword
column vector

Parallel concatenated codeword, specified as a column vector.

To decrease data transfer latency, format the input signal as a gpuArray object. For more
information, see “Array Processing with GPU-based System Objects” on page 3-709.
Data Types: double | single

Output Arguments

dec — Decoded message
binary-valued column vector

Decoded message, returned as a binary-valued column vector. The output signal is the same data type
as the input. The object iterates and provides updates to the log-likelihood ratios (LLR) of the
uncoded output bits. The output of the object is the hard-decision output of the final LLR update.

When the constituent convolutional code represents a rate 1/N code, the object sets the length dec to
(M-2✕NTails)/(2✕N-1). M is the input vector length, and NTails is given by
log2(TrellisStructure.numStates)✕N. The length of dec equals the length of the interleaver
indices.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
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release Release resources and allow changes to System object property values and input
characteristics

reset Reset internal states of System object

Examples

GPU-Based Turbo Decode BPSK Modulated Data

Transmit turbo-encoded blocks of BPSK-modulated data over a AWGN channel. Decode individual
data frames by using a GPU-based turbo decoder System object and accumulate error statistics.
Display the errors statistics after processing all of the data frames.

Specify the frame length. To produce repeatable results, use the random stream property with the
seed set.

framelen = 256;
s = RandStream('mt19937ar',Seed=11);

Create a turbo encoder System object and GPU-based turbo decoder System object. Define the trellis
structure for the constituent convolutional code by using the poly2trellis function. Generate the
interleaver indices as a random column vector of unique integers that define the mapping used to
permute the input bits at the encoder and decoder by using the randperm function to generate.

intrlvrIndices = randperm(s,framelen);
trellis = poly2trellis(4,[13 15 17],13);
turboEnc = comm.TurboEncoder( ...
    TrellisStructure=trellis, ...
    InterleaverIndices=intrlvrIndices);
turboDec = comm.gpu.TurboDecoder( ...
    TrellisStructure=trellis, ...
    InterleaverIndices=intrlvrIndices, ...
    NumIterations=4);

Define the modulation order for BPSK modulation. Define the SNR level for the AWGN channel.
Create an error rate System object to calculate error statics. Run the simulation and calculate error
results by comparing the original data to the received data.

M = 2;                      % BPSK modulation
snr = 2;                    % dB
numframes = 100;
errorRate = comm.ErrorRate;

for ii = 1:numframes
 data = randi(s,[0 1],framelen,1);
 encodedData = turboEnc(data);
 modSignal = pskmod(encodedData,M);
 rxsig = awgn(modSignal,2);
 demodsig = pskdemod(rxsig,M);
 rxbits = turboDec(demodsig);
 errorStats = errorRate(data,rxbits);
end
fprintf('BER = %f\nNumber of errors = %d\nTotal bits = %d\n', ...
errorStats(1),errorStats(2),errorStats(3))
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BER = 0.001914
Number of errors = 49
Total bits = 25600

More About
Array Processing with GPU-based System Objects

A GPU-based System object accepts typical MATLAB arrays or gpuArray objects. The output signal
data type matches the input signal data type.

• When the input signal to the GPU-based System object is a gpuArray object, calculations take
place entirely on the GPU, the data remains on the GPU, and the output signal is a gpuArray
object. Passing gpuArray arguments minimizes data transfer latency by limiting the number of
data transfers between the CPU and the GPU when your simulation runs. For more information,
see “Establish Arrays on a GPU” (Parallel Computing Toolbox).

• When the input signal is a MATLAB array, the GPU-based System object transfers the data
between the CPU and the GPU for each object call. The output signal is a MATLAB array and data
transfer latency occurs.

Version History
Introduced in R2012a

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This System object runs on a GPU, and also supports GPU array inputs. For more information, see
“Accelerate Simulation Using GPUs”.

See Also
Objects
comm.TurboEncoder | comm.TurboDecoder

Blocks
Turbo Decoder

Topics
GPU Arrays Support List for System Objects
“GPU Computing” (Parallel Computing Toolbox)
“Accelerate Simulation Using GPUs”
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comm.gpu.ViterbiDecoder
Package: comm

Decode convolutionally encoded data using Viterbi algorithm with GPU

Note To use this object, you must install Parallel Computing Toolbox™ and have access to a
supported GPU. If the host computer has a GPU configured, processing uses the GPU. Otherwise,
processing uses the CPU. For more information about GPUs, see “GPU Computing” (Parallel
Computing Toolbox).

Description
The comm.gpu.ViterbiDecoder System object decodes convolutionally encoded input symbols to
produce binary output symbols by using Viterbi algorithm with a graphics processing unit (GPU).

To decode convolutionally encoded data using the Viterbi algorithm:

1 Create the comm.gpu.ViterbiDecoder object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
gpuViterbiDec = comm.gpu.ViterbiDecoder
gpuViterbiDec = comm.gpu.ViterbiDecoder(trellis)
gpuViterbiDec = comm.gpu.ViterbiDecoder( ___ ,Name,Value)

Description

gpuViterbiDec = comm.gpu.ViterbiDecoder creates a GPU-based Viterbi decoder System
object.

gpuViterbiDec = comm.gpu.ViterbiDecoder(trellis) sets the TrellisStructure
property to trellis.

gpuViterbiDec = comm.gpu.ViterbiDecoder( ___ ,Name,Value) sets properties using one or
more name-value arguments in addition to any of the input argument combinations in previous
syntaxes. For example, gpuViterbiDec =
comm.gpu.ViterbiDecoder(TerminationMethod="Continuous") specifies the termination
method as continuous and saves the internal state metric at the end of each frame for use with the
next frame.
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Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

TrellisStructure — Trellis structure of convolutional code
poly2trellis(7,[171 133]) (default) | structure

Trellis description of the convolutional code, specified as a structure that contains the trellis
description for a rate K ∕ N code. K is the number of input bit streams, and N is the number of output
bit streams.

You can either use the poly2trellis function to create the trellis structure or create it manually.
For more about this structure, see “Trellis Description of a Convolutional Code” and the istrellis
function.

The trellis structure contains these fields.

numInputSymbols — Number of symbols input to encoder
2K

Number of symbols input to the encoder, specified as an integer equal to 2K, where K is the number of
input bit streams.
Data Types: double

numOutputSymbols — Number of symbols output from encoder
2N

Number of symbols output from the encoder, specified as an integer equal to 2N, where N is the
number of output bit streams.
Data Types: double

numStates — Number of states in encoder
power of 2

Number of states in the encoder, specified as a power of 2.
Data Types: double

nextStates — Next states
matrix of integers

Next states for all combinations of current states and current inputs, specified as a matrix of integers.
The matrix size must be numStates by 2K.
Data Types: double

outputs — Outputs
matrix of octal numbers
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Outputs for all combinations of current states and current inputs, specified as a matrix of octal
numbers. The matrix size must be numStates by 2K.
Data Types: double

Data Types: struct

InputFormat — Input format to decoder
"Unquantized" (default) | "Hard" | "Soft"

Input format to the decoder, specified as one of these values.

• "Unquantized" — The input data must be a real-valued vector of double- or single-precision soft
decision values that are unquantized. The object maps positive values to logical 0s and negative
values to logical 1s.

• "Hard" — The input must be a vector of hard decision values, which are 0s or 1s. The data type of
the inputs must be double precision or single precision.

• "Soft" — The input requires a vector of quantized soft decision values that are represented as
integers between 0 and 2SoftInputWordLength – 1. The data type of the inputs must be double precision
or single precision.

SoftInputWordLength — Soft decision input word length
4 (default) | integer

Soft decision input word length that represents the number of bits for each quantized soft input
value, specified as an integer.
Dependencies

To enable this property, set the InputFormat property to "Soft".
Data Types: double

InvalidQuantizedInputAction — Option to take action for invalid quantized input
"Ignore" (default)

Option to take action for an invalid quantized input, specified as "Ignore". The only valid setting is
"Ignore", which ignores out-of-range inputs.

TracebackDepth — Traceback depth
34 (default) | integer in the range [0, 256]

Traceback depth, specified as an integer in the range [0, 256]. The traceback depth influences the
decoding accuracy and delay. The number of zero symbols that precede the first decoded symbol in
the output represent a decoding delay. For more information, see “Traceback and Decoding Delay” on
page 3-1399 and “Traceback Depth Estimates” on page 3-1399.

When you set the TerminationMethod property to "Continuous", the decoding delay consists of
TracebackDepth zero symbols or TracebackDepth zero bits for a rate 1/N convolutional code.

When you set the TerminationMethod property to "Truncated" or "Terminated", no output
delay is present. The TracebackDepth value must be less than or equal to the number of symbols in
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each input. If the code rate is 1/2, a typical traceback depth value is about five times the constraint
length of the code.
Data Types: double

TerminationMethod — Termination method of encoded frame
"Continuous" (default) | "Truncated" | "Terminated"

Termination method of the encoded frame, specified as one of these values.

• "Continuous" — The System object saves the internal state metric at the end of each frame for
use with the next frame. The object treats each traceback path independently. Use this option
when the input signal contains only one symbol.

• "Truncated" — The System object treats each frame independently. The traceback path starts at
the state with the best metric and ends in the all-zeros state.

• "Terminated" — The System object treats each frame independently. The traceback path starts
and ends in the all-zeros state.

ResetInputPort — Option to enable decoder reset input
false or 0 (default) | true or 1

Option to enable the decoder reset input, specified as a numeric or logical 0 (false) or 1 (true). Set
this property to true to enable additional input to the object. When this additional reset input is a
nonzero value, the internal states of the decoder reset to their initial conditions.

Dependencies

To enable this property, set the TerminationMethod property to "Continuous".
Data Types: logical | numeric

DelayedResetAction — Option to delay output reset
false or 0 (default)

Option to delay the output reset, specified as a numeric or logical 0 (false). The only valid setting is
false.
Data Types: logical | numeric

PuncturePatternSource — Source of puncture pattern
"None" (default) | "Property"

Source of the puncture pattern, specified as one of these values.

• "None" — The object does not apply puncturing.
• "Property" — The object decodes the punctured codewords based on a puncture pattern vector

that you specify in the PuncturePattern property.

PuncturePattern — Puncture pattern vector
[1; 1; 0; 1; 0; 1] (default) | column vector
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Puncture pattern vector to puncture the decoded data, specified as a column vector. The vector must
contain 1s and 0s, where 0 indicates the position of the punctured bits. This puncture pattern must
match the puncture pattern used by the convolutional encoder.
Dependencies

To enable this property, set the PuncturePatternSource property to "Property".
Data Types: double

ErasuresInputPort — Option to enable specification of erasures in input symbols
false or 0 (default)

Option to enable the specification of erasures in the input symbols, specified as a numeric or logical 0
(false). The only valid setting is false.
Data Types: logical | numeric

OutputDataType — Data type of output
"Full precision" (default)

Data type of the output, specified as "Full precision". The only valid setting is "Full
precision", which makes the output data type match the input data type.

NumFrames — Number of independent frames
1 (default) | integer

Number of independent frames present in the input and output data vectors, specified as an integer.

The object segments the input vector into NumFrames segments and decodes them independently.
The output contains NumFrames decoded segments.
Dependencies

To enable this property, set the TerminationMethod property to "Truncated" or "Terminated".
Data Types: double

Usage

Syntax
decmsg = gpuViterbiDec(codeword)
decmsg = gpuViterbiDec(codeword,resetstate)

Description

decmsg = gpuViterbiDec(codeword) decodes the convolutionally encoded input data by using
the GPU-based Viterbi decoding algorithm. The output is the decoded data.

decmsg = gpuViterbiDec(codeword,resetstate) specifies the input to reset the internal
states of the decoder. To enable this syntax, set the TerminationMethod property to
"Continuous" and the ResetInputPort property to true.
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Input Arguments

codeword — Convolutionally encoded message
column vector

Convolutionally encoded message, specified as a column vector. The data type and element value in
the codeword depend on the value of the InputFormat property.

If the convolutional code uses an alphabet of 2N possible output symbols, the length of this input
vector must be L ✕ N for some positive integer L.

To decrease data transfer latency, format the input signal as a gpuArray object. For more
information, see “Array Processing with GPU-based System Objects” on page 3-717.
Data Types: double | single

resetstate — Reset internal states of decoder
false or 0 (default) | true or 1

Reset for internal states of the decoder, specified as a logical 0 (false) or 1 (true).

Dependencies

To enable this argument, set the TerminationMethod property to "Continuous" and the
ResetInputPort property to true.
Data Types: double | logical

Output Arguments

decmsg — Decoded message
binary-valued column vector

Decoded message, returned as a binary-valued column vector. This output vector has the same data
type as input codeword.

If the decoded data uses an alphabet of 2K possible output symbols, the length of this output vector is
L ✕ K. L is the length of the input message.
Data Types: double | single

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to comm.gpu.ViterbiDecoder
info Characteristic information of GPU-based Viterbi decoder

Common to All System Objects
step Run System object algorithm
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release Release resources and allow changes to System object property values and input
characteristics

reset Reset internal states of System object

Examples

GPU-Based Convolutionally Encode and Viterbi Decode 8-PSK Modulated Data

Create a GPU-based convolutional encoder System object.

conEnc = comm.gpu.ConvolutionalEncoder;

Create a GPU-based phase shift keying (PSK) modulator System object that accepts a bit input signal.

modPSK = comm.gpu.PSKModulator(BitInput=true);

Create a GPU-based additive white Gaussian noise (AWGN) channel System object with a signal-to-
noise ratio of seven.

chan = comm.gpu.AWGNChannel( ...
    NoiseMethod='Signal to noise ratio (SNR)', ...
    SNR=7);

Create a GPU-based PSK demodulator System object that outputs a column vector of bit values.

demodPSK = comm.gpu.PSKDemodulator(BitOutput=true);

Create a GPU-based Viterbi decoder System object that accepts an input vector of hard decision
values, which are zeros or ones.

vDec = comm.gpu.ViterbiDecoder(InputFormat='Hard');

Create an error rate System object that ignores 3 data samples before making comparisons. The
received data lags behind the transmitted data by 34 samples.

error = comm.ErrorRate(ComputationDelay=3,ReceiveDelay=34);

Run the simulation by using this for-loop to process data.

for counter = 1:20
    data = randi([0 1],30,1);
    encodedData = conEnc(gpuArray(data));
    modSignal = modPSK(encodedData);
    receivedSignal = chan(modSignal);
    demodSignal = demodPSK(receivedSignal);
    receivedBits = vDec(demodSignal);
    errors = error(data,gather(receivedBits));
end

Display the number of errors.

errors(2)

ans = 26
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More About
Array Processing with GPU-based System Objects

A GPU-based System object accepts typical MATLAB arrays or gpuArray objects. The output signal
data type matches the input signal data type.

• When the input signal to the GPU-based System object is a gpuArray object, calculations take
place entirely on the GPU, the data remains on the GPU, and the output signal is a gpuArray
object. Passing gpuArray arguments minimizes data transfer latency by limiting the number of
data transfers between the CPU and the GPU when your simulation runs. For more information,
see “Establish Arrays on a GPU” (Parallel Computing Toolbox).

• When the input signal is a MATLAB array, the GPU-based System object transfers the data
between the CPU and the GPU for each object call. The output signal is a MATLAB array and data
transfer latency occurs.

Version History
Introduced in R2012a

References
[1] Sklar, Bernard. Digital Communications: Fundamentals and Applications. Englewood Cliffs, NJ:

Prentice-Hall, 1988.

[2] Moision, B. "A Truncation Depth Rule of Thumb for Convolutional Codes." In Information Theory
and Applications Workshop (January 27 2008-February 1 2008, San Diego, California),
555-557. New York: IEEE, 2008.

[3] Fettweis, G., and H. Meyr. “Feedforward Architectures for Parallel Viterbi Decoding.” Journal of
VLSI Signal Processing Systems for Signal, Image and Video Technology 3, no. 1–2 (June
1991): 105–19. https://doi.org/10.1007/BF00927838.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This System object runs on a GPU, and also supports GPU array inputs. For more information, see
“Accelerate Simulation Using GPUs”.

See Also
Functions
distspec | poly2trellis | istrellis | vitdec | convenc

Objects
comm.ConvolutionalEncoder | comm.ViterbiDecoder | comm.gpu.ConvolutionalEncoder |
gpuArray

Topics
GPU Arrays Support List for System Objects
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“GPU Computing” (Parallel Computing Toolbox)
“Accelerate Simulation Using GPUs”
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gsmDownlinkConfig
Create GSM downlink TDMA frame configuration object

Description
The gsmDownlinkConfig object is a GSM downlink TDMA frame configuration object. Use
gsmDownlinkConfig objects to create GSM downlink waveforms.

Creation

Syntax
cfggsmdl = gsmDownlinkConfig
cfggsmdl = gsmDownlinkConfig(sps)
cfggsmdl = gsmDownlinkConfig( ___ ,Name,Value)

Description

cfggsmdl = gsmDownlinkConfig creates a GSM downlink TDMA frame configuration object.

cfggsmdl = gsmDownlinkConfig(sps) sets the SamplesPerSymbol property to sps.

cfggsmdl = gsmDownlinkConfig( ___ ,Name,Value) sets one or more name-value pair
arguments using any of the previous syntaxes. For example, 'RiseTime',4 sets the burst rise time
to 4 symbols. Enclose each property in quotes. Specify name-value pair arguments after all other
input arguments.

Properties
SamplesPerSymbol — Samples per symbol
16 (default) | positive integer multiple of 4

Samples per symbol, specified as a positive integer multiple of 4.
Data Types: double

BurstType — Burst types
["NB" "NB" "NB" "NB" "NB" "NB" "NB" "NB"] (default) | string row vector with 8 elements |
"NB" | "FB" | "SB" | "Dummy" | "Off"

Burst types for time slots 0–7 in the TDMA frame, specified as one of these options:

• Eight-element row vector where each value is "NB", "FB", "SB", "Dummy", or "Off" — Each
element specifies the burst type for the corresponding time slot.

• "NB" — Transmit data using a normal burst for every time slot.
• "FB" — Transmit data using a frequency correction burst for every time slot.
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• "SB" — Transmit data using a time synchronization burst for every time slot.
• "Dummy" — Transmit data using a dummy burst for every time slot.
• "Off" — All eight time slots contain no data.

For more information, see “GSM Frames, Time Slots, and Bursts” on page 3-732.

Note The BurstType property is an enumeration. To perform code generation, see “Code
Generation” on page 3-753 and the “MEX Generation for GSM Downlink Waveform” on page 3-727
example.

Example: ["NB" "AB" "AB" "NB" "Off" "NB" "AB" "Off"] configures the frame to use
normal bursts in time slots 0, 3, and 5, use access bursts in time slots 1, 2, and 6, and transmit no
data in time slots 4 and 7.

TSC — Training sequence code
[0 1 2 3 4 5 6 7] (default) | eight-element row vector | integer in the range [0, 7]

Training sequence code (TSC) for normal bursts in time slots 0–7 in the TDMA frame, specified as one
of these options:

• Eight-element row vector of integers in the range [0, 7] — Each element specifies the TSC value
for the corresponding normal burst time slot.

• Integer in the range [0, 7] — Specifies the TSC value for every normal burst time slot.

For more information, see “Training Sequence Code (TSC)” on page 3-734.
Example: [5 7 0 0 0 0 0 0] configures the frame to use training sequence 5 in time slot 0,
training sequence 7 in time slot 1, and training sequence 0 in time slots 2 through 7.

Dependencies

To enable this property for a time slot, set the corresponding element of BurstType to "NB".
Data Types: double

Attenuation — Power attenuation
[0 0 0 0 0 0 0 0] (default) | eight-element row vector | nonnegative integer

Power attenuation in dB for time slots 0–7 in the TDMA frame, specified as one of these options:

• Eight-element row vector of nonnegative integers — Each element specifies the attenuation power
value for the corresponding time slot.

• Nonnegative integer — Specifies the power attenuation value for every time slot.

Example: [0 0 0 0 0 0 0 3] configures the frame to apply 0 dB attenuation to the burst signal
power in time slot 0 through 6 and 3 dB of attenuation to the burst signal power in time slot 7.
Data Types: double

RiseTime — Burst rise time
2 (default) | positive scalar

Burst rise time in symbols, specified as a positive scalar in the range [1/SamplesPerSymbol, 29],
where the increment resolution is 1/SamplesPerSymbol. The total ramp-up and ramp-down duration
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(RiseTime - RiseDelay + FallTime + FallDelay) must be less than 9.25 symbols. The
characteristic shape of the rising edge of the burst is sinusoidal.

For more information, see “GSM Frames, Time Slots, and Bursts” on page 3-732.
Data Types: double

RiseDelay — Burst rise delay
0 (default) | positive scalar

Burst rise delay in symbols, specified as a positive scalar in the range [–10, 10], where the increment
resolution is 1/SamplesPerSymbol. The total ramp-up and ramp-down duration (RiseTime -
RiseDelay + FallTime + FallDelay) must be less than 9.25 symbols. The burst rise delay is
measured with respect to the start of the useful part of the burst. For more information, see “GSM
Frames, Time Slots, and Bursts” on page 3-732.

When the burst rise delay is 0, the burst reaches full amplitude at the start of the useful part of the
burst. When the burst rise delay is positive, the burst reaches full amplitude RiseDelay symbols
after the start of the useful part. When the burst rise delay is negative, the burst reaches full
amplitude RiseDelay symbols before the start of the useful part.
Data Types: double

FallTime — Burst fall time
2 (default) | positive scalar

Burst fall time in symbols, specified as a positive scalar in the range [1/SamplesPerSymbol, 29],
where the increment resolution is 1/SamplesPerSymbol. The total ramp-up and ramp-down duration
(RiseTime - RiseDelay + FallTime + FallDelay) must be less than 9.25 symbols. The
characteristic shape of the falling edge of the burst is sinusoidal.

For more information, see “GSM Frames, Time Slots, and Bursts” on page 3-732.
Data Types: double

FallDelay — Burst fall delay
0 (default) | positive scalar

Burst fall delay in symbols, specified as a positive scalar in the range [–10, 10], where the increment
resolution is 1/SamplesPerSymbol. The total ramp-up and ramp-down duration (RiseTime -
RiseDelay + FallTime + FallDelay) must be less than 9.25 symbols. The burst fall delay is
measured with respect to the end of the useful part of the burst. For more information, see “GSM
Frames, Time Slots, and Bursts” on page 3-732.

When the burst fall delay is 0, the burst begins decreasing from full amplitude at the end of the useful
part of the burst. When the burst fall delay is positive, the burst begins decreasing from full
amplitude FallDelay symbols after the end of the useful part. When the burst fall delay is negative,
the burst begins decreasing from full amplitude FallDelay symbols before the end of the useful
part.
Data Types: double

Examples
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Create GSM Downlink Waveform

Create a GSM downlink TDMA frame configuration object with default settings, and then create a
GSM waveform containing one TDMA frame. The GSM TDMA frame has eight time slots, each
separated by a guard period of 8.25 symbols or about 30.46x10e-3 ms. Plot the GSM waveform.

Create a GSM downlink TDMA frame configuration object with default settings.

cfggsmdl = gsmDownlinkConfig

cfggsmdl = 
  gsmDownlinkConfig with properties:

           BurstType: [NB    NB    NB    NB    NB    NB    NB    NB]
    SamplesPerSymbol: 16
                 TSC: [0 1 2 3 4 5 6 7]
         Attenuation: [0 0 0 0 0 0 0 0]
            RiseTime: 2
           RiseDelay: 0
            FallTime: 2
           FallDelay: 0

Display information about the configured gsmDownlinkConfig object by using the gsmInfo
function. Assign the sample rate to a variable, Rs, for use in computing the plot timescale.

wfInfo = gsmInfo(cfggsmdl)

wfInfo = struct with fields:
              SymbolRate: 2.7083e+05
              SampleRate: 4.3333e+06
    BandwidthTimeProduct: 0.3000
    BurstLengthInSymbols: 156.2500
       NumBurstsPerFrame: 8
    BurstLengthInSamples: 2500
    FrameLengthInSamples: 20000

Rs = wfInfo.SampleRate;

Create the GSM waveform by using the gsmFrame function, and then plot the GSM waveform.

waveform = gsmFrame(cfggsmdl);

t = (0:length(waveform)-1)/Rs*1e3;
subplot(2,1,1)
plot(t,abs(waveform))
grid on
axis([0 5 0 1.2])
title('GSM Downlink Waveform - Amplitude')
xlabel('Time (ms)')
ylabel('Amplitude')
subplot(2,1,2)
plot(t,unwrap(angle(waveform)))
grid on
title('GSM Downlink Waveform - Phase')
xlabel('Time (ms)')
ylabel('Phase (rad)')
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Create GSM Downlink Waveform with Specified Samples per Symbol

Create a GSM downlink TDMA frame configuration object that specifies 8 samples per symbol, and
then create a GSM waveform containing one GSM downlink TDMA frame. The GSM TDMA frame are
eight time slots, each separated by a guard period of 8.25 symbols or about 30.46x10e-3 ms
separates each time slot. Plot the GSM waveform.

Create a GSM downlink TDMA frame configuration object, specifying 8 samples per symbols.

sps = 8;
cfggsmdl = gsmDownlinkConfig(sps)

cfggsmdl = 
  gsmDownlinkConfig with properties:

           BurstType: [NB    NB    NB    NB    NB    NB    NB    NB]
    SamplesPerSymbol: 8
                 TSC: [0 1 2 3 4 5 6 7]
         Attenuation: [0 0 0 0 0 0 0 0]
            RiseTime: 2
           RiseDelay: 0
            FallTime: 2
           FallDelay: 0
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Display information about the configured gsmDownlinkConfig object by using the gsmInfo
function. Assign the sample rate to a variable, Rs, for use in computing the plot timescale.

wfInfo = gsmInfo(cfggsmdl)

wfInfo = struct with fields:
              SymbolRate: 2.7083e+05
              SampleRate: 2.1667e+06
    BandwidthTimeProduct: 0.3000
    BurstLengthInSymbols: 156.2500
       NumBurstsPerFrame: 8
    BurstLengthInSamples: 1250
    FrameLengthInSamples: 10000

Rs = wfInfo.SampleRate;

Create the GSM waveform by using the gsmFrame function, and then plot the GSM waveform.

waveform = gsmFrame(cfggsmdl);

t = (0:length(waveform)-1)/Rs*1e3;
subplot(2,1,1)
plot(t,abs(waveform))
grid on
axis([0 5 0 1.2])
title('GSM Downlink Waveform - Amplitude')
xlabel('Time (ms)')
ylabel('Amplitude')
subplot(2,1,2)
plot(t,unwrap(angle(waveform)))
grid on
title('GSM Downlink Waveform - Phase')
xlabel('Time (ms)')
ylabel('Phase (rad)')
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Create GSM Downlink Waveform with Specified Attenuation

Create two GSM downlink TDMA frame configuration objects. Specify default settings for the first
gsmDownlinkConfig object and adjust the signal power per time slot for the second. Generate GSM
waveforms for both configurations. Plot the waveforms to show the signal attenuation per time slot in
the second waveform.

Create a GSM downlink TDMA frame configuration object with default settings.

cfggsmdl = gsmDownlinkConfig

cfggsmdl = 
  gsmDownlinkConfig with properties:

           BurstType: [NB    NB    NB    NB    NB    NB    NB    NB]
    SamplesPerSymbol: 16
                 TSC: [0 1 2 3 4 5 6 7]
         Attenuation: [0 0 0 0 0 0 0 0]
            RiseTime: 2
           RiseDelay: 0
            FallTime: 2
           FallDelay: 0
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Create another GSM downlink TDMA frame configuration object, adjusting the signal attenuation
settings per time slot.

cfggsmdl2 = gsmDownlinkConfig('Attenuation',[1 0 3 4 5 6 4 2])

cfggsmdl2 = 
  gsmDownlinkConfig with properties:

           BurstType: [NB    NB    NB    NB    NB    NB    NB    NB]
    SamplesPerSymbol: 16
                 TSC: [0 1 2 3 4 5 6 7]
         Attenuation: [1 0 3 4 5 6 4 2]
            RiseTime: 2
           RiseDelay: 0
            FallTime: 2
           FallDelay: 0

Display information about the configured gsmDownlinkConfig object by using the gsmInfo
function. Assign the sample rate to a variable, Rs, for use in computing the plot timescale.

wfInfo = gsmInfo(cfggsmdl)

wfInfo = struct with fields:
              SymbolRate: 2.7083e+05
              SampleRate: 4.3333e+06
    BandwidthTimeProduct: 0.3000
    BurstLengthInSymbols: 156.2500
       NumBurstsPerFrame: 8
    BurstLengthInSamples: 2500
    FrameLengthInSamples: 20000

Rs = wfInfo.SampleRate;

Create the GSM waveforms, containing one TDMA frame, by using the gsmFrame function. GSM
TDMA frames have are eight time slots, each separated by a guard period of 8.25 symbols or about
30.46x10e-3 ms separates each time slot. Plot each GSM waveform.

waveform = gsmFrame(cfggsmdl);
waveform2 = gsmFrame(cfggsmdl2);

t = (0:length(waveform)-1)/Rs*1e3;
subplot(2,1,1)
plot(t,[abs(waveform),abs(waveform2)])
grid on
axis([0 5 0 1.2])
title('GSM Downlink Waveform - Amplitude')
xlabel('Time (ms)')
ylabel('Amplitude')
subplot(2,1,2)
plot(t,[unwrap(angle(waveform)),unwrap(angle(waveform2))])
grid on
title('GSM Downlink Waveform - Phase')
xlabel('Time (ms)')
ylabel('Phase (rad)')
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MEX Generation for GSM Downlink Waveform

Generate and run a GSM waveform MEX function from the helper function
createDownlinkWaveform. The createDownlinkWaveform helper function creates a GSM
downlink waveform.

Write MATLAB Function

Open createDownlinkWaveform.m to see the code. The createDownlinkWaveform helper function
generates a GSM downlink waveform by using the gsmDownlinkConfig object and the gsmInfo
and gsmFrame functions.

Generate GSM Waveform

Use the createDownlinkWaveform helper function to create a GSM waveform containing two
TDMA frames, and then plot the waveform.

[x,t] = createDownlinkWaveform(2);

figure
subplot(2,1,1);
plot(t,abs(x));
grid on;
title('GSM Downlink Waveform - Amplitude');
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xlabel('Time (ms)');
ylabel('Amplitude')
subplot(2,1,2);
plot(t,unwrap(angle(x)));
grid on;
title('GSM Downlink Waveform - Phase');
xlabel('Time (ms)');
ylabel('Phase (rad)')

Generate MEX Function

Code generation defaults to MEX code generation when you do not specify a build target. By default,
codegen names the generated MEX function createDownlinkWaveform_mex. Generate a MEX
function from the createDownlinkWaveform helper function, and then run the MEX function to
create two TDMA frames.

codegen createDownlinkWaveform -args 3

Code generation successful.

Generate Waveform Using MEX Function

Run the MEX function and plot the results. Since the waveform is created using random data, the
phase plot changes each time you run the generateDownlinkFrame helper function or
createDownlinkWaveform_mex function.

[x,t] = createDownlinkWaveform_mex(2);
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figure
subplot(2,1,1);
plot(t,abs(x));
grid on;
title('MEX - GSM Downlink Waveform - Amplitude');
xlabel('Time (ms)');
ylabel('Amplitude')
subplot(2,1,2);
plot(t,unwrap(angle(x)));
grid on;
title('MEX - GSM Downlink Waveform - Phase');
xlabel('Time (ms)');
ylabel('Phase (rad)')

GSM Downlink Waveform Generation in Simulink

Model a GSM waveform generator in Simulink® by using the MATLAB® Function block and
Communications Toolbox™ functions.

GSM Downlink Waveform Generation

The MATLAB Function (Simulink) block contains the gsmDownlinkWaveform function code. The
code in the MATLAB Function block creates a GSM waveform by using the gsmDownlinkConfig
object and the gsmFrame function.
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The gsmDownlinkConfig object specifies 16 samples per symbol and the time slot configuration for
the GSM downlink TDMA frame shown is this table.

The output waveform has 16 samples for each GMSK symbol. The gsmFrame function generates the
samples of the waveform.

Explore the Model

In compliance with GSM standards 3GPP TS 45.001 and 3GPP TS 45.002, the sample time of the
MATLAB Function block that contains the gsmDownlinkWaveform function code is set to the GSM
symbol rate of 1625e3/6 symbols per second. Display the current gsmDownlinkConfig object
settings by using the gsmInfo function.

wfInfo = 

  struct with fields:

              SymbolRate: 2.7083e+05
              SampleRate: 4.3333e+06
    BandwidthTimeProduct: 0.3000
    BurstLengthInSymbols: 156.2500
       NumBurstsPerFrame: 8
    BurstLengthInSamples: 2500
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    FrameLengthInSamples: 20000

The model sample time of the MATLAB Function (Simulink) block is set to
wfInfo.FrameLengthInSamples/wfInfo.SampleRate. To view the Sample time parameter,
open the Block Parameters dialog box by right-clicking the MATLAB Function block and selecting
Block Parameters (Subsystem).

Before the simulation runs, you must configure the sample rate of the MATLAB Function block. The
PreLoadFcn and InitFcn callback functions configure the MATLAB Function block by creating a
gsmDownlinkConfig object and wfInfo structure. To view the callback functions, on the Modeling
tab, in the Setup section, select Model Settings > Model Properties. Then, on the Callbacks tab,
select the PreLoadFcn or InitFcn callback function in the Model callbacks pane.

Results

Display the time domain signal and the spectrogram by running the simulation.
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More About
GSM Frames, Time Slots, and Bursts

In GSM, transmissions consist of TDMA frames. Each GSM TDMA frame consists of eight time slots.
The transmission data content of a time slot is called a burst. As described in Section 5.2 of 3GPP TS
45.011, a GSM time slot has a 156.25-symbol duration when using the normal symbol period, which is
a time interval of 15/26 ms or about 576.9 microseconds. A guard period of 8.25 symbols or about
30.46 microseconds separates each time slot. The GSM standards describes a symbol as one bit
period. Since GSM uses GMSK modulation, there is one bit per bit period. The transmission timing of
a burst within a time slot is defined in terms of the bit number (BN). The BN refers to a particular bit
period within a time slot. The bit with the lowest BN is transmitted first. BN0 is the first bit period,
and BN156 is the last quarter-bit period.

This image from 3GPP TS 45.011 shows the relationship between different frame types and the
relationship between different burst types.
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This table shows the supported burst types and their characteristics.

Burst Type Description Link Direction Useful Duration
NB Normal burst Uplink/Downlink 147
FB Frequency correction

burst
Downlink 147

SB Synchronization burst Downlink 147
Dummy Dummy burst Downlink 147
AB Access burst Uplink 87
Off No burst sent Uplink/Downlink 0

Useful duration, described in Section 5.2.2 of 3GPP TS 45.002, is a characteristic of GSM bursts. The
useful duration, or useful part, of a burst is defined as beginning halfway through BN0 and ending
half a bit period before the start of the guard period. The guard period is the period between bursts
in successive time slots. This figure, from Section 2.2 of 3GPP TS 45.004, shows the leading and
trailing ½ bit difference between the useful and active parts of the burst.
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For more information, see “GSM TDMA Frame Parameterization for Waveform Generation”.

Training Sequence Code (TSC)

Normal bursts include a training sequence bits field assigned a bit pattern based on the specified
TSC. For GSM, you can select one of these eight training sequences for normal burst type time slots.

Training Sequence Code (TSC) Training Sequence Bits (BN61, BN62, …,
BN86)

0 (0,0,1,0,0,1,0,1,1,1,0,0,0,0,1,0,0,0,1,0,0,1,0,1,1,1)
1 (0,0,1,0,1,1,0,1,1,1,0,1,1,1,1,0,0,0,1,0,1,1,0,1,1,1)
2 (0,1,0,0,0,0,1,1,1,0,1,1,1,0,1,0,0,1,0,0,0,0,1,1,1,0)
3 (0,1,0,0,0,1,1,1,1,0,1,1,0,1,0,0,0,1,0,0,0,1,1,1,1,0)
4 (0,0,0,1,1,0,1,0,1,1,1,0,0,1,0,0,0,0,0,1,1,0,1,0,1,1)
5 (0,1,0,0,1,1,1,0,1,0,1,1,0,0,0,0,0,1,0,0,1,1,1,0,1,0)
6 (1,0,1,0,0,1,1,1,1,1,0,1,1,0,0,0,1,0,1,0,0,1,1,1,1,1)
7 (1,1,1,0,1,1,1,1,0,0,0,1,0,0,1,0,1,1,1,0,1,1,1,1,0,0)

For more information, see Section 5.2.3 in 3GPP TS 45.002.

Version History
Introduced in R2019b

References
[1] 3GPP TS 45.001. "GSM/EDGE Physical layer on the radio path. General description." 3rd

Generation Partnership Project; Technical Specification Group Radio Access Network.

[2] 3GPP TS 45.002. "GSM/EDGE Multiplexing and multiple access on the radio path." 3rd Generation
Partnership Project; Technical Specification Group Radio Access Network.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The SamplesPerSymbol, RiseTime, RiseDelay, FallTime, and FallDelay properties must
be set when creating the object, and their settings are static in the generated code.

• The BurstType [property must be set using the enumeration type instead of the string
representation. Use these gsmDownlinkBurstType enumerations:
gsmDownlinkBurstType.NB, gsmDownlinkBurstType.FB, gsmDownlinkBurstType.SB,
gsmDownlinkBurstType.Dummy, and gsmUplinkBurstType.Off. For example, this code
assigns a frequency correction burst in time slot 2 and 5.

cfg = gsmDownlinkConfig

cfg = 

  gsmDownlinkConfig with properties:

           BurstType: [NB    NB    NB    NB    NB    NB    NB    NB]
    SamplesPerSymbol: 16
                 TSC: [0 1 2 3 4 5 6 7]
         Attenuation: [0 0 0 0 0 0 0 0]
            RiseTime: 2
           RiseDelay: 0
            FallTime: 2
           FallDelay: 0

cfg.BurstType([2 5] +1) = gsmDownlinkBurstType.FB

cfg = 

  gsmDownlinkConfig with properties:

           BurstType: [NB    NB    FB    NB    NB    FB    NB    NB]
    SamplesPerSymbol: 16
                 TSC: [0 1 2 3 4 5 6 7]
         Attenuation: [0 0 0 0 0 0 0 0]
            RiseTime: 2
           RiseDelay: 0
            FallTime: 2
           FallDelay: 0

See Also
Objects
gsmUplinkConfig

Functions
gsmCheckTimeMask | gsmFrame | gsmInfo
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“GSM TDMA Frame Parameterization for Waveform Generation”
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gsmUplinkConfig
Create GSM uplink TDMA frame configuration object

Description
The gsmUplinkConfig object is a GSM uplink TDMA frame configuration object. Use
gsmUplinkConfig objects to create GSM uplink waveforms.

Creation

Syntax
cfggsmul = gsmUplinkConfig
cfggsmul = gsmUplinkConfig(sps)
cfggsmul = gsmUplinkConfig( ___ ,Name,Value)

Description

cfggsmul = gsmUplinkConfig creates a GSM uplink TDMA frame configuration object.

cfggsmul = gsmUplinkConfig(sps) sets the SamplesPerSymbol property to sps.

cfggsmul = gsmUplinkConfig( ___ ,Name,Value) sets one or more name-value pair arguments
using any of the previous syntaxes. For example, 'RiseTime',4 sets the burst rise time to 4
symbols. Enclose each property in quotes. Specify name-value pair arguments after all other input
arguments.

Properties
SamplesPerSymbol — Samples per symbol
16 (default) | positive integer multiple of 4

Samples per symbol, specified as a positive integer multiple of 4.
Data Types: double

BurstType — Burst types
["NB" "NB" "NB" "NB" "NB" "NB" "NB" "NB"] (default) | string row vector with 8 elements |
"NB" | "AB" | "Off"

Burst types for time slots 0–7 in the TDMA frame, specified as one of these options:

• Eight-element row vector where each value is "NB", "AB", or "Off" — Each element specifies the
burst type for the corresponding time slot.

• "NB" — Transmit data using a normal burst for every time slot.
• "AB" — Transmit data using an access burst for every time slot.
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• "Off" — All eight time slots contain no data.

For more information, see “GSM Frames, Time Slots, and Bursts” on page 3-750

Note The BurstType property is an enumeration. To perform code generation, see “Code
Generation” on page 3-753 and the “MEX Generation for GSM Uplink Waveform” on page 3-745
example.

Example: ["NB" "AB" "AB" "NB" "Off" "NB" "AB" "Off"] configures the frame to use
normal bursts in time slots 0, 3, and 5, use access bursts in time slots 1, 2, and 6, and transmit no
data in time slots 4 and 7.

TSC — Training sequence code
[0 1 2 3 4 5 6 7] (default) | eight-element row vector | integer in the range [0, 7]

Training sequence code (TSC) for normal bursts in time slots 0–7 in the TDMA frame, specified as one
of these options:

• Eight-element row vector of integers in the range [0, 7] — Each element specifies the TSC value
for the corresponding normal burst time slot.

• Integer in the range [0, 7] — Specifies the TSC value for every normal burst time slot.

For more information, see “Training Sequence Code (TSC)” on page 3-752.
Example: [5 7 0 0 0 0 0 0] configures the frame to use training sequence 5 in time slot 0,
training sequence 7 in time slot 1, and training sequence 0 in time slots 2 through 7.

Dependencies

To enable this property for a time slot, set the corresponding element of BurstType to "NB".
Data Types: double

Attenuation — Power attenuation
[0 0 0 0 0 0 0 0] (default) | eight-element row vector | nonnegative integer

Power attenuation in dB for time slots 0–7 in the TDMA frame, specified as one of these options:

• Eight-element row vector of nonnegative integers — Each element specifies the attenuation power
value for the corresponding time slot.

• Nonnegative integer — Specifies the power attenuation value for every time slot.

Example: [0 0 0 0 0 0 0 3] configures the frame to apply 0 dB of attenuation to the burst signal
power in time slot 0 through 6 and 3 dB of attenuation to the burst signal power in time slot 7.
Data Types: double

RiseTime — Burst rise time
2 (default) | positive scalar

Burst rise time in symbols, specified as a positive scalar in the range [1/SamplesPerSymbol, 29],
where the increment resolution is 1/SamplesPerSymbol. The total ramp-up and ramp-down duration
(RiseTime - RiseDelay + FallTime + FallDelay) must be less than 9.25 symbols. The
characteristic shape of the rising edge of the burst is sinusoidal.
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For more information, see “GSM Frames, Time Slots, and Bursts” on page 3-750.
Data Types: double

RiseDelay — Burst rise delay
0 (default) | positive scalar

Burst rise delay in symbols, specified as a positive scalar in the range [–10, 10], where the increment
resolution is 1/SamplesPerSymbol. The total ramp-up and ramp-down duration (RiseTime -
RiseDelay + FallTime + FallDelay) must be less than 9.25 symbols. The burst rise delay is
measured with respect to the start of the useful part of the burst. For more information, see “GSM
Frames, Time Slots, and Bursts” on page 3-750.

When the burst rise delay is 0, the burst reaches full amplitude at the start of the useful part of the
burst. When the burst rise delay is positive, the burst reaches full amplitude RiseDelay symbols
after the start of the useful part. When the burst rise delay is negative, the burst reaches full
amplitude RiseDelay symbols before the start of the useful part.
Data Types: double

FallTime — Burst fall time
2 (default) | positive scalar

Burst fall time in symbols, specified as a positive scalar in the range [1/SamplesPerSymbol, 29],
where the increment resolution is 1/SamplesPerSymbol. The total ramp-up and ramp-down duration
(RiseTime - RiseDelay + FallTime + FallDelay) must be less than 9.25 symbols. The
characteristic shape of the falling edge of the burst is sinusoidal.

For more information, see “GSM Frames, Time Slots, and Bursts” on page 3-750.
Data Types: double

FallDelay — Burst fall delay
0 (default) | positive scalar

Burst fall delay in symbols, specified as a positive scalar in the range [–10, 10], where the increment
resolution is 1/SamplesPerSymbol. The total ramp-up and ramp-down duration (RiseTime -
RiseDelay + FallTime + FallDelay) must be less than 9.25 symbols. The burst fall delay is
measured with respect to the end of the useful part of the burst. For more information, see “GSM
Frames, Time Slots, and Bursts” on page 3-750.

When the burst fall delay is 0, the burst begins decreasing from full amplitude at the end of the useful
part of the burst. When the burst fall delay is positive, the burst begins decreasing from full
amplitude FallDelay symbols after the end of the useful part. When the burst fall delay is negative,
the burst begins decreasing from full amplitude FallDelay symbols before the end of the useful
part.
Data Types: double

Examples
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Create GSM Uplink Waveform

Create a GSM uplink TDMA frame configuration object with default settings, and then create a GSM
waveform containing one TDMA frame. GSM TDMA frames have eight time slots, each separated by a
guard period of 8.25 symbols or about 30.46x10e-3 ms. Plot the GSM waveform.

Create a GSM uplink TDMA frame configuration object with default settings.

cfggsmul = gsmUplinkConfig

cfggsmul = 
  gsmUplinkConfig with properties:

           BurstType: [NB    NB    NB    NB    NB    NB    NB    NB]
    SamplesPerSymbol: 16
                 TSC: [0 1 2 3 4 5 6 7]
         Attenuation: [0 0 0 0 0 0 0 0]
            RiseTime: 2
           RiseDelay: 0
            FallTime: 2
           FallDelay: 0

Display information about the configured gsmUplinkConfig object by using the gsmInfo function.
Assign the sample rate to a variable, Rs, for use in computing the plot timescale.

wfInfo = gsmInfo(cfggsmul)

wfInfo = struct with fields:
              SymbolRate: 2.7083e+05
              SampleRate: 4.3333e+06
    BandwidthTimeProduct: 0.3000
    BurstLengthInSymbols: 156.2500
       NumBurstsPerFrame: 8
    BurstLengthInSamples: 2500
    FrameLengthInSamples: 20000

Rs = wfInfo.SampleRate;

Create the GSM waveform by using the gsmFrame function, and then plot the GSM waveform.

waveform = gsmFrame(cfggsmul);

t = (0:length(waveform)-1)/Rs*1e3;
subplot(2,1,1)
plot(t,abs(waveform))
grid on
axis([0 5 0 1.2])
title('GSM Uplink Waveform - Amplitude')
xlabel('Time (ms)')
ylabel('Amplitude')
subplot(2,1,2)
plot(t,unwrap(angle(waveform)))
grid on
title('GSM Uplink Waveform - Phase')
xlabel('Time (ms)')
ylabel('Phase (rad)')
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Create GSM Uplink Waveform with Specified Samples per Symbol

Create a GSM uplink TDMA frame configuration object that specifies 4 samples per symbol, and then
create a GSM waveform containing one GSM downlink TDMA frame. The GSM TDMA frame are eight
time slots, each separated by a guard period of 8.25 symbols or about 30.46x10e-3 ms separates each
time slot. Plot the GSM waveform.

Create a GSM uplink TDMA frame configuration object, specifying 4 samples per symbols.

sps = 4;
cfggsmul = gsmUplinkConfig(sps)

cfggsmul = 
  gsmUplinkConfig with properties:

           BurstType: [NB    NB    NB    NB    NB    NB    NB    NB]
    SamplesPerSymbol: 4
                 TSC: [0 1 2 3 4 5 6 7]
         Attenuation: [0 0 0 0 0 0 0 0]
            RiseTime: 2
           RiseDelay: 0
            FallTime: 2
           FallDelay: 0
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Display information about the configured gsmUplinkConfig object by using the gsmInfo function.
Assign the sample rate to a variable, Rs, for use in computing the plot timescale.

wfInfo = gsmInfo(cfggsmul)

wfInfo = struct with fields:
              SymbolRate: 2.7083e+05
              SampleRate: 1.0833e+06
    BandwidthTimeProduct: 0.3000
    BurstLengthInSymbols: 156.2500
       NumBurstsPerFrame: 8
    BurstLengthInSamples: 625
    FrameLengthInSamples: 5000

Rs = wfInfo.SampleRate;

Create the GSM waveform by using the gsmFrame function, and then plot the GSM waveform.

waveform = gsmFrame(cfggsmul);

t = (0:length(waveform)-1)/Rs*1e3;
subplot(2,1,1)
plot(t,abs(waveform))
grid on
axis([0 5 0 1.2])
title('GSM Uplink Waveform - Amplitude')
xlabel('Time (ms)')
ylabel('Amplitude')
subplot(2,1,2)
plot(t,unwrap(angle(waveform)))
grid on
title('GSM Uplink Waveform - Phase')
xlabel('Time (ms)')
ylabel('Phase (rad)')
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Create GSM Uplink Waveform with Specified Attenuation

Create two GSM uplink TDMA frame configuration objects. Specify default settings for the first
gsmUplinkConfig object and adjust the signal power per time slot for the second. Generate GSM
waveforms for both configurations. Plot the waveforms to show the signal attenuation per time slot in
the second waveform.

Create a GSM uplink TDMA frame configuration object with default settings.

cfggsmul = gsmUplinkConfig

cfggsmul = 
  gsmUplinkConfig with properties:

           BurstType: [NB    NB    NB    NB    NB    NB    NB    NB]
    SamplesPerSymbol: 16
                 TSC: [0 1 2 3 4 5 6 7]
         Attenuation: [0 0 0 0 0 0 0 0]
            RiseTime: 2
           RiseDelay: 0
            FallTime: 2
           FallDelay: 0
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Create another GSM uplink TDMA frame configuration object, adjusting the signal attenuation
settings per time slot.

cfggsmul2 = gsmUplinkConfig('Attenuation',[1 2 3 4 5 4 3 2])

cfggsmul2 = 
  gsmUplinkConfig with properties:

           BurstType: [NB    NB    NB    NB    NB    NB    NB    NB]
    SamplesPerSymbol: 16
                 TSC: [0 1 2 3 4 5 6 7]
         Attenuation: [1 2 3 4 5 4 3 2]
            RiseTime: 2
           RiseDelay: 0
            FallTime: 2
           FallDelay: 0

Display information about the configured gsmUplinkConfig object by using the gsmInfo function.
Assign the sample rate to a variable, Rs, for use in computing the plot timescale.

wfInfo = gsmInfo(cfggsmul)

wfInfo = struct with fields:
              SymbolRate: 2.7083e+05
              SampleRate: 4.3333e+06
    BandwidthTimeProduct: 0.3000
    BurstLengthInSymbols: 156.2500
       NumBurstsPerFrame: 8
    BurstLengthInSamples: 2500
    FrameLengthInSamples: 20000

Rs = wfInfo.SampleRate;

Create the GSM waveforms, containing one TDMA frame, by using the gsmFrame function. GSM
TDMA frames are eight time slots, each separated by a guard period of 8.25 symbols or about
30.46x10e-3 ms. Plot each GSM waveform.

waveform = gsmFrame(cfggsmul);
waveform2 = gsmFrame(cfggsmul2);

t = (0:length(waveform)-1)/Rs*1e3;
subplot(2,1,1)
plot(t,[abs(waveform),abs(waveform2)])
grid on
axis([0 5 0 1.2])
title('GSM Uplink Waveform - Amplitude')
xlabel('Time (ms)')
ylabel('Amplitude')
subplot(2,1,2)
plot(t,[unwrap(angle(waveform)),unwrap(angle(waveform2))])
grid on
title('GSM Uplink Waveform - Phase')
xlabel('Time (ms)')
ylabel('Phase (rad)')
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MEX Generation for GSM Uplink Waveform

Generate and run a GSM waveform MEX function from the helper function
createUplinkWaveform. The createUplinkWaveform helper function creates a GSM uplink
waveform.

Write MATLAB Function

Open createUplinkWaveform.m to see the code. The createUplinkWaveform helper function
generates a GSM uplink waveform by using the gsmUplinkConfig object and the gsmInfo and
gsmFrame functions.

Generate GSM Waveform

Use the createUplinkWaveform helper function to create a GSM waveform containing three TDMA
frames, and then plot the waveform.

[x,t] = createUplinkWaveform(3);

figure
subplot(2,1,1);
plot(t,abs(x));
grid on;
title('GSM Uplink Waveform - Amplitude');
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xlabel('Time (ms)');
ylabel('Amplitude')
subplot(2,1,2);
plot(t,unwrap(angle(x)));
grid on;
title('GSM Uplink Waveform - Phase');
xlabel('Time (ms)');
ylabel('Phase (rad)')

Generate MEX Function

Code generation defaults to MEX code generation when you do not specify a build target. By default,
codegen names the generated MEX function createUplinkWaveform_mex. Generate a MEX
function from the createUplinkWaveform helper function, and then run the MEX function to create
three TDMA frames.

codegen createUplinkWaveform -args 3

Code generation successful.

Generate Waveform Using MEX Function

Run the MEX function and plot the results. Since the waveform is created using random data, the
phase plot changes each time you run the generateUplinkFrame helper function or
createUplinkWaveform_mex function.

[x,t] = createUplinkWaveform_mex(3);
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figure
subplot(2,1,1);
plot(t,abs(x));
grid on;
title('MEX - GSM Uplink Waveform - Amplitude');
xlabel('Time (ms)');
ylabel('Amplitude')
subplot(2,1,2);
plot(t,unwrap(angle(x)));
grid on;
title('MEX - GSM Uplink Waveform - Phase');
xlabel('Time (ms)');
ylabel('Phase (rad)')

GSM Uplink Waveform Generation in Simulink

Model a GSM waveform generator in Simulink® by using the MATLAB® Function block and
Communications Toolbox™ functions.

GSM Uplink Waveform Generation

The MATLAB Function (Simulink) block contains the gsmUplinkWaveform function code. The code
in the MATLAB Function block creates a GSM waveform by using the gsmUplinkConfig object and
the gsmFrame function.
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The gsmUplinkConfig object specifies 16 samples per symbol and the time slot configuration for
the GSM uplink TDMA frame shown is this table.

The output waveform has 16 samples for each GMSK symbol. The gsmFrame function generates the
samples of the waveform.

Explore the Model

In compliance with GSM standards 3GPP TS 45.001 and 3GPP TS 45.002, the sample time of the
MATLAB Function block that contains the gsmUplinkWaveform function code is set to the GSM
symbol rate of 1625e3/6 symbols per second. Display the current gsmUplinkConfig object settings
by using the gsmInfo function.

wfInfo = 

  struct with fields:

              SymbolRate: 2.7083e+05
              SampleRate: 4.3333e+06
    BandwidthTimeProduct: 0.3000
    BurstLengthInSymbols: 156.2500
       NumBurstsPerFrame: 8
    BurstLengthInSamples: 2500
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    FrameLengthInSamples: 20000

The model sample time of the MATLAB Function (Simulink) block is set to
wfInfo.FrameLengthInSamples/wfInfo.SampleRate. To view the Sample time parameter,
open the Block Parameters dialog box by right-clicking the MATLAB Function block and selecting
Block Parameters (Subsystem).

Before the simulation runs, you must configure the sample rate of the MATLAB Function block. The
PreLoadFcn and InitFcn callback functions configure the MATLAB Function block by creating a
gsmUplinkConfig object and wfInfo structure. To view the callback functions, on the Modeling
tab, in the Setup section, select Model Settings > Model Properties. Then, on the Callbacks tab,
select the PreLoadFcn or InitFcn callback function in the Model callbacks pane.

Results

Displays the time domain signal and the spectrogram by running the simulation.
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More About
GSM Frames, Time Slots, and Bursts

In GSM, transmissions consist of TDMA frames. Each GSM TDMA frame consists of eight time slots.
The transmission data content of a time slot is called a burst. As described in Section 5.2 of 3GPP TS
45.011, a GSM time slot has a 156.25-symbol duration when using the normal symbol period, which is
a time interval of 15/26 ms or about 576.9 microseconds. A guard period of 8.25 symbols or about
30.46 microseconds separates each time slot. The GSM standards describes a symbol as one bit
period. Since GSM uses GMSK modulation, there is one bit per bit period. The transmission timing of
a burst within a time slot is defined in terms of the bit number (BN). The BN refers to a particular bit
period within a time slot. The bit with the lowest BN is transmitted first. BN0 is the first bit period,
and BN156 is the last quarter-bit period.

This image from 3GPP TS 45.011 shows the relationship between different frame types and the
relationship between different burst types.
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This table shows the supported burst types and their characteristics.

Burst Type Description Link Direction Useful Duration
NB Normal burst Uplink/Downlink 147
FB Frequency correction

burst
Downlink 147

SB Synchronization burst Downlink 147
Dummy Dummy burst Downlink 147
AB Access burst Uplink 87
Off No burst sent Uplink/Downlink 0

Useful duration, described in Section 5.2.2 of 3GPP TS 45.002, is a characteristic of GSM bursts. The
useful duration, or useful part, of a burst is defined as beginning halfway through BN0 and ending
half a bit period before the start of the guard period. The guard period is the period between bursts
in successive time slots. This figure, from Section 2.2 of 3GPP TS 45.004, shows the leading and
trailing ½ bit difference between the useful and active parts of the burst.
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For more information, see “GSM TDMA Frame Parameterization for Waveform Generation”.

Training Sequence Code (TSC)

Normal bursts include a training sequence bits field assigned a bit pattern based on the specified
TSC. For GSM, you can select one of these eight training sequences for normal burst type time slots.

Training Sequence Code (TSC) Training Sequence Bits (BN61, BN62, …,
BN86)

0 (0,0,1,0,0,1,0,1,1,1,0,0,0,0,1,0,0,0,1,0,0,1,0,1,1,1)
1 (0,0,1,0,1,1,0,1,1,1,0,1,1,1,1,0,0,0,1,0,1,1,0,1,1,1)
2 (0,1,0,0,0,0,1,1,1,0,1,1,1,0,1,0,0,1,0,0,0,0,1,1,1,0)
3 (0,1,0,0,0,1,1,1,1,0,1,1,0,1,0,0,0,1,0,0,0,1,1,1,1,0)
4 (0,0,0,1,1,0,1,0,1,1,1,0,0,1,0,0,0,0,0,1,1,0,1,0,1,1)
5 (0,1,0,0,1,1,1,0,1,0,1,1,0,0,0,0,0,1,0,0,1,1,1,0,1,0)
6 (1,0,1,0,0,1,1,1,1,1,0,1,1,0,0,0,1,0,1,0,0,1,1,1,1,1)
7 (1,1,1,0,1,1,1,1,0,0,0,1,0,0,1,0,1,1,1,0,1,1,1,1,0,0)

For more information, see Section 5.2.3 in 3GPP TS 45.002.

Version History
Introduced in R2019b

References
[1] 3GPP TS 45.001. "GSM/EDGE Physical layer on the radio path. General description." 3rd

Generation Partnership Project; Technical Specification Group Radio Access Network.

[2] 3GPP TS 45.002. "GSM/EDGE Multiplexing and multiple access on the radio path." 3rd Generation
Partnership Project; Technical Specification Group Radio Access Network.
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[3] 3GPP TS 45.004. "GSM/EDGE Modulation." 3rd Generation Partnership Project; Technical
Specification Group Radio Access Network.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The SamplesPerSymbol, RiseTime, RiseDelay, FallTime, and FallDelay properties must
be set when creating the object, and their settings are static in the generated code.

• The BurstType property must be set using the enumeration type instead of the string
representation. Use these gsmDownlinkBurstType enumerations:
gsmDownlinkBurstType.NB, gsmDownlinkBurstType.AB, and gsmUplinkBurstType.Off.
For example, this code assigns an access burst in time slot 2 and 5.

cfg = gsmUplinkConfig

cfg = 

  gsmUplinkConfig with properties:

           BurstType: [NB    NB    NB    NB    NB    NB    NB    NB]
    SamplesPerSymbol: 16
                 TSC: [0 1 2 3 4 5 6 7]
         Attenuation: [0 0 0 0 0 0 0 0]
            RiseTime: 2
           RiseDelay: 0
            FallTime: 2
           FallDelay: 0

cfg.BurstType([2 5] +1) = gsmUplinkBurstType.AB

cfg = 

  gsmUplinkConfig with properties:

           BurstType: [NB    NB    AB    NB    NB    AB    NB    NB]
    SamplesPerSymbol: 16
                 TSC: [0 1 2 3 4 5 6 7]
         Attenuation: [0 0 0 0 0 0 0 0]
            RiseTime: 2
           RiseDelay: 0
            FallTime: 2
           FallDelay: 0

See Also
Objects
gsmDownlinkConfig

Functions
gsmCheckTimeMask | gsmFrame | gsmInfo

 gsmUplinkConfig

3-753



Topics
“GSM TDMA Frame Parameterization for Waveform Generation”
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comm.HadamardCode
Package: comm

Generate Hadamard code

Description
The HadamardCode object generates a Hadamard code from a Hadamard matrix, whose rows form
an orthogonal set of codes. You can use orthogonal codes for spreading in communication systems in
which the receiver is perfectly synchronized with the transmitter. In these systems, the despreading
operation is ideal, because the codes decorrelate completely.

To generate a Hadamard code:

1 Define and set up your Hadamard code object. See “Construction” on page 3-755.
2 Call step to generate a Hadamard according to the properties of comm.HadamardCode. The

behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj) and y = obj() perform equivalent operations.

Construction
H = comm.HadamardCode creates a Hadamard code generator System object, H. This object
generates Hadamard codes from a set of orthogonal codes.

H = comm.HadamardCode(Name,Value) creates a Hadamard code generator object, H, with each
specified property set to the specified value. You can specify additional name-value pair arguments in
any order as (Name1,Value1,...,NameN,ValueN).

Properties
Length

Length of generated code

Specify the length of the generated code as a numeric, integer scalar value with a power of two. The
default is 64.

Index

Row index of Hadamard matrix

Specify the row index of the Hadamard matrix as a numeric, integer scalar value in the range [0,
1, ... , N-1]. N is the value of the Length on page 3-0  property. The default is 60. An N×N
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Hadamard matrix, denoted as P(N), is defined recursively as follows: P(1) = [1] P(2N) = [P(N) P(N);
P(N) –P(N)] The NxN Hadamard matrix has the property that P(N)×P(N)' = N×eye(N). The step
method outputs code samples from the row of the Hadamard matrix that you specify in this property.

When you set this property to an integer k, the output code has exactly k zero crossings, for k = 0,
1, ... , N–1.

SamplesPerFrame

Number of output samples per frame

Specify the number of Hadamard code samples that the step method outputs as a numeric, positive,
integer scalar value. The default is 1.

When you set this property to a value of M, the step method outputs M samples of a Hadamard code
of length N. N equals the length of the code that you specify in the Length on page 3-0  property.

OutputDataType

Data type of output

Specify the output data type as one of double | int8. The default is double.

Methods

step Generate Hadamard code

Common to All System Objects
release Allow System object property value changes
reset Reset internal states of System object

Examples

Hadamard Code Sequence

Generate 10 samples of a Hadamard code sequence having a length of 128.

hadamard = comm.HadamardCode('Length',128,'SamplesPerFrame',10)

hadamard = 
  comm.HadamardCode with properties:

             Length: 128
              Index: 60
    SamplesPerFrame: 10
     OutputDataType: 'double'

seq = hadamard()
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seq = 10×1

     1
     1
     1
     1
    -1
    -1
    -1
    -1
    -1
    -1

Algorithms
This object implements the algorithm, inputs, and outputs described on the Hadamard Code
Generator block reference page. The object properties correspond to the block parameters, except:

• The object does not have a property to select frame based outputs.
• The object does not have a property that corresponds to the Sample time parameter.

Version History
Introduced in R2012a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.WalshCode | comm.OVSFCode
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step
System object: comm.HadamardCode
Package: comm

Generate Hadamard code

Syntax
Y = step(H)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj) and y = obj() perform equivalent operations.

Y = step(H) outputs a frame of the Hadamard code in column vector Y. Specify the frame length
with the SamplesPerFrame property. The Hadamard code corresponds to one of the rows of an NxN
Hadamard matrix, where N is a nonnegative power of 2, which you specify in the Length property.
Use the Index property to choose the row of the Hadamard matrix. The step method outputs the
code in a bi-polar format with 0 and 1 mapped to 1 and -1, respectively.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This initialization
locks nontunable properties and input specifications. For more information on changing property
values, see “System Design in MATLAB Using System Objects”.
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comm.HDLCRCDetector
Package: comm

Detect errors in input data using CRC

Description
This HDL-optimized cyclic redundancy code (CRC) detector System object computes a checksum on
the input data and compares the result against the input checksum. Instead of frame processing, the
HDLCRCDetector System object processes streaming data. The object has frame synchronization
control signals for both input and output data streams.

To compute and compare checksums:

1 Create the comm.HDLCRCDetector object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
CRCDet = comm.HDLCRCDetector
CRCDet = comm.HDLCRCDetector(Name,Value)
CRCDet = comm.HDLCRCDetector(poly,Name,Value)

Description

CRCDet = comm.HDLCRCDetector creates an HDL-optimized CRC detector System object, CRCDet,
that detects errors in the input data according to a specified generator polynomial.

CRCDet = comm.HDLCRCDetector(Name,Value)sets properties using one or more name-value
pairs. Enclose each property name in single quotes. For example,

CRCDet = comm.HDLCRCDetector('Polynomial',[1 0 0 0 1 0 0 0 0], ...
'FinalXORValue',[1 1 0 0 0 0 0 0]);

specifies a CRC8 polynomial and an 8-bit value to XOR with the final checksum.

CRCDet = comm.HDLCRCDetector(poly,Name,Value) creates an HDL-optimized CRC detector
System object, CRCDet, with the Polynomial property set to poly, and the other specified property
names set to the specified values.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.
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If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Polynomial — Generator polynomial
[1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1] (default) | binary vector

Generator polynomial, specified as a binary vector, with coefficients in descending order of powers.
The vector length must be equal to the degree of the polynomial plus 1.

InitialState — Initial conditions of shift register
0 (default) | binary scalar | binary vector

Initial conditions of the shift register, specified as a binary, double-precision or single-precision scalar
or vector. If you specify this property as a vector, the vector length is the degree of the generator
polynomial that you specify in the Polynomial property. If you specify this property as a scalar, the
object expands the value to a vector of length equal to the degree of the generator polynomial.

DirectMethod — Method of calculating checksum
false (default) | true

Method of calculating checksum, specified as a logical scalar. When this property is true, the object
uses the direct algorithm for CRC checksum calculations.

To learn about direct and non-direct algorithms, see “Cyclic Redundancy Check Codes”.

ReflectInput — Input byte order
false (default) | true

Input byte order, specified as a logical scalar. When this property is true, the object flips the input
data on a bytewise basis before it enters the shift register.

ReflectCRCChecksum — Checksum byte order
false (default) | true

Checksum byte order, specified as a logical scalar. When this property is true, the object flips the
output CRC checksum around its center.

FinalXORValue — Checksum mask
0 (default) | binary scalar | binary vector

Checksum mask, specified as a binary, double- or single-precision data type scalar or vector. The
object XORs the checksum with this value before appending the checksum to the input data. If you
specify this property as a vector, the vector length is the degree of the generator polynomial that you
specify in the Polynomial property. If you specify this property as a scalar, the object expands the
value to a vector of length equal to the degree of the generator polynomial.

Usage

Syntax
[Y,startOut,endOut,validOut,err] = CRCn(X,startIn,endIn,validIn)
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Description

[Y,startOut,endOut,validOut,err] = CRCn(X,startIn,endIn,validIn) computes CRC
checksums for an input message X based on the control signals and compares the computed
checksum with input checksum. If the two checksums are not equal, the output err is set to 1 true).

Input Arguments

X — Input message and appended checksum
binary column vector | scalar integer

Input message and appended checksum, specified as a binary vector or a scalar integer representing
several bits. For example, vector input [0,0,0,1,0,0,1,1] is equivalent to uint8 input 19.

If the input is a vector, the data type can be double or logical. If the input is a scalar, the data type
can be unsigned integer or unsigned fixed-point with 0 fractional bits (fi([],0,N,0)).

X can be part or all of the message to be checked.

The length of X must be less than or equal to the CRC length, and the CRC length must be divisible by
the length of X.

The CRC length is the order of the polynomial that you specify in the Polynomial property.
Data Types: double | uint8 | uint16 | uint32 | logical | unsigned fi

startIn — Start of input message
logical scalar

Start of the input message, specified as a logical scalar.

endIn — End of input message
logical scalar

End of the input message, specified as a logical scalar.

validIn — Validity of input data
logical scalar

Validity of input data, specified as a logical scalar. When validIn is 1 (true), the object computes
the CRC checksum for input X.

Output Arguments

Y — Message with checksum removed
binary column vector | scalar integer

Message with checksum removed, returned as a scalar integer or binary column vector with the same
width and data type as input X.

startOut — Start of input message
logical scalar

Start of the input message, returned as a logical scalar.

endOut — End of input message
logical scalar
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End of the input message, returned as a logical scalar.

validOut — Validity of input data
logical scalar

Validity of input data, returned as a logical scalar. When validOut is 1 (true), the output data Y is
valid.

err — Checksum mismatch
logical scalar

Checksum mismatch, returned as a logical scalar. err is 1 (true) when the input checksum does not
match the calculated checksum.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

CRC Encode and Decode for HDL

Encode and decode a signal using the HDL-optimized CRC generator and detector System objects.
This example shows how to include each object in a function for HDL code generation.

Create a 32-bit message to be encoded, in two 16-bit columns.

msg = randi([0 1],16,2);

Run for 12 steps to accommodate the latency of both objects. Assign control signals for all steps. The
first two samples are the valid data, and the remainder are processing latency.

numSteps = 12;
startIn = logical([1 0 0 0 0 0 0 0 0 0 0 0]);
endIn   = logical([0 1 0 0 0 0 0 0 0 0 0 0]);
validIn = logical([1 1 0 0 0 0 0 0 0 0 0 0]);

Pass random input to the HDLCRCGenerator System object™ while it is processing the input
message. The random data is not encoded because the input valid signal is 0 for steps 3 to 10.

randIn = randi([0, 1],16,numSteps-2);
dataIn = [msg randIn];
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Write a function that creates and calls each System object™. You can generate HDL from these
functions. The generator and detector objects both have a CRC length of 16 and use the default
polynomial.

function [dataOut,startOut,endOut,validOut] = HDLCRC16Gen(dataIn,startIn,endIn,validIn)
%HDLCRC16Gen
% Generates CRC checksum using the comm.HDLCRCGenerator System object(TM)
% dataIn is a binary column vector. 
% startIn, endIn, and validIn are logical scalar values.
% You can generate HDL code from this function.

  persistent crcg16;
  if isempty(crcg16)
    crcg16 = comm.HDLCRCGenerator()
  end    
  [dataOut,startOut,endOut,validOut] = crcg16(dataIn,startIn,endIn,validIn);
end

function [dataOut,startOut,endOut,validOut,err] = HDLCRC16Det(dataIn,startIn,endIn,validIn)
%HDLCRC16Det
% Checks CRC checksum using the comm.HDLCRCDetector System object(TM)
% dataIn is a binary column vector. 
% startIn, endIn, and validIn are logical scalar values.
% You can generate HDL code from this function.

  persistent crcd16;
  if isempty(crcd16)
    crcd16 = comm.HDLCRCDetector()
  end    
  [dataOut,startOut,endOut,validOut,err] = crcd16(dataIn,startIn,endIn,validIn);
end

Call the CRC generator function. The encoded message is the original message plus a 16 bit
checksum.

 for i =  1:numSteps
 [dataOutGen(:,i),startOutGen(i),endOutGen(i),validOutGen(i)] = ...
     HDLCRC16Gen(logical(dataIn(:,i)),startIn(i),endIn(i),validIn(i));
 end

crcg16 = 

  comm.HDLCRCGenerator with properties:

            Polynomial: [1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1]
          InitialState: 0
          DirectMethod: false
          ReflectInput: false
    ReflectCRCChecksum: false
         FinalXORValue: 0

 comm.HDLCRCDetector

3-763



Add noise by flipping a bit in the message.

dataOutNoise = dataOutGen;
dataOutNoise(2,4) = ~dataOutNoise(2,4);

Call the CRC detector function. The output of the detector is the input message with the checksum
removed. If the input checksum was not correct, the err flag is set with the last word of the output.

for i = 1:numSteps
[dataOut(:,i),startOut(i),endOut(i),validOut(i),err(i)] = ...
    HDLCRC16Det(logical(dataOutNoise(:,i)),startOutGen(i),endOutGen(i),validOutGen(i));
end

crcd16 = 

  comm.HDLCRCDetector with properties:

            Polynomial: [1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1]
          InitialState: 0
          DirectMethod: false
          ReflectInput: false
    ReflectCRCChecksum: false
         FinalXORValue: 0

Use the Logic Analyzer to view the input and output signals.

channels = {'validIn','startIn','endIn',...
    {'dataIn','Radix','Hexadecimal'},...
    'validOutGen','startOutGen','endOutGen',...
    {'dataOutGen','Radix','Hexadecimal'},...
    {'dataOutNoise','Radix','Hexadecimal'},...
    'validOut','startOut','endOut','err',...
    {'dataOut','Radix','Hexadecimal'}};
la = dsp.LogicAnalyzer('Name','CRC Encode and Decode','NumInputPorts',length(channels),...
                      'BackgroundColor','Black','DisplayChannelHeight',8);

 for ii = 1:length(channels)
    if iscell(channels{ii})
        % Display data signals as hexadecimal integers
        c = channels{ii};
        modifyDisplayChannel(la,ii,'Name',c{1},c{2},c{3})
        % Convert binary column vector to integer
        cVal = eval(c{1});
        dat2 = uint16(bit2int(cVal,size(cVal,1))');
        chanData{ii} = squeeze(dat2);
    else
        modifyDisplayChannel(la,ii,'Name',channels{ii})
        chanData{ii} = squeeze(eval(channels{ii})');
    end
 end
la(chanData{:})
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Algorithms
Timing Diagram

This waveform shows streaming data and the accompanying control signals for a CRC16 with 8-bit
binary vector input. The input frames are contiguous. The output frames include space between them
because the detector block removes the checksum word.
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This waveform diagram shows continuous input data. Non-continuous data is also supported.

Initial Delay

The HDLCRCDetector System object introduces a latency on the output. You can compute the
latency as follows, assuming the input data is continuous:

initialDelay =  3 * (CRCLength/inputDataWidth) + 2

Version History
Introduced in R2012b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

This System object supports C/C++ code generation for accelerating MATLAB simulations, and for
DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

double and single data types are supported for simulation, but not for HDL code generation.

To generate HDL code from predefined System objects, see “HDL Code Generation from Viterbi
Decoder System Object” (HDL Coder).

See Also
Objects
comm.HDLCRCGenerator | comm.CRCDetector

Blocks
General CRC Syndrome Detector HDL Optimized
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comm.HDLCRCGenerator
Package: comm

Generate CRC code bits and append to input data

Description
This HDL-optimized cyclic redundancy code (CRC) generator System object generates cyclic
redundancy code (CRC) bits. Instead of frame processing, the HDLCRCGenerator System object
processes streaming data. The object has frame synchronization control signals for both input and
output data streams.

To generate cyclic redundancy code bits:

1 Create the comm.HDLCRCGenerator object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
CRCGen = comm.HDLCRCGenerator
CRCGen = comm.HDLCRCGenerator(Name,Value)
CRCGen = comm.HDLCRCGenerator(poly,Name,Value)

Description

CRCGen = comm.HDLCRCGenerator creates an HDL-optimized CRC generator System object,
CRCGen. This object generates CRC bits according to a specified generator polynomial and appends
them to the input data.

CRCGen = comm.HDLCRCGenerator(Name,Value) sets properties using one or more name-value
pairs. Enclose each property name in single quotes. For example,

CRCGen = comm.HDLCRCGenerator('Polynomial',[1 0 0 0 1 0 0 0 0], ...
'FinalXORValue',[1 1 0 0 0 0 0 0]);

specifies a CRC8 polynomial and an 8-bit value to XOR with the final checksum.

CRCGen = comm.HDLCRCGenerator(poly,Name,Value) sets the Polynomial property to poly,
and the other specified property names to the specified values.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.
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If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Polynomial — Generator polynomial
[1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1] (default) | binary vector

Generator polynomial, specified as a binary vector, with coefficients in descending order of powers.
The vector length must be equal to the degree of the polynomial plus 1.

InitialState — Initial conditions of shift register
0 (default) | binary scalar | binary vector

Initial conditions of the shift register, specified as a binary, double-precision or single-precision scalar
or vector. If you specify this property as a vector, the vector length is the degree of the generator
polynomial that you specify in the Polynomial property. If you specify this property as a scalar, the
object expands the value to a vector of length equal to the degree of the generator polynomial.

DirectMethod — Method of calculating checksum
false (default) | true

Method of calculating checksum, specified as a logical scalar. When this property is true, the object
uses the direct algorithm for CRC checksum calculations.

To learn about direct and non-direct algorithms, see “Cyclic Redundancy Check Codes”.

ReflectInput — Input byte order
false (default) | true

Input byte order, specified as a logical scalar. When this property is true, the object flips the input
data on a bytewise basis before it enters the shift register.

ReflectCRCChecksum — Checksum byte order
false (default) | true

Checksum byte order, specified as a logical scalar. When this property is true, the object flips the
output CRC checksum around its center.

FinalXORValue — Checksum mask
0 (default) | binary scalar | binary vector

Checksum mask, specified as a binary, double- or single-precision data type scalar or vector. The
object XORs the checksum with this value before appending the checksum to the input data. If you
specify this property as a vector, the vector length is the degree of the generator polynomial that you
specify in the Polynomial property. If you specify this property as a scalar, the object expands the
value to a vector of length equal to the degree of the generator polynomial.

Usage

Syntax
[Y,startOut,endOut,validOut] = CRCn(X,startIn,endIn, validIn)
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Description

[Y,startOut,endOut,validOut] = CRCn(X,startIn,endIn, validIn) generates CRC
checksums for input message X based on control signals and appends the checksums to X.

Input Arguments

X — Input message
binary column vector | scalar integer

Input message, specified as a binary vector or a scalar integer representing several bits. For example,
vector input [0,0,0,1,0,0,1,1] is equivalent to uint8 input 19.

If the input is a vector, the data type can be double or logical. If the input is a scalar, the data type
can be unsigned integer or unsigned fixed-point with 0 fractional bits (fi([],0,N,0)).

X can be part or all of the message to be encoded.

The length of X must be less than or equal to the CRC length, and the CRC length must be divisible by
the length of X.

The CRC length is the order of the polynomial that you specify in the Polynomial property.
Data Types: double | uint8 | uint16 | uint32 | logical | unsigned fi

startIn — Start of input message
logical scalar

Start of the input message, specified as a logical scalar.

endIn — End of input message
logical scalar

End of the input message, specified as a logical scalar.

validIn — Validity of input data
logical scalar

Validity of input data, specified as a logical scalar. When validIn is 1 (true), the object computes
the CRC checksum for input X.

Output Arguments

Y — Output message with appended checksum
binary column vector | scalar integer

Output message, consisting of X with appended checksum, returned as a scalar integer or binary
column vector with the same width and data type as input X.

startOut — Start of input message
logical scalar

Start of the input message, returned as a logical scalar.

endOut — End of input message
logical scalar
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End of the input message, returned as a logical scalar.

validOut — Validity of input data
logical scalar

Validity of input data, returned as a logical scalar. When validOut is 1 (true), the output data Y is
valid.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

CRC Encode and Decode for HDL

Encode and decode a signal using the HDL-optimized CRC generator and detector System objects.
This example shows how to include each object in a function for HDL code generation.

Create a 32-bit message to be encoded, in two 16-bit columns.

msg = randi([0 1],16,2);

Run for 12 steps to accommodate the latency of both objects. Assign control signals for all steps. The
first two samples are the valid data, and the remainder are processing latency.

numSteps = 12;
startIn = logical([1 0 0 0 0 0 0 0 0 0 0 0]);
endIn   = logical([0 1 0 0 0 0 0 0 0 0 0 0]);
validIn = logical([1 1 0 0 0 0 0 0 0 0 0 0]);

Pass random input to the HDLCRCGenerator System object™ while it is processing the input
message. The random data is not encoded because the input valid signal is 0 for steps 3 to 10.

randIn = randi([0, 1],16,numSteps-2);
dataIn = [msg randIn];

Write a function that creates and calls each System object™. You can generate HDL from these
functions. The generator and detector objects both have a CRC length of 16 and use the default
polynomial.

function [dataOut,startOut,endOut,validOut] = HDLCRC16Gen(dataIn,startIn,endIn,validIn)
%HDLCRC16Gen
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% Generates CRC checksum using the comm.HDLCRCGenerator System object(TM)
% dataIn is a binary column vector. 
% startIn, endIn, and validIn are logical scalar values.
% You can generate HDL code from this function.

  persistent crcg16;
  if isempty(crcg16)
    crcg16 = comm.HDLCRCGenerator()
  end    
  [dataOut,startOut,endOut,validOut] = crcg16(dataIn,startIn,endIn,validIn);
end

function [dataOut,startOut,endOut,validOut,err] = HDLCRC16Det(dataIn,startIn,endIn,validIn)
%HDLCRC16Det
% Checks CRC checksum using the comm.HDLCRCDetector System object(TM)
% dataIn is a binary column vector. 
% startIn, endIn, and validIn are logical scalar values.
% You can generate HDL code from this function.

  persistent crcd16;
  if isempty(crcd16)
    crcd16 = comm.HDLCRCDetector()
  end    
  [dataOut,startOut,endOut,validOut,err] = crcd16(dataIn,startIn,endIn,validIn);
end

Call the CRC generator function. The encoded message is the original message plus a 16 bit
checksum.

 for i =  1:numSteps
 [dataOutGen(:,i),startOutGen(i),endOutGen(i),validOutGen(i)] = ...
     HDLCRC16Gen(logical(dataIn(:,i)),startIn(i),endIn(i),validIn(i));
 end

crcg16 = 

  comm.HDLCRCGenerator with properties:

            Polynomial: [1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1]
          InitialState: 0
          DirectMethod: false
          ReflectInput: false
    ReflectCRCChecksum: false
         FinalXORValue: 0

Add noise by flipping a bit in the message.

dataOutNoise = dataOutGen;
dataOutNoise(2,4) = ~dataOutNoise(2,4);

Call the CRC detector function. The output of the detector is the input message with the checksum
removed. If the input checksum was not correct, the err flag is set with the last word of the output.
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for i = 1:numSteps
[dataOut(:,i),startOut(i),endOut(i),validOut(i),err(i)] = ...
    HDLCRC16Det(logical(dataOutNoise(:,i)),startOutGen(i),endOutGen(i),validOutGen(i));
end

crcd16 = 

  comm.HDLCRCDetector with properties:

            Polynomial: [1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1]
          InitialState: 0
          DirectMethod: false
          ReflectInput: false
    ReflectCRCChecksum: false
         FinalXORValue: 0

Use the Logic Analyzer to view the input and output signals.

channels = {'validIn','startIn','endIn',...
    {'dataIn','Radix','Hexadecimal'},...
    'validOutGen','startOutGen','endOutGen',...
    {'dataOutGen','Radix','Hexadecimal'},...
    {'dataOutNoise','Radix','Hexadecimal'},...
    'validOut','startOut','endOut','err',...
    {'dataOut','Radix','Hexadecimal'}};
la = dsp.LogicAnalyzer('Name','CRC Encode and Decode','NumInputPorts',length(channels),...
                      'BackgroundColor','Black','DisplayChannelHeight',8);

 for ii = 1:length(channels)
    if iscell(channels{ii})
        % Display data signals as hexadecimal integers
        c = channels{ii};
        modifyDisplayChannel(la,ii,'Name',c{1},c{2},c{3})
        % Convert binary column vector to integer
        cVal = eval(c{1});
        dat2 = uint16(bit2int(cVal,size(cVal,1))');
        chanData{ii} = squeeze(dat2);
    else
        modifyDisplayChannel(la,ii,'Name',channels{ii})
        chanData{ii} = squeeze(eval(channels{ii})');
    end
 end
la(chanData{:})
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Algorithms
Timing Diagram

This waveform shows streaming data and the accompanying control signals for a CRC16 with an 8-bit
binary vector input. To insert the checksum word, input frames must have enough space between
them.

This waveform diagram shows continuous input data. The block also supports noncontinuous data.
The output valid signal matches the input valid pattern.
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Initial Delay

The HDLCRCGenerator System object introduces a latency on the output. You can compute the
latency as follows, assuming the input data is continuous:

initialDelay = (CRCLength/inputDataWidth) + 2

Version History
Introduced in R2012a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

This System object supports C/C++ code generation for accelerating MATLAB simulations, and for
DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

double and single data types are supported for simulation, but not for HDL code generation.

To generate HDL code from predefined System objects, see “HDL Code Generation from Viterbi
Decoder System Object” (HDL Coder).

See Also
Objects
comm.CRCGenerator | comm.HDLCRCDetector

Blocks
General CRC Generator HDL Optimized
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comm.HDLRSDecoder
Package: comm

Decode message using Reed-Solomon decoder

Description
The HDL-optimized HDLRSDecoder System object recovers a message vector from a Reed-Solomon
(RS) codeword vector. For proper decoding, the code and polynomial property values for this object
must match those values in the corresponding encoder.

To recover a message vector from a Reed-Solomon codeword vector:

1 Create the comm.HDLRSDecoder object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Troubleshooting

• Each input frame must contain more than (N-K)*2 symbols and fewer than or exactly N symbols.
The object infers a shortened code when the number of valid data samples between startIn and
endIn is less than N. A shortened code still requires N cycles to perform the Chien search. If the
input message is less than N symbols, leave a guard interval of at least N - size inactive cycles
before starting the next frame, where sizeis the message length.

• The decoder can operate on up to four messages at a time. If the object receives the start of a fifth
message before completely decoding the first message, the object drops data samples from the
first message. To avoid this issue, increase the number of inactive cycles between input messages.

• The generator polynomial is not specified explicitly. However, it is defined by the codeword length,
the message length, and the B value for the starting exponent of the roots. To get the value of B
from a generator polynomial, use the genpoly2b function.

Creation
Syntax
RSDec = comm.HDLRSDecoder
RSDec = comm.HDLRSDecoder(Name,Value)
RSDec = comm.HDLRSDecoder(N,K,Name,Value)

Description

RSDec = comm.HDLRSDecoder creates an HDL-optimized RS decoder System object, RSDec, that
performs Reed-Solomon decoding.

RSDec = comm.HDLRSDecoder(Name,Value) sets properties using one or more name-value pairs.
Enclose each property name in single quotes. For example,

comm.HDLRSDecoder('BSource','Property','B',2) 
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sets a starting power of 2 for the roots of the primitive polynomial.

RSDec = comm.HDLRSDecoder(N,K,Name,Value) sets the CodewordLength property to N, the
MessageLength property to K, and other specified property names to the specified values.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

B — Starting power for roots of primitive polynomial

1 (default) | positive integer

Starting power for roots of the primitive polynomial, specified as a positive integer.
Dependencies

The object uses this value when you set BSource to 'Property'.

BSource — Source of starting power for roots of primitive polynomial
'Auto' (default) | 'Property'

Source of the starting power for roots of the primitive polynomial, specified as either 'Property' or
'Auto'. When you select 'Auto', the object uses B = 1.

CodewordLength — Number of symbols, N, in RS codeword
7 (default) | positive integer

Number of symbols, N, in the RS codeword, specified as a positive integer. This value is rounded up
to 2M–1. M is the degree of the primitive polynomial, as specified by the
PrimitivePolynomialSource and PrimitivePolynomial properties. The difference of
CodewordLength – MessageLength must be an even integer.

If the value of this property is less than 2M–1, the object assumes a shortened RS code.

If you set PrimitivePolynomialSource to 'Auto', then CodewordLength must be in the range 3
< CodewordLength ≤ 216 – 1.

If you set PrimitivePolynomialSource to 'Property', then CodewordLength must be in the
range 3 ≤ CodewordLength ≤ 2M– 1. M must be in the range 3 ≤ M ≤ 16.

MessageLength — Message length, K
3 (default) | positive integer

Message length, K, specified as a positive integer. The difference of CodewordLength –
MessageLength must be an even integer.
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NumErrorsOutputPort — Enable number of errors output argument
false (default) | true

When you set this property to true, the object returns the number of corrected errors. The number
of corrected errors is not valid when errOut is true, since there were more errors than could be
corrected.

PrimitivePolynomialSource — Source of primitive polynomial
'Auto' (default) | 'Property'

Source of the primitive polynomial, specified as either 'Property' or 'Auto'.

• When you set this property to 'Auto', the object uses a primitive polynomial of degree M =
ceil(log2(CodewordLength+1)), which is the result of int2bit(primpoly(M),bpi)', where bpi
is the number of bits per integer.

• When you set this property to 'Property', you must specify a polynomial using the
PrimitivePolynomial property.

PrimitivePolynomial — Primitive polynomial
[1 0 1 1] (default) | binary row vector

Primitive polynomial, specified as a binary row vector that represents a primitive polynomial over
gf(2) of degree M, in descending order of powers. The polynomial defines the finite field gf(2M)
corresponding to the integers that form messages and codewords.

Dependencies

The object uses this value when you set PrimitivePolynomialSource to 'Property'.

Usage

Syntax
[Y,startOut,endOut,validOut,errOut] = RSDec(X,startIn,endIn,validIn)
[Y,startOut,endOut,validOut,errOut,numErrors] = RSDec(X,startIn,endIn,
validIn)

Description

[Y,startOut,endOut,validOut,errOut] = RSDec(X,startIn,endIn,validIn) decodes
one encoded message symbol, X, and returns the decoded symbol Y. The start and end signals
indicate the message frame boundaries. If errOut is 1 (true), then the object detected
uncorrectable errors in the input frame.

[Y,startOut,endOut,validOut,errOut,numErrors] = RSDec(X,startIn,endIn,
validIn) decodes the input data, and also returns the number of errors detected and corrected. To
use this syntax, set the NumErrorsOutputPort property to true. If errOut is 1 (true), then the
object detected uncorrectable errors in the output frame, and numErrors is invalid.
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Input Arguments

X — Input message data or parity symbols
integer

Input message data and parity symbols, one symbol at a time, specified as an unsigned integer or
fi() with any binary point scaling.

double type is allowed for simulation but not supported for HDL code generation.
Data Types: double | uint8 | uint16 | uint32 | fi

startIn — Start of input data frame
logical scalar

Start of input data frame, specified as a logical scalar.
Data Types: logical

endIn — End of input data frame
logical scalar

End of input data frame, specified as a logical scalar.
Data Types: logical

validIn — Validity of input data
logical scalar

Validity of input data, specified as a logical scalar.
Data Types: logical

Output Arguments

Y — Message data symbols
integer

Message data symbols, returned one symbol at a time, as an integer with the same data type as the
input message, X.
Data Types: double | uint8 | uint16 | uint32 | fi

startOut — Start of output data frame
logical scalar

Start of output data frame, returned as a logical scalar.
Data Types: logical

endOut — End of output data frame
logical scalar

End of output data frame, returned as a logical scalar.
Data Types: logical

validOut — Validity of output data
logical scalar
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Validity of output data, returned as a logical scalar.
Data Types: logical

errOut — Uncorrectable error in output data frame
logical scalar

Uncorrectable error in output data frame, returned as a logical scalar. This signal is 1 (true) when
the message frame contains uncorrectable errors. In this case, the output data symbols are
corrupted. This value is valid when endOut is 1 (true).
Data Types: logical

numErrors — Number of errors detected and corrected
integer

Number of errors detected and corrected, returned as an integer. This value is valid when endOut is
1 (true) and errOut is 0 (false).
Data Types: uint8

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Reed-Solomon Coding and Error Detection for HDL

Encode and decode a signal using Reed Solomon encoder and decoder System objects. This example
shows how to include each object in a function for HDL code generation.

Create a random message to encode. This message is smaller than the codeword length to show how
the objects support shortened codes. Pad the message with zeros to accommodate the latency of the
decoder, including the Chien search.

messageLength = 188;
dataIn = [randi([0,255],1,messageLength,'uint8') zeros(1,1024-messageLength)];

Write a function that creates and calls a HDLRSEncoder System object™ with an RS(255,239) code.
This code is used in the IEEE® 802.16 Broadband Wireless Access standard. B is the starting power
of the roots of the primitive polynomial. You can generate HDL from this function.
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Note: This object syntax runs only in R2016b or later. If you are using an earlier release, replace
each call of an object with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

function  [dataOut,startOut,endOut,validOut] = HDLRSEnc80216(dataIn,startIn,endIn,validIn)
%HDLRSEnc80216 
% Processes one sample of data using the comm.HDLRSEncoder System object(TM)
% dataIn is a uint8 scalar, representing 8 bits of binary data. 
% startIn, endIn, and validIn are logical scalar values.
% You can generate HDL code from this function.

  persistent rsEnc80216;
  if isempty(rsEnc80216)
    rsEnc80216 = comm.HDLRSEncoder(255,239,'BSource','Property','B',0)
  end    
  [dataOut,startOut,endOut,validOut] = rsEnc80216(dataIn,startIn,endIn,validIn);
end

Call the function to encode the message.

for ii = 1:1024
    messageStart = (ii==1);
    messageEnd = (ii==messageLength);
    validIn = (ii<=messageLength);
    [encOut(ii),startOut(ii),endOut(ii),validOut(ii)] = ...
        HDLRSEnc80216(dataIn(ii),messageStart,messageEnd,validIn);
end

rsEnc80216 = 

  comm.HDLRSEncoder with properties:

               CodewordLength: 255
                MessageLength: 239
    PrimitivePolynomialSource: 'Auto'
        PuncturePatternSource: 'None'
                      BSource: 'Property'
                            B: 0

Inject errors at random locations in the encoded message. Reed-Solomon can correct up to (N – K)/2
errors in each N symbols. So, in this example, the error correction capability is (255 – 239)/2=8
symbols.

numErrors = 8;
loc = randperm(messageLength,numErrors);
% encOut is qualified by validOut, use an offset for injecting errors
vi = find(validOut==true,1);
for i = 1:numErrors
   idx = loc(i)+vi;
   symbol = encOut(idx);
   encOut(idx) = randi([0 255],'uint8');
   fprintf('Symbol(%d): was 0x%x, now 0x%x\n',loc(i),symbol,encOut(idx))
end
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Symbol(147): was 0x1f, now 0x82
Symbol(16): was 0x6b, now 0x82
Symbol(173): was 0x3, now 0xd1
Symbol(144): was 0x66, now 0xcb
Symbol(90): was 0x13, now 0xa4
Symbol(80): was 0x5a, now 0x60
Symbol(82): was 0x95, now 0xcf
Symbol(56): was 0xf5, now 0x88

Write a function that creates and calls a HDLRSDecoder System object™. This object must have the
same code and polynomial as the encoder. You can generate HDL from this function.

function  [dataOut,startOut,endOut,validOut,err] = HDLRSDec80216(dataIn,startIn,endIn,validIn)
%HDLRSDec80216 
% Processes one sample of data using the comm.HDLRSDecoder System object(TM)
% dataIn is a uint8 scalar, representing 8 bits of binary data. 
% startIn, endIn, and validIn are logical scalar values.
% You can generate HDL code from this function.

  persistent rsDec80216;
  if isempty(rsDec80216)
    rsDec80216 = comm.HDLRSDecoder(255,239,'BSource','Property','B',0)
  end    
  [dataOut,startOut,endOut,validOut,err] = rsDec80216(dataIn,startIn,endIn,validIn);
end

Call the function to detect errors in the encoded message.

for ii = 1:1024
 [decOut(ii),decStartOut(ii),decEndOut(ii),decValidOut(ii),decErrOut(ii)] = ...
     HDLRSDec80216(encOut(ii),startOut(ii),endOut(ii),validOut(ii));
end

rsDec80216 = 

  comm.HDLRSDecoder with properties:

               CodewordLength: 255
                MessageLength: 239
    PrimitivePolynomialSource: 'Auto'
                      BSource: 'Property'
                            B: 0
          NumErrorsOutputPort: false

Select the valid decoder output and compare the decoded symbols to the original message.

decOut = decOut(decValidOut==1);
originalMessage = dataIn(1:messageLength);
if all(originalMessage==decOut)
    fprintf('All %d message symbols were correctly decoded.\n',messageLength)
else
   for jj = 1:messageLength
      if dataIn(jj)~=decOut(jj)
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        fprintf('Error in decoded symbol(%d). Original 0x%x, Decoded 0x%x.\n',jj,dataIn(jj),decOut(jj))
      end
   end
end

All 188 message symbols were correctly decoded.

Version History
Introduced in R2012b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

This System object supports C/C++ code generation for accelerating MATLAB simulations, and for
DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

double and single data types are supported for simulation, but not for HDL code generation.

To generate HDL code from predefined System objects, see “HDL Code Generation from Viterbi
Decoder System Object” (HDL Coder).

See Also
Objects
comm.RSDecoder | comm.HDLRSEncoder

Functions
ceil | primpoly

Blocks
Integer-Output RS Decoder HDL Optimized
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comm.HDLRSEncoder
Package: comm

Encode message using Reed-Solomon encoder

Description
The HDL-optimized HDLRSEncoder System object creates a Reed-Solomon (RS) code with message
and codeword lengths that you specify.

To encode a message using a Reed-Solomon code:

1 Create the comm.HDLRSEncoder object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
RSEnc = comm.HDLRSEncoder
RSEnc = comm.HDLRSEncoder(Name,Value)
RSEnc = comm.HDLRSEncoder(N,K,Name,Value)

Description

RSEnc = comm.HDLRSEncoder creates an HDL-optimized block encoder System object, RSEnc, that
performs Reed-Solomon encoding in a streaming fashion for HDL.

RSEnc = comm.HDLRSEncoder(Name,Value) sets properties using one or more name-value pairs.
Enclose each property name in single quotes. For example,

comm.HDLRSEncoder('BSource','Property','B',2) 

sets a starting power of 2 for the roots of the primitive polynomial.

RSEnc = comm.HDLRSEncoder(N,K,Name,Value) sets the CodewordLength property to N, the
MessageLength property to K, and other specified property names to the specified values.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.
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B — Starting power for roots of primitive polynomial

1 (default) | positive integer

Starting power for roots of the primitive polynomial, specified as a positive integer.

Dependencies

The object uses this value when you set BSource to 'Property'.

BSource — Source of starting power for roots of primitive polynomial
'Auto' (default) | 'Property'

Source of the starting power for roots of the primitive polynomial, specified as either 'Property' or
'Auto'. When you select 'Auto', the object uses B = 1.

CodewordLength — Number of symbols, N, in RS codeword
7 (default) | positive integer

Number of symbols, N, in the RS codeword, specified as a positive integer. This value is rounded up
to 2M–1. M is the degree of the primitive polynomial, as specified by the
PrimitivePolynomialSource and PrimitivePolynomial properties. The difference of
CodewordLength – MessageLength must be an even integer.

If the value of this property is less than 2M–1, the object assumes a shortened RS code.

If you set PrimitivePolynomialSource to 'Auto', then CodewordLength must be in the range 3
< CodewordLength ≤ 216 – 1.

If you set PrimitivePolynomialSource to 'Property', then CodewordLength must be in the
range 3 ≤ CodewordLength ≤ 2M– 1. M must be in the range 3 ≤ M ≤ 16.

MessageLength — Message length, K
3 (default) | positive integer

Message length, K, specified as a positive integer. The difference of CodewordLength –
MessageLength must be an even integer.

PrimitivePolynomialSource — Source of primitive polynomial
'Auto' (default) | 'Property'

Source of the primitive polynomial, specified as either 'Property' or 'Auto'.

• When you set this property to 'Auto', the object uses a primitive polynomial of degree M =
ceil(log2(CodewordLength+1)), which is the result of int2bit(primpoly(M),bpi)', where bpi
is the number of bits per integer.

• When you set this property to 'Property', you must specify a polynomial using the
PrimitivePolynomial property.

PrimitivePolynomial — Primitive polynomial
[1 0 1 1] (default) | binary row vector
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Primitive polynomial, specified as a binary row vector that represents a primitive polynomial over
gf(2) of degree M, in descending order of powers. The polynomial defines the finite field gf(2M)
corresponding to the integers that form messages and codewords.

Dependencies

The object uses this value when you set PrimitivePolynomialSource to 'Property'.

PuncturePatternSource — Source of puncture pattern
'None' (default) | 'Property'

Source of the puncture pattern, specified as 'None' or 'Property'. If you set this property to
'None', then the object does not apply puncturing to the code. If you set this property to
'Property', then the object punctures the code based on a puncture pattern vector specified in the
PuncturePattern property.

PuncturePattern — Pattern used to puncture encoded data
[ones(2,1); zeros(2,1)] (default) | binary column vector

Pattern used to puncture the encoded data, specified as a double-precision, binary column vector with
a length of CodewordLength – MessageLength. The default is [ones(2,1); zeros(2,1)]. Zeros
in the puncture pattern vector indicate the position of the parity symbols that are punctured or
excluded from each codeword.

Dependencies

This property applies when you set the PuncturePatternSource property to 'Property'.

Usage

Syntax
[Y,startOut,endOut,validOut] = RSEnc(X,startIn,endIn,validIn)

Description

[Y,startOut,endOut,validOut] = RSEnc(X,startIn,endIn,validIn) encodes one input
message symbol, X, and returns one symbol of encoded data, Y. The start and end signals indicate
the message frame boundaries. The object returns associated parity symbols at the end of each
message frame.

Input Arguments

X — Input message symbol
integer

Input message data, one symbol at a time, specified as an unsigned integer or fi() with any binary
point scaling. The word length of each symbol must be ceil(log2(CodewordLength+1)).

double type is allowed for simulation but not supported for HDL code generation.
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Data Types: double | uint8 | uint16 | uint32 | fi

startIn — Start of input data frame
logical scalar

Start of input data frame, specified as a logical scalar.
Data Types: logical

endIn — End of input data frame
logical scalar

End of input data frame, specified as a logical scalar.
Data Types: logical

validIn — Validity of input data
logical scalar

Validity of input data, specified as a logical scalar.
Data Types: logical

Output Arguments

Y — Output message data and parity symbols
integer

Message data and parity symbols, returned one symbol at a time, as an integer with the same data
type as the input message, X.
Data Types: double | uint8 | uint16 | uint32 | fi

startOut — Start of output data frame
logical scalar

Start of output data frame, returned as a logical scalar.
Data Types: logical

endOut — End of output data frame
logical scalar

End of output data frame, returned as a logical scalar.
Data Types: logical

validOut — Validity of output data
logical scalar

Validity of output data, returned as a logical scalar.
Data Types: logical

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:
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release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Reed-Solomon Coding and Error Detection for HDL

Encode and decode a signal using Reed Solomon encoder and decoder System objects. This example
shows how to include each object in a function for HDL code generation.

Create a random message to encode. This message is smaller than the codeword length to show how
the objects support shortened codes. Pad the message with zeros to accommodate the latency of the
decoder, including the Chien search.

messageLength = 188;
dataIn = [randi([0,255],1,messageLength,'uint8') zeros(1,1024-messageLength)];

Write a function that creates and calls a HDLRSEncoder System object™ with an RS(255,239) code.
This code is used in the IEEE® 802.16 Broadband Wireless Access standard. B is the starting power
of the roots of the primitive polynomial. You can generate HDL from this function.

Note: This object syntax runs only in R2016b or later. If you are using an earlier release, replace
each call of an object with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

function  [dataOut,startOut,endOut,validOut] = HDLRSEnc80216(dataIn,startIn,endIn,validIn)
%HDLRSEnc80216 
% Processes one sample of data using the comm.HDLRSEncoder System object(TM)
% dataIn is a uint8 scalar, representing 8 bits of binary data. 
% startIn, endIn, and validIn are logical scalar values.
% You can generate HDL code from this function.

  persistent rsEnc80216;
  if isempty(rsEnc80216)
    rsEnc80216 = comm.HDLRSEncoder(255,239,'BSource','Property','B',0)
  end    
  [dataOut,startOut,endOut,validOut] = rsEnc80216(dataIn,startIn,endIn,validIn);
end

Call the function to encode the message.

for ii = 1:1024
    messageStart = (ii==1);
    messageEnd = (ii==messageLength);
    validIn = (ii<=messageLength);
    [encOut(ii),startOut(ii),endOut(ii),validOut(ii)] = ...
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        HDLRSEnc80216(dataIn(ii),messageStart,messageEnd,validIn);
end

rsEnc80216 = 

  comm.HDLRSEncoder with properties:

               CodewordLength: 255
                MessageLength: 239
    PrimitivePolynomialSource: 'Auto'
        PuncturePatternSource: 'None'
                      BSource: 'Property'
                            B: 0

Inject errors at random locations in the encoded message. Reed-Solomon can correct up to (N – K)/2
errors in each N symbols. So, in this example, the error correction capability is (255 – 239)/2=8
symbols.

numErrors = 8;
loc = randperm(messageLength,numErrors);
% encOut is qualified by validOut, use an offset for injecting errors
vi = find(validOut==true,1);
for i = 1:numErrors
   idx = loc(i)+vi;
   symbol = encOut(idx);
   encOut(idx) = randi([0 255],'uint8');
   fprintf('Symbol(%d): was 0x%x, now 0x%x\n',loc(i),symbol,encOut(idx))
end

Symbol(147): was 0x1f, now 0x82
Symbol(16): was 0x6b, now 0x82
Symbol(173): was 0x3, now 0xd1
Symbol(144): was 0x66, now 0xcb
Symbol(90): was 0x13, now 0xa4
Symbol(80): was 0x5a, now 0x60
Symbol(82): was 0x95, now 0xcf
Symbol(56): was 0xf5, now 0x88

Write a function that creates and calls a HDLRSDecoder System object™. This object must have the
same code and polynomial as the encoder. You can generate HDL from this function.

function  [dataOut,startOut,endOut,validOut,err] = HDLRSDec80216(dataIn,startIn,endIn,validIn)
%HDLRSDec80216 
% Processes one sample of data using the comm.HDLRSDecoder System object(TM)
% dataIn is a uint8 scalar, representing 8 bits of binary data. 
% startIn, endIn, and validIn are logical scalar values.
% You can generate HDL code from this function.

  persistent rsDec80216;
  if isempty(rsDec80216)
    rsDec80216 = comm.HDLRSDecoder(255,239,'BSource','Property','B',0)
  end    
  [dataOut,startOut,endOut,validOut,err] = rsDec80216(dataIn,startIn,endIn,validIn);
end
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Call the function to detect errors in the encoded message.

for ii = 1:1024
 [decOut(ii),decStartOut(ii),decEndOut(ii),decValidOut(ii),decErrOut(ii)] = ...
     HDLRSDec80216(encOut(ii),startOut(ii),endOut(ii),validOut(ii));
end

rsDec80216 = 

  comm.HDLRSDecoder with properties:

               CodewordLength: 255
                MessageLength: 239
    PrimitivePolynomialSource: 'Auto'
                      BSource: 'Property'
                            B: 0
          NumErrorsOutputPort: false

Select the valid decoder output and compare the decoded symbols to the original message.

decOut = decOut(decValidOut==1);
originalMessage = dataIn(1:messageLength);
if all(originalMessage==decOut)
    fprintf('All %d message symbols were correctly decoded.\n',messageLength)
else
   for jj = 1:messageLength
      if dataIn(jj)~=decOut(jj)
        fprintf('Error in decoded symbol(%d). Original 0x%x, Decoded 0x%x.\n',jj,dataIn(jj),decOut(jj))
      end
   end
end

All 188 message symbols were correctly decoded.

Version History
Introduced in R2012b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

This System object supports C/C++ code generation for accelerating MATLAB simulations, and for
DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

double and single data types are supported for simulation, but not for HDL code generation.

To generate HDL code from predefined System objects, see “HDL Code Generation from Viterbi
Decoder System Object” (HDL Coder).
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See Also
Objects
comm.RSEncoder | comm.HDLRSDecoder

Functions
ceil | primpoly

Blocks
Integer-Input RS Encoder HDL Optimized
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comm.HelicalDeinterleaver
Package: comm

Restore ordering of symbols using helical array

Description
The HelicalDeinterleaver object permutes the symbols in the input signal by placing them in a
row-by-row array and then selecting groups helically to send to the output port.

To helically deinterleave input symbols:

1 Define and set up your helical deinterleaver object. See “Construction” on page 3-791.
2 Call step to deinterleave input symbols according to the properties of

comm.HelicalDeinterleaver. The behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
H = comm.HelicalDeinterleaver creates a helical deinterleaver System object, H. This object
restores the original ordering of a sequence that was interleaved using the helical interleaver System
object.

H = comm.HelicalDeinterleaver(Name,Value) creates a helical deinterleaver object, H, with
each specified property set to the specified value. You can specify additional name-value pair
arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties
NumColumns

Number of columns in helical array

Specify the number of columns in the helical array as a positive integer scalar value. The default is 6.

GroupSize

Size of each group of input symbols

Specify the size of each group of input symbols as a positive integer scalar value. The default is 4.

StepSize
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Helical array step size

Specify number of rows of separation between consecutive input groups in their respective columns
of the helical array. This property requires a positive integer scalar value. The default is 1.

InitialConditions

Initial conditions of helical array

Specify the value that is initially stored in the helical array as a numeric scalar value. The default is 0.

Methods
step Restore ordering of symbols using a helical array

Common to All System Objects
release Allow System object property value changes
reset Reset internal states of System object

Examples

Helical Interleaving and Deinterleaving

Create helical interleaver and deinterleaver objects.

interleaver = comm.HelicalInterleaver('GroupSize',2,'NumColumns',3, ...
    'InitialConditions',-1);
deinterleaver = comm.HelicalDeinterleaver('GroupSize',2,'NumColumns',3, ...
    'InitialConditions',-1);

Generate random data. Interleave and then deinterleave the data.

[dataIn,dataOut] = deal([]);

for k = 1:10
    data = randi(7,6,1);
    intData = interleaver(data);
    deIntData = deinterleaver(intData);
    
    dataIn = cat(1,dataIn,data);
    dataOut = cat(1,dataOut,deIntData);
end

Determine the delay through the interleaver and deinterleaver pair.

intlvDelay = finddelay(dataIn,dataOut)

intlvDelay = 6

After taking the interleaving delay into account, confirm that the original and deinterleaved data are
identical.

isequal(dataIn(1:end-intlvDelay),dataOut(1+intlvDelay:end))
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ans = logical
   1

Algorithms
This object implements the algorithm, inputs, and outputs described on the Helical Deinterleaver
block reference page. The object properties correspond to the block parameters.

Version History
Introduced in R2012a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.HelicalInterleaver | comm.MultiplexedDeinterleaver
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step
System object: comm.HelicalDeinterleaver
Package: comm

Restore ordering of symbols using a helical array

Syntax
Y = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Y = step(H,X) restores the original ordering of the sequence, X, that was interleaved using a
helical interleaver and returns Y. The input X must be a column vector. The data type must be
numeric, logical, or fixed-point (fi objects). Y has the same data type as X. The helical deinterleaver
object uses an array for its computations. If you set the NumColumns property of the object to C, then
the array has C columns and unlimited rows. If you set the GroupSize property to N, then the object
accepts an input of length C×N and inserts it into the next N rows of the array. The object also places
the value of the InitialConditions property into certain positions in the top few rows of the array. This
accommodates the helical pattern and also preserves the vector indices of symbols that pass through
the HelicalInterleaver and HelicalDeinterleaver objects. The output consists of consecutive
groups of N symbols. The object selects the k-th output group in the array from column k mod C. This
selection is of type helical because of the reduction modulo C and because the first symbol in the k-th
group is in row 1+(k-1)×s, where s is the value for the StepSize property.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This initialization
locks nontunable properties and input specifications. For more information on changing property
values, see “System Design in MATLAB Using System Objects”.
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comm.HelicalInterleaver
Package: comm

Permute input symbols using helical array

Description
The HelicalInterleaver object permutes the symbols in the input signal by placing them in an
array in a helical arrangement and then sending rows of the array to the output port.

To helically interleave input symbols:

1 Define and set up your helical interleaver object. See “Construction” on page 3-795.
2 Call step to interleave input symbols according to the properties of

comm.HelicalInterleaver. The behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
H = comm.HelicalInterleaver creates a helical interleaver System object, H. This object
permutes the input symbols in the input signal by placing them in an array in a helical arrangement.

H = comm.HelicalInterleaver(Name,Value) creates a helical interleaver object, H, with each
specified property set to the specified value. You can specify additional name-value pair arguments in
any order as (Name1,Value1,...,NameN,ValueN).

Properties
NumColumns

Number of columns in helical array

Specify the number of columns in the helical array as a positive integer scalar value. The default is 6.

GroupSize

Size of each group of input symbols

Specify the size of each group of input symbols as a positive integer scalar value. The default is 4.

StepSize

Helical array step size
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Specify the number of rows of separation between consecutive input groups in their respective
columns of the helical array. This property requires as a positive integer scalar value . The default is
1.

InitialConditions

Initial conditions of helical array

Specify the value that is initially stored in the helical array as a numeric scalar value. The default is 0.

Methods
step Permute input symbols using a helical array

Common to All System Objects
release Allow System object property value changes
reset Reset internal states of System object

Examples

Helical Interleaving and Deinterleaving

Create helical interleaver and deinterleaver objects.

interleaver = comm.HelicalInterleaver('GroupSize',2,'NumColumns',3, ...
    'InitialConditions',-1);
deinterleaver = comm.HelicalDeinterleaver('GroupSize',2,'NumColumns',3, ...
    'InitialConditions',-1);

Generate random data. Interleave and then deinterleave the data.

[dataIn,dataOut] = deal([]);

for k = 1:10
    data = randi(7,6,1);
    intData = interleaver(data);
    deIntData = deinterleaver(intData);
    
    dataIn = cat(1,dataIn,data);
    dataOut = cat(1,dataOut,deIntData);
end

Determine the delay through the interleaver and deinterleaver pair.

intlvDelay = finddelay(dataIn,dataOut)

intlvDelay = 6

After taking the interleaving delay into account, confirm that the original and deinterleaved data are
identical.

isequal(dataIn(1:end-intlvDelay),dataOut(1+intlvDelay:end))
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ans = logical
   1

Algorithms
This object implements the algorithm, inputs, and outputs described on the Helical Interleaver block
reference page. The object properties correspond to the block parameters.

Version History
Introduced in R2012a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.HelicalDeinterleaver | comm.MultiplexedInterleaver
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step
System object: comm.HelicalInterleaver
Package: comm

Permute input symbols using a helical array

Syntax
Y = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Y = step(H,X) permutes input sequence, X, and returns interleaved sequence, Y. The input X must
be a column vector. The data type must be numeric, logical, or fixed-point (fi objects). Y has the same
data type as X. The helical interleaver object places the elements of X in an array in a helical fashion.
If you set the NumColumns property of the object to C, then the array has C columns and unlimited
rows. If you set the GroupSize property to N, then the object accepts an input of length C×N and
partitions the input into consecutive groups of N symbols. The object places the k-th group in the
array along column k mod C. This placement is of type helical because of the reduction modulo C and
because the first symbol in the k-th group is in the row 1+(k-1)×s, where s is the value for the
StepSize property. Positions in the array that do not contain input symbols have default contents
specified by the InitialConditions property. The object outputs C×N symbols from the array by
reading the next N rows sequentially.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This initialization
locks nontunable properties and input specifications. For more information on changing property
values, see “System Design in MATLAB Using System Objects”.
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comm.IntegrateAndDumpFilter
Package: comm

Integrate discrete-time signal with periodic resets

Description
The IntegrateAndDumpFilter object creates a cumulative sum of the discrete-time input signal,
while resetting the sum to zero according to a fixed schedule. When the simulation begins, the object
discards the number of samples specified in the Offset property. After this initial period, the object
sums the input signal along columns and resets the sum to zero every Ninput samples, set by the
integration period property. The reset occurs after the object produces output at that time step.

To integrate discrete-time signals with periodic resets:

1 Define and set up your integrate and dump filter object. See “Construction” on page 3-799.
2 Call step to integrate discrete-time signals according to the properties of

comm.IntegrateAndDumpFilter. The behavior of step is specific to each object in the
toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
H = comm.IntegrateAndDumpFilter creates an integrate and dump filter System object, H. this
object integrates over a number of samples in an integration period, and then resets at the end of
that period.

H = comm.IntegrateAndDumpFilter(Name,Value) creates an integrate and dump filter object,
H, with each specified property set to the specified value. You can specify additional name-value pair
arguments in any order as (Name1,Value1,...,NameN,ValueN).

H = comm.IntegrateAndDumpFilter(PERIOD,Name,Value) creates an integrate and dump
filter object, H. This object has the IntegrationPeriod property set to PERIOD and the other
specified properties set to the specified values.

Properties
IntegrationPeriod

Integration period

Specify the integration period, in samples, as a positive, integer scalar value greater than 1. The
integration period defines the length of the sample blocks that the object integrates between resets.
The default is 8.
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Offset

Number of offset samples

Specify a nonnegative, integer vector or scalar specifying the number of input samples that the object
discards from each column of input data at the beginning of data processing. Discarding begins when
you call the step method for the first time. The default is 0.

When you set the Offset on page 3-0  property to a nonzero value, the object outputs one or
more zeros during the initial period while discarding input samples.

When you specify this property as a vector of length L, the i-th element of the vector corresponds to
the offset for the i-th column of the input data matrix, which has L columns.

When you specify this property as a scalar value, the object applies the same offset to each column of
the input data matrix. The offset creates a transient effect, rather than a persistent delay.

DecimateOutput

Decimate output

Specify whether the step method returns intermediate cumulative sum results or decimates
intermediate results. The default is true.

When you set this property to true, the step method returns one output sample, consisting of the
final integration value, for each block of IntegrationPeriod on page 3-0  input samples. If the
inputs are (K×IntegrationPeriod)×L matrices, then the outputs are K×L matrices.

When you set this property to false, the step method returns IntegrationPeriod output
samples, comprising the intermediate cumulative sum values, for each block of IntegrationPeriod
input samples. In this case, inputs and outputs have the same dimensions.

Fixed-Point Properties

FullPrecisionOverride

Full precision override for fixed-point arithmetic

Specify whether to use full precision rules. If you set FullPrecisionOverride to true, which is
the default, the object computes all internal arithmetic and output data types using full precision
rules. These rules provide the most accurate fixed-point numerics. It also turns off the display of
other fixed-point properties because they do not apply individually. These rules guarantee that no
quantization occurs within the object. Bits are added, as needed, to ensure that no roundoff or
overflow occurs. If you set FullPrecisionOverride to false, fixed-point data types are controlled
through individual fixed-point property settings. For more information, see “Full Precision for Fixed-
Point System Objects” on page 3-803.

RoundingMethod

Rounding of fixed-point numeric values
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Specify the rounding method as one of Ceiling | Convergent | Floor | Nearest | Round |
Simplest | Zero. The default is Floor. This property applies only if the object is not in full precision
mode.

OverflowAction

Action when fixed-point numeric values overflow

Specify the overflow action as one of Wrap | Saturate. The default is Wrap. This property applies
only if the object is not in full precision mode.

AccumulatorDataType

Data type of accumulator

Specify the accumulator data type as one of Full precision | Same as input | Custom. The
default is Full precision. When you set this property to Full precision the object
automatically calculates the accumulator output word and fraction lengths. Set this property to
Custom to specify the accumulator data type using the CustomAccumulatorDataType on page 3-
0  property. This property applies when you set the FullPrecisionOverride on page 3-0
property to false.

CustomAccumulatorDataType

Fixed-point data type of accumulator

Specify the accumulator fixed-point type as a scaled numerictype object with a signedness of Auto.
The default is numerictype([],32,30). This property applies when you set the
FullPrecisionOverride on page 3-0  property to false and the AccumulatorDataType on
page 3-0  property to Custom.

OutputDataType

Data type of output

Specify the output fixed-point type as one of Same as accumulator | Same as input | Custom.
The default is Same as accumulator. This property applies when you set the
FullPrecisionOverride on page 3-0  property to false.

CustomOutputDataType

Fixed-point data type of output

Specify the output fixed-point type as a scaled numerictype object with a signedness of Auto. The
default is numerictype([],32,30). This property applies when you set the
FullPrecisionOverride on page 3-0  property to false and the OutputDataType on page 3-
0  property to Custom.
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Methods
step Integrate discrete-time signal with periodic resets

Common to All System Objects
release Allow System object property value changes

Examples

Pass Noisy Pulses Through Integrate and Dump Filter

Create an integrate and dump filter having an integration period of 20 samples.

intdump = comm.IntegrateAndDumpFilter(20);

Generate binary data.

d = randi([0 1],50,1);

Upsample the data, and pass it through an AWGN channel.

x = upsample(d,20);
y = awgn(x,25,'measured');

Pass the noisy data through the filter.

z = intdump(y);

Plot the original and filtered data. The integrate and dump filter removes most of the noise effects.

stairs([d z])
legend('Original Data','Filtered Data')
xlabel('Samples')
ylabel('Amplitude')
grid
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More About
Full Precision for Fixed-Point System Objects

FullPrecisionOverride is a convenience property that, when you set to true, automatically sets
the appropriate properties for an object to use full-precision to process fixed-point input.

For System objects, full precision, fixed-point operation refers to growing just enough additional bits
to compute the ideal full precision result. This operation has no minimum or maximum range overflow
nor any precision loss due to rounding or underflow. It is also independent of any hardware-specific
settings. The data types chosen are based only on known data type ranges and not on actual numeric
values. Full precision for System objects does not optimize coefficient values. When you set the
FullPrecisionOverride property to true, the other fixed-point properties it controls no longer
apply and any of their non-default values are ignored. These properties are also hidden. To specify
individual fixed-point properties, first set FullPrecisionOverride to false.

Algorithms
This object implements the algorithm, inputs, and outputs described on the Integrate and Dump block
reference page. The object properties correspond to the block parameters, except:
The Output intermediate values parameter corresponds to the DecimateOutput on page 3-0
property.
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Version History
Introduced in R2012a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

3 System Objects

3-804



step
System object: comm.IntegrateAndDumpFilter
Package: comm

Integrate discrete-time signal with periodic resets

Syntax
Y = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Y = step(H,X) periodically integrates blocks of N samples from the input data, X, and returns the
result in Y. N is the number of samples that you specify in the IntegrationPeriod property. X is a
column vector or a matrix and the data type is double, single or fixed-point (fi objects). X must have
K*N rows for some positive integer K, with one or more columns. The object treats each column as an
independent channel with integration occurring along every column. The dimensions of output Y
depend on the value you set for the DecimateOutput property.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This initialization
locks nontunable properties and input specifications. For more information on changing property
values, see “System Design in MATLAB Using System Objects”.

 step

3-805



comm.KasamiSequence
Package: comm

Generate Kasami sequence

Description
The comm.KasamiSequence System object generates a sequence from the set of Kasami sequences.
The Kasami sequences are a set of sequences that have cross-correlation properties. For more
information, see “Kasami Sequences” on page 3-811.

To generate a Kasami sequence:

1 Create the comm.KasamiSequence object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
kasamiseq = comm.KasamiSequence
kasamiseq = comm.KasamiSequence(Name,Value)

Description

kasamiseq = comm.KasamiSequence creates a KasamiSequence System object. This object
generates a Kasami sequence.

kasamiseq = comm.KasamiSequence(Name,Value) sets “Properties” on page 3-806 using one
or more name-value arguments. For example, 'Polynomial','z^8 + z^4 + z^3 + z^2 + 1'
specifies the generator polynomial.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Polynomial — Generator polynomial
'z^6 + z + 1' (default) | character vector | string scalar | binary-valued row vector | integer-
valued row vector
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Generator polynomial, specified as one of these options:

• Character vector or string scalar of a polynomial whose constant term is 1. For more information,
see “Representation of Polynomials in Communications Toolbox”.

• Binary-valued row vector that represents the coefficients of a polynomial in order of descending
powers. The length of this vector must be N + 1, where N is the degree of the polynomial. The
first and last entries must be 1, indicating a leading term with degree N and a constant term of 1.

• Integer-valued row vector of elements that represents the exponents for the nonzero terms of a
polynomial in order of descending powers. The last entry must be 0, indicating a constant term of
1.

You can specify the primitive generator polynomial as a row vector of elements that represents the
exponents for the nonzero terms of the polynomial in order of descending powers. Alternatively, you
can also use the primpoly function to find the primitive polynomials for a Galois field or use the
gfprimck function to check if a polynomial is a valid primitive polynomial.
Example: 'z^8 + z^4 + z^3 + z^2 + 1', [1 0 0 0 1 1 1 0 1], and [8 4 3 2 0] represent
the same polynomial: z8 + z4 + z3 + z2 + 1.
Data Types: double | char | string

InitialConditions — Initial conditions of shift register
[0 0 0 0 0 1] (default) | binary-valued scalar | binary-valued row vector

Initial conditions of the shift register, specified as one of these options:

• Binary-valued scalar — This value specifies the initial conditions of all cells in the shift register.
• Binary-valued row vector of length equal to the degree of the generator polynomial — Each

element of the vector corresponds to the initial value of the corresponding cell in the shift register.

Note The scalar, or at least one element of the specified vector, requires a nonzero value for the
object to generate a nonzero sequence.

Data Types: double

Index — Sequence index
0 (default) | integer | vector of the form [k m]

Sequence index, specified as an integer or vector of the form [k m] to select a Kasami sequence of
interest from the set of possible sequences. Kasami sequences have a period equal to N = 2n –1,
where n is a nonnegative even integer equal to the degree of the generator polynomial that you
specify in the Polynomial property.

Two classes of Kasami sequences exist: those obtained from a small set and those obtained from a
large set. You can choose a Kasami sequence from the small set by setting this property to an integer
in the range [0, 2n/2–2]. You can choose a sequence from the large set by setting this property to a
vector of the form [k m]. k must be an integer in the range [–2, 2n–2], and m must be an integer in the
range [–1, 2n/2–2]. For more information, see “Kasami Sequences” on page 3-811.
Data Types: double
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Shift — Sequence offset from starting point
0 (default) | integer

Sequence offset from the starting point, specified as an integer. The Kasami sequence has a period of
N = 2n–1, where n is the degree of the generator polynomial that you specify in the Polynomial on
page 3-0  property. The shift value is wrapped with respect to the sequence period.
Data Types: double

VariableSizeOutput — Option to enable variable-size outputs
false (default) | true

Option to enable variable-size outputs, specified as one of these numeric or logical values:

• false (0) -- Use the SamplesPerFrame property to specify the number of output samples per
frame.

• true (1) -- Use the outputsize input argument to specify the output size of the Kasami
sequence. The input value must be less than or equal to the value of the MaximumOutputSize
property.

Data Types: logical | double

MaximumOutputSize — Maximum output size
[10 1] (default) | vector of the form [m 1]

Maximum output size of the Kasami sequence, specified as a vector of the form [m 1], where m is a
positive integer. The first element of the vector indicates the maximum size of the sequence, and the
second element of the vector must be 1.
Example: [10 1] specifies a maximum output size of 10-by-1.

Dependencies

To enable this property, set the VariableSizeOutput property to 1 (true).
Data Types: double

SamplesPerFrame — Number of output samples per frame
1 (default) | positive integer

Number of output samples per frame, specified as a positive integer.

If you set this property to a value of M, then the output, which contains M samples of a Kasami
sequence, has a period of N = 2n–1. The value n is the degree of the generator polynomial that you
specify in the Polynomial on page 3-0  property.

Dependencies

To enable this property, set the VariableSizeOutput property to false (0).
Data Types: double

ResetInputPort — Option to enable input to reset sequence generator
false (default) | true
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Option to enable generator reset input, specified as a logical or numeric false (0) or true(1). Set
this property to true (1) to enable the resetseq input argument. The input argument resets the
states of the Kasami sequence generator to the initial conditions that you specify in the
InitialConditions on page 3-0  property.
Data Types: logical | double

OutputDataType — Data type of output Kasami sequence
'double' (default) | 'logical'

Data type of the output Kasami sequence, specified as 'double' or 'logical'.
Data Types: char | string

Usage

Syntax
outsequence = kasamiseq()
outsequence = kasamiseq(outputsize)
outsequence = kasamiseq(resetseq)
outsequence = kasamiseq(outputsize,resetseq)

Description

outsequence = kasamiseq() generates a Kasami sequence.

outsequence = kasamiseq(outputsize) specifies the length of the output sequence.

To enable this syntax, set the VariableSizeOutput property to 1 (true).

outsequence = kasamiseq(resetseq) specifies a reset signal for the sequence generator.

To enable this syntax, set the ResetInputPort property to 1 (true).

outsequence = kasamiseq(outputsize,resetseq) specifies the length of the output sequence
and the reset signal for the sequence generator.

To enable this syntax, set the VariableSizeOutput property to 1 (true) and the ResetInputPort
property to 1 (true).

Input Arguments

outputsize — Length of output sequence
nonnegative integer | vector of the form [n 1]

Length of the output sequence, specified as a nonnegative integer or a vector of the form [n 1], where
n is a positive integer. The first element of the vector indicates the length of the output frame, and the
second element of the vector must be 1.

The scalar or the first element of the row vector must be less than or equal to the first element of the
MaximumOutputSize property value.
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Dependencies

To enable this input argument, set the VariableSizeOutput property to 1 (true).
Data Types: double

resetseq — Reset signal for sequence generator
nonzero scalar | numeric column vector

Reset signal for the sequence generator, specified as a scalar or a column vector with length equal to
the number of samples per frame specified by the SamplesPerFrame property.

• When you specify this input as a nonzero scalar, the sequence generator resets to the specified
initial conditions and then generates a new output frame.

• When you specify this input as a numeric column vector, the sequence generator resets to the
specified initial conditions at each sample in the output frame that aligns with a nonzero value in
this vector.

Dependencies

To enable this input argument, set the ResetInputPort property to 1 (true).
Data Types: double

Output Arguments

outSequence — Kasami sequence
column vector

Kasami sequence, returned as a column vector.
Data Types: double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Spread BPSK Data with Kasami Sequence

Generate binary data, and then apply BPSK modulation to that data.

data = randi([0 1],10,1);
modData = pskmod(data,2);
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Create a Kasami sequence generator System object, specifying a generator polynomial
x8 + x4 + x3 + x2 + 1, initial conditions of the shift register, and a Kasami sequence of length 255.

kasamiseq = comm.KasamiSequence('Polynomial',[8 4 3 2 0], ...
    'InitialConditions',[0 0 0 0 0 0 0 1],'SamplesPerFrame',255);

Generate the Kasami sequence, and then convert it to bipolar form.

kasSeq = kasamiseq();
kasSeq = 2*kasSeq - 1;

Apply a gain of 1/ 255 to ensure that the spreading operation does not increase the overall signal
power.

kasSeq = kasSeq/sqrt(255);

Spread the BPSK data using the Kasami sequence.

spreadData = modData*kasSeq';
spreadData = spreadData(:);

Verify that the spread data sequence is 255 times longer than the input data sequence.

spreadingFactor = length(spreadData)/length(data)

spreadingFactor = 255

Verify that the spreading operation did not increase the signal power.

modSigPwr = sum(abs(modData).^2)/length(data)

modSigPwr = 1

spreadSigPwr = sum(abs(spreadData).^2)/length(data)

spreadSigPwr = 1.0000

More About
Kasami Sequences

Two sets of Kasami sequences exist: the small set and the large set. The large set contains all of the
sequences in the small set. Only the small set is optimal in the sense of matching Welch's lower bound
for correlation functions.

Kasami sequences have a period of N = 2n – 1, where n is a nonnegative even integer. Let u be a
binary sequence of length N, and let w be the sequence obtained by decimating u by 2n/2 + 1. This
piecewise function defines the small set of Kasami sequences. T is the left shift operator, m is the shift
parameter for w, and ⊕ denotes addition modulo 2.

Ks(u, n, m) =
u m = − 1

u⊕ Tmw m = 0, ..., 2n/2− 2

The small set contains 2n/2 sequences.
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For mod(n, 4) = 2, this piecewise function defines the large set of Kasami sequences. Let v be the
sequence formed by decimating the sequence u by 2(n/2 + 1) + 1. k and m are the shift parameters for
the sequences v and w, respectively.

KL(u, n, k, m) =

u k = − 2;  m = − 1
v k = − 1;  m = − 1

u⊕ Tkv k = 0, ..., 2n− 2;  m = − 1

u⊕ Tmw k = − 2;  m = 0, ..., 2n/2− 2

v⊕ Tmw k = − 1;  m = 0, ..., 2n/2− 2

u⊕ Tkv⊕ Tmw k = 0, ..., 2n− 2;  m = 0, ..., 2n/2− 2

The sequences described in the first three rows of KL correspond to the Gold sequences for mod(n, 4)
= 2. For a description of Gold sequences, see the comm.GoldSequence System object reference
page. However, the Kasami sequences form a larger set than the Gold sequences alone.

The correlation functions for the sequences take on the values

{–t(n), –s(n), –1, s(n) – 2, t(n) – 2},

where

t(n) = 1 + 2(n + 2)/2, when n is even and

s(n) = 1
2 t(n) + 1 .

Polynomials for Generating Kasami sequences

Kasami sequences have a period of N = 2n – 1, where n is a nonnegative even integer. This table lists
some of the polynomials that you can use to generate the set of Kasami sequences.

n N Polynomial Set
4 15 'z^4 + z +1' Small
6 63 'z^6 + z +1' Large
8 255 'z^8 + z^4 + z^3 +

z^2 +1'
Small

10 1023 'z^10 + z^3 +1' Large
12 4095 'z^12 + z^6 + z^4 + z

+1'
Small

Version History
Introduced in R2012a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
comm.PNSequence | comm.GoldSequence

Blocks
Kasami Sequence Generator
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comm.LDPCDecoder
Package: comm

(Not recommended) Decode binary low-density parity-check (LDPC) code

Note  is not recommended. Instead, use the ldpcDecode function. For more information, see
“Compatibility Considerations”.

Description
The comm.LDPCDecoder System object uses the belief propagation algorithm to decode a binary
LDPC code, which is input to the object as the soft-decision output (log-likelihood ratio of received
bits) from demodulation. The object decodes generic binary LDPC codes where no patterns in the
parity-check matrix are assumed. For more information, see “Belief Propagation Decoding” on page
3-819.

To decode an LDPC-encoded signal:

1 Create the comm.LDPCDecoder object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
ldpcdecoder = comm.LDPCDecoder
ldpcdecoder = comm.LDPCDecoder(parity)
ldpcdecoder = comm.LDPCDecoder( ___ ,Name,Value)

Description

ldpcdecoder = comm.LDPCDecoder creates a binary LDPC decoder System object. This object
performs LDPC decoding based on the specified parity-check matrix.

ldpcdecoder = comm.LDPCDecoder(parity) sets the ParityCheckMatrix property to parity
and creates an LDPC decoder System object. The parity input must be specified as described by the
ParityCheckMatrix property.

ldpcdecoder = comm.LDPCDecoder( ___ ,Name,Value) sets properties using one or more
name-value pairs, in addition to inputs from any of the prior syntaxes. For example,
comm.LDPCDecoder('DecisionMethod','Soft decision') configures an LDPC decoder
System object to decode data using the soft-decision method and output log-likelihood ratios of data
type double. Enclose each property name in quotes.

3 System Objects

3-814



Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

ParityCheckMatrix — Parity-check matrix
dvbs2ldpc(1/2) (default) | sparse binary matrix | nonsparse index matrix

Parity-check matrix, specified as a sparse (N – K)-by-N binary-valued matrix. N is the length of the
received signal and must be in the range (0, 231). K is the length of the uncoded message and must be
less than N. The last (N – K) columns in the parity-check matrix must be an invertible matrix in the
Galois field of order 2, gf(2).

You can also specify the parity-check matrix as a two-column nonsparse index matrix, I, that defines
the row and column indices of the 1s in the parity-check matrix such that
sparse(I(:,1),I(:,2),1).

This property accepts numeric data types. When you set this property to a sparse binary matrix, this
property also accepts the logical data type.

The default value uses the dvbs2ldpc function to configure a sparse parity-check matrix for half-rate
LDPC coding, as specified in the DVB-S.2 standard.
Example: dvbs2ldpc(R,'indices') configures the index matrix for the DVB-S.2 standard, where R
is the code rate, and 'indices' specifies the output format of dvbs2ldpc as a two-column double-
precision matrix that defines the row and column indices of the 1s in the parity-check matrix.
Data Types: double | logical

OutputValue — Output value format
'Information part' (default) | 'Whole codeword'

Output value format, specified as one of these values:

• 'Information part' — The object outputs a K-by-1 column vector containing only the
information-part of the received log-likelihood ratio vector. K is the length of the uncoded
message.

• 'Whole codeword' — The object outputs an N-by-1 column vector containing the whole log-
likelihood ratio vector. N is the length of the received signal.

N and K must align with the dimension of the (N–K)-by-K parity-check matrix.

Data Types: char

DecisionMethod — Decision method
'Hard decision' (default) | 'Soft decision'

Decision method used for decoding, specified as one of these values:

• 'Hard decision' — The object outputs decoded data of data type logical.
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• 'Soft decision' — The object outputs log-likelihood ratios of data type double.

Data Types: char

IterationTerminationCondition — Condition for iteration termination
'Maximum iteration count' (default) | 'Parity check satisfied'

Condition for iteration termination, specified as one of these values:

• 'Maximum iteration count' — Decoding terminates after the number of iterations specified
by the MaximumIterationCount property.

• 'Parity check satisfied' — Decoding terminates after all parity checks are satisfied. If not
all parity checks are satisfied, decoding terminates after the number of iterations specified by the
MaximumIterationCount property.

Data Types: char

MaximumIterationCount — Maximum number of decoding iterations
50 (default) | positive integer

Maximum number of decoding iterations, specified as a positive integer.
Data Types: double

NumIterationsOutputPort — Output number of iterations executed
false (default) | true

Output number of iterations performed, specified as false or true. To output the number of
iterations executed, set this property to true.
Data Types: logical

FinalParityChecksOutputPort — Output final parity checks
false (default) | true

Output final parity checks, specified as false or true. To output the final calculated parity checks,
set this property to true.
Data Types: logical

Usage

Syntax
y = ldpcdecoder(x)
[y,numiter] = ldpcdecoder(x)
[y,parity] = ldpcdecoder(x)
[y,numiter,parity] = ldpcdecoder(x)

Description

y = ldpcdecoder(x) decodes input data using an LDPC code based on the default parity-check
matrix.
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[y,numiter] = ldpcdecoder(x) returns the decoded data, y, and number of iterations
performed, numiter. To use this syntax, set the NumIterationsOutputPort property to true.

[y,parity] = ldpcdecoder(x) returns the decoded data, y, and final parity checks, parity. To
use this syntax, set the FinalParityChecksOutputPort property to true.

[y,numiter,parity] = ldpcdecoder(x) returns the decoded data, number of iterations
performed, and final parity checks. To use this syntax, set the NumIterationsOutputPort and
FinalParityChecksOutputPort properties to true.

Input Arguments

x — Log-likelihood ratios
column vector

Log-likelihood ratios, specified as an N-by-1 column vector containing the soft-decision output from
demodulation. N is the number of bits in the LDPC codeword before modulation. Each element is the
log-likelihood ratio for a received bit. Element values are more likely to be 0 if the log-likelihood ratio
is positive. The first K elements correspond to the information-part of the input message.
Data Types: double

Output Arguments

y — Decoded data
column vector

Decoded data, returned as a column vector. The DecisionMethod property specifies whether the
object outputs hard decisions or soft decisions (log-likelihood ratios).

• If the OutputValue property is set to 'Information part', the output includes only the
information-part of the received log-likelihood ratio vector.

• If the OutputValue property is set to 'Whole codeword', the output includes the whole log-
likelihood ratio vector.

Data Types: double | logical

numiter — Number of executed decoding iterations
positive integer

Number of executed decoding iterations, returned as a positive integer.

Dependencies

To enable this output, set the NumIterationsOutputPort property to true.

parity — Final parity checks
column vector

Final parity checks after decoding the input LDPC code, returned as an (N-K)-by-1 column vector. N is
the number of bits in the LDPC codeword before modulation. K is the length of the uncoded message.

Dependencies

To enable this output, set the FinalParityChecksOutputPort property to true.
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Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

LDPC Encode and Decode QPSK-Modulated Signal

Transmit an LDPC-encoded, QPSK-modulated bit stream through an AWGN channel. Demodulate and
decode the received signal. Compute the error statistics for the reception of uncoded and LDPC-
coded signals.

Define simulation variables. Create System objects for the LDPC encoder, LDPC decoder, QPSK
modulator, and QPSK demodulators.

M = 4; % Modulation order (QPSK)
snr = [0.25,0.5,0.75,1.0,1.25];
numFrames = 10;
ldpcEncoder = comm.LDPCEncoder;
ldpcDecoder = comm.LDPCDecoder;
pskMod = comm.PSKModulator(M,'BitInput',true);
pskDemod = comm.PSKDemodulator(M,'BitOutput',true,...
    'DecisionMethod','Approximate log-likelihood ratio');
pskuDemod = comm.PSKDemodulator(M,'BitOutput',true,...
    'DecisionMethod','Hard decision');
errRate = zeros(1,length(snr));
uncErrRate = zeros(1,length(snr));

For each SNR setting and all frames, compute the error statistics for uncoded and LDPC-coded
signals.The outer for loop processes each SNR value. The inner for loop processes frames of input
data.

for ii = 1:length(snr)
    ttlErr = 0;
    ttlErrUnc = 0;
    pskDemod.Variance = 1/10^(snr(ii)/10);
    for counter = 1:numFrames
        data = logical(randi([0 1],32400,1));
        % Transmit and receiver uncoded signal data
        mod_uncSig = pskMod(data);
        rx_uncSig = awgn(mod_uncSig,snr(ii),'measured');
        demod_uncSig = pskuDemod(rx_uncSig);
        numErrUnc = biterr(data,demod_uncSig);
        ttlErrUnc = ttlErrUnc + numErrUnc;
        % Transmit and receive LDPC coded signal data
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        encData = ldpcEncoder(data);
        modSig = pskMod(encData);
        rxSig = awgn(modSig,snr(ii),'measured');
        demodSig = pskDemod(rxSig);
        rxBits = ldpcDecoder(demodSig);
        numErr = biterr(data,rxBits);
        ttlErr = ttlErr + numErr;
    end
    ttlBits = numFrames*length(rxBits);
    uncErrRate(ii) = ttlErrUnc/ttlBits;
    errRate(ii) = ttlErr/ttlBits;
end

Run this code to plot the error statistics for uncoded and LDPC-coded data.

plot(snr,uncErrRate,snr,errRate)
legend('Uncoded','LDPC coded')
xlabel('SNR (dB)')
ylabel('BER')

Algorithms
This object performs LDPC decoding using the belief propagation algorithm, also known as a
message-passing algorithm.

Belief Propagation Decoding

The implementation of the belief propagation algorithm is based on the decoding algorithm presented
by Gallager [2].

For transmitted LDPC-encoded codeword c = c0, c1, …, cn-1, the input to the LDPC decoder is the log-

likelihood ratio (LLR) value L(ci) = log
Pr(ci = 0 channel output for ci)
Pr(ci = 1 channel output for ci)

.

In each iteration, the key components of the algorithm are updated based on these equations:

L(r ji) = 2 atanh ∏
i′ ∈ V j\i

tanh 1
2L(qi′ j) ,

L(qi j) = L(ci) + ∑
j′ ∈ Ci\ j

L(r j′i), initialized as L(qi j) = L(ci) before the first iteration, and

L(Qi) = L(ci) + ∑
j′ ∈ Ci

L(r j′i).

At the end of each iteration, L(Qi) contains the updated estimate of the LLR value for transmitted bit
ci. The value L(Qi) is the soft-decision output for ci. If L(Qi) < 0, the hard-decision output for ci is 1.
Otherwise, the hard-decision output for ci is 0.
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If decoding is configured to stop when all of the parity checks are satisfied, the algorithm verifies the
parity-check equation (H c' = 0) at the end of each iteration. When all of the parity checks are
satisfied, or if the maximum number of iterations is reached, decoding stops.

Index sets Ci\ j and V j\i are based on the parity-check matrix (PCM). Index sets Ci and Vj correspond
to all nonzero elements in column i and row j of the PCM, respectively.

This figure shows the computation of these index sets in a given PCM for i = 5 and j = 3.

To avoid infinite numbers in the algorithm equations, atanh(1) and atanh(–1) are set to 19.07 and –
19.07, respectively. Due to finite precision, MATLAB returns 1 for tanh(19.07) and –1 for tanh(-19.07).

Version History
Introduced in R2012a

comm.LDPCDecoder is not recommended. Use ldpcDecode instead.
Not recommended starting in R2021b

Use ldpcDecode instead of comm.LDPCDecoder. To specify the LDPC code applied by the
ldpcDecode function, use the configuration object returned by the ldpcDecoderConfig object.

The code in this table shows LDPC decoding inputs using the recommended function and
configuration object.

Discouraged Feature Recommended Replacement
% Decode using parity-check matrix (pcmatrix)
dec = comm.LDPCDecoder(pcmatrix);
dec.OutputValue = 'Whole codeword';
dec.DecisionMethod = 'Soft decision';
dec.MaximumIterationCount = 10;
dec.IterationTerminationCondition = 'Parity check satisfied';
output = dec(LLR);

% Decode using parity-check matrix (pcmatrix)
cfg = ldpcDecoderConfig(pcmatrix);
output = ldpcDecode(LLR,cfg,10, ...
    'OutputFormat','whole', ...
    'DecisionType','soft', ...
    'Termination','early');
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Using default settings, comm.LDPCDecoder does not support code generation. To generate code,
specify the ParityCheckMatrix property as a nonsparse index matrix.

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
ldpcDecoderConfig | comm.BCHDecoder | comm.gpu.LDPCDecoder

Functions
ldpcDecode | dvbs2ldpc

Blocks
LDPC Decoder
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comm.LDPCEncoder
Package: comm

(Not recommended) Encode binary low-density parity-check (LDPC) code

Note  is not recommended. Instead, use the ldpcEncode function. For more information, see
“Compatibility Considerations”.

Description
The comm.LDPCEncoder System object applies LDPC coding to a binary input message. LDPC codes
are linear error control codes with sparse parity-check matrices and long block lengths that can
attain performance near the Shannon limit.

To encode a binary LDPC code:

1 Create the comm.LDPCEncoder object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
ldpcencoder = comm.LDPCEncoder
ldpcencoder = comm.LDPCEncoder(parity)
ldpcencoder = comm.LDPCEncoder( ___ ,Name,Value)

Description

ldpcencoder = comm.LDPCEncoder creates a binary LDPC encoder System object. This object
performs LDPC encoding based on the default parity-check matrix.

ldpcencoder = comm.LDPCEncoder(parity) sets the ParityCheckMatrix property to parity
and creates an LDPC encoder System object. The parity input must be specified as described by the
ParityCheckMatrix property.

ldpcencoder = comm.LDPCEncoder( ___ ,Name,Value) sets properties using one or more
name-value pairs, in addition to inputs from any of the prior syntaxes. For example,
comm.LDPCEncoder('ParityCheckMatrix',sparse(I(:,1),I(:,2),1)) configures an LDPC
encoder System object to encode data using the parity matrix sparse(I(:,1),I(:,2),1). Enclose
each property name in quotes.
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Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

ParityCheckMatrix — Parity-check matrix
dvbs2ldpc(1/2) (default) | sparse binary matrix | nonsparse index matrix

Parity-check matrix, specified as a sparse (N – K)-by-N binary-valued matrix. N is the length of the
output codeword vector, and must be in the range (0, 231). K is the length of the uncoded message
and must be less than N. The last (N – K) columns in the parity-check matrix must be an invertible
matrix in the Galois field of order 2, gf(2).

You can also specify the parity-check matrix as a two-column nonsparse index matrix, I, that defines
the row and column indices of the 1s in the parity-check matrix such that
sparse(I(:,1),I(:,2),1).

This property accepts numeric data types. When you set this property to a sparse binary matrix, this
property also accepts the logical data type.

The default value uses the dvbs2ldpc function to configure a sparse parity-check matrix for half-rate
LDPC coding, as specified in the DVB-S.2 standard.

Note

• When the last (N – K) columns of the parity-check matrix form a triangular matrix, forward or
backward substitution is performed to solve the parity-check equation.

• When the last (N – K) columns of the parity-check matrix do not form a triangular matrix, a matrix
inversion is performed to solve the parity-check equation. If a large matrix needs to be inverted,
initializations or updates take more time.

Example: dvbs2ldpc(R,'indices') configures the index matrix for the DVB-S.2 standard, where R
is the code rate, and 'indices' specifies the output format of dvbs2ldpc as a two-column double-
precision matrix that defines the row and column indices of the 1s in the parity-check matrix.
Data Types: double | logical

Usage

Syntax
codeword = ldpcencoder(message)
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Description

codeword = ldpcencoder(message) codes the input message using an LDPC code based on a
parity-check matrix. The LDPC codeword output is a solution to the parity-check equation.

Input Arguments

message — Input message
binary column vector

Input message, specified as a K-by-1 column vector containing binary-valued elements. K is the length
of the uncoded message.
Data Types: double | logical

Output Arguments

codeword — LDPC codeword
column vector

LDPC codeword, returned as an N-by-1 column vector. N is the number of bits in the LDPC codeword.
The output signal inherits its data type from the input signal. The LDPC codeword output is a solution
to the parity-check equation. The input message comprises the first K bits of the LDPC codeword
output, and the parity check comprises the remaining (N – K) bits.
Data Types: double | logical

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

LDPC Encode and Decode QPSK-Modulated Signal

Transmit an LDPC-encoded, QPSK-modulated bit stream through an AWGN channel. Demodulate and
decode the received signal. Compute the error statistics for the reception of uncoded and LDPC-
coded signals.

Define simulation variables. Create System objects for the LDPC encoder, LDPC decoder, QPSK
modulator, and QPSK demodulators.

M = 4; % Modulation order (QPSK)
snr = [0.25,0.5,0.75,1.0,1.25];
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numFrames = 10;
ldpcEncoder = comm.LDPCEncoder;
ldpcDecoder = comm.LDPCDecoder;
pskMod = comm.PSKModulator(M,'BitInput',true);
pskDemod = comm.PSKDemodulator(M,'BitOutput',true,...
    'DecisionMethod','Approximate log-likelihood ratio');
pskuDemod = comm.PSKDemodulator(M,'BitOutput',true,...
    'DecisionMethod','Hard decision');
errRate = zeros(1,length(snr));
uncErrRate = zeros(1,length(snr));

For each SNR setting and all frames, compute the error statistics for uncoded and LDPC-coded
signals.The outer for loop processes each SNR value. The inner for loop processes frames of input
data.

for ii = 1:length(snr)
    ttlErr = 0;
    ttlErrUnc = 0;
    pskDemod.Variance = 1/10^(snr(ii)/10);
    for counter = 1:numFrames
        data = logical(randi([0 1],32400,1));
        % Transmit and receiver uncoded signal data
        mod_uncSig = pskMod(data);
        rx_uncSig = awgn(mod_uncSig,snr(ii),'measured');
        demod_uncSig = pskuDemod(rx_uncSig);
        numErrUnc = biterr(data,demod_uncSig);
        ttlErrUnc = ttlErrUnc + numErrUnc;
        % Transmit and receive LDPC coded signal data
        encData = ldpcEncoder(data);
        modSig = pskMod(encData);
        rxSig = awgn(modSig,snr(ii),'measured');
        demodSig = pskDemod(rxSig);
        rxBits = ldpcDecoder(demodSig);
        numErr = biterr(data,rxBits);
        ttlErr = ttlErr + numErr;
    end
    ttlBits = numFrames*length(rxBits);
    uncErrRate(ii) = ttlErrUnc/ttlBits;
    errRate(ii) = ttlErr/ttlBits;
end

Run this code to plot the error statistics for uncoded and LDPC-coded data.

plot(snr,uncErrRate,snr,errRate)
legend('Uncoded','LDPC coded')
xlabel('SNR (dB)')
ylabel('BER')

Version History
Introduced in R2012a

comm.LDPCEncoder is not recommended. Use ldpcEncode instead.
Not recommended starting in R2021b

Use ldpcEncode instead of comm.LDPCEncoder. To specify the LDPC code applied by the
ldpcEncode function, use the configuration object returned by the ldpcEncoderConfig object.
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The code in this table shows LDPC encoding of data using the recommended function and
configuration object.

Discouraged Feature Recommended Replacement
% Encode using parity-check matrix (pcmatrix)
enc = comm.LDPCEncoder(pcmatrix);
codeword = enc(infoBits);

% Encode using parity-check matrix (pcmatrix)
cfg = ldpcEncoderConfig(pcmatrix);
codeword = ldpcEncode(infoBits,cfg);

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
ldpcEncoderConfig | comm.BCHEncoder

Functions
ldpcEncode | dvbs2ldpc

Blocks
LDPC Encoder
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ldpcDecoderConfig
Create LDPC decoder configuration

Description
The ldpcDecoderConfig object is a configuration object for the ldpcDecode function. The object
specifies the low-density parity-check (LDPC) matrix and read-only properties to provide information
about the configured matrix.

Creation

Syntax
decodercfg = ldpcDecoderConfig
decodercfg = ldpcDecoderConfig(H)
decodercfg = ldpcDecoderConfig(H,alg)
decodercfg = ldpcDecoderConfig(encodercfg)
decodercfg = ldpcDecoderConfig(encodercfg,alg)

Description

decodercfg = ldpcDecoderConfig creates an LDPC decoder configuration object that specifies a
rate 5/6 LDPC code from the WLAN 802.11 standard [1].

decodercfg = ldpcDecoderConfig(H) configures the output object setting the
ParityCheckMatrix property H.

decodercfg = ldpcDecoderConfig(H,alg) configures the output object setting the
ParityCheckMatrix property to H and the Algorithm property to alg.

decodercfg = ldpcDecoderConfig(encodercfg) sets properties based on the input
ldpcEncoderConfig configuration object, encodercfg.

decodercfg = ldpcDecoderConfig(encodercfg,alg) sets properties based on the input
ldpcEncoderConfig configuration object, encodercfg, and sets the Algorithm property to alg.

Validation of the object settings is performed when the ldpcDecode function is called with the object
as an input.

Properties
ParityCheckMatrix — Parity-check matrix
sparse logical 108-by-648 matrix (default) | sparse logical (N – K)-by-N matrix

Parity-check matrix, specified as a sparse logical (N – K)-by-N matrix, where N > K > 0. N is the
LDPC codeword block length. K is the number of information bits in the LDPC codeword. The default
is the parity-check matrix of rate 5/6 LDPC code with a block length of 648 as specified in the WLAN
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802.11 standard [1]. Specifically, the default is the sparse logical 108-by-648 matrix H output by the
ldpcQuasiCyclicMatrix function in this code.

P = [
 17 13  8 21  9  3 18 12 10  0  4 15 19  2  5 10 26 19 13 13  1  0 -1 -1
  3 12 11 14 11 25  5 18  0  9  2 26 26 10 24  7 14 20  4  2 -1  0  0 -1
 22 16  4  3 10 21 12  5 21 14 19  5 -1  8  5 18 11  5  5 15  0 -1  0  0
  7  7 14 14  4 16 16 24 24 10  1  7 15  6 10 26  8 18 21 14  1 -1 -1  0
 ];
blockSize = 27;
H = ldpcQuasiCyclicMatrix(blockSize,P);

Data Types: logical

Algorithm — LDPC decoding algorithm
'bp' (default) | 'layered-bp' | 'norm-min-sum' | 'offset-min-sum'

LDPC decoding algorithm, specified as one of these values:

• 'bp' — Use “Belief Propagation Decoding” on page 3-831 algorithm.
• 'layered-bp' — Use “Layered Belief Propagation Decoding” on page 3-832 algorithm.
• 'norm-min-sum' — Use “Normalized Min-Sum Decoding” on page 3-833 algorithm.
• 'offset-min-sum' — Use “Offset Min-Sum Decoding” on page 3-833 algorithm.

Data Types: char | string

BlockLength — Block length
648 (default) | positive scalar

This property is read-only.

Block length of the LDPC codeword (N), specified as a positive scalar. N equals the number of
columns in the parity-check matrix.
Data Types: double

NumInformationBits — Number of information bits
540 (default) | positive scalar

This property is read-only.

Number of information bits in the LDPC codeword (K), specified as a positive scalar. K equals the
number of columns of the parity-check matrix minus the number of rows of the parity-check matrix.
Data Types: double

NumParityCheckBits — Number of parity-check bits
108 (default) | positive scalar

This property is read-only.

Number of parity-check bits in the LDPC codeword (N – K), specified as a positive scalar. N – K equals
the number of rows in the parity-check matrix.
Data Types: double
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CodeRate — Code rate of LDPC code
5/6 (default) | positive scalar

This property is read-only.

Code rate of the LDPC code, specified as a positive scalar that is equal to NumInformationBits/
BlockLength.
Data Types: double

NumRowsPerLayer — Number of rows per layer
108 (default) | positive scalar

This property is read-only.

Number of rows per layer, specified as a positive scalar. This property indicates the number of rows
per layer when you use a layered decoding algorithm. Specifically, this property is the largest integer
such that ParityCheckMatrix can be evenly split into consecutive submatrices in which at most
one 1 exists in any column in any one of these submatrices.

ParityCheckMatrix(1:NumRowsPerLayer,:)

ParityCheckMatrix((NumRowsPerLayer + 1):2*NumRowsPerLayer,:)

ParityCheckMatrix((2*NumRowsPerLayer + 1):3*NumRowsPerLayer,:)

...

ParityCheckMatrix((end - NumRowsPerLayer + 1):end, :)

Dependencies

To enable this property set the Algorithm property to 'layered-bp', 'norm-min-sum', or
'offset-min-sum'.
Data Types: double

Examples

Decode Rate 3/4 LDPC Codewords

Initialize parameters for the prototype matrix and block size to configure a rate 3/4 LDPC code
specified in IEEE® 802.11. Create the parity-check matrix by using the ldpcQuasiCyclicMatrix
function.

P = [
    16 17 22 24  9  3 14 -1  4  2  7 -1 26 -1  2 -1 21 -1  1  0 -1 -1 -1 -1
    25 12 12  3  3 26  6 21 -1 15 22 -1 15 -1  4 -1 -1 16 -1  0  0 -1 -1 -1
    25 18 26 16 22 23  9 -1  0 -1  4 -1  4 -1  8 23 11 -1 -1 -1  0  0 -1 -1
     9  7  0  1 17 -1 -1  7  3 -1  3 23 -1 16 -1 -1 21 -1  0 -1 -1  0  0 -1
    24  5 26  7  1 -1 -1 15 24 15 -1  8 -1 13 -1 13 -1 11 -1 -1 -1 -1  0  0
     2  2 19 14 24  1 15 19 -1 21 -1  2 -1 24 -1  3 -1  2  1 -1 -1 -1 -1  0
    ];
blockSize = 27;
pcmatrix = ldpcQuasiCyclicMatrix(blockSize,P);
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Create LDPC encoder and decoder configuration objects, displaying their properties.

cfgLDPCEnc = ldpcEncoderConfig(pcmatrix)

cfgLDPCEnc = 
  ldpcEncoderConfig with properties:

     ParityCheckMatrix: [162x648 logical]

   Read-only properties:
           BlockLength: 648
    NumInformationBits: 486
    NumParityCheckBits: 162
              CodeRate: 0.7500

cfgLDPCDec = ldpcDecoderConfig(pcmatrix)

cfgLDPCDec = 
  ldpcDecoderConfig with properties:

     ParityCheckMatrix: [162x648 logical]
             Algorithm: 'bp'

   Read-only properties:
           BlockLength: 648
    NumInformationBits: 486
    NumParityCheckBits: 162
              CodeRate: 0.7500

Transmit an LDPC-encoded, QPSK-modulated bit stream through an AWGN channel. Demodulate the
signal, decode the received codewords, and then count bit errors. Use nested for loops to process
multiple SNR settings and frames with and without LDPC forward error correction (FEC) coding of
the transmitted data.

M = 4;
maxnumiter = 10;
snr = [3 6 20];
numframes = 10;
qpskmod = comm.PSKModulator(M,'BitInput',true);
qpskmod2 = comm.PSKModulator(M);

ber = comm.ErrorRate;
ber2 = comm.ErrorRate;

for ii = 1:length(snr)
    qpskdemod = comm.PSKDemodulator(M,'BitOutput',true, ...
        'DecisionMethod','Approximate log-likelihood ratio', ...
        'Variance',1/10^(snr(ii)/10));
    qpskdemod2 = comm.PSKDemodulator(M);
    for counter = 1:numframes
        data = randi([0 1],cfgLDPCEnc.NumInformationBits,1,'int8');
        % Transmit and receive with LDPC coding
        encodedData = ldpcEncode(data,cfgLDPCEnc);
        modSignal = qpskmod(encodedData);
        receivedSignal = awgn(modSignal,snr(ii));
        demodSignal = qpskdemod(receivedSignal);
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        receivedBits = ldpcDecode(demodSignal,cfgLDPCDec,maxnumiter);
        errStats = ber(data,receivedBits);
        % Transmit and receive with no LDPC coding
        noCoding = qpskmod2(data);
        rxNoCoding = awgn(noCoding,snr(ii));
        rxBitsNoCoding = qpskdemod2(rxNoCoding);
        errStatsNoCoding = ber2(data,int8(rxBitsNoCoding));
    end
    fprintf(['SNR = %2d\n   Coded: Error rate = %1.2f, ' ...
        'Number of errors = %d\n'], ...
        snr(ii),errStats(1),errStats(2))
    fprintf(['Noncoded: Error rate = %1.2f, ' ...
        'Number of errors = %d\n'], ...
        errStatsNoCoding(1),errStatsNoCoding(2))
    reset(ber);
    reset(ber2);
end

SNR =  3
   Coded: Error rate = 0.07, Number of errors = 335

Noncoded: Error rate = 0.15, Number of errors = 714

SNR =  6
   Coded: Error rate = 0.00, Number of errors = 0

Noncoded: Error rate = 0.04, Number of errors = 196

SNR = 20
   Coded: Error rate = 0.00, Number of errors = 0

Noncoded: Error rate = 0.00, Number of errors = 0

Algorithms
LDPC decoding using one of these message-passing algorithms.

Belief Propagation Decoding

The implementation of the belief propagation algorithm is based on the decoding algorithm presented
by Gallager [2].

For transmitted LDPC-encoded codeword c = c0, c1, …, cn-1, the input to the LDPC decoder is the log-

likelihood ratio (LLR) value L(ci) = log
Pr(ci = 0 channel output for ci)
Pr(ci = 1 channel output for ci)

.

In each iteration, the key components of the algorithm are updated based on these equations:

L(r ji) = 2 atanh ∏
i′ ∈ V j\i

tanh 1
2L(qi′ j) ,
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L(qi j) = L(ci) + ∑
j′ ∈ Ci\ j

L(r j′i), initialized as L(qi j) = L(ci) before the first iteration, and

L(Qi) = L(ci) + ∑
j′ ∈ Ci

L(r j′i).

At the end of each iteration, L(Qi) contains the updated estimate of the LLR value for transmitted bit
ci. The value L(Qi) is the soft-decision output for ci. If L(Qi) < 0, the hard-decision output for ci is 1.
Otherwise, the hard-decision output for ci is 0.

If decoding is configured to stop when all of the parity checks are satisfied, the algorithm verifies the
parity-check equation (H c' = 0) at the end of each iteration. When all of the parity checks are
satisfied, or if the maximum number of iterations is reached, decoding stops.

Index sets Ci\ j and V j\i are based on the parity-check matrix (PCM). Index sets Ci and Vj correspond
to all nonzero elements in column i and row j of the PCM, respectively.

This figure shows the computation of these index sets in a given PCM for i = 5 and j = 3.

To avoid infinite numbers in the algorithm equations, atanh(1) and atanh(–1) are set to 19.07 and –
19.07, respectively. Due to finite precision, MATLAB returns 1 for tanh(19.07) and –1 for tanh(-19.07).

Layered Belief Propagation Decoding

The implementation of the layered belief propagation algorithm is based on the decoding algorithm
presented in Hocevar [3], Section II.A. The decoding loop iterates over subsets of rows (layers) of the
PCM. For each row, m, in a layer and each bit index, j, the implementation updates the key
components of the algorithm based on these equations:

(1) L(qm j) = L(q j) − Rm j,

(2) Am j = ∑
n   ∈   N m

n ≠ j

ψ(L(qmn)),
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(3) sm j = ∏
n   ∈   N m

n ≠ j

sign(L(qmn)),

(4) Rm j = − sm jψ(Am j), and

(5) L(q j) = L(qm j) + Rm j.

For each layer, the decoding equation (5) works on the combined input obtained from the current LLR
inputs L(qm j) and the previous layer updates Rm j.

Because only a subset of the nodes is updated in a layer, the layered belief propagation algorithm is
faster compared to the belief propagation algorithm. To achieve the same error rate as attained with
belief propagation decoding, use half the number of decoding iterations when you use the layered
belief propagation algorithm.

Normalized Min-Sum Decoding

The implementation of the normalized min-sum decoding algorithm follows the layered belief
propagation algorithm with equation (2) replaced by

Am j = min
n   ∈   N m

n ≠ j

( L(qmn)   ⋅ α),

where α is in the range (0, 1] and is the scaling factor specified by the MinSumScalingFactor input
argument to the ldpcDecode function. This equation is an adaptation of equation (4) presented in
Chen [4].

Offset Min-Sum Decoding

The implementation of the offset min-sum decoding algorithm follows the layered belief propagation
algorithm with equation (2) replaced by

Am j   =     max( min
n   ∈   N m

n ≠ j

  ( L qmn −   β),   0),

where β ≥ 0 and is the offset specified by the MinSumOffset input argument to the ldpcDecode
function. This equation is an adaptation of equation (5) presented in Chen [4].

Version History
Introduced in R2021b
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ldpcEncoderConfig
Create LDPC encoder configuration

Description
The ldpcEncoderConfig object is a configuration object for the ldpcEncode function. The object
specifies the low-density parity-check (LDPC) matrix and read-only properties to provide information
about the configured matrix.

Creation

Syntax
encodercfg = ldpcEncoderConfig
encodercfg = ldpcEncoderConfig(H)
encodercfg = ldpcEncoderConfig(decodercfg)

Description

encodercfg = ldpcEncoderConfig creates an LDPC encoder configuration object that specifies a
rate 5/6 LDPC code from the WLAN 802.11 standard [1].

encodercfg = ldpcEncoderConfig(H) configures the output object setting the
ParityCheckMatrix property to H.

encodercfg = ldpcEncoderConfig(decodercfg) sets properties based on the input
ldpcDecoderConfig configuration object, decodercfg.

Validation of the object settings is performed when the ldpcEncode function is called with the object
as an input.

Properties
ParityCheckMatrix — Parity-check matrix
sparse logical 108-by-648 matrix (default) | sparse logical (N – K)-by-N matrix

Parity-check matrix, specified as a sparse logical (N – K)-by-N matrix, where N > K > 0. The last N –
K rows of the parity-check matrix must be invertible in a Galois field of order 2. N is the LDPC
codeword block length. K is the number of information bits in the LDPC codeword. The default is the
parity-check matrix of rate 5/6 LDPC code with a block length of 648 as specified in the WLAN 802.11
standard [1]. Specifically, the default is the sparse logical 108-by-648 matrix H output by the
ldpcQuasiCyclicMatrix function in this code.

P = [
 17 13  8 21  9  3 18 12 10  0  4 15 19  2  5 10 26 19 13 13  1  0 -1 -1
  3 12 11 14 11 25  5 18  0  9  2 26 26 10 24  7 14 20  4  2 -1  0  0 -1
 22 16  4  3 10 21 12  5 21 14 19  5 -1  8  5 18 11  5  5 15  0 -1  0  0
  7  7 14 14  4 16 16 24 24 10  1  7 15  6 10 26  8 18 21 14  1 -1 -1  0
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 ];
blockSize = 27;
H = ldpcQuasiCyclicMatrix(blockSize,P);

Data Types: logical

BlockLength — Block length
648 (default) | positive scalar

This property is read-only.

Block length of the LDPC codeword (N), specified as a positive scalar. N equals the number of
columns in the parity-check matrix.
Data Types: double

NumInformationBits — Number of information bits
540 (default) | positive scalar

This property is read-only.

Number of information bits in the LDPC codeword (K), specified as a positive scalar. K equals the
number of columns of the parity-check matrix minus the number of rows of the parity-check matrix.
Data Types: double

NumParityCheckBits — Number of parity-check bits
108 (default) | positive scalar

This property is read-only.

Number of parity-check bits in the LDPC codeword (N – K), specified as a positive scalar. N – K equals
the number of rows in the parity-check matrix.
Data Types: double

CodeRate — Code rate of LDPC code
5/6 (default) | positive scalar

This property is read-only.

Code rate of the LDPC code, specified as a positive scalar that is equal to NumInformationBits/
BlockLength.
Data Types: double

Examples

Encode Information Bits Using Rate 3/4 LDPC Code

Initialize parameters for the prototype matrix and block size to configure a rate 3/4 LDPC code
specified in IEEE® 802.11. Create the parity-check matrix by using the ldpcQuasiCyclicMatrix
function.

P = [16 17 22 24  9  3 14 -1  4  2  7 -1 26 -1  2 -1 21 -1  1  0 -1 -1 -1 -1
     25 12 12  3  3 26  6 21 -1 15 22 -1 15 -1  4 -1 -1 16 -1  0  0 -1 -1 -1
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     25 18 26 16 22 23  9 -1  0 -1  4 -1  4 -1  8 23 11 -1 -1 -1  0  0 -1 -1
      9  7  0  1 17 -1 -1  7  3 -1  3 23 -1 16 -1 -1 21 -1  0 -1 -1  0  0 -1
     24  5 26  7  1 -1 -1 15 24 15 -1  8 -1 13 -1 13 -1 11 -1 -1 -1 -1  0  0
      2  2 19 14 24  1 15 19 -1 21 -1  2 -1 24 -1  3 -1  2  1 -1 -1 -1 -1  0
    ];
blockSize = 27;
pcmatrix = ldpcQuasiCyclicMatrix(blockSize,P);

Create an LDPC encoder configuration object, displaying its properties. Generate random information
bits by using the NumInformationBits property of the configuration object to specify the number of
information bits in an LPDC codeword. Encode the information bits by the LDPC code specified by the
LDPC encoder configuration object.

cfgLDPCEnc = ldpcEncoderConfig(pcmatrix)

cfgLDPCEnc = 
  ldpcEncoderConfig with properties:

     ParityCheckMatrix: [162x648 logical]

   Read-only properties:
           BlockLength: 648
    NumInformationBits: 486
    NumParityCheckBits: 162
              CodeRate: 0.7500

infoBits = rand(cfgLDPCEnc.NumInformationBits,1) < 0.5;
codeword = ldpcEncode(infoBits, cfgLDPCEnc);

Version History
Introduced in R2021b
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comm.LTEMIMOChannel
Package: comm

(Removed) Filter input signal through LTE MIMO multipath fading channel

Note comm.LTEMIMOChannel has been. Use comm.MIMOChannel instead. For information on
updating your code, see “Version History”.

Description
The comm.LTEMIMOChannel System object filters an input signal through an LTE multiple-input
multiple-output (MIMO) multipath fading channel.

A specialization of the comm.MIMOChannel System object, the comm.LTEMIMOChannel System
objects offers pre-set configurations for use with LTE link level simulations. In addition to the
comm.MIMOChannel System object, the comm.LTEMIMOChannel System object also corrects the
correlation matrix to be positive semi-definite, after rounding to 4-digit precision. This System object
models Rayleigh fading for each of its links.

To filter an input signal using an LTE MIMO multipath fading channel:

1 Define and set up your LTE MIMO multipath fading channel object. See “Construction” on page
3-839.

2 Call step to filter the input signal using an LTE MIMO multipath fading channel according to the
properties of comm.LTEMIMOChannel. The behavior of step is specific to each object in the
toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
H = comm.LTEMIMOChannel creates a 3GPP Long Term Evolution (LTE) Release 10 specified
multiple-input multiple-output (MIMO) multipath fading channel System object, H. This object filters a
real or complex input signal through the multipath LTE MIMO channel to obtain the channel impaired
signal.

H = comm.LTEMIMOChannel(Name,Value) creates an LTE MIMO multipath fading channel object,
H, with the specified property Name set to the specified Value. You can specify additional name-value
pair arguments in any order as (Name1,Value1,...,NameN,ValueN).
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Properties
SampleRate

Input signal sample rate (Hertz)

Specify the sample rate of the input signal in hertz as a double-precision, real, positive scalar. The
default value of this property is 30.72 MHz, as defined in the LTE specification.

Profile

Channel propagation profile

Specify the propagation conditions of the LTE multipath fading channel as one of EPA 5Hz | EVA 5Hz
| EVA 70Hz | ETU 70Hz | ETU 300Hz, which are supported in the LTE specification Release 10. The
default value of this property is EPA 5Hz.

This property defines the delay profile of the channel to be one of EPA, EVA, and ETU. This property
also defines the maximum Doppler shift of the channel to be 5 Hz, 70 Hz, or 300 Hz. The Doppler
spectrum always has a Jakes shape in the LTE specification. The EPA profile has seven paths. The EVA
and ETU profiles have nine paths.

The following tables list the delay and relative power per path associated with each profile.

Extended Pedestrian A Model (EPA)

Excess tap delay [ns] Relative power [db]
0 0.0

30 -1.0
70 -2.0
90 -3.0

110 -8.0
190 -17.2
410 -20.8

Extended Vehicular A Model (EVA)

Excess tap delay [ns] Relative power [db]
0 0.0

30 -1.5
150 -1.4
310 -3.6
370 -0.6
710 -9.1

1090 -7.0
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Excess tap delay [ns] Relative power [db]
1730 -12.0
2510 -16.9

Extended Typical Urban Model (ETU)

Excess tap delay [ns] Relative power [db]
0 -1.0

50 -1.0
120 -1.0
200 0.0
230 0.0
500 0.0

1600 -3.0
2300 -5.0
5000 -7.0

AntennaConfiguration

Antenna configuration

Specify the antenna configuration of the LTE MIMO channel as one of 1x2 | 2x2 | 4x2 | 4x4. These
configurations are supported in the LTE specification Release 10. The default value of this property is
2x2.

The property value is in the format of Nt-by-Nr. Nt represents the number of transmit antennas and Nr
represents the number of receive antennas.

CorrelationLevel

Spatial correlation strength

Specify the spatial correlation strength of the LTE MIMO channel as one of Low | Medium | High. The
default value of this property is Low. When you set this property to Low, the MIMO channel is
spatially uncorrelated.

The transmit and receive spatial correlation matrices are defined from this property according to the
LTE specification Release 10. See the Algorithms section for more information.

AntennaSelection

Antenna selection

Specify the antenna selection scheme as one of Off | Tx | Rx | Tx and Rx, where Tx represents
transmit antennas and Rx represents receive antennas. When you select Tx and/or Rx, additional
input(s) are required to specify which antennas are selected for signal transmission. The default value
of this property is Off.
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RandomStream

Source of random number stream

Specify the source of random number stream as one of Global stream | mt19937ar with seed.
The default value of this property is Global stream. When you set this property to Global
stream, the current global random number stream is used for normally distributed random number
generation. In this case, the reset method only resets the filters. If you set RandomStream to
mt19937ar with seed, the object uses the mt19937ar algorithm for normally distributed random
number generation. In this case, the reset method resets the filters and reinitializes the random
number stream to the value of the Seed property.

Seed

Initial seed of mt19937ar random number stream

Specify the initial seed of an mt19937ar random number generator algorithm as a double-precision,
real, nonnegative integer scalar. The default value of this property is 73. This property applies when
you set the RandomStream property to mt19937ar with seed. The Seed reinitializes the
mt19937ar random number stream in the reset method.

NormalizePathGains

Normalize path gains (logical)

Set this property to true to normalize the fading processes so that the total power of the path gains,
averaged over time, is 0 dB. The default value of this property is true. When you set this property to
false, there is no normalization for path gains.

NormalizeChannelOutputs

Normalize channel outputs (logical)

Set this property to true to normalize the channel outputs by the number of receive antennas. The
default value of this property is true. When you set this property to false, there is no normalization
for channel outputs.

PathGainsOutputPort

Enable path gain output (logical)

Set this property to true to output the channel path gains of the underlying fading process. The
default value of this property is false.

Methods

reset (Removed) Reset states of the LTEMIMOChannel object
step (Removed) Filter input signal through LTE MIMO multipath fading channel
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Common to All System Objects
release Allow System object property value changes

Examples

Configure MIMO Channel Object Using LTE MIMO Channel Object

Configure an equivalent MIMOChannel System Object using the LTEMIMOChannel System Object.
Then, verify that the channel output and the path gain output from the two objects are the same.

Create a PSK Modulator System object™ to modulate randomly generated data.

pskModulator = comm.PSKModulator;
modData = pskModulator(randi([0 pskModulator.ModulationOrder-1],2e3,1));

Split modulated data into two spatial streams.

channelInput = reshape(modData,[2 1e3]).';

Create an LTEMIMOChannel System object with a 2-by-2 antenna configuration and a medium
correlation level.

lteChan = comm.LTEMIMOChannel(...
    'Profile',              'EVA 5Hz',...
    'AntennaConfiguration', '2x2',...
    'CorrelationLevel',     'Medium',...
    'AntennaSelection',     'Off',...
    'RandomStream',         'mt19937ar with seed',...
    'Seed',                 99,...
    'PathGainsOutputPort',  true);

Error: COMM.LTEMIMOCHANNEL has been removed. Use COMM.MIMOCHANNEL or LTEFADINGCHANNEL instead.

Filter the modulated data using the LTEMIMOChannel System object, lteChan.

[LTEChanOut,LTEPathGains] = lteChan(channelInput);

Create an equivalent MIMOChannel System object, mimoChannel, using the properties of the
LTEMIMOChannel System object, lteChan.

The KFactor, DirectPathDopplerShift and DirectPathInitialPhase properties only exist for
the MIMOChannel System object. All other MIMOChannel System object properties also exist for the
LTEMIMOChannel System object; however, some properties are hidden and read-only.

mimoChannel = comm.MIMOChannel( ...
    'SampleRate',lteChan.SampleRate, ...
    'PathDelays',lteChan.PathDelays, ...
    'AveragePathGains',lteChan.AveragePathGains, ...
    'NormalizePathGains',lteChan.NormalizePathGains, ...
    'FadingDistribution',lteChan.FadingDistribution, ...
    'MaximumDopplerShift',lteChan.MaximumDopplerShift, ...
    'DopplerSpectrum',lteChan.DopplerSpectrum, ...
    'SpatialCorrelationSpecification', ...
         lteChan.SpatialCorrelationSpecification, ...
    'SpatialCorrelationMatrix',lteChan.SpatialCorrelationMatrix, ...
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    'AntennaSelection',lteChan.AntennaSelection, ...
    'NormalizeChannelOutputs',lteChan.NormalizeChannelOutputs, ...
    'RandomStream',lteChan.RandomStream, ...
    'Seed',lteChan.Seed, ...
    'PathGainsOutputPort',lteChan.PathGainsOutputPort);

Filter the modulated data using the equivalent mimoChannel object.

[MIMOChanOut, MIMOPathGains] = mimoChannel(channelInput);

Verify that the channel output and the path gain output from the two objects are the same.

sameChOutput = isequal(LTEChanOut,MIMOChanOut)

sameChOutput = logical
   1

samePathGains = isequal(LTEPathGains,MIMOPathGains)

samePathGains = logical
   1

You can repeat the preceding process with AntennaConfiguration set to 4x2 or 4x4 and
CorrelationLevel set to Medium or High for lteChan.

Algorithms
This System object is a specialized implementation of the comm.MIMOChannel System object. For
additional algorithm information, see the comm.MIMOChannel System object help page.

Spatial Correlation Matrices

The following table defines the transmitter eNodeB correlation matrix.
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 One Antenna Two Antennas Four Antennas
eNodeB Correlation ReNB = 1

ReNB =
1        α
α∗    1

ReNB =

1 α1 9 α4 9 α

α1 9* 1 α1 9 α4 9

α4 9* α1 9* 1 α1 9

α* α4 9* α1 9* 1

The following table defines the receiver UE correlation matrix.

 One Antenna Two Antennas Four Antennas
UE Correlation RUE = 1

RUE =
1        β

β∗    1
RUE =

1 β1 9 β4 9 β

β1 9* 1 β1 9 β4 9

β4 9* β1 9* 1 β1 9

β* β4 9* β1 9* 1

The following table describes the Rspat channel spatial correlation matrix between the transmitter and
receiver antennas.

Tx-by-Rx Configuration Correlation Matrix
1-by-2

Rspat = RUE =
1 β
β* 1
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Tx-by-Rx Configuration Correlation Matrix
2-by-2

Rspat = ReNB⊗ RUE =
1 α
α* 1

⊗
1 β
β* 1

=

1 β α αβ
β* 1 αβ* α
α* α*β 1 β

α*β* α* β* 1
4-by-2

Rspat = ReNB⊗ RUE =

1 α1 9 α4 9 α

α1 9* 1 α1 9 α4 9

α4 9* α1 9* 1 α1 9

α* α4 9* α1 9* 1

⊗
1 β
β* 1

4-by-4

Rspat = ReNB⊗ RUE =

1 α1 9 α4 9 α

α1 9* 1 α1 9 α4 9

α4 9* α1 9* 1 α1 9

α* α4 9* α1 9* 1

⊗

1 β1 9 β4 9 β

β1 9* 1 β1 9 β4 9

β4 9* β1 9* 1 β1 9

β* β4 9* β1 9* 1

Spatial Correlation Correction

Low Correlation Medium Correlation High Correlation
α β α β α β
0 0 0.3 0.9 0.9 0.9

To insure the correlation matrix is positive semi-definite after round-off to 4 digit precision, this
System object uses the following equation:

Rhigh = Rspatial + aIn /(1 + a)

Where
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α represents the scaling factor such that the smallest value is used to obtain a positive semi-definite
result.

For the 4-by-2 high correlation case, α=0.00010.

For the 4-by-4 high correlation case, α=0.00012.

The object uses the same method to adjust the 4-by-4 medium correlation matrix to insure the
correlation matrix is positive semi-definite after rounding to 4 digit precision with α = 0.00012.
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Version History
Introduced in R2012a

Function has been removed
Errors starting in R2022b

The comm.LTEMIMOChannel System object has been removed. Use comm.MIMOChannel System
object to filter the input signal through MIMO multipath fading channel.

Function issues a warning
Warns starting in R2018b

The comm.LTEMIMOChannel System object issues a warning that it will be removed in a future
release.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

 comm.LTEMIMOChannel

3-847



See Also
comm.MIMOChannel
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reset
System object: comm.LTEMIMOChannel
Package: comm

(Removed) Reset states of the LTEMIMOChannel object

Note comm.LTEMIMOChannel has been removed in a future release. Use comm.MIMOChannel
instead.

Syntax
reset(H)

Description
reset(H) resets the states of the LTEMIMOChannel object, H.

If you set the RandomStream property of H to Global stream, the reset method only resets the
filters. If you set RandomStream to mt19937ar with seed, the reset method not only resets the
filters but also reinitializes the random number stream to the value of the Seed property.
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step
System object: comm.LTEMIMOChannel
Package: comm

(Removed) Filter input signal through LTE MIMO multipath fading channel

Note comm.LTEMIMOChannel has been removed in a future release. Use comm.MIMOChannel
instead.

Syntax
Y = step(H,X)
[Y,PATHGAINS] = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Y = step(H,X) filters input signal X through an LTE MIMO multipath fading channel and returns
the result in Y. The input X can be a double- or single-precision data type scalar, vector, or 2-D matrix
with real or complex values. X is of size Ns-by-Nt. Ns represents the number of samples and Nt
represents the number of transmit antennas that must match the AntennaConfiguration property
setting of H. Y is the output signal of size Ns-by-Nr. Nr represents the number of receive antennas that
is specified by the AntennaConfiguration property of H. Y contains complex values with same
precision as input signal.

[Y,PATHGAINS] = step(H,X) returns the LTE MIMO channel path gains of the underlying fading
process in PATHGAINS. This applies when you set the PathGainsOutputPort property to true.
PATHGAINS is of size Ns-by-Np-by-Nt-by-Nr. Np represents the number of discrete paths of the
channel implicitly defined by the Profile property of H. PATHGAINS contains complex values with
same precision as input signal.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This initialization
locks nontunable properties and input specifications. For more information on changing property
values, see “System Design in MATLAB Using System Objects”.
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comm.MemorylessNonlinearity
Package: comm

Apply memoryless nonlinearity to complex baseband signal

Description
The comm.MemorylessNonlinearity System object applies memoryless nonlinear impairments to
a baseband signal. Use this System object to model memoryless nonlinear impairments caused by
signal amplification in a radio frequency (RF) transmitter or receiver. For more information, see
“Memoryless Nonlinear Impairments” on page 3-868.

To apply memoryless nonlinear impairments to a complex baseband signal:

1 Create the comm.MemorylessNonlinearity object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
mnl = comm.MemorylessNonlinearity
mnl = comm.MemorylessNonlinearity(Name,Value)

Description

mnl = comm.MemorylessNonlinearity creates a memoryless nonlinearity System object that
models RF nonlinear impairments.

mnl = comm.MemorylessNonlinearity(Name,Value) specifies properties using one or more
name-value pair arguments. Enclose each property name in quotes. For example, 'Method','Saleh
model' sets the modeling method to the Saleh method.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Method — Nonlinearity modeling method
'Cubic polynomial' (default) | 'Hyperbolic tangent' | 'Saleh model' | 'Ghorbani
model' | 'Modified Rapp model' | 'Lookup table'
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Nonlinearity modeling method, specified as 'Cubic polynomial', 'Hyperbolic tangent',
'Saleh model', 'Ghorbani model', 'Modified Rapp model', or 'Lookup table'. For more
information, see “Memoryless Nonlinear Impairments” on page 3-868.
Data Types: char | string

InputScaling — Input signal scaling factor
0 (default) | scalar

Input signal scaling factor in decibels, specified as a scalar. This property scales the power gain of the
input signal.

Tunable: Yes

Dependencies

To enable this property, set the Method property to 'Saleh model' or 'Ghorbani model'.
Data Types: double

LinearGain — Linear gain
0 (default) | scalar

Linear gain in decibels, specified as a scalar. This property scales the power gain of the output signal.

Tunable: Yes

Dependencies

To enable this property, set the Method property to 'Cubic polynomial', 'Hyperbolic
tangent', or 'Modified Rapp model'.
Data Types: double

TOISpecification — Third-order nonlinearity specification for cubic polynomial
'IIP3' (default) | 'OIP3' | 'IP1dB' | 'OP1dB' | 'IPsat' | 'OPsat'

Third-order nonlinearity specification for cubic polynomial, specified as 'IIP3', 'OIP3', 'IP1dB',
'OP1dB', 'IPsat', or 'OPsat'. For more information, see “Cubic Polynomial Third-Order
Coefficient” on page 3-870.

Dependencies

To enable this property, set the Method property to 'Cubic polynomial'.
Data Types: char | string

IIP3 — Third-order input intercept point
30 (default) | scalar

Third-order input intercept point in dBm, specified as a scalar.

Tunable: Yes
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Dependencies

To enable this property, set the Method property to 'Cubic polynomial' or 'Hyperbolic
tangent'.
Data Types: double

OIP3 — Third-order output intercept point
30 (default) | scalar

Third-order output intercept point in dBm, specified as a scalar.

Tunable: Yes
Dependencies

To enable this property, set the Method property to 'Cubic polynomial' and the
TOISpecification property to 'OIP3'.
Data Types: double

IP1dB — One dB input compression point
30 (default) | scalar

One dB input compression point in dBm, specified as a scalar.

Tunable: Yes
Dependencies

To enable this property, set the Method property to 'Cubic polynomial' and the
TOISpecification property to 'IP1dB'.
Data Types: double

OP1dB — One dB output compression point
30 (default) | scalar

One dB output compression point in dBm, specified as a scalar.

Tunable: Yes
Dependencies

To enable this property, set the Method property to 'Cubic polynomial' and the
TOISpecification property to 'OP1dB'.
Data Types: double

IPsat — Input saturation point
30 (default) | scalar

Input saturation point in dBm, specified as a scalar.

Tunable: Yes
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Dependencies

To enable this property, set the Method property to 'Cubic polynomial' and the
TOISpecification property to 'IPsat'.
Data Types: double

OPsat — Output saturation point
30 (default) | scalar

Output saturation point in dBm, specified as a scalar.

Tunable: Yes
Dependencies

To enable this property, set the Method property to 'Cubic polynomial' and the
TOISpecification property to 'OPsat'.
Data Types: double

AMPMConversion — Linear AM/PM conversion factor
10 (default) | scalar

Linear AM/PM conversion factor in degrees per decibel, specified as a scalar. For more information,
see “Cubic Polynomial and Hyperbolic Tangent Model Methods” on page 3-870.

Tunable: Yes
Dependencies

To enable this property, set the Method property to 'Cubic polynomial' or 'Hyperbolic
tangent'.
Data Types: double

AMAMParameters — AM/AM parameters
[2.1587 1.1517] | [8.1081 1.5413 6.5202 -0.0718] | row vector

AM/AM parameters used to compute the amplitude gain for an input signal, specified as a row vector.

• When the Method property is set to 'Saleh model', this property must be a two-element vector
that specifies alpha and beta values. In this case, the default value is [2.1587 1.1517].

• When the Method property is set to 'Ghorbani model', this property must be a four-element
vector that specifies x1, x2, x3, and x4 values. In this case, the default value is [8.1081 1.5413
6.5202 -0.0718].

For more information, see “Saleh Model Method” on page 3-872 and “Ghorbani Model Method” on
page 3-873.

Tunable: Yes
Dependencies

To enable this property, set the Method property is set to 'Saleh model' or 'Ghorbani model'.
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Data Types: double

AMPMParameters — AM/PM parameters
[4.0033 9.1040] | [4.6645 2.0965 10.88 -0.003] | row vector

AM/PM parameters used to compute the phase change for an input signal, specified as a row vector.

• When the Method property is set to 'Saleh model', this property must be a two-element vector
that specifies alpha and beta values. In this case, the default value is [4.0033 9.1040].

• When the Method property is set to 'Ghorbani model', this property must be a four-element
vector that specifies y1, y2, y3, and y4 values. In this case, the default value is [4.6645 2.0965
10.88 -0.003]

For more information, see “Saleh Model Method” on page 3-872 and “Ghorbani Model Method” on
page 3-873.

Tunable: Yes

Dependencies

To enable this property, set the Method property is set to 'Saleh model' or 'Ghorbani model'.
Data Types: double

PowerLowerLimit — Input power lower limit
10 (default) | scalar

Input power lower limit in dBm, specified as a scalar less than the PowerUpperLimit property
value. The AM/PM conversion scales linearly for input power values in the range
[PowerLowerLimit, PowerUpperLimit]. If the input signal power is below the input power lower
limit, the phase shift resulting from AM/PM conversion is zero. For more information, see “Cubic
Polynomial and Hyperbolic Tangent Model Methods” on page 3-870.

Tunable: Yes

Dependencies

To enable this property, set the Method property is set to 'Cubic polynomial' or 'Hyperbolic
tangent'.
Data Types: double

PowerUpperLimit — Input power upper limit
inf (default) | scalar

Input power upper limit in dBm, specified as a scalar greater than PowerLowerLimit. The AM/PM
conversion scales linearly for input power values in the range [PowerLowerLimit,
PowerUpperLimit]. If the input signal power is above the input power upper limit, the phase shift
resulting from AM/PM conversion is constant. For more information, see “Cubic Polynomial and
Hyperbolic Tangent Model Methods” on page 3-870.

Tunable: Yes
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Dependencies

To enable this property, set the Method property is set to 'Cubic polynomial' or 'Hyperbolic
tangent'.
Data Types: double

OutputScaling — Output signal scaling factor
0 (default) | scalar

Output signal scaling factor in decibels, specified as a scalar. This property scales the power gain of
the output signal.

Tunable: Yes

Dependencies

To enable this property, set the Method property is set to 'Saleh model' or 'Ghorbani model'.
Data Types: double

Smoothness — Amplitude smoothness factor
0.5 (default) | scalar

Amplitude smoothness factor, specified as a scalar. For more information, see “Modified Rapp Model
Method” on page 3-874.

Tunable: Yes

Dependencies

To enable this property, set the Method property is set to 'Modified Rapp model'.
Data Types: double

PhaseGainRadian — Phase gain for modified Rapp model
0 (default) | scalar

Phase gain for modified Rapp model in radians, specified as a scalar. A value of -0.45 is typical. For
more information, see “Modified Rapp Model Method” on page 3-874.

Tunable: Yes

Dependencies

To enable this property, set the Method property is set to 'Modified Rapp model'.
Data Types: double

PhaseSaturation — Phase saturation for modified Rapp model
0.88 (default) | positive scalar

Phase saturation for modified Rapp model in radians, specified as a positive scalar. For more
information, see “Modified Rapp Model Method” on page 3-874.
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Tunable: Yes
Dependencies

To enable this property, set the Method property is set to 'Modified Rapp model'.
Data Types: double

PhaseSmoothness — Phase smoothness for modified Rapp model
3.43 (default) | positive scalar

Phase smoothness for modified Rapp model in radians, specified as a positive scalar. For more
information, see “Modified Rapp Model Method” on page 3-874.

Tunable: Yes
Dependencies

To enable this property, set the Method property is set to 'Modified Rapp model'.
Data Types: double

OutputSaturationLevel — Output saturation level
1 (default) | positive scalar

Output saturation level, specified as a scalar. For more information, see “Modified Rapp Model
Method” on page 3-874.

Tunable: Yes
Dependencies

To enable this property, set the Method property is set to 'Modified Rapp model'.
Data Types: double

Table — Amplifier characteristics lookup table
N-by-[Pin, Pout, ΔΦ] matrix

Amplifier characteristics lookup table, specified as an N-by-3 matrix of measured power amplifier (PA)
characteristics. Each row is of the form [Pin, Pout, ΔΦ]. Pin specifies the input signal in dBm, Pout
specifies the output signal in dBm, and ΔΦ specifies the output phase shift in degrees. The default
value is [-25, 5.16, -0.25; -20, 10.11, -0.47; -15, 15.11, -0.68; -10, 20.05,
-0.89; -5, 24.79, -1.22; 0, 27.64, 5.59; 5, 28.49, 12.03].

The measured PA characteristics defined by this property are used to compute the AM/AM (in dBm/
dBm) and AM/PM (in deg/dBm) nonlinear impairment characteristics.

Note To determine appropriate Pout and ΔΦ values for any Pin values outside the range of values
specified in the Table property, the System object applies linear extrapolation from the first two or
last two [Pin, Pout, ΔΦ] rows of Table.

Tunable: Yes

 comm.MemorylessNonlinearity

3-857



Dependencies

To enable this property, set the Method property to 'Lookup table'.
Data Types: double

ReferenceImpedance — Reference impedance
1 (default) | positive scalar

Reference impedance in ohms, specified as a positive scalar. This value is used to convert voltage
values to power values.

Tunable: Yes
Data Types: double

Usage

Syntax
outsig = mnl(insig)

Description

outsig = mnl(insig) applies memoryless nonlinear impairments to the input RF baseband signal.

Input Arguments

insig — Input RF baseband signal
scalar | column vector | matrix

Input RF baseband signal, specified as a scalar, column vector, or matrix.
Data Types: double

Output Arguments

outsig — Output RF baseband signal
scalar | column vector | matrix

Output RF baseband signal, returned as a scalar, column vector, or matrix. The output is of the same
data type as the input.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to comm.MemorylessNonlinearity
release Release resources and allow changes to System object property

values and input characteristics
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clone Create duplicate System object
isLocked Determine if System object is in use
plot (memorylessnonlinearity) Plot nonlinearity AM/AM and AM/PM characteristics

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Show Amplification of Signal at Linear and Nonlinear Input Power Levels

Apply cubic polynomial nonlinearity to two 16-QAM signals. The first input signal power level is in the
linear region of the amplifier power characteristic curve. The second input signal power level is in the
nonlinear region of the amplifier power characteristic curve. Show the amplifier power characteristic
curve and the constellation diagram for the amplified 16-QAM signals.

Initialize Simulation

Initialize variables for simulation and create System objects for a memoryless nonlinearity amplifier
impairment and a constellation diagram. So that the constellation shows power compression only
(and no phase rotation), configure the memoryless nonlinearity amplifier impairment with AM-PM
distortion set to zero.

M = 16;           % Modulation order
sps = 4;          % Samples per symbol
pindBm = [12 25]; % Input power
gain = 10;        % Amplifier gain

amplifier = comm.MemorylessNonlinearity("Method","Cubic polynomial", ...
    "LinearGain",gain,"AMPMConversion",0,"ReferenceImpedance",50);
refConst = qammod([0:M-1],M);
axisLimits = [-gain gain];
constdiag = comm.ConstellationDiagram("NumInputPorts",2, ...
    "ChannelNames",["Linear" "Nonlinear"],"ShowLegend",true, ...
    "ReferenceConstellation",refConst, ...
    "XLimits",axisLimits,"YLimits",axisLimits);

Amplify and Plot Signal

Apply 16-QAM to an input signal of random data. Amplify the signal and use the plot function of the
comm.MemorylessNonlinearity System object to show the output power and phase response
curves. The first input signal power level is 12 dBm and is in the linear region of the amplifier power
characteristic curve. The second input signal power level is 25 dBm and is in the nonlinear region of
the amplifier power characteristic curve.

pin = 10.^((pindBm-30)/10); % Convert dBm to linear Watts
data = randi([0 M-1],1000,1);
modOut = qammod(data,M,"UnitAveragePower",true)*sqrt(pin*amplifier.ReferenceImpedance);
ampOut = amplifier(modOut);
plot(amplifier);
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Add AWGN to the two amplified signals and show the constellation diagram for the signals.

snr = 25;
noisyLinOut = awgn(ampOut(:,1),snr,"measured");
noisyNonLinOut = awgn(ampOut(:,2),snr,"measured");
constdiag(noisyLinOut,noisyNonLinOut);
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Apply Saleh Model of Power Amplifier Nonlinearity to 16-QAM Signal

Generate 16-QAM data with an average power of 10 mW and a reference impedance of 1 ohm. Pass
the data through a nonlinear power amplifier (PA).

M = 16;
data = randi([0 (M - 1)]',1000,1);
avgPow = 1e-2;
minD = avgPow2MinD(avgPow,M);

Create a memoryless nonlinearity System object, specifying the Saleh model method.

saleh = comm.MemorylessNonlinearity('Method','Saleh model');
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Generate modulated symbols and pass them through the PA nonlinearity model.

modData = (minD/2).*qammod(data,M);
y = saleh(modData);

Generate a scatter plot of the results.

scatterplot(y)

Average power normalization of input signal.

function minD = avgPow2MinD(avgPow,M)
    % Average power to minimum distance    
    nBits = log2(M);
    if (mod(nBits,2)==0)
        % Square QAM
        sf = (M - 1)/6;
    else
        % Cross QAM
        if (nBits>4)
            sf = ((31*M/32) - 1)/6;
        else
            sf = ((5*M/4) - 1)/6;
        end
    end
    minD = sqrt(avgPow/sf);
end
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Nonlinear Amplifier Gain Compression

Plot the gain compression of a nonlinear amplifier for a 16-QAM signal.

Specify the modulation order and samples per symbol parameters.

M = 16;
sps = 4;

Model a nonlinear amplifier, by creating a memoryless nonlinearity System object with a 30 dB third-
order input intercept point. Create a raised cosine transmit filter System object.

amplifier = comm.MemorylessNonlinearity('IIP3',30);
txfilter = comm.RaisedCosineTransmitFilter( ...
    'RolloffFactor',0.3,'FilterSpanInSymbols',6, ...
    'OutputSamplesPerSymbol',sps,'Gain',sqrt(sps));

Specify the input power in dBm and a reference impedance of 1 ohm. Convert the input power to W
and initialize the gain vector.

pindBm = -5:25;
pin = 10.^((pindBm-30)/10);
gain = zeros(length(pindBm),1);

Execute the main processing loop, which includes these steps.

• Generate random data symbols.
• Modulate the data symbols and adjust the average power of the signal.
• Filter the modulated signal.
• Amplify the signal.
• Measure the gain.

for k = 1:length(pin)
    data = randi([0 (M - 1)],1000,1);
    modSig = qammod(data,M,'UnitAveragePower',true)*sqrt(pin(k));
    filtSig = txfilter(modSig);
    ampSig = amplifier(filtSig);
    gain(k) = 10*log10(mean(abs(ampSig).^2) / mean(abs(filtSig).^2));
end

Plot the amplifier gain as a function of the input signal power. The 1 dB gain compression point
occurs for an input power of 18.5 dBm. To increase the point at which a 1 dB compression is
observed, increase the third-order intercept point, amplifier.IIP3.

arrayplot = dsp.ArrayPlot('PlotType','Line','XLabel','Power In (dBm)', ...
    'XOffset',-5,'YLimits',[-5 5]);
arrayplot(gain)
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Distort 16-QAM Signal with Measured Power Amplifier Nonlinearities

Apply nonlinear power amplifier (PA) characteristics with 50 Ω impedance to a 16-QAM signal. Load
PA characteristics by setting the Method property to 'Lookup table'. The
pa_performance_characteristics helper function outputs the amplifier performance
characteristics lookup table.

Define parameters for the modulation order, samples per symbol, and input power. Create random
data.

M = 16;                     % Modulation order
sps = 4;                    % Samples per symbol
pindBm = -8;                % Input power
pin = 10.^((pindBm-30)/10); % power in Watts
data = randi([0 (M - 1)],1000,1);
refdata = 0:M-1;
refconst = qammod(refdata,M,'UnitAveragePower',true);
paChar = pa_performance_characteristics();

Create a memoryless nonlinearity System object, a transmit filter System object, and a constellation
diagram System object. The default lookup table values are used for the memoryless nonlinearity
System object.
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amplifier = comm.MemorylessNonlinearity('Method','Lookup table','Table',paChar,'ReferenceImpedance',50);
txfilter = comm.RaisedCosineTransmitFilter('RolloffFactor',0.3, ...
    'FilterSpanInSymbols',6,'OutputSamplesPerSymbol',sps,'Gain',sqrt(sps));
constellation = comm.ConstellationDiagram('SamplesPerSymbol',4, ...
    'Title','Amplified/Distorted Signal','NumInputPorts',2, ...
    'ReferenceConstellation', refconst,'ShowLegend',true, ...
    'ChannelNames',{'Filtered signal','Amplified signal'});

Modulate the random data. Filter and apply the nonlinear amplifier characteristics to the modulation
symbols.

modSig = qammod(data,M,'UnitAveragePower',true)*sqrt(pin * amplifier.ReferenceImpedance);
filtSig = txfilter(modSig);
ampSig = amplifier(filtSig);

Compute input and output signal levels and the phase shift.

pSig = abs(ampSig).^2 / amplifier.ReferenceImpedance;
poutdBm = 10 * log10(pSig) + 30;
pfiltSig = abs(filtSig).^2 / amplifier.ReferenceImpedance;
simulated_pindBm = 10 * log10(pfiltSig) + 30;
phase = rad2deg(angle(ampSig.*conj(filtSig)));

Plot AM/AM characteristics, AM/PM characteristics, and the constellation results.

figure
set(gcf,'units','normalized','position',[.25 1/3 .5 1/3])
subplot(1,2,1)
plot(simulated_pindBm,poutdBm,'.');
hold on
plot(amplifier.Table(:,1),amplifier.Table(:,2),'.','Markersize',15);
xlabel('Input Power (dBm)')
ylabel('Output Power (dBm)');
grid on;
title('AM/AM Characteristics');
leglabel = {'Simulated results','Measurement'};
legend (leglabel,'Location','south');

subplot(1,2,2)
plot(simulated_pindBm,phase,'.');
hold on
plot(amplifier.Table(:,1),amplifier.Table(:,3),'.','Markersize',15);
legend (leglabel,'Location','south');
xlabel('Input Power (dBm)');
ylabel('Output Phase Shift (degrees)');
grid on;
title('AM/PM Characteristics');
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For the purpose of constellation comparison, normalize the amplified signal and the filtered signal.
Generate a constellation diagram of the filtered signal and amplified signal. The nonlinear amplifier
characteristics cause compression of the amplified signal constellation compared to the filtered
constellation.

filtSig = filtSig/mean(abs(filtSig)); % Normalized filtered signal
ampSig = ampSig/mean(abs(ampSig));    % Normalized amplified signal
constellation(filtSig,ampSig)
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Helper Function

function paChar = pa_performance_characteristics()

The operating specification for the LDMOS-based Doherty amplifier are:

• A frequency of 2110 MHz
• A peak power of 300 W
• A small signal gain of 61 dB

Each row in HAV08_Table specifies Pin (dBm), gain (dB), phase shift (degrees) as derived from
figure 4 of Hammi, Oualid, et al. "Power amplifiers' model assessment and memory effects intensity
quantification using memoryless post-compensation technique." IEEE Transactions on Microwave
Theory and Techniques 56.12 (2008): 3170-3179.
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HAV08_Table =...
    [-35,60.53,0.01;
    -34,60.53,0.01;
    -33,60.53,0.08;
    -32,60.54,0.08;
    -31,60.55,0.1;
    -30,60.56,0.08;
    -29,60.57,0.14;
    -28,60.59,0.19;
    -27,60.6,0.23;
    -26,60.64,0.21;
    -25,60.69,0.28;
    -24,60.76,0.21;
    -23,60.85,0.12;
    -22,60.97,0.08;
    -21,61.12,-0.13;
    -20,61.31,-0.44;
    -19,61.52,-0.94;
    -18,61.76,-1.59;
    -17,62.01,-2.73;
    -16,62.25,-4.31;
    -15,62.47,-6.85;
    -14,62.56,-9.82;
    -13,62.47,-12.29;
    -12,62.31,-13.82;
    -11,62.2,-15.03;
    -10,62.15,-16.27;
    -9,62,-18.05;
    -8,61.53,-20.21;
    -7,60.93,-23.38;
    -6,60.2,-26.64;
    -5,59.38,-28.75];

Convert the second column of the HAV08_Table from gain to Pout for use by the memoryless
nonlinearity System object.

paChar = HAV08_Table;
paChar(:,2) = paChar(:,1) + paChar(:,2);
end

More About
Memoryless Nonlinear Impairments

Memoryless nonlinear impairments distort the amplitude and phase of the input signal. The
amplitude distortion is amplitude-to-amplitude modulation (AM/AM) and the phase distortion is
amplitude-to-phase modulation (AM/PM). These model methods are available for simulating the
memoryless nonlinear impairment models.

Model Method Memoryless Nonlinear Impairment
Cubic polynomial Applies AM/AM and AM/PM
Hyperbolic tangent
Saleh model
Ghorbani model
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Model Method Memoryless Nonlinear Impairment
Modified Rapp model
Lookup table Applies impairment according to [Pin, Pout, ΔΦ]

amplifier characteristics specified by the Table
property

The modeled impairments apply the AM/AM and AM/PM distortions differently according to the
model method you specify. The models apply the memoryless nonlinear impairment to the input signal
by following these steps.

1 Multiply the signal by an input gain factor.

Note You can normalize the signal to 1 by setting the input scaling gain to the inverse of the
input signal amplitude.

2 Split the complex signal into its magnitude and angle components. For real-valued input signals,
the imaginary component is set to zero.

3 Apply an AM/AM distortion to the magnitude of the signal, according to the selected model
method, to produce the magnitude of the output signal.

4 Apply an AM/PM distortion to the phase of the signal, according to the selected model method, to
produce the angle of the output signal.

5 Combine the new magnitude and angle components into a complex signal. Then, multiply the
result by an output gain factor.

The model methods apply AM/AM and AM/PM impairments as shown in this figure.

The lookup table method uses the power amplifier (PA) characteristics lookup table, specified as an
N-by-3 matrix of measured PA characteristics. Each row is of the form [Pin, Pout, ΔΦ]. Pin specifies the
PA input signal in dBm, Pout specifies the PA output signal in dBm, and ΔΦ specifies the output phase
shift in degrees. The measured PA characteristics defined by the Table property are used to compute
the AM/AM (in dBm/dBm) and AM/PM (in deg/dBm) nonlinear impairment characteristics. The
System object distorts the input signal by the computed AM/AM (in dBm/dBm) and AM/PM (in deg/
dBm) values.

Note To determine appropriate Pout and ΔΦ values for any Pin values outside the range of values
specified in the Table property, the System object applies linear extrapolation from the first two or
last two [Pin, Pout, ΔΦ] rows of Table.
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Cubic Polynomial and Hyperbolic Tangent Model Methods

This figure shows the AM/PM conversion behavior for the cubic polynomial and hyperbolic tangent
model methods.

The AM/PM conversion scales linearly with an input power value between the lower and upper limits
of the input power level. Outside this range, the AM/PM conversion is constant at the values
corresponding to the lower and upper input power limits, which are zero and (AM/PM conversion) ×
(upper input power limit – lower input power limit), respectively.

Cubic Polynomial Third-Order Coefficient

The cubic polynomial model method uses linear power gain to determine the linear coefficient of a
third order polynomial. The cubic polynomial model method then uses either the third order intercept
point (IP3), the one dB compression point (P1dB), or the saturation power (Psat) to determine the
third order coefficient of the polynomial.

This figure shows an example of the plot generated when you set the Method property to 'Cubic
polynomial'.
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The general form of cubic nonlinearity models the AM/AM characteristics as

FAM/AM(|u|)=c1×|u|+3
4c3×|u|3

where FAM/AM(|u|) is the magnitude of the output signal, |u| is the magnitude of the input signal, c1 is
the coefficient of the linear gain term, and c3 is the coefficient of the cubic gain term. The results for
IIP3, OIP3, IP1dB, OP1dB, IPsat, and OPsat are taken from [6]. The coefficient c3 values are given in
this table.

Nonlinearity Type Description Equation
IIP3 Input power level at which the

power from linear gain is equal
to the power from a third-order
nonlinearity

c3 = −
4c1

3 × 10[(IIP3 − 30)/10]

where IIP3 is given in dBm.
OIP3 Output power level at which the

power from linear gain is equal
to the power from a third-order
nonlinearity

c3 = −
4c1

3

3 × 10[(OIP3 − 30)/10]

where OIP3 is given in dBm.
IP1dB Input power level at which the

output power is one dB less
than the power from linear gain

c3 =

−
2c1(1019 20− 10)

15 × 10[(IP1dB− 30)/10]

where IP1dB is given in dBm.
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Nonlinearity Type Description Equation
OP1dB Output power level one dB less

than the power from linear gain c3 =

−
2c1

3(1019 20− 10)
15 × 10[(OP1dB− 30 − LGdB + 1)/10]

where OP1dB is given in dBm,
and LGdB is the linear gain in
dB

IPsat Input power at which the output
power saturates c3 = −

4c1

9 × 10[(IPsat − 30)/10]

where IPsat is given in dBm.
OPsat Output saturation power

c3 =

−
16c1

3

81 × 10[(OPsat − 30)/10]

where OPsat is given in dBm.

Saleh Model Method

This figure shows the AM/AM behavior (output voltage versus input voltage for the AM/AM distortion)
and the AM/PM behavior (output phase versus input voltage for the AM/PM distortion) for the Saleh
model method.
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The AM/AM parameters, αAMAM and βAMAM, are used to compute the amplitude distortion of the input
signal by using

FAMAM(u) =
αAMAM × u

1 + βAMAM × u2 ,

where u is the magnitude of the scaled signal.

The AM/PM parameters, αAMPM and βAMPM, are used to compute the phase distortion of the input
signal by using

FAMPM(u) =
αAMPM × u2

1 + βAMPM × u2 ,

where u is the magnitude of the scaled signal. The α and β parameters for AM/AM and AM/PM are
similarly named but distinct.

Ghorbani Model Method

The Ghorbani model method applies AM/AM and AM/PM distortion as described in this section.

The AM/AM parameters (x1, x2, x3, and x4) are used to compute the amplitude distortion of the input
signal by using

FAMAM(u) =
x1ux2

1 + x3ux2
+ x4u,

 comm.MemorylessNonlinearity

3-873



where u is the magnitude of the scaled signal.

The AM/PM parameters (y1, y2, y3, and y4) are used to compute the phase distortion of the input
signal by using

FAMPM(u) =
y1uy2

1 + y3uy2
+ y4u,

where u is the magnitude of the scaled signal.

Modified Rapp Model Method

The modified Rapp model method applies AM/AM and AM/PM distortion as described in this section.

The amplitude and phase distortion of the input signal are given by

FAMAM(u) =
glin × u

1 +
glin × u

Osat

2S 1/2S ,

FAMPM(u) = Auq

1 + u
B

q ,

where:

• glin is 10(LinearGain/20)) and is the amplitude gain of the amplifier.
• u is the magnitude of the signal.
• S is the smoothness factor, specified by the Smoothness property.
• Osat is the output saturation level, specified by the OutputSaturationLevel property.
• A is the phase gain in radians, specified by the PhaseGainRadian property.
• B is the phase saturation, specified by the PhaseSaturation property.
• q is the phase smoothness, specified by the PhaseSmoothness property.

Version History
Introduced in R2012a
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comm.MER
Package: comm

Measure modulation error ratio of received signal

Description
The comm.MER System object computes a form of signal-to-noise ratio (SNR) measurement that you
can use to assess the ability of a receiver to accurately demodulate a signal. Specifically, it returns
the modulation error ratio (MER), minimum MER, and percentile MER for a received signal. You use
the MER measurements to determine system performance in communications applications. For
example, to determine compliance with applicable DVB-T system radio transmission standards
conformance testing requires accurate MER measurements.

To measure the MER of a received signal:

1 Create the comm.MER object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation
Syntax
mer1 = comm.MER
mer1 = comm.MER(Name=Value)

Description

mer1 = comm.MER creates an MER System object with default property values.

mer1 = comm.MER(Name=Value) sets properties using one or more name-value arguments. For
example, comm.MER(ReferenceSignalSource="Estimated from reference
constellation") configures the object to measure the MER of a received signal relative to a
reference constellation.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

ReferenceSignalSource — Reference signal source
'Input port' (default) | 'Estimated from reference constellation'
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Reference signal source, specified as 'Input port' or 'Estimated from reference
constellation'.

• To specify the reference signal with the refSym input , set this property to 'Input port'.
• To specify the reference signal with the ReferenceConstellation property, set this property to

'Estimated from reference constellation'.

ReferenceConstellation — Reference Constellation
[0.7071 - 0.7071i; -0.7071 - 0.7071i; -0.7071 + 0.7071i; 0.7071 + 0.7071i]
(default) | vector

Reference constellation, specified as a vector. The default value corresponds to a quadrature phase-
shift keying (QPSK) constellation with unit average power. You can derive constellation points by
using modulation functions or objects.
Example: To define the reference constellation as a 16-QAM signal scaled so that the QAM
constellation points are separated by a minimum distance of two, set this property to
qammod(0:15,16)

Dependencies

To enable this property, set the ReferenceSignalSource property to 'Estimated from
reference constellation'.
Data Types: double

MeasurementIntervalSource — Measurement interval source
'Input length' (default) | 'Entire history' | 'Custom' | 'Custom with periodic reset'

Measurement interval source for MER and minimum MER measurements, specified as one of these
values.

• 'Input length' — Measure MER using only the current samples.
• 'Entire history' — Measure MER for all samples.
• 'Custom' — Measure the MER by using a sliding window over an interval that you specify.
• 'Custom with periodic reset' — Measure the MER over an interval that you specify and

reset the block after measuring over each interval.

This property affects only the MER and minimum MER outputs.

MeasurementInterval — Measurement interval
100 (default) | positive integer

Measurement interval, specified as a positive integer.
Dependencies

To enable this property, set the MeasurementIntervalSource property to 'Custom' or 'Custom
with periodic reset'.
Data Types: double
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AveragingDimensions — Averaging dimensions
1 (default) | vector of integers in the range [1, 3]

Averaging dimensions over which the object averages the MER measurements, specified as a vector
of integers in the range [1, 3]. For example, to average across the columns, set this property to 2.

This object supports variable-size inputs of the dimensions across which the averaging takes place.
However, the input size for the nonaveraged dimensions must remain constant between calls to the
object. For example, if the input has size [1000 3 2] and you set this property to [1 3], the output
size is [1 3 1], and the number of elements in the second dimension must remain fixed at 3.
Data Types: double

MinimumMEROutputPort — Option to return minimum MER measurements
false or 0 (default) | true or 1

Option to return minimum MER measurements, specified as a logical 1 (true) or 0 (false).
Data Types: logical

XPercentileMEROutputPort — Option to return X-percentile MER measurements
false or 0 (default) | true or 1

Option to return X-percentile MER measurements, specified as a logical 1 (true) or 0 (false).
Specify the value of X in the XPercentileValue property. When you set this property to 1 (true),
X-percentile MER measurements persist until you reset the object. The object performs these
measurements by using all of the input frames since the last reset.
Data Types: logical

XPercentileValue — Value below which X% of MER measurements fall
95 (default) | scalar in the range [0, 100]

Value below which X% of MER measurements fall, specified as a scalar in the range [0, 100].

Dependencies

To enable this property, set the XPercentileMEROutputPort property to true.
Data Types: double

SymbolCountOutputPort — Option to return number of accumulated symbols
false or 0 (default) | true or 1

Option to return the number of accumulated symbols that the object uses to measure the X-percentile
MER since the last reset, specified as a logical 1 (true) or 0 (false).

Dependencies

To enable this property, set the XPercentileMEROutputPort property to true.
Data Types: logical
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Usage

Syntax
merdb = mer1(refSym,rxSym)
[merdb,minMER] = mer1(refSym,rxSym)
[ ___ ,pMER] = mer1(refSym,rxSym)
[ ___ ,pMER,numSym] = mer1(refSym,rxSym)
[ ___ ] = mer1(rxSym)

Description

merdb = mer1(refSym,rxSym) returns the MER of received signal rxSym relative to reference
signal refSym over the measurement interval specified in the MeasurementIntervalSource and
MeasurementInterval properties.

[merdb,minMER] = mer1(refSym,rxSym) also returns the minimum percentage MER over the
configured measurement interval.

To use this syntax, set the MinimumMEROutputPort property to true.

[ ___ ,pMER] = mer1(refSym,rxSym) also returns the value below which X% of MER
measurements fall using all input frames since the last reset, regardless of measurement interval
configuration. Set the value of X in the XPercentileValue property. For example, if you set the
XPercentileValue to 95, then 95% of all MER measurements since the last reset fall below the
value of pMER.

To use this syntax, set the XPercentileMEROutputPort property to true.

[ ___ ,pMER,numSym] = mer1(refSym,rxSym) also returns the number of symbols used to
measure MER. To use this syntax, set the XPercentileMEROutputPort and
SymbolCountOutputPort to true.

[ ___ ] = mer1(rxSym) measures the MER of the received signal relative to the reference signal
specified in the ReferenceConstellation property. You can use this syntax with any previous
output argument combination.

To use this syntax, set the ReferenceSignalSource property to "Estimated from reference
constellation".

Input Arguments

refSym — Reference signal
scalar | vector | matrix | 3-D array

Reference signal, specified as a scalar, vector, matrix, or 3-D array. If you specify this input, the object
measures the MER of the rxSym input by using this input as a reference constellation. The
dimensions of this input must match those of the rxSym input. The object uses each element of this
input as the reference symbol for the corresponding element of the rxSym input.
Data Types: single | double | int8 | int16 | int32 | int64 | fi
Complex Number Support: Yes

rxSym — Received signal
scalar | vector | matrix | 3-D array
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Received signal, specified as a scalar, vector, matrix, or 3-D array.
Data Types: single | double | int8 | int16 | int32 | int64 | fi
Complex Number Support: Yes

Output Arguments

merdb — Percentage MER of received signal
scalar

Percentage MER of the received signal over the configured measurement interval, returned as a
scalar in units of decibels.
Data Types: double

minMER — Minimum percentage MER
scalar

Minimum percentage MER over the configured measurement interval, returned as a scalar in units of
decibels.
Data Types: double

pMER — Value below which X% of MER measurements fall
scalar

Value below which X% of MER measurements fall since the last reset, returned as a scalar in units of
decibels. Set the value of X in the XPercentileValue property.
Data Types: double

numSym — Number of symbols
positive integer

Number of symbols that the object uses to measure the pMER output, returned as a positive integer.
Data Types: double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

3 System Objects

3-880



Measure MER Using Reference Constellation

Generate random data symbols and apply 8-PSK modulation.

d = randi([0 7],2000,1);
refSym = pskmod(d,8,pi/8);

Pass the modulated signal through an AWGN channel.

rxSym = awgn(refSym,30);

Create an MER object with default property values.

mer = comm.MER;

Measure the MER using the transmitted signal as the reference.

rmsMER1 = mer(refSym,rxSym);

Release the MER object.

release(mer)

Configure the object to use a reference constellation for making MER measurements.

mer.ReferenceSignalSource = "Estimated from reference constellation";
mer.ReferenceConstellation = pskmod(0:7,8,pi/8);

Measure the MER using only the received signal as an input. Verify that the two MER measurements
match.

rmsMER2 = mer(rxSym);
[rmsMER1 rmsMER2]

ans = 1×2

   30.0271   30.0271

Measure MER Across Different Dimensions

Specify the FFT length, number of subcarriers, number of symbols, and cyclic prefix length.

nfft = 32;  % Number of subcarriers
nSym = 4;   % Number of OFDM symbols
cplen = 16; % Cyclic prefix length

Generate a random signal and apply QPSK modulation.

msg = randi([0 3],nfft,nSym);
refSym = pskmod(msg,4,pi/4);

OFDM modulate the QPSK symbols. Pass the signal through an AWGN channel. OFDM demodulate
the noisy signal.
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txSig = ofdmmod(refSym,nfft,cplen);
rxSig = awgn(txSig,10,"measured");
rxSym = ofdmdemod(rxSig,nfft,cplen);

Configure an MER object to measure the average MER across the subcarriers. Averaging across the
rows returns MER measurements corresponding to each of the OFDM symbols.

mer = comm.MER(AveragingDimensions=1);
merdB = mer(refSym,rxSym)

merdB = 1×4

    9.1136   11.7584    9.1921    9.8452

Configure the MER object to measure the MER over the OFDM symbols. Averaging across the
columns returns MER measurements corresponding to each of the subcarriers.

mer = comm.MER(AveragingDimensions=2);
merdB = mer(refSym,rxSym)

merdB = 32×1

    8.7805
    7.6542
    7.6455
    6.5291
   10.5659
    8.5554
   10.1859
   15.5139
    9.7574
    8.4784
      ⋮

Averaging across the rows and columns returns one MER measurement for all the subcarriers and
OFDM symbols.

mer = comm.MER(AveragingDimensions=[1 2]);
merdB = mer(refSym,rxSym)

merdB = 9.8566

Measure MER of Noisy 16-QAM Signal

Create an MER object to measure MER, minimum MER, 90-percentile MER, and the number of
symbols.

mer = comm.MER(MinimumMEROutputPort=true, ...
    XPercentileMEROutputPort=true,XPercentileValue=90, ...
    SymbolCountOutputPort=true);

Generate random data, apply 16-QAM with unit average power, and pass the signal through an AWGN
channel.
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data = randi([0 15],1000,1);
refsym = qammod(data,16,UnitAveragePower=true);
rxsym = awgn(refsym,20);

Determine the MER, minimum MER, and 90th percentile MER values.

[MERdB,MinMER,pMER,nSym] = mer(refsym,rxsym)

MERdB = 20.1071

MinMER = 11.4248

pMER = 16.5850

nSym = 1000

Measure MER Using Custom Measurement Interval

Measure the MER of a noisy 8-PSK signal using two types of custom measurement interval and
display the results.

Define variables for the simulation.

nframe = 2;              % Number of frames
nsubframe = 5;           % Number of subframes per frame
spsf = 100;              % Number of symbols per subframe
frmLen = nsubframe*spsf; % Frame length

Configure an MER object to use a custom measurement interval equal to the frame length and
measure MER using an 8-PSK reference constellation.

mer1 = comm.MER( ...
    MeasurementIntervalSource="Custom", ...
    MeasurementInterval=frmLen, ...
    ReferenceSignalSource="Estimated from reference constellation", ...
    ReferenceConstellation=pskmod(0:7,8,pi/8));

Configure another MER object that uses a 500-symbol measurement interval with a periodic reset
and measures MER using the same 8-PSK reference constellation.

mer2 = comm.MER( ...
    MeasurementIntervalSource="Custom with periodic reset", ...
    MeasurementInterval=frmLen, ...
    ReferenceSignalSource="Estimated from reference constellation", ...
    ReferenceConstellation=pskmod(0:7,8,pi/8));

Initialize the MER and signal-to-noise arrays.

merNoReset = zeros(nsubframe,nframe);
merReset = zeros(nsubframe,nframe);
snrdB = zeros(nsubframe,nframe);

Measure the MER for a noisy 8-PSK signal using both objects. The SNR increases by 1 dB from
subframe to subframe. The merNoReset object uses the 500 most recent symbols to compute the
estimate. This object uses a sliding window so that an entire data frame is the basis for the estimate.
The merReset object clears the symbols each time it encounters a new frame.
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for m = 1:nframe
    for k = 1:nsubframe
        data = randi([0 7],spsf,1);
        txSig = pskmod(data,8,pi/8);
        snrdB(k,m) = k+(m-1)*nsubframe+7;
        rxSig = awgn(txSig,snrdB(k,m));
        merNoReset(k,m) = mer1(rxSig);
        merReset(k,m) = mer2(rxSig);
    end
end

Display the MER measured using both approaches. The windowing used in the first case provides an
averaging across the subframes. In the second case, the MER object resets after the first frame so
that the calculated MER values more accurately reflect the current SNR.

stairs(snrdB(:),[merNoReset(:) merReset(:)])
xlabel("SNR (dB)")
ylabel("MER (%)")
legend("No reset","Periodic reset")

Algorithms
MER is a measure of the SNR in a modulated signal calculated in dB. The MER over a burst
containing N symbols is
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MER = 10 × log10

∑
k = 1

N
Ik2 + Qk

2

∑
k = 1

N
ek

dB,

where:

• ek = ek = (Ik− I k)2 + (Qk− Qk)2.

• Ik represents the in-phase component of the kth symbol in the burst.
• Qk represents the quadrature phase component of the kth symbol in the burst.
• Ik and Qk represent ideal reference values.
• I k and Qk represent received symbols.

• N represents the number of symbols in the burst.

The MER for the kth symbol is

MERk = 10 × log10

1
N ∑k = 1

N
Ik2 + Qk

2

ek
dB.

The minimum MER represents the minimum MER value in a burst, or

MERmin = min
k ∈ [1, ..., N]

MERk ,

The algorithm computes the X-percentile MER by creating a histogram of all the incoming MERk
values. The output provides the MER value above which X% of the MER values fall.

Version History
Introduced in R2012a

References
[1] ESTI TR 101 290. Digital Video Broadcasting (DVB): Measurement guidelines for DVB systems.

June 2020.
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Generate C and C++ code using MATLAB® Coder™.
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See Also
Objects
comm.EVM | comm.ACPR

Functions
powermeter

Blocks
MER Measurement | Power Meter

Topics
“Measure Modulation Accuracy”
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comm.MIMOChannel
Package: comm

Filter input signal through MIMO multipath fading channel

Description
The comm.MIMOChannel System object filters an input signal through a multiple-input/multiple-
output (MIMO) multipath fading channel. This object models Rayleigh and Rician fading and employs
the Kronecker model for modeling the spatial correlation between the links. For processing details,
see the Algorithms on page 3-914 section.

To filter an input signal through a MIMO multipath fading channel:

1 Create the comm.MIMOChannel object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
mimochannel = comm.MIMOChannel
mimochannel = comm.MIMOChannel(Name,Value)

Description

mimochannel = comm.MIMOChannel creates a MIMO frequency-selective or frequency-flat fading
channel System object.

mimochannel = comm.MIMOChannel(Name,Value) sets properties using one or more name-value
arguments. For example, 'SampleRate',2 sets the input signal sample rate to 2.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

SampleRate — Input signal sample rate
1 (default) | positive scalar

Input signal sample rate in hertz, specified as a positive scalar.
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Data Types: double

PathDelays — Discrete path delay
0 (default) | scalar | row vector

Discrete path delay in seconds, specified as a scalar or row vector.

• When you set PathDelays to a scalar, the MIMO channel is frequency flat.
• When you set PathDelays to a vector, the MIMO channel is frequency selective.

The PathDelays and AveragePathGains properties must be the same length.
Data Types: double

AveragePathGains — Average path gains
0 (default) | scalar | row vector

Average path gains in decibels, specified as a scalar or row vector. The AveragePathGains and
PathDelays properties must be the same length.
Data Types: double

NormalizePathGains — Normalize path gains
trueor 1 (default) | false or 0

Normalize path gains, specified as one of these logical values:

• 1 (true) — The fading processes are normalized so that the total power of the path gains,
averaged over time, is 0 dB.

• 0 (false) — The total power of the path gains is not normalized.

The AveragePathGains property specifies the average powers of the path gains.
Data Types: logical

FadingDistribution — Fading distribution
'Rayleigh' (default) | 'Rician'

Fading distribution to use for the channel, specified as 'Rayleigh' or 'Rician'.
Data Types: char | string

KFactor — K-factor of Rician fading channel
3 (default) | positive scalar | 1-by-NP vector of nonnegative values

K-factor of a Rician fading channel, specified as a positive scalar or a 1-by-NP vector of nonnegative
values. NP is the number of discrete path delays specified by the PathDelays property.

• When you set KFactor to a scalar, the first discrete path is a Rician fading process with a Rician
K-factor of KFactor. Any remaining discrete paths are independent Rayleigh fading processes.

• When you set KFactor to a vector, the discrete path corresponding to a positive element of the
KFactor vector is a Rician fading process with a Rician K-factor specified by that element. The
discrete path corresponding to any zero-valued elements of the KFactor vector are Rayleigh
fading processes. At least one element must be nonzero.
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Dependencies

To enable this property, set the FadingDistribution property to 'Rician'.
Data Types: double

DirectPathDopplerShift — Doppler shifts for line-of-sight components
0 (default) | scalar | row vector

Doppler shifts for the line-of-sight components of the multipath Rician fading channel, specified as a
scalar or row vector. Units are in hertz. This property must be the same size as the KFactor property.

• When you set DirectPathDopplerShift to a scalar, the value represents the line-of-sight
component Doppler shift of the first discrete path. This path exhibits a Rician fading process.

• When you set DirectPathDopplerShift to a row vector, the discrete path corresponding to a
positive element of the KFactor vector is a Rician fading process. The corresponding element of
DirectPathDopplerShift specifies the line-of-sight component for the Doppler shift of that
discrete path.

Dependencies

To enable this property, set the FadingDistribution property to 'Rician'.
Data Types: double

DirectPathInitialPhase — Initial phases for line-of-sight components
0 (default) | scalar | row vector

Initial phases for the line-of-sight components of the multipath Rician fading channel, specified as a
scalar or row vector. Units are in radians. This property must be the same size as the KFactor
property value.

• When you set DirectPathInitialPhase to a scalar, the value represents the line-of-sight
component initial phase of the first discrete path. This path exhibits a Rician fading process.

• When you set DirectPathInitialPhase to a row vector, the discrete path corresponding to a
positive element of the KFactor vector is a Rician fading process. The corresponding element of
DirectPathInitialPhase specifies the line-of-sight component for the initial phase of that
discrete path.

Dependencies

To enable this property, set the FadingDistribution property to 'Rician'.
Data Types: double

MaximumDopplerShift — Maximum Doppler shift for all channel paths
0.001 (default) | nonnegative scalar

Maximum Doppler shift for all channel paths, specified as a nonnegative scalar. Units are in hertz.

The maximum Doppler shift limit applies to each channel path. When you set this property to 0, the
channel remains static for the entire input. You can use the reset object function to generate a new
channel realization. The MaximumDopplerShift property value must be smaller than
SampleRate/10/fc for each path, where fc is the cutoff frequency factor of the path. For most Doppler
spectrum types, the value of fc is 1. For Gaussian and bi-Gaussian Doppler spectrum types, fc is
dependent on the Doppler spectrum structure fields. For more details about how fc is defined, see the
Cutoff Frequency Factor on page 3-914 section.
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Data Types: double

DopplerSpectrum — Doppler spectrum shape for all channel paths
doppler('Jakes') (default) | Doppler spectrum structure | 1-by-NP cell array of Doppler spectrum
structures

Doppler spectrum shape for all channel paths, specified as a Doppler spectrum structure or a 1-by-NP
cell array of Doppler spectrum structures. These Doppler spectrum structures must be outputs of the
form returned from the doppler function. NP is the number of discrete path delays specified by the
PathDelays property. The MaximumDopplerShift property defines the maximum Doppler shift
value that the DopplerSpectrum property permits when you specify the Doppler spectrum.

• When you set DopplerSpectrum to a single Doppler spectrum structure, all paths have the same
specified Doppler spectrum.

• When you set DopplerSpectrum to a cell array of Doppler spectrum structures, each path has
the Doppler spectrum specified by the corresponding structure in the cell array.

Specify options for the spectrum type by using the specType input to the doppler function. If you
set the FadingTechnique property to 'Sum of sinusoids', you must set DopplerSpectrum to
doppler('Jakes').

Dependencies

To enable this property, set the MaximumDopplerShift property to a positive scalar.
Data Types: struct | cell

SpatialCorrelationSpecification — Spatial correlation specification
'Separate Tx Rx' (default) | 'None' | 'Combined'

Spatial correlation specification, specified as 'Separate Tx Rx', 'None', or 'Combined'.

• Choose 'Spatial Tx Rx' to separately specify the transmit and receive spatial correlation
matrices from which the number of transmit antennas (NT) and number of receive antennas (NR)
are derived.

• Choose 'None' to specify the number of transmit and receive antennas.
• Choose 'Combined' to specify a single correlation matrix for the whole channel from which the

product of NT and NR is derived.

Data Types: char | string

NumTransmitAntennas — Number of transmit antennas
2 (default) | positive integer

Number of transmit antennas, specified as a positive integer.

Dependencies

To enable this property, set the SpatialCorrelationSpecification property to 'None' or
'Combined'.
Data Types: double

NumReceiveAntennas — Number of receive antennas
2 (default) | positive integer
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Number of receive antennas, specified as a positive integer.

Dependencies

To enable this property, set the SpatialCorrelationSpecification property to 'None' or
'Combined'.
Data Types: double

TransmitCorrelationMatrix — Spatial correlation of transmitter
[1 0; 0 1] (default) | NT-by-NT matrix | NT-by-NT-by-NP array

Spatial correlation of the transmitter, specified as an NT-by-NT matrix or NT-by-NT-by-NP array. NT is
the number of transmit antennas. NP is the number of discrete path delays specified by the
PathDelays property.

• If you set PathDelays to a scalar, the channel is frequency flat and
TransmitCorrelationMatrix must be an NT-by-NT Hermitian matrix. The magnitude of any off-
diagonal element must be no larger than the geometric mean of the two corresponding diagonal
elements.

• If you set PathDelays to a vector, the channel is frequency selective and you can specify
TransmitCorrelationMatrix as one of these options:

• An NT-by-NT matrix. In this case, each path has the same transmit spatial correlation matrix.
• An NT-by-NT-by-NP array. In this case, each path has its own specified transmit spatial

correlation matrix.

Dependencies

To enable this property, set the SpatialCorrelationSpecification property to 'Separate Tx
Rx'.
Data Types: double
Complex Number Support: Yes

ReceiveCorrelationMatrix — Spatial correlation of receiver
[1 0; 0 1] (default) | NR-by-NR matrix | NR-by-NR-by-NP array

Spatial correlation of the receiver, specified as an NR-by-NR matrix or NR-by-NR-by-NP array. NR is the
number of receive antennas. NP is the number of discrete path delays specified by the PathDelays
property.

• If you set PathDelays to a scalar, the channel is frequency flat, and
ReceiveCorrelationMatrix must be an NR-by-NR Hermitian matrix. The magnitude of any off-
diagonal element must be no larger than the geometric mean of the two corresponding diagonal
elements.

• If you set PathDelays to a vector, the channel is frequency selective and you can specify
ReceiveCorrelationMatrix as one of these options:

• An NR-by-NR matrix. In this case, each path has the same receive spatial correlation matrix.
• An NR-by-NR-by-NP array. In this case, each path has its own specified receive spatial

correlation matrix.
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Dependencies

To enable this property, set the SpatialCorrelationSpecification property to 'Separate Tx
Rx'.
Data Types: double
Complex Number Support: Yes

SpatialCorrelationMatrix — Combined spatial correlation matrix
[1 0 0 0; 0 1 0 0; 0 0 1 0; 0 0 0 1] (default) | NTR-by-NTR matrix | NTR-by-NTR-by-NP array

Combined spatial correlation matrix, specified as an NTR-by-NTR matrix or NTR-by-NTR-by-NP array. NTR
= (NT ✕ NR), and NP is the number of discrete delay paths (the length of the PathDelays property).

• If PathDelays is a scalar, the channel is frequency flat, and SpatialCorrelationMatrix must
be an NTR-by-NTR Hermitian matrix. The magnitude of any off-diagonal element must be no larger
than the geometric mean of the two corresponding diagonal elements.

• If you set PathDelays to a vector, the channel is frequency selective and you can specify
SpatialCorrelationMatrix as one of these options:

• An NTR-by-NTR matrix. In this case, each path has the same combined spatial correlation
matrix.

• An NTR-by-NTR-by-NP array. In this case, each path has its own specified combined spatial
correlation matrix.

Dependencies

To enable this property, set the SpatialCorrelationSpecification property to 'Combined'.
Data Types: double

AntennaSelection — Antenna selection scheme
'Off' (default) | 'Tx' | 'Rx' | 'Tx and Rx'

Antenna selection scheme, specified as 'Off', 'Tx', 'Rx', or 'Tx and Rx'.

Tx represents transmit antennas, and Rx represents receive antennas. When you configure any
antenna selection other than the default setting, the object requires one or more inputs to specify
which antennas are selected for signal transmission. For more information, see Antenna Selection on
page 3-915.
Data Types: char | string

NormalizeChannelOutputs — Normalize channel outputs
trueor 1 (default) | false or 0

Normalize channel outputs, specified as one of these logical values:

• 1 (true) — The channel outputs are normalized by the number of receive antennas.
• 0 (false) — The channel outputs are not normalized.

Data Types: logical

ChannelFiltering — Channel filtering
trueor 1 (default) | false or 0
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Channel filtering, specified as one of these logical values:

• 1 (true) — The channel accepts an input signal and produces a filtered output signal.
• 0 (false) — The object does not accept an input signal, produces no filtered output signal, and

outputs only channel path gains. You must specify the duration of the fading process by using the
NumSamples property.

Data Types: logical

PathGainsOutputPort — Output channel path gains
false or 0 (default) | trueor 1

Output channel path gains, specified as a logical 0 (false) or 1 (true). Set this property to true to
output the channel path gains of the underlying fading process.

Dependencies

To enable this property, set the ChannelFiltering property to true.
Data Types: logical

NumSamples — Number of samples
100 (default) | nonnegative integer

Number of samples used for the duration of the fading process, specified as a nonnegative integer.

Tunable: Yes

Dependencies

To enable this property, set the ChannelFiltering property to false.
Data Types: double

OutputDataType — Path gain output data type
'double' (default) | 'single'

Path gain output data type, specified as 'double' or 'single'.

Dependencies

To enable this property, set the ChannelFiltering property to false.
Data Types: char | string

FadingTechnique — Channel model fading technique
'Filtered Gaussian noise' (default) | 'Sum of sinusoids'

Channel model fading technique, specified as 'Filtered Gaussian noise' or 'Sum of
sinusoids'.
Data Types: char | string

NumSinusoids — Number of sinusoids
48 (default) | positive integer

Number of sinusoids used to model the fading process, specified as a positive integer.
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Dependencies

To enable this property, set the FadingTechnique property to 'Sum of sinusoids'.
Data Types: double

InitialTimeSource — Source to control start time of fading process
'Property' (default) | 'Input port'

Source to control the start time of the fading process, specified as 'Property' or 'Input port'.

• When you set InitialTimeSource to 'Property', set the initial time offset by using the
InitialTime property.

• When you set InitialTimeSource to 'Input port', specify the start time of the fading
process by using the inittime input argument. The input value can change in consecutive calls
to the object.

Dependencies

To enable this property, set the FadingTechnique property to 'Sum of sinusoids'.
Data Types: char | string

InitialTime — Initial time offset
0 (default) | nonnegative scalar

Initial time offset for the fading model in seconds, specified as a nonnegative scalar.

InitialTime must be greater than the end time of the last frame. When mod(InitialTime/
SampleRate) is nonzero, the object rounds the initial time offset up to the nearest sample position.

Dependencies

To enable this property, set the FadingTechnique property to 'Sum of sinusoids' and the
InitialTimeSource property to 'Property'.
Data Types: double

RandomStream — Source of random number stream
'Global stream' (default) | 'mt19937ar with seed'

Source of the random number stream, specified as 'Global stream' or 'mt19937ar with
seed'.

• When you specify 'Global stream', the object uses the current global random number stream
for random number generation. In this case, the reset object function resets only the filters.

• When you specify 'mt19937ar with seed', the object uses the mt19937ar algorithm for
random number generation. In this case, the reset object function resets the filters and
reinitializes the random number stream to the value of the Seed property.

Data Types: char | string

Seed — Initial seed of mt19937ar random number stream
73 (default) | nonnegative integer

3 System Objects

3-894



Initial seed of the mt19937ar random number stream, specified as a nonnegative integer. When you
call the reset object function, it reinitializes the mt19937ar random number stream to the Seed
value.

Dependencies

To enable this property, set the RandomStream property to 'mt19937ar with seed'.
Data Types: double

Visualization — Channel visualization
'Off' (default) | 'Impulse response' | 'Frequency response' | 'Impulse and frequency
responses' | 'Doppler spectrum'

Channel visualization, specified as 'Off', 'Impulse response', 'Frequency response',
'Impulse and frequency responses', or 'Doppler spectrum'. When you set the channel
visualization to a value other than 'Off', the selected channel characteristics, such as impulse
response or Doppler spectrum, display in a separate window. For more information, see Channel
Visualization.

Dependencies

To enable this property, set the FadingTechnique property to 'Filtered Gaussian noise'.
Data Types: char | string

AntennaPairsToDisplay — Transmit-receive antenna pair to display
[1 1] (default) | two-element row vector

Transmit-receive antenna pair to display, specified as a two element row vector. The first element
corresponds to the desired transmit antenna, and the second element corresponds to the desired
receive antenna. Only a single pair can be displayed.

Dependencies

To enable this property, set the Visualization property to 'Impulse response', 'Frequency
response', 'Doppler spectrum', or 'Impulse and frequency responses'.
Data Types: double

PathsForDopplerDisplay — Path for which Doppler spectrum is displayed
1 (default) | positive integer in the range [1, NP]

Path for which the Doppler spectrum is displayed, specified as an integer in the range [1, NP]. NP is
the number of discrete path delays specified by the PathDelays property. Use this property to select
the discrete path used in constructing a Doppler spectrum plot.

Dependencies

To enable this property, set the Visualization property to 'Doppler spectrum'.
Data Types: double

SamplesToDisplay — Percentage of samples to display
'25%' (default) | '10%' | '50%' | '100%'

Percentage of samples to display, specified as '25%', '10%', '50%', or '100%'. Increasing the
percentage improves display accuracy at the expense of simulation speed.
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Dependencies

To enable this property, set the Visualization property to 'Impulse response', 'Frequency
response', or 'Impulse and frequency responses'.
Data Types: char | string

Usage

Syntax
y = mimochannel(x)
y = mimochannel(x,seltx)
y = mimochannel(x,selrx)
y = mimochannel(x,seltx,selrx)
y = mimochannel( ___ ,inittime)
[y,pathgains] = mimochannel( ___ )

pathgains = mimochannel()
pathgains = mimochannel(seltx)
pathgains = mimochannel(selrx)
pathgains = mimochannel(seltx,selrx)
pathgains = mimochannel( ___ ,inittime)

Description

y = mimochannel(x) filters the input signal x through the MIMO fading channel and returns the
result in y.

To enable this syntax, set the ChannelFiltering property to true.

y = mimochannel(x,seltx) filters the input signal through the MIMO fading channel by using the
transmit antennas specified by seltx.

To enable this syntax set the AntennaSelection property to 'Tx'.

For example, this code shows how to select the first and third transmit antenna index as active.

mimochannel = comm.MIMOChannel('AntennaSelection','Tx');
seltx = [1 0 1];
...
y = mimochannel(x,seltx);

y = mimochannel(x,selrx) filters the input signal through the MIMO fading channel by using the
receive antennas selected by selrx.

To enable this syntax set the AntennaSelection property to 'Rx'.

For example, this code shows how to select the second receive antenna index as active.

mimochannel = comm.MIMOChannel('AntennaSelection','Rx');
selrx = [0 1];
...
y = mimochannel(x,selrx);
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y = mimochannel(x,seltx,selrx) filters the input signal through the MIMO fading channel by
using the transmit and receive antennas selected by seltx and selrx.

To enable this syntax set the AntennaSelection property to 'Tx and Rx'.

For example, this code shows how to select the first and second transmit antenna and the second
receive antenna as active.

mimochannel = comm.MIMOChannel( ...
    'AntennaSelection','Tx and Rx');
seltx = [1 1];
selrx = [0 1];
...
y = mimochannel(x,selrx);

y = mimochannel( ___ ,inittime) specifies a start time for the fading process in addition to an
input argument combination from any of the previous syntaxes.

To enable this syntax, also set the FadingTechnique property to 'Sum of sinusoids' and the
InitialTimeSource property to 'Input port'.

[y,pathgains] = mimochannel( ___ ) also returns the MIMO channel path gains for antenna
selection schemes using any of the input argument combinations in the previous syntaxes.

pathgains = mimochannel() returns the channel path gains of the underlying fading process. In
this case, the channel requires no input signal and acts as a source of path gains.

To enable this syntax, set the ChannelFiltering property to false.

pathgains = mimochannel(seltx) returns the channel path gains of the underlying fading
process by using the transmit antennas specified by seltx.

To enable this syntax set ChannelFiltering property to false and the AntennaSelection
property to 'Tx'.

pathgains = mimochannel(selrx) returns the channel path gains of the underlying fading
process by using the transmit antennas specified by selrx.

To enable this syntax set the ChannelFiltering property to false and the AntennaSelection
property to 'Rx'.

pathgains = mimochannel(seltx,selrx) returns the channel path gains of the underlying
fading process by using the transmit and receive antennas selected by seltx and selrx.

To enable this syntax set the ChannelFiltering property to false and the AntennaSelection
property to 'Tx and Rx'.

pathgains = mimochannel( ___ ,inittime) specifies a start time for the fading process in
addition to an input argument combination from any of the previous syntaxes.

To enable this syntax, also set the FadingTechnique property to 'Sum of sinusoids' and the
InitialTimeSource property to 'Input port'.
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Input Arguments

x — Input signal
scalar | vector | matrix

Input signal, specified as a scalar, an NS-element column vector, or an NS-by-NT or NS-by-NST matrix.

• NS is the number of samples.
• NT is the number of transmit antennas and is determined by the TransmitCorrelationMatrix

or NumTransmitAntennas property values.
• NST is the number of selected transmit antennas and is determined by the number of elements that

are set to 1 in the vector provided by the seltx input.

Data Types: single | double
Complex Number Support: Yes

seltx — Select active transmit antennas
1-by-NT binary-valued vector

Select active transmit antennas, specified as a 1-by-NT binary-valued vector. NT is the number of
transmit antennas. Elements set to 1 identify selected antenna indices, and the elements set to 0
identify nonselected antenna indices.
Data Types: single | double

selrx — Select active receive antennas
1-by-NR binary-valued vector

Select active receive antennas, specified as a 1-by-NR binary-valued vector. NR is the number of
receive antennas. Elements set to 1 identify selected antenna indices, and the elements set to 0
identify nonselected antenna indices.
Data Types: single | double

inittime — Initial time offset
0 (default) | nonnegative scalar

Initial time offset for the fading model in seconds, specified as a nonnegative scalar.

When mod(inittime/SampleRate) is nonzero, the initial time offset is rounded up to the nearest
sample position.
Data Types: single | double

Output Arguments

y — Output signal
matrix

Output signal, returned as an NS-by-NR or NS-by-NSR matrix.

• NS is the number of samples.
• NR is the number of receive antennas and is determined by the ReceiveCorrelationMatrix or

NumReceiveAntennas property values.
• NSR is the number of selected receive antennas and is determined by the number of elements that

are set to 1 in the vector provided by the selrx input.
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pathgains — Output path gains
NS-by-NP-by-NT-by-NR array

Output path gains, returned as an NS-by-NP-by-NT-by-NR array with NaN values for the unselected
transmit-receive antenna pairs. pathgains contains complex values.

• NS is the number of samples.
• NP is the number of discrete path delays specified by the PathDelays property.
• NT is the number of transmit antennas.
• NR is the number of receive antennas.

When you set the ChannelFiltering property to false, the data type of this output has the same
precision as the input signal x. When you set the ChannelFiltering property to true, the data
type of this output is specified by the OutputDataType property.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to comm.MIMOChannel
info Characteristic information about fading channel object

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Note

• If you set the RandomStream property of the object to 'Global stream', the reset object
function resets the filters only.

• If you set RandomStream to 'mt19937ar with seed', the reset object function resets the
filters and also reinitializes the random number stream to the value of the Seed property.

Examples

Pass QPSK Data Through 4-by-2 MIMO Channel

Create a 4-by-2 MIMO channel by using the MIMO channel System object. Modulate and spatially
encode data, and then pass the data through the channel.

Generate QPSK-modulated data.
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data = randi([0 3],1000,1);
modData = pskmod(data,4,pi/4);

Create an orthogonal space-time block encoder System object to encode the modulated data into four
spatially separated streams. Then, encode the data.

ostbc = comm.OSTBCEncoder( ...
    'NumTransmitAntennas',4, ...
    'SymbolRate',1/2);
txSig = ostbc(modData);

Create a MIMO channel System object, using name-value pairs to set the properties. The channel
consists of two paths, each with a maximum Doppler shift of 5 Hz. Set the
SpatialCorrelationSpecification property to 'None', which requires that you specify the
number of transmit and receive antennas. Specify four transmit antennas and two receive antennas.

mimochannel = comm.MIMOChannel( ...
    'SampleRate',1000, ...
    'PathDelays',[0 2e-3], ...
    'AveragePathGains',[0 -5], ...
    'MaximumDopplerShift',5, ...
    'SpatialCorrelationSpecification','None', ...
    'NumTransmitAntennas',4, ...
    'NumReceiveAntennas',2);

Pass the modulated and encoded signal through the MIMO channel.

rxSig = mimochannel(txSig);

Create a time vector, t, to use for plotting the power of the received signal.

ts = 1/mimochannel.SampleRate;
t = (0:ts:(size(txSig,1)-1)*ts)';

Calculate and plot the power of the signal received by antenna 1.

pwrdB = 20*log10(abs(rxSig(:,1)));
plot(t,pwrdB)
title('Channel Response Power (dBW)')
xlabel('Time (s)')
ylabel('Power (dBW)')
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Examine Spatial Correlation Characteristics of 2-by-2 Rayleigh Fading Channel

Generate path gains for a 2-by-2 Rayleigh fading channel and examine the spatial correlation
characteristics of the channel realization. Use the release object function to unlock the object to set
the AntennaSelection property to 'Tx and Rx' and then confirm the unselected transmit-receive
antenna pairs.

Create a 2-by-2 MIMO channel System object with two discrete paths and channel filtering disabled.
Each path has different transmit and receive correlation matrices, specified by the
TransmitCorrelationMatrix and ReceiveCorrelationMatrix properties.

mimoChan = comm.MIMOChannel( ...
    'SampleRate',1000, ...
    'PathDelays',[0 1e-3], ...
    'AveragePathGains',[3 5], ...
    'NormalizePathGains',false, ...
    'MaximumDopplerShift',5, ...
    'TransmitCorrelationMatrix',cat(3,eye(2),[1 0.1;0.1 1]), ...
    'ReceiveCorrelationMatrix',cat(3,[1 0.2;0.2 1],eye(2)), ...
    'RandomStream','mt19937ar with seed', ...
    'Seed',33, ...
    'ChannelFiltering',false);

Generate channel response path gains using the MIMO channel object.
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pathGains = mimoChan();

The transmit spatial correlation for the first discrete path at the first receive antenna is specified as
an identity matrix in the TransmitCorrelationMatrix property. Confirm that the channel output
pathGains exhibits the same statistical characteristics by using the corrcoef function to display
the transmit spatial correlation for the first discrete path and the first receive antenna.

corrcoef(squeeze(pathGains(:,1,:,1)))

ans = 2×2 complex

   1.0000 + 0.0000i  -0.3391 + 0.4285i
  -0.3391 - 0.4285i   1.0000 + 0.0000i

The transmit spatial correlation for the second discrete path at the second receive antenna is
specified as [1 0.1;0.1 1] in the TransmitCorrelationMatrix property. Confirm that the
channel output pathGains exhibits the same statistical characteristics by using the corrcoef
function to display the transmit spatial correlation for the second discrete path and the second
receive antenna.

corrcoef(squeeze(pathGains(:,2,:,2)))

ans = 2×2 complex

   1.0000 + 0.0000i  -0.8989 - 0.2663i
  -0.8989 + 0.2663i   1.0000 + 0.0000i

The receive spatial correlation for the first discrete path at the second transmit antenna is specified
as [1 0.2;0.2 1] in the ReceiveCorrelationMatrix property. Confirm that the channel output
pathGains exhibits the same statistical characteristics by using the corrcoef function to display
the receive spatial correlation for the first discrete path and the second transmit antenna.

corrcoef(squeeze(pathGains(:,1,2,:)))

ans = 2×2 complex

   1.0000 + 0.0000i   0.9170 + 0.3141i
   0.9170 - 0.3141i   1.0000 + 0.0000i

The receive spatial correlation for the second discrete path at the first transmit antenna is specified
as an identity matrix in the ReceiveCorrelationMatrix property. Confirm that the channel output
pathGains exhibits the same statistical characteristics by using the corrcoef function to display
the receive spatial correlation for the second discrete path and the first transmit antenna.

corrcoef(squeeze(pathGains(:,2,1,:)))

ans = 2×2 complex

   1.0000 + 0.0000i   0.9227 - 0.3435i
   0.9227 + 0.3435i   1.0000 + 0.0000i
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Display Impulse and Frequency Responses of Frequency-Selective Channel

Create a frequency-selective MIMO channel, and then display its impulse and frequency responses.

Set the sample rate to 10 MHz. Specify path delays and gains using the extended vehicular A (EVA)
channel parameters. Set the maximum Doppler shift to 70 Hz.

fs = 10e6;                                                % Hz
pathDelays = [0 30 150 310 370 710 1090 1730 2510]*1e-9;  % Seconds
avgPathGains = [0 -1.5 -1.4 -3.6 -0.6 -9.1 -7 -12 -16.9]; % dB
fD = 70;                                                  % Hz

Create a 2-by-2 MIMO channel System object, specifying the previously defined parameters and
setting channel visualization to plot the impulse and frequency responses. By default, the plot
displays the antenna pair corresponding to first transmit and receive antennas.

mimoChan = comm.MIMOChannel('SampleRate',fs, ...
    'PathDelays',pathDelays, ...
    'AveragePathGains',avgPathGains, ...
    'MaximumDopplerShift',fD, ...
    'Visualization','Impulse and frequency responses');

Generate random binary data, and then pass it through the MIMO channel. The impulse response plot
enables you to easily identify the individual paths and their corresponding filter coefficients. The
frequency response plot shows the frequency-selective nature of the EVA channel.

x = randi([0 1],1000,2);
y = mimoChan(x);
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To view the antenna pair corresponding to the second transmit and first receive antennas, release the
MIMO channel System object, and then set its AntennaPairsToDisplay property to [2 1]. Because
the AntennaPairsToDisplay property is nontunable, to change its value, you must release the
System object.

release(mimoChan)
mimoChan.AntennaPairsToDisplay = [2 1];
y = mimoChan(x);
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Display Doppler for 2-by-2 MIMO Channel

Create and visualize the Doppler spectra of a MIMO channel that has two paths.

Construct a cell array of Doppler structures to be used in creating the channel. Set the Doppler
spectrum of the first path to be bell shaped and the second path to be flat.

dp{1} = doppler('Bell');
dp{2} = doppler('Flat');
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Create a 2-by-2 MIMO channel System object, specifying two paths and a maximum Doppler shift of
100 Hz, disabling the channel filtering, and enabling the visualization of the Doppler spectrum for the
first Doppler path.

mimoChan = comm.MIMOChannel('SampleRate',1000, ...
    'PathDelays',[0 0.002], ...
    'AveragePathGains',[0 -3], ...
    'MaximumDopplerShift',100, ...
    'DopplerSpectrum',dp, ...
    'ChannelFiltering',false, ...
    'NumSamples',10000, ...
    'Visualization','Doppler spectrum', ...
    'PathsForDopplerDisplay',1);

Use the MIMO channel to generate the Doppler spectrum of the first path. Because the Doppler
spectrum plot does not update until its buffer is filled, call the MIMO channel object multiple times to
help improve the accuracy of the estimate. Observe that the spectrum has a bell shape and that its
minimum and maximum frequencies fall within the limits set by the MaximumDopplerShift
property.

for k = 1:25
    mimoChan();
end

Release the MIMO channel object, and set its PathsForDopplerDisplay property to display the
second path. Because the PathsForDopplerDisplay property is nontunable, to change its value,
you must release the System object. Call the object multiple times to display the Doppler spectrum of
the second path. The results show that the spectrum is flat.

release(mimoChan)
mimoChan.PathsForDopplerDisplay = 2;
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for k = 1:25
    y = mimoChan();
end

Model MIMO Channel Using Sum-of-Sinusoids Technique

Show that the channel state is maintained for discontinuous transmissions by using MIMO channel
System objects configured to use the sum-of-sinusoids fading technique. Observe discontinuous
channel response segments overlaid on a continuous channel response.

Set the channel properties.

fs = 1000;               % Sample rate (Hz)
pathDelays = [0 2.5e-3]; % Path delays (s)
pathPower = [0 -6];      % Path power (dB)
fD = 5;                  % Maximum Doppler shift (Hz)
ns = 1000;               % Number of samples
nsdel = 100;             % Number of samples for delayed paths

Define a continuous time span and three discontinuous time segments over which to plot and view the
channel response. View a 1000-sample continuous channel response starting at time 0 and three 100-
sample channel responses starting at times 0.1, 0.4, and 0.7 seconds, respectively.

to0 = 0.0;
to1 = 0.1;
to2 = 0.4;
to3 = 0.7;
t0 = (to0:ns-1)/fs;      % Transmission 0
t1 = to1+(0:nsdel-1)/fs; % Transmission 1
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t2 = to2+(0:nsdel-1)/fs; % Transmission 2
t3 = to3+(0:nsdel-1)/fs; % Transmission 3

Create a flat-fading 2-by-2 MIMO channel System object, disabling channel filtering and specifying a
1000 Hz sampling rate, the sum-of-sinusoids fading technique, and the number of samples to view.
Specify a seed value so that results can be repeated. Use the default InitialTime property setting
so that the fading channel is simulated from time 0.

mimoChan1 = comm.MIMOChannel('SampleRate',fs, ...
    'MaximumDopplerShift',fD, ...
    'RandomStream','mt19937ar with seed', ...
    'Seed',17, ...
    'FadingTechnique','Sum of sinusoids', ...
    'ChannelFiltering',false, ...
    'NumSamples',ns);

Create a clone of the MIMO channel System object. Change the number of samples for the delayed
paths and the source for the initial time so that you can specify the fading channel offset time as an
input argument when calling the System object.

mimoChan2 = clone(mimoChan1);
mimoChan2.InitialTimeSource = 'Input port';
mimoChan2.NumSamples = nsdel;

Save the path gain output for the continuous channel response by using the mimoChan1 object and
for the discontinuous delayed channel responses by using the mimoChan2 object with initial time
offsets provided as input arguments.

pg0 = mimoChan1();
pg1 = mimoChan2(to1);
pg2 = mimoChan2(to2);
pg3 = mimoChan2(to3);

Compare the number of samples processed by the two channels by using the info method. The
results show that mimoChan1 processed 1000 samples and that mimoChan2 processed only 300
samples.

G = info(mimoChan1);
H = info(mimoChan2);
[G.NumSamplesProcessed H.NumSamplesProcessed]

ans = 1×2

        1000         300

Convert the path gains into decibels for the path corresponding to the first transmit and first receive
antenna.

pathGain0 = 20*log10(abs(pg0(:,1,1,1)));
pathGain1 = 20*log10(abs(pg1(:,1,1,1)));
pathGain2 = 20*log10(abs(pg2(:,1,1,1)));
pathGain3 = 20*log10(abs(pg3(:,1,1,1)));

Plot the path gains for the continuous and discontinuous cases. The results show that the gains for
the three segments match the gain for the continuous case. The alignment of the two shows that the
sum-of-sinusoids technique is ideally suited to the simulation of packetized data because the channel
characteristics are maintained even when data is not transmitted.
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plot(t0,pathGain0,'r--')
hold on
plot(t1,pathGain1,'b')
plot(t2,pathGain2,'b')
plot(t3,pathGain3,'b')
grid
title('Continuous and Discontinuous Channel Response')
xlabel('Time (sec)')
ylabel('Path Gain (dB)')
legend('Continuous','Discontinuous','location','nw')

Calculate Execution Time Advantage Using Sum-of-Sinusoids Technique

Demonstrate the advantage of using the sum-of-sinusoids fading technique when simulating a channel
with burst data.

Set the simulation parameters such that the sampling rate is 100 kHz, the total simulation time is 100
seconds, and the duty cycle for the burst data is 25%.

fs = 1e5;   % Hz
tsim = 100; % seconds
dutyCycle = 0.25; 

Create a flat-fading 2-by-2 MIMO channel System object, specifying the sample rate and using the
default filtered Gaussian noise technique.
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fgn = comm.MIMOChannel('SampleRate',fs);

Create a similar MIMO channel System object, specifying the same sample rate as the previous
MIMO channel object but using the sum-of-sinusoids technique. Additionally specify 48 sinusoids and
for the fading process start times to be given as an input argument.

sos = comm.MIMOChannel('SampleRate',fs, ...
    'FadingTechnique','Sum of sinusoids', ...
    'NumSinusoids',48, ...
    'InitialTimeSource','Input port');

Run a continuous sequence of random bits through the filtered Gaussian noise MIMO channel object.
Use the tic and toc stopwatch timer functions to measure the execution time of the System object
call.

tic
y = fgn(randi([0 1],fs*tsim,2));
tFGN = toc;

To transmit a data burst each second, pass random bits through the sum-of-sinusoids MIMO channel
object by calling it inside of a for loop. Use the tic and toc stopwatch timer functions to measure
the execution time.

tic
for k = 1:tsim
    z = sos(randi([0 1],fs*dutyCycle,2),0.5+(k-1));
end
tSOS = toc;

Compare the ratio of the sum-of-sinusoids execution time to the filtered Gaussian noise execution
time. The ratio is less than one, which indicates that the sum-of-sinusoids technique is faster than the
filtered Gaussian noise technique.

tSOS/tFGN

ans = 0.3841

Reciprocal Downlink and Uplink Transmissions in MIMO Channel

Using one MIMO channel System object™ and two identically configured channel filter System
objects, switch a link-level simulation between 3-by-2 downlink and reciprocal 2-by-3 uplink signal
transmissions.

Define system parameters.

modOrder = 256;        % Modulation order
Nant1 = 3;             % Number of 'transmit' antennas
Nant2 = 2;             % Number of 'receive' antennas   
Rs = 1e6;              % Sample rate 
pd = [0 1.5 2.3]*1e-6; % Path delays
frmLen = 1e3;          % Frame length

Create a MIMO channel System object™, configuring it for path gain generation by disabling channel
filtering.
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chan = comm.MIMOChannel( ...
    'SampleRate',Rs, ...
    'PathDelays',pd, ...
    'AveragePathGains',[1.5 1.2 0.2], ...
    'MaximumDopplerShift',300, ...
    'SpatialCorrelationSpecification','none', ...
    'NumTransmitAntennas',Nant1, ...
    'NumReceiveAntennas',Nant2, ...
    'ChannelFiltering',false, ...
    'NumSamples',frmLen);

Create identical channel filter System objects for both transmission directions: one channel filter for
the Nant1-by-Nant2 downlink channel (3 transmit antennas to 2 receive antennas) and a reciprocal
channel filter for the Nant2-by-Nant1 uplink channel (2 transmit antennas to 3 receive antennas).

chanFiltDownlink = comm.ChannelFilter( ...
    'SampleRate',Rs, ...
    'PathDelays',pd);
chanFiltUplink = clone(chanFiltDownlink);

Downlink Transmission

Generate random path gains for one frame of the downlink 3-by-2 channel. Pass randomly generated
256-QAM signals through the 3-by-2 downlink channel.

pgDownlink = chan();
x = qammod(randi([0 modOrder-1],frmLen,Nant1),modOrder);
yDL = chanFiltDownlink(x,pgDownlink);

Uplink Transmission

Switch the link direction. Run the channel object to generate another frame of path gains, permuting
its 3rd (Tx) and 4th (Rx) dimensions for the reciprocal uplink 2-by-3 channel. Pass randomly
generated 256-QAM signals through the 2-by-3 reciprocal uplink channel.

pgUplink = permute(chan(),[1 2 4 3]);
x = qammod(randi([0 modOrder-1],frmLen,Nant2),modOrder);
yUL = chanFiltUplink(x,pgUplink);

Downlink and Uplink Array Dimensions

Show the sizes of the downlink and uplink path gain arrays returned by the MIMI channel object as
an NS-by-NP-by-NT-by-NR array.

• NS is the number of samples.
• NP is the number of path delays.
• NT is the number of transmit antennas. Nant1 for downlink and Nant2 for uplink.
• NR is the number of receive antennas. Nant2 for downlink and Nant1 for uplink.

size(pgDownlink)

ans = 1×4

        1000           3           3           2

size(pgUplink)
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ans = 1×4

        1000           3           2           3

Show the size of the channel output matrices returned by the MIMI channel object as an NS-by-NR
matrix. NS is the number of samples. NR is the number of receive antennas.

size(yDL)

ans = 1×2

        1000           2

size(yUL)

ans = 1×2

        1000           3

Algorithms
The fading processing per link is described in Methodology for Simulating Multipath Fading Channels
and assumes the same parameters for all (NT × NR) links of the MIMO channel. Each link comprises
all multipaths for that link.

The Kronecker Model

The Kronecker model assumes that the spatial correlations at the transmit and receive sides are
separable. Equivalently, the direction of departure (DoD) and directions of arrival (DoA) spectra are
assumed to be separable. The full correlation matrix is:

RH = E Rt⊗ Rr

• The ⊗ symbol represents the Kronecker product.
• Rt is the correlation matrix at the transmit side, Rt = E HHH , and is of size NT-by-NT.

• Rr is the correlation matrix at the receive side, Rr = E HHH , and is of size NR-by-NR.

You can obtain a realization of the MIMO channel matrix as:

H = Rr

1
2 ARt

1
2

A is an NR-by-NT matrix of independent identically distributed complex Gaussian variables with zero
mean and unit variance.

Cutoff Frequency Factor

The cutoff frequency factor, fc, is dependent on the type of Doppler spectrum.

• For any Doppler spectrum type other than Gaussian and bi-Gaussian, fc equals 1.
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• For a doppler('Gaussian') spectrum type, fc equals NormalizedStandardDeviation
× 2log2.

• For a doppler('BiGaussian') spectrum type:

• If the PowerGains(1) and NormalizedCenterFrequencies(2) field values are both 0,
then fc equals NormalizedStandardDeviation(1) × 2log2.

• If the PowerGains(2) and NormalizedCenterFrequencies(1) field values are both 0,
then fc equals NormalizedStandardDeviation(2) × 2log2.

• If the NormalizedCenterFrequencies field value is [0,0] and the
NormalizedStandardDeviation field has two identical elements, then fc equals
NormalizedStandardDeviation(1) × 2log2.

• In all other cases, fc equals 1.

Antenna Selection

When the object is in antenna-selection mode, it uses these algorithms to process an input signal.

• All random path gains are always generated and keep evolving for each link, whether or not a
given link is selected. The path gain values output for the nonselected links are populated with
NaN.

• The spatial correlation applies to only the selected transmit and receive antennas, and the
correlation coefficients are the corresponding entries in the transmit, receive, or combined
correlation matrices. That is, the spatial correlation matrix for the selected transmit or receive
antennas is a submatrix of the transmit, receive, or combined spatial correlation matrix property
value.

• For signal paths that are associated with nonactive antennas, a signal with zero power is
transmitted to the channel filter.

• Channel output normalization happens over the number of selected receive antennas.

Version History
Introduced in R2012a

Updates to channel visualization display

The channel visualization feature now presents:

• Configuration settings in the bottom toolbar on the plot window.
• Plots side-by-side in one window when you select the Impulse and frequency response

channel visualization option.
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Generate C and C++ code using MATLAB® Coder™.
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comm.AWGNChannel | comm.RayleighChannel | comm.RicianChannel |
comm.RayTracingChannel | comm.ChannelFilter

Blocks
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comm.MLSEEqualizer
Package: comm

Equalize using maximum likelihood sequence estimation

Description
The MLSEEqualizer object uses the Viterbi algorithm to equalize a linearly modulated signal
through a dispersive channel. The object processes input frames and outputs the maximum likelihood
sequence estimate (MLSE) of the signal. This processing uses an estimate of the channel modeled as
a finite impulse response (FIR) filter.

To equalize a linearly modulated signal and output the maximum likelihood sequence estimate:

1 Define and set up your maximum likelihood sequence estimate equalizer object. See
“Construction” on page 3-917.

2 Call step to equalize a linearly modulated signal and output the maximum likelihood sequence
estimate according to the properties of comm.MLSEEqualizer. The behavior of step is specific
to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
H = comm.MLSEEqualizer creates a maximum likelihood sequence estimation equalizer (MLSEE)
System object, H. This object uses the Viterbi algorithm and a channel estimate to equalize a linearly
modulated signal that has been transmitted through a dispersive channel.

H = comm.MLSEEqualizer(Name,Value) creates an MLSEE object, H, with each specified
property set to the specified value. You can specify additional name-value pair arguments in any order
as (Name1,Value1,...,NameN,ValueN).

H = comm.MLSEEqualizer(CHANNEL,Name,Value) creates an MLSEE object, H. This object has
the Channel property set to CHANNEL, and the other specified properties set to the specified values.

Properties
ChannelSource

Source of channel coefficients

Specify the source of the channel coefficients as one of Input port | Property. The default is
Property.

Channel

 comm.MLSEEqualizer

3-917



Channel coefficients

Specify the channel as a numeric, column vector containing the coefficients of an FIR filter. The
default is [1;0.7;0.5;0.3]. The length of this vector determines the memory length of the
channel. This must be an integer multiple of the samples per symbol, that you specify in the
SamplesPerSymbol on page 3-0  property. This property applies when you set the
ChannelSource on page 3-0  property to Property.

Constellation

Input signal constellation

Specify the constellation of the input modulated signal as a complex vector. The default is [1+1i
-1+1i -1-1i 1-1i].

TracebackDepth

Traceback depth of Viterbi algorithm

Specify the number of trellis branches (the number of symbols), the Viterbi algorithm uses to
construct each traceback path. The default is 21. The traceback depth influences the decoding
accuracy and delay. The decoding delay represents the number of zero symbols that precede the first
decoded symbol in the output. When you set the TerminationMethod on page 3-0  property to
Continuous, the decoding delay equals the number of zero symbols of this property. When you set
the TerminationMethod property to Truncated, there is no output delay.

TerminationMethod

Termination method of Viterbi algorithm

Specify the termination method of the Viterbi algorithm as one of Continuous | Truncated. The
default is Truncated. When you set this property to Continuous, the object initializes the Viterbi
algorithm metrics of all the states to 0 in the first call to the step method. Then, the object saves its
internal state metric at the end of each frame, for use with the next frame. When you set this
property to Truncated, the object resets at every frame. The Viterbi algorithm processes each frame
of data independently, resetting the state metric at the end of each frame. The traceback path always
starts at the state with the minimum metric. The initialization of the state metrics depends on
whether you specify a preamble or postamble. If you set the PreambleSource on page 3-0
property to None, the object initializes the metrics of all the states to 0 at the beginning of each data
frame. If you set the PreambleSource property to Property, the object uses the preamble that you
specify at the Preamble on page 3-0  property, to initialize the state metrics at the beginning of
each data frame. When you specify a preamble, the traceback path ends at one of the states
represented by that preamble. If you set the PostambleSource on page 3-0  property to None,
the traceback path starts at the state with the smallest metric. If you set the PostambleSource
property to Property, the traceback path begins at the state represented by the postamble that you
specify at the Postamble on page 3-0  property. If the postamble does not decode to a unique
state, the decoder identifies the smallest of all possible decoded states that are represented by the
postamble. The decoder then begins traceback decoding at that state. When you set this property to
Truncated, the step method input data signal must contain at least TracebackDepth on page 3-
0  symbols, not including an optional preamble.
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ResetInputPort

Enable equalizer reset input

Set this property to true to enable an additional input to the step method. The default is false.
When this input is a nonzero, double-precision or logical scalar value, the object resets the states of
the equalizer. This property applies when you set the TerminationMethod on page 3-0  property
to Continuous.

PreambleSource

Source of preamble

Specify the source of the preamble that is expected to precede the input signal. Choose from None |
Property. The default is None. Set this property to Property to specify a preamble using the
Preamble on page 3-0  property. This property applies when you set the TerminationMethod on
page 3-0  property to Truncated.

Preamble

Preamble that precedes input signals

Specify a preamble that is expected to precede the data in the input signal as an integer, row vector.
The default is [0 3 2 1]. The values of the preamble should be between 0 and M-1, where M is the
length of the signal constellation that you specify in the Constellation on page 3-0  property.
An integer value of k–1 in the vector corresponds to the k-th entry in the vector stored in the
Constellation property. This property applies when you set the TerminationMethod on page 3-
0  property to Truncated and the PreambleSource on page 3-0  property to Property.

PostambleSource

Source of postamble

Specify the source of the postamble that is expected to follow the input signal. Choose from None |
Property. The default is None. Set this property to Property to specify a postamble in the
Postamble on page 3-0  property. This property applies when you set the TerminationMethod
on page 3-0  property to Truncated.

Postamble

Postamble that follows input signals

Specify a postamble that is expected to follow the data in the input signal as an integer row vector.
The default is [0 2 3 1]. The values of the postamble should be between 0 and M–1. In this case, M
indicates the length of the Constellation on page 3-0  property. An integer value of k–1 in the
vector corresponds to the k-th entry in the vector specified in the Constellation property. This
property applies when you set the TerminationMethod on page 3-0  property to Truncated and
the PostambleSource on page 3-0  property to Property. The default is [0 2 3 1].
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SamplesPerSymbol

Number of samples per symbol

Specify the number of samples per symbol in the input signal as an integer scalar value. The default
is 1.

Methods
step Equalize using maximum likelihood sequence estimation

Common to All System Objects
release Allow System object property value changes
reset Reset internal states of System object

Examples

MLSE Equalize QPSK Signal Through Dispersive Channel

This example shows how to use an MLSE equalizer to remove the effects of a frequency-selective
channel.

Specify static channel coefficients.

chCoeffs = [.986; .845; .237; .12345+.31i];

Create an MLSE equalizer object. Create an error rate calculator object.

mlse = comm.MLSEEqualizer('TracebackDepth',10,...
    'Channel',chCoeffs,'Constellation',pskmod(0:3,4,pi/4));
errorRate = comm.ErrorRate;

The main processing loop includes these steps:

• Data generation
• QPSK modulation
• Channel filtering
• Signal equalization
• QPSK demodulation
• Error computation

for n = 1:50
    data= randi([0 3],100,1);
    modSignal = pskmod(data,4,pi/4,'gray');

    % Introduce channel distortion.
    chanOutput = filter(chCoeffs,1,modSignal);

    % Equalize the channel output and demodulate.
    eqSignal = mlse(chanOutput);
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    demodData = pskdemod(eqSignal,4,pi/4,'gray');

    % Compute BER.
    errorStats = errorRate(data,demodData);
end

Display the bit error rate and the number of errors.

ber = errorStats(1)
numErrors = errorStats(2)

ber =

     0

numErrors =

     0

Plot the signal constellation prior to equalization.

constDiagram = comm.ConstellationDiagram;
constDiagram(chanOutput)
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Plot the signal constellation after equalization.

constDiagram(eqSignal)
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The equalized symbols align perfectly with the QPSK reference constellation.

Algorithms
This object implements the algorithm, inputs, and outputs described on the MLSE Equalizer block
reference page. The object properties correspond to the block parameters.

Version History
Introduced in R2012a

 comm.MLSEEqualizer

3-923



Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Functions
mlseeq

Objects
comm.LinearEqualizer | comm.DecisionFeedbackEqualizer | comm.ViterbiDecoder

Blocks
MLSE Equalizer

Topics
“MLSE Equalizers”
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step
System object: comm.MLSEEqualizer
Package: comm

Equalize using maximum likelihood sequence estimation

Syntax
Y = step(H,X)
Y = step(H,X,CHANNEL)
Y = step(H,X,RESET)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Y = step(H,X) equalizes the linearly modulated data input, X, using the Viterbi algorithm. The step
method outputs Y, the maximum likelihood sequence estimate of the signal. Input X must be a column
vector of data type double or single.

Y = step(H,X,CHANNEL) uses CHANNEL as the channel coefficients when you set the
ChannelSource property to 'Input port'. The channel coefficients input, CHANNEL, must be a
numeric, column vector containing the coefficients of an FIR filter in descending order of powers of z.
The length of this vector is the channel memory, which must be an integer multiple of the samples per
input symbol specified in the SamplesPerSymbol property.

Y = step(H,X,RESET) uses RESET as the reset signal when you set the TerminationMethod
property to 'Continuous' and the ResetInputPort property to true. The object resets when RESET
has a non-zero value. RESET must be a double precision or logical scalar. You can combine optional
input arguments when you set their enabling properties. Optional inputs must be listed in the same
order as the order of the enabling properties. For example, Y = step(H,X,CHANNEL,RESET).

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This initialization
locks nontunable properties and input specifications. For more information on changing property
values, see “System Design in MATLAB Using System Objects”.
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comm.MSKDemodulator
Package: comm

Demodulate using MSK method and Viterbi algorithm

Description
The comm.MSKDemodulator System object demodulates a signal that was modulated using the
differentially encoded minimum shift keying method. The object expects the input signal to be a
baseband representation of a coherent modulated signal with no precoding. For more information,
see “Algorithms” on page 3-929.

To demodulate a signal that was modulated using minimum shift keying:

1 Create the comm.MSKDemodulator object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
mskdemod = comm.MSKDemodulator
mskdemod = comm.MSKDemodulator(Name=Value)

Description

mskdemod = comm.MSKDemodulator creates a demodulator System object, mskdemod. This object
demodulates the input minimum shift keying (MSK) modulated data using the Viterbi algorithm.

mskdemod = comm.MSKDemodulator(Name=Value) sets “Properties” on page 3-926 using one or
more name-value arguments. For example, InitialPhaseOffset=pi/2 specifies an initial phase of
pi/2 radians for the input modulated waveform.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

BitOutput — Output data as bits
0 or false (default) | 1 or true
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Option to provide output in bits, specified as a numeric or logical 0 (false) or 1 (true).

• When you set this property to false, the object method outputs a column vector with a length
equal to N/SamplesPerSymbol on page 3-0 . N represents the length of the input signal,
which is the number of input baseband modulated symbols. The vector elements are -1 or 1.

• When you set this property to true, the object method outputs a binary column vector with a
length equal to N/SamplesPerSymbol. The vector elements are bit values of 0 or 1.

Data Types: logical

InitialPhaseOffset — Initial phase offset
0 (default) | numeric scalar

Initial phase offset of the input modulated waveform in radians, specified as a numeric scalar.

SamplesPerSymbol — Number of samples per input symbol
8 (default) | positive integer

Number of samples per input symbol, specified as a positive integer.
Data Types: double

TracebackDepth — Traceback depth for Viterbi algorithm
16 (default) | positive integer

Number of trellis branches that the Viterbi algorithm uses to construct each traceback path, specified
as a positive integer. The value of this property is also the output delay. This value indicates the
number of zero symbols that precede the first meaningful demodulated symbol in the output.
Data Types: double

OutputDataType — Data type of output
"double" (default) | "int8" | "int16" | "int32" | "logical"

Data type of output, specified as:

• int8, int16, int32, or double when you set the BitOutput on page 3-0  property to false.
• double or logical when you set the BitOutput property to true.

Usage

Syntax
y = mskdemod(x)

Description

y = mskdemod(x) applies MSK demodulation to the input signal and returns the demodulated
signal.
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Input Arguments

x — MSK-modulated signal
scalar | column vector

MSK-modulated signal, specified as a scalar or column vector.
Data Types: single | double

Output Arguments

y — Output signal
scalar | column vector

Output signal, returned as a scalar or column vector. To specify whether the object outputs values as
integers or bits, use the BitOutput property. The output data type is determined by the
OutputDataType property.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Demodulate MSK Signals with Bit Inputs and Phase Offset

Create an MSK modulator and an MSK demodulator. Use a phase offset of π/4.

 mskmod = comm.MSKModulator(BitInput=true, ...
                    InitialPhaseOffset=pi/4);
    mskdemod = comm.MSKDemodulator(BitOutput=true, ...
                    InitialPhaseOffset=pi/4);

Create an error rate calculator. Account for the delay caused by the Viterbi algorithm.

    ber = comm.ErrorRate('ReceiveDelay',mskdemod.TracebackDepth);
    for counter = 1:100

Transmit 100 3-bit words through an AWGN channel, using a signal-to-noise ratio of 0.

      data = randi([0 1],300,1);
      modSignal = mskmod(data);
      noisySignal = awgn(modSignal,0);
      receivedData = mskdemod(noisySignal);
      errorStats = ber(data, receivedData);
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    end
    fprintf('Error rate = %f\nNumber of errors = %d\n', ...
      errorStats(1), errorStats(2))

Error rate = 0.000000
Number of errors = 0

Algorithms
Differentially encoded minimum shift keying modulation uses pulse shaping to smooth the phase
transitions of the modulated signal. The function q(t) is the phase response obtained from the

frequency pulse, g(t), through this relation:q(t) =∫− ∞
t

g(t)dt.

The specified frequency pulse shape corresponds to this rectangular pulse shape expression for g(t).

Pulse Shape Expression
Rectangular

g(t) =
1

2LT , 0 ≤ t ≤ LT

0 otherwise

• L is the main lobe pulse duration in symbol intervals.
• The duration of the pulse, LT, is the pulse length in symbol intervals.

Version History
Introduced in R2012a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
comm.MSKModulator | comm.CPMModulator | comm.CPMDemodulator

Functions
mskmod | mskdemod

Blocks
MSK Demodulator Baseband
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comm.MSKModulator
Package: comm

Modulate using MSK method

Description
The comm.MSKModulator System object modulates using the minimum shift keying method. The
output is a baseband representation of the modulated signal. For more information, see “Algorithms”
on page 3-929.

To modulate a signal using minimum shift keying:

1 Create the comm.MSKModulator object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
mskmodulator = comm.MSKModulator
mskmodulator = comm.MSKModulator(Name=Value)

Description

mskmodulator = comm.MSKModulator creates a modulator System object that modulates the
input signal using the minimum shift keying (MSK) modulation method.

mskmodulator = comm.MSKModulator(Name=Value) sets “Properties” on page 3-930 using one
or more name-value arguments. For example, mskmodulator =
comm.MSKModulator(InitialPhaseOffset=pi/2) specifies an initial phase of pi/2 radians for
the modulated waveform.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

BitInput — Assume bit inputs
false or 0 (default) | true or 1
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Option to provide input in bits, specified as a numeric or logical 0 (false) or 1 (true).

• When you set this property to false, the input to the System object call requires a double-
precision or signed integer data type column vector with values of -1 or 1.

• When you set this property to true, the input to the System object call requires a double-
precision or logical data type column vector of 0s and 1s.

Data Types: logical

InitialPhaseOffset — Initial phase offset
0 (default) | numeric scalar

Initial phase offset of the modulated waveform in radians, specified as a numeric scalar.

SamplesPerSymbol — Number of samples per output symbol
8 (default) | positive integer

Number of samples per output symbol, specified as a positive integer. The number of samples per
symbol represents the upsampling factor from input samples to output samples.
Data Types: double

OutputDataType — Data type of output
"double" (default) | "single"

Output data type, specified as either "double" or "single".

Usage

Syntax
y = mskmodulator(x)

Description

y = mskmodulator(x) applies MSK modulation to the input data and returns the modulated MSK
baseband signal.

Input Arguments

x — Input data
integer | column vector

Input data, specified as an integer or column vector of integers or bits.

The setting of the BitInput on page 3-0  property determines the interpretation of the input
data. If the property is set to false, the input must take values of 1 or -1.
Data Types: double | logical
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Output Arguments

y — MSK-modulated baseband signal
column vector

MSK-modulated baseband signal, returned as a column vector.

The length of the vector is equal to the number of input samples times the SamplesPerSymbol on
page 3-0  property. For more information about the output data type, see the OutputDataType on
page 3-0  property.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Modulate MSK Signals with Bit Inputs and Phase Offset

Create an MSK modulator, an AWGN channel, and an MSK demodulator. Use a phase offset of π/4.

mskmodulator = comm.MSKModulator( ...
    BitInput=true, ...
    InitialPhaseOffset=pi/4);
awgn = comm.AWGNChannel( ...
    NoiseMethod='Signal to noise ratio (SNR)', ...
    SNR=0);
mskdemodulator = comm.MSKDemodulator( ...
    BitOutput=true, ...
    InitialPhaseOffset=pi/4);

Create an error rate calculator. Account for the delay caused by the Viterbi algorithm.

    ber = comm.ErrorRate(ReceiveDelay=mskdemodulator.TracebackDepth);

Transmit 100 3-bit words.

    for counter = 1:100
      data = randi([0 1],300,1);
      modSignal = mskmodulator(data);
      noisySignal = awgn(modSignal);
      receivedData = mskdemodulator(noisySignal);
      errorStats = ber(data, receivedData);
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    end
    fprintf('Error rate = %f\nNumber of errors = %d\n', ...
      errorStats(1), errorStats(2))

Error rate = 0.000000
Number of errors = 0

Map Binary Data to MSK Signal

Map binary sequences of zeros and ones to the output of an MSK modulator. This mapping also
applies for GMSK modulation.

Create an MSK modulator that accepts binary inputs and has a samples per symbol value of 1.

mskmodulator = comm.MSKModulator(BitInput=true, SamplesPerSymbol=1);

Create an input sequence of all zeros. Modulate the sequence.

x = zeros(5,1);
y = mskmodulator(x)

y = 5×1 complex

   1.0000 + 0.0000i
   0.0000 - 1.0000i
  -1.0000 - 0.0000i
  -0.0000 + 1.0000i
   1.0000 + 0.0000i

Determine the phase angle for each point. Use the unwrap function to show the trend.

theta = unwrap(angle(y))

theta = 5×1

         0
   -1.5708
   -3.1416
   -4.7124
   -6.2832

A sequence of zeros causes the phase to shift by −π/2 between samples.

Reset the modulator. Modulate an input sequence of all ones.

reset(mskmodulator)
x = ones(5,1);
y = mskmodulator(x)

y = 5×1 complex

   1.0000 + 0.0000i
   0.0000 + 1.0000i
  -1.0000 + 0.0000i
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  -0.0000 - 1.0000i
   1.0000 + 0.0000i

Determine the phase angle for each point. Use the unwrap function to show the trend.

theta = unwrap(angle(y))

theta = 5×1

         0
    1.5708
    3.1416
    4.7124
    6.2832

A sequence of ones causes the phase to shift by +π/2 between samples.

Compare GMSK and MSK Modulation

Compare Gaussian minimum shift keying (GMSK) and minimum shift keying (MSK) modulation
schemes by plotting the eye diagram for GMSK with different pulse lengths and for MSK.

Set the samples per symbol variable.

sps = 8;

Generate random binary data.

data = randi([0 1],1000,1);

Create GMSK and MSK modulators that accept binary inputs. Set the PulseLength property of the
GMSK modulator to 1.

gmskMod = comm.GMSKModulator('BitInput',true,'PulseLength',1, ...
    'SamplesPerSymbol',sps);
mskMod = comm.MSKModulator('BitInput',true,'SamplesPerSymbol',sps);

Modulate the data using the GMSK and MSK modulators.

modSigGMSK = gmskMod(data);
modSigMSK = mskMod(data);

Pass the modulated signals through an AWGN channel having an SNR of 30 dB.

rxSigGMSK = awgn(modSigGMSK,30);
rxSigMSK = awgn(modSigMSK,30);

Use the eyediagram function to plot the eye diagrams of the noisy signals. With the GMSK pulse
length set to 1, the eye diagrams are nearly identical.

eyediagram(rxSigGMSK,sps,1,sps/2)
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eyediagram(rxSigMSK,sps,1,sps/2)

 comm.MSKModulator

3-935



Set the PulseLength property for the GMSK modulator object to 3. Because the property is
nontunable, the object must be released first.

release(gmskMod)
gmskMod.PulseLength = 3;

Generate a modulated signal using the updated GMSK modulator object and pass it through the
AWGN channel.

modSigGMSK = gmskMod(data);
rxSigGMSK = awgn(modSigGMSK,30);

With continuous phase modulation (CPM) waveforms, such as GSMK, the waveform depends on
values of the previous symbols as well as the present symbol. Plot the eye diagram of the GMSK
signal to see that the increased pulse length results in an increase in the number of paths in the eye
diagram.

eyediagram(rxSigGMSK,sps,1,sps/2)
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Experiment by changing the PulseLength parameter of the GMSK modulator object to other values.
If you set the property to an even number, you should set gmskMod.InitialPhaseOffset to pi/4
and update the offset argument of the eyediagram function from sps/2 to 0 for a better view of the
modulated signal. In order to more clearly view the Gaussian pulse shape, you must use scopes that
display the phase of the signal, as described in the “View CPM Phase Tree Using Simulink” example.

Algorithms
Differentially encoded minimum shift keying modulation uses pulse shaping to smooth the phase
transitions of the modulated signal. The function q(t) is the phase response obtained from the

frequency pulse, g(t), through this relation:q(t) =∫− ∞
t

g(t)dt.

The specified frequency pulse shape corresponds to this rectangular pulse shape expression for g(t).
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Pulse Shape Expression
Rectangular

g(t) =
1

2LT , 0 ≤ t ≤ LT

0 otherwise

• L is the main lobe pulse duration in symbol intervals.
• The duration of the pulse, LT, is the pulse length in symbol intervals.

Version History
Introduced in R2012a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
comm.MSKDemodulator | comm.CPMModulator | comm.CPMDemodulator

Functions
mskmod | mskdemod

Blocks
MSK Modulator Baseband
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comm.MSKTimingSynchronizer
Package: comm

Recover symbol timing phase using fourth-order nonlinearity method

Description
The MSKTimingSynchronizer object recovers the symbol timing phase of the input signal using a
fourth-order nonlinearity method. This object implements a general non-data-aided feedback method
that is independent of carrier phase recovery. This method requires prior compensation for the
carrier frequency offset. This object is suitable for systems that use baseband minimum shift keying
(MSK) modulation.

To recover the symbol timing phase of the input signal:

1 Define and set up your MSK timing synchronizer object. See “Construction” on page 3-939.
2 Call step to recover the symbol timing phase of the input signal according to the properties of

comm.MSKTimingSynchronizer. The behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
H = comm.MSKTimingSynchronizer creates a timing phase synchronizer System object, H. This
object recovers the symbol timing phase of the input signal using a fourth-order nonlinearity method.

H = comm.MSKTimingSynchronizer(Name,Value) creates an MSK timing synchronizer object, H,
with each specified property set to the specified value. You can specify additional name-value pair
arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties
SamplesPerSymbol

Number of samples representing each symbol

Specify the number of samples that represent each symbol in the input signal as an integer-valued
scalar greater than 1. The default is 4.

ErrorUpdateGain

Error update step size
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Specify the step size for updating successive timing phase estimates as a positive, real scalar value.
The default is 0.05. Typically, this number is less than 1/SamplesPerSymbol on page 3-0 , which
corresponds to a slowly varying timing phase. This property is tunable.

ResetInputPort

Enable synchronization reset input

Set this property to true to enable resetting the timing phase recovery process based on an input
argument value. The default is false.

When you set this property to true, you must specify a reset input value to the step method.

When the reset input is a nonzero value, the object restarts the timing phase recovery process. When
you set this property to false, the object does not restart.

ResetCondition

Condition for timing phase recovery reset

Specify the conditions to reset the timing phase recovery process as one of Never | Every frame.
The default is Never.

When you set this property to Never, the phase recovery process never restarts. The object operates
continuously, retaining information from one symbol to the next.

When you set this property to Every frame, the timing phase recovery restarts at the start of each
frame of data. Thus, each time the object calls the step method. This property applies when you set
the ResetInputPort on page 3-0  property to false.

Methods
step Recover symbol timing phase using fourth-order nonlinearity method

Common to All System Objects
release Allow System object property value changes
reset Reset internal states of System object

Examples

Recover Timing Phase of MSK Signal

Create MSK modulator, variable fractional delay, and MSK timing synchronizer System objects.

mskMod = comm.MSKModulator('BitInput',true,'SamplesPerSymbol',14);
timingOffset = 0.2;
varDelay = dsp.VariableFractionalDelay;
mskTimingSync = comm.MSKTimingSynchronizer('SamplesPerSymbol',14,'ErrorUpdateGain', 0.05);

Main processing loop.
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phEst = zeros(50,1);
for i = 1:50
    data = randi([0 1],100,1);    % Generate data
    modData = mskMod(data);       % Modulate data
    
    % Apply timing offset error.
    impairedData = varDelay(modData,timingOffset*14);
    % Perform timing phase recovery.
    [~,phase] = mskTimingSync(impairedData);
    phEst(i) = phase(1)/14;
end

Plot the results.

plot(1:50,[0.2*ones(50,1) phEst]);
legend( 'Original','Estimated')
title('Original and Estimated timing phases');

Algorithms
This object implements the algorithm, inputs, and outputs described on the MSK-Type Signal Timing
Recovery block reference page. The object properties correspond to the block parameters, except:

• The object corresponds to the MSK-Type Signal Timing Recovery block with the Modulation type
parameter set to MSK.
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• The Reset parameter corresponds to the ResetInputPort on page 3-0  and
ResetCondition on page 3-0  properties.

Version History
Introduced in R2012a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.SymbolSynchronizer
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step
System object: comm.MSKTimingSynchronizer
Package: comm

Recover symbol timing phase using fourth-order nonlinearity method

Syntax
[Y,PHASE] = step(H,X)
[Y,PHASE] = step(H,X,R)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

[Y,PHASE] = step(H,X) recovers the timing phase and returns the time-synchronized signal, Y,
and the estimated timing phase, PHASE, for input signal X. X must be a double or single precision
complex column vector.

[Y,PHASE] = step(H,X,R) restarts the timing phase recovery process when you input a reset
signal, R, that is non-zero. R must be a logical or double scalar. This syntax applies when you set the
ResetInputPort property to true.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This initialization
locks nontunable properties and input specifications. For more information on changing property
values, see “System Design in MATLAB Using System Objects”.

 step

3-943



comm.MultibandCombiner
Package: comm

Frequency-shift and combine signals

Description
The comm.MultibandCombiner System object interpolates, shifts input signals to the specified
frequency bands, and then combines them into a single signal. For more information, see the
“Algorithms” on page 3-949 section.

To frequency-shift and combine signals:

1 Create the comm.MultibandCombiner object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
multibandcombiner = comm.MultibandCombiner
multibandcombiner = comm.MultibandCombiner(Name,Value)

Description

multibandcombiner = comm.MultibandCombiner creates a multiband combiner System object
to frequency-shift and combine input signals.

multibandcombiner = comm.MultibandCombiner(Name,Value) sets properties using one or
more name-value arguments. For example, 'InputSampleRate',2e6 specifies an input signal
sample rate of 2 MHz.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

InputSampleRate — Input signal sample rate
1e6 (default) | positive scalar

Input signal sample rate in Hz, specified as a positive scalar.
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Data Types: double

FrequencyOffsets — Frequency offsets
[0 1e6] (default) | scalar | 1-by-Nchan vector

Frequency offsets in Hz, specified as one of these options.

• Scalar — Each channel of the input signal is frequency-shifted by this scalar value.
• 1-by- Nchan vector — Each channel of the input signal is frequency-shifted by the corresponding

value in this vector. Nchan is the number of channels in the input signal x.

Data Types: double

OutputSampleRateSource — Source of output sample rate
'Auto' (default) | 'Property'

Source of the output sample rate, specified as one of these values.

• 'Auto' — The object interpolates the input signals to ensure that the resulting sample rate of the
signals is sufficient to avoid distorting the frequency content of the original signals after they are
frequency-shifted to produce the output signal.

• 'Property' — Specify the output sample rate by using the OutputSampleRate property.

Data Types: char | string

OutputSampleRate — Output signal sample rate
3e6 (default) | positive scalar

Output signal sample rate in Hz, specified as a positive scalar.

Tips

To avoid distortion, specify this value to be greater than or equal to the automatically computed
output sample rate. To determine the automatically computed output sample rate, first run the object
with the OutputSampleRateSource property set to 'Auto'.

Dependencies

To enable this property, set the OutputSampleRateSource property to 'Property'.
Data Types: double

Usage

Syntax
y = multibandcombiner(x)

Description

y = multibandcombiner(x) interpolates, frequency-shifts, and combines the input signal into one
output signal.
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Input Arguments

x — Input signals
Nsamp-by-Nchan matrix

Input signals, specified as an Nsamp-by-Nchan matrix. Nsamp is the number of input samples per channel,
and Nchan is the number of channels.
Data Types: double | single

Output Arguments

y — Output signal
Nout-by-1 vector

Output signal, returned as an Nout-by-1 vector of the same data type as input signal x. Nout is the
number of output samples. For more information, see “Algorithms” on page 3-949.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to comm.MultibandCombiner
info Characteristic information about multiband combining

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Combine QPSK and GMSK Signals

Combine two 60 KHz frequency bands that are adjacent to each other.

Set simulation parameters.

M = 4;      % QPSK modulation
N = 2000;   % Frame length
Fs1 = 60e3; % Input sample rate

Generate QPSK and GMSK signals.

data = randi([0,M-1],N,1);
modSig = pskmod(data,M,pi/4,"gray");
qpskTxFilter = comm.RaisedCosineTransmitFilter( ...
    OutputSamplesPerSymbol=2);
qpsksig = qpskTxFilter(modSig);
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data = randi([0 1],N,1);
gmskMod = comm.GMSKModulator( ...
    BitInput=true, ...
    SamplesPerSymbol=2);
gmsksig = gmskMod(data);

Create a multiband combiner and two spectrum analyzer System objects. Use the info object
function to determine the output sample rate for the combined signal. Use this output sample rate
when configuring the spectrum analyzer objects.

mbc = comm.MultibandCombiner( ...
    InputSampleRate=Fs1, ...
    FrequencyOffsets=[-30e3 30e3], ...
    OutputSampleRateSource="Auto");
mbcInfo = info(mbc);
Fs2 = mbcInfo.OutputSampleRate

Fs2 = 120000

sa = spectrumAnalyzer( ...
    SampleRate=Fs2, ...
    ShowLegend=true, ...
    ChannelNames=["qpsk","gmsk"]);
sacombined = spectrumAnalyzer( ...
    SampleRate=Fs2, ...
    ShowLegend=true, ...
    ChannelNames="combined");

Use the multiband combiner object to interpolate, frequency-shift, and combine the two signals.

combinedsig = mbc([qpsksig,gmsksig]);

Use the spectrum analyzer objects to view the individual signals at 60 kHz and the combined signal at
120 kHz.

sa(qpsksig,gmsksig);
release(sa);
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sacombined(combinedsig)
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Algorithms
Multiband Combiner

This figure shows how the multiband combiner algorithm processes input signal data.

When the output sample rate is greater than the input sample rate, the input signal is interpolated to
avoid distortion in the frequency-shifted signal. Each column of the input signal is frequency-shifted
by the corresponding value specified in the FrequencyOffsets property. The frequency-shifted
signals are then added together into a single channel output signal. Each channel in the input must
have the same number of samples.

Setting the OutputSampleRateSource to 'Auto' automatically configures the algorithm to
compute the output sample rate as RO = RI × L, where:

• RO is the output sample rate OutputSampleRate.
• RI is the input sample rate InputSampleRate.
• L is the interpolation factor and is computed as L = ceil(2 × Bmax/RI).

 comm.MultibandCombiner

3-949



• Bmax is the maximum bandwidth and is computed as Bmax = max(abs(FrequencyOffsets)) +
(RI/2).

Multiband Combining Delay

Multiband combining introduces a delay computed as delay = round(length(num)/2). The
numerator coefficients, num, are computed as num = designMultirateFIR(L,1), where L is the
interpolation factor.

Version History
Introduced in R2021b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
dsp.Channelizer | dsp.ChannelSynthesizer

Blocks
Multiband Combiner

Topics
“Multiband Signal Generation”
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comm.MultiplexedDeinterleaver
Package: comm

Deinterleave symbols using set of shift registers with specified delays

Description
The comm.MultiplexedDeinterleaver System object deinterleaves the symbols in the input
sequence by using a set of shift registers, each with its own specified delay. The deinterleaver uses N
shift registers, where N is the number of elements in the vector specified by the Delay property.
When a new input symbol enters the deinterleaver, the System object switches the commutator to a
new register and shifts in the new symbol while shifting out the oldest symbol in that register. When
the commutator reaches the Nth register, upon the next new input, the System object returns to the
first register. The multiplexed deinterleaver that is associated with the
comm.MultiplexedInterleaver System object has the same number of registers as the
interleaver. The delay in a particular deinterleaver register depends on the difference between the
largest interleaver delay and the interleaver delay for the given register. For more information, see
“Interleaving”.

To deinterleave the symbols in the input sequence:

1 Create the comm.MultiplexedDeinterleaver object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
muxdeinterleaver = comm.MultiplexedDeinterleaver
muxdeinterleaver = comm.MultiplexedDeinterleaver(Name,Value)

Description

muxdeinterleaver = comm.MultiplexedDeinterleaver creates a default multiplexed
deinterleaver System object.

muxdeinterleaver = comm.MultiplexedDeinterleaver(Name,Value)sets the “Properties”
on page 3-951 by using one or more name-value arguments. For example,
'InitialConditions',1 sets the initial conditions of shift registers to 1.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.
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For more information on changing property values, see System Design in MATLAB Using System
Objects.

Delay — Interleaver delay
[2; 0; 1; 3; 10] (default) | column vector of integers

Interleaver delay, specified as a column vector of integers. The values in this vector specify the
lengths of the shift registers.
Data Types: double

InitialConditions — Initial conditions of shift registers
0 (default) | numeric scalar | column vector

Initial conditions of the shift registers, specified as one of these options.

• Numeric scalar — The default value is 0. The specified scalar applies to all shift registers.
• Column vector — The length of this vector must be equal to the length of the Delay property

value. The ith initial condition applies to the ith shift register.

Data Types: double

Usage

Syntax
deintrlvseq = muxdeinterleaver(intrlvseq)

Description

deintrlvseq = muxdeinterleaver(intrlvseq) deinterleaves the input sequence of symbols,
deintrlvseq, by using a set of shift registers with delays specified by the Delay property. The
System object returns the deinterleaved sequence, deintrlvseq.

Input Arguments

intrlvseq — Interleaved sequence of symbols
column vector

Interleaved sequence of symbols, specified as a column vector. This sequence must be one that was
interleaved using the comm.MultiplexedInterleaver System object.
Data Types: double | logical | fi

Output Arguments

deintrlvseq — Deinterleaved sequence of symbols
column vector

Deinterleaved sequence of symbols, returned as a column vector with the same data type and size as
the intrlvseq argument.
Data Types: double | logical | fi
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Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Interleave and Deinterleave Sequence

Create a multiplexed interleaver System object, specifying the interleaver delay.

interleaver = comm.MultiplexedInterleaver('Delay',[1; 0; 2; 1]);

Create a multiplexed deinterleaver System object, specifying the interleaver delay.

deinterleaver = comm.MultiplexedDeinterleaver('Delay',[1; 0; 2; 1]);

Generate a random data sequence. Pass the data sequence through the interleaver and then the
deinterleaver.

[dataIn,dataOut] = deal([]); % Initialize data arrays

for index = 1:50
    data = randi([0 7],20,1);
    intrlvSequence = interleaver(data);
    deintrlvSequence = deinterleaver(intrlvSequence);
    % Save original data and deinterleaved data
    dataIn = cat(1,dataIn,data);
    dataOut = cat(1,dataOut,deintrlvSequence);
end

Determine the delay through the interleaver and deinterleaver.

delay = finddelay(dataIn,dataOut)

delay = 8

After accounting for the delay, confirm that the original and deinterleaved sequences are identical.

isequal(dataIn(1:end-delay),dataOut(delay+1:end))

ans = logical
   1

Copyright 2012 The MathWorks, Inc.
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Version History
Introduced in R2012a

References
[1] Heegard, Chris and Stephen B. Wicker. Turbo Coding. Boston: Kluwer Academic Publishers, 1999.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
comm.MultiplexedInterleaver

Blocks
General Multiplexed Interleaver | General Multiplexed Deinterleaver

Topics
“Interleaving”
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comm.MultiplexedInterleaver
Package: comm

Permute symbols using set of shift registers with specified delays

Description
The comm.MultiplexedInterleaver System object permutes the symbols in the input sequence
by using a set of shift registers, each with its own delay value. For more information, see
“Interleaving”.

To permute the symbols in the input sequence:

1 Create the comm.MultiplexedInterleaver object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
muxinterleaver = comm.MultiplexedInterleaver
muxinterleaver = comm.MultiplexedInterleaver(Name,Value)

Description

muxinterleaver = comm.MultiplexedInterleaver creates a default multiplexed interleaver
System object. This System object permutes the symbols in the input sequence by using a set of shift
registers with specified delays. The muxinterleaver System object consists of N registers, each
with a specified delay. With each new input symbol, the System object switches the commutator to a
new register and shifts in the new symbol while shifting out the oldest symbol in that register. When
the commutator reaches the Nth register, upon the next new input, the commutator returns to the
first register.

muxinterleaver = comm.MultiplexedInterleaver(Name,Value) sets the “Properties” on
page 3-955 by using one or more name-value arguments. For example, 'InitialConditions',1
sets the initial conditions of the shift registers to 1.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.
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Delay — Interleaver delay
[2; 0; 1; 3; 10] (default) | column vector of integers

Interleaver delay, specified as a column vector of integers. The values in this vector specify the
lengths of the shift registers.
Data Types: double

InitialConditions — Initial conditions of shift registers
0 (default) | numeric scalar | column vector

Initial conditions of the shift registers, specified as one of these options.

• Numeric scalar — The default value is 0. The specified scalar applies to all shift registers.
• Column vector — The length of this vector must be equal to the length of the Delay property

value. The ith initial condition applies to the ith shift register.

Data Types: double

Usage

Syntax
intrlvseq = muxinterleaver(inputseq)

Description

intrlvseq = muxinterleaver(inputseq) permutes the input sequence of symbols, inputseq,
by using a set of shift registers with delays specified by the Delay property. The System object returns
the interleaved sequence, intrlvseq.

Input Arguments

inputseq — Sequence of symbols
column vector

Sequence of symbols, specified as a column vector.
Data Types: double | logical | fi

Output Arguments

intrlvseq — Interleaved sequence of symbols
column vector

Interleaved sequence of symbols, returned as a column vector with the same data type and size as the
inputseq input.
Data Types: double | logical | fi
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Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Interleave and Deinterleave Sequence

Create a multiplexed interleaver System object, specifying the interleaver delay.

interleaver = comm.MultiplexedInterleaver('Delay',[1; 0; 2; 1]);

Create a multiplexed deinterleaver System object, specifying the interleaver delay.

deinterleaver = comm.MultiplexedDeinterleaver('Delay',[1; 0; 2; 1]);

Generate a random data sequence. Pass the data sequence through the interleaver and then the
deinterleaver.

[dataIn,dataOut] = deal([]); % Initialize data arrays

for index = 1:50
    data = randi([0 7],20,1);
    intrlvSequence = interleaver(data);
    deintrlvSequence = deinterleaver(intrlvSequence);
    % Save original data and deinterleaved data
    dataIn = cat(1,dataIn,data);
    dataOut = cat(1,dataOut,deintrlvSequence);
end

Determine the delay through the interleaver and deinterleaver.

delay = finddelay(dataIn,dataOut)

delay = 8

After accounting for the delay, confirm that the original and deinterleaved sequences are identical.

isequal(dataIn(1:end-delay),dataOut(delay+1:end))

ans = logical
   1

Copyright 2012 The MathWorks, Inc.
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Version History
Introduced in R2012a

References
[1] Heegard, Chris and Stephen B. Wicker. Turbo Coding. Boston: Kluwer Academic Publishers, 1999.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
comm.MultiplexedDeinterleaver

Blocks
General Multiplexed Interleaver | General Multiplexed Deinterleaver

Topics
“Interleaving”
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comm.OQPSKDemodulator
Package: comm

Demodulation using OQPSK method

Description
The comm.OQPSKDemodulator object applies pulse shape filtering to the input waveform and
demodulates it using the offset quadrature phase shift keying (OQPSK) method. For more
information, see “Pulse Shaping Filter” on page 3-966. The input is a baseband representation of the
modulated signal.

For information about delays incurred by modulator-demodulator pair processing, see “Modulation
Delays” on page 3-965.

To demodulate a signal that is OQPSK modulated:

1 Create the comm.OQPSKDemodulator object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
oqpskdemod = comm.OQPSKDemodulator
oqpskdemod = comm.OQPSKDemodulator(mod)
oqpskdemod = comm.OQPSKDemodulator(Name,Value)
oqpskdemod = comm.OQPSKDemodulator(phase,Name,Value)

Description

oqpskdemod = comm.OQPSKDemodulator creates a demodulator System object. This object can
jointly match-filter and decimate a waveform, and demodulate it using the offset quadrature phase
shift keying (OQPSK) method.

oqpskdemod = comm.OQPSKDemodulator(mod) creates a demodulator System object with
symmetric configuration to the OQPSK modulator object, mod.

oqpskdemod = comm.OQPSKDemodulator(Name,Value) sets properties using one or more name-
value pairs. Enclose each property name in single quotes.
Example: comm.OQPSKDemodulator('BitOutput',true)

oqpskdemod = comm.OQPSKDemodulator(phase,Name,Value) sets the PhaseOffset property of
the created object to phase and sets any other specified Name, Value pairs.
Example: comm.OQPSKDemodulator(0.5*pi,'SamplesPerSymbol',2)
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Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

PhaseOffset — Phase of zeroth point of signal constellation
0 (default) | scalar

Phase offset from π/4, specified as a scalar in radians. The phase offset is applied to the zeroth point
of the signal constellation before delay of quadrature component. After the OQPSK imaginary-
component delay the signal is normalized with unity power.
Example: 'PhaseOffset',pi/4 aligns the zeroth point of the QPSK signal constellation point on the
axes, {(1,0), (0,j), (-1,0), (0,-j)}.
Data Types: double

BitOutput — Option to output data as bits
false (default) | true

Option to output data as bits, specified as false or true.

• When you set this property to false, the object outputs a column vector of integer values with a
length equal to the number of demodulated symbols. The output values are integer
representations of two bits and range from 0 to 3.

• When you set this property to true, the object outputs a binary column vector of bit values. The
output vector length is twice as long as the number of input symbols.

Data Types: logical

SymbolMapping — Signal constellation bit mapping
'Gray' (default) | 'Binary' | custom 4-element numeric vector of integers with values from 0 to 3

Signal constellation bit mapping, specified as 'Gray', 'Binary', or a custom 4-element numeric
vector of integers with values from 0 to 3.

Setting Constellation
Mapping for Integers

Constellation
Mapping for Bits

Comment

Gray The signal constellation
mapping is Gray-
encoded.
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Setting Constellation
Mapping for Integers

Constellation
Mapping for Bits

Comment

Binary The signal constellation
mapping for the input
integer m (0 ≤ m ≤ 3) is
the complex value
e(j*(PhaseOffset+π/4) +
j*2*π*m/4).

Custom 4-element
numeric vector of
integers with values
from 0 to 3

Elements [a b c d] must
be composed of the set
of values [0, 1, 2, 3] in
any order.

Data Types: char | double

PulseShape — Filtering pulse shape
'Half sine' (default) | 'Normal raised cosine' | 'Root raised cosine' | 'Custom'

Filtering pulse shape, specified as 'Half sine', 'Normal raised cosine' | 'Root raised
cosine', or 'Custom'.
Data Types: char

RolloffFactor — Raised cosine filter rolloff factor
0.2 (default) | scalar

Raised cosine filter rolloff factor, specified as a scalar from 0 to 1.

Dependencies

This property is enabled when PulseShape is 'Normal raised cosine' or 'Root raised
cosine'.
Data Types: double

FilterSpanInSymbols — Filter length
10 (default) | scalar

Filter length in symbols, specified as a scalar. An ideal raised cosine filter has an infinite impulse
response. However, to realize a practical implementation of this filter, the object truncates the
impulse response to FilterSpanInSymbols symbols.

Dependencies

This property is enabled when PulseShape is 'Normal raised cosine' or 'Root raised
cosine'.
Data Types: double

FilterNumerator — FIR filter numerator
[0.7071 0.7071] (default) | row vector

FIR filter numerator, specified as a row vector.
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Dependencies

This property is enabled when PulseShape is 'Custom'.
Data Types: double

SamplesPerSymbol — Number of samples per symbol
4 (default) | positive even integer

Number of samples per symbol, specified as a positive even integer.
Data Types: double

OutputDataType — Data type assigned to output
'double' (default) | 'single' | 'uint8'

Data type assigned to output, specified as 'double', 'single', or 'uint8'.
Data Types: char

Usage

Syntax
outsignal = oqpskdemod(waveform)

Description

outsignal = oqpskdemod(waveform) returns the demodulated output signal. The object
produces one output symbol for each input pulse.

Input Arguments

waveform — Received waveform
scalar | column vector

Received waveform, specified as a complex scalar or column vector.
Data Types: double
Complex Number Support: Yes

Output Arguments

outsignal — Demodulated signal
integer vector | bit vector

Demodulated signal, returned as an NS-element integer vector or bit vector, where NS is the number
of samples.

The received waveform is pulse shaped according to the configuration properties PulseShape and
SamplesPerSymbol. The setting of the BitOutput property determines the interpretation of the
received waveform.
Data Types: double
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Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to comm.OQPSKDemodulator
constellation Calculate or plot ideal signal constellation

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

OQPSK Signal in AWGN

Create an OQPSK modulator and demodulator pair. Create an AWGN channel object having two bits
per symbol.

oqpskmod = comm.OQPSKModulator('BitInput',true);
oqpskdemod = comm.OQPSKDemodulator('BitOutput',true);
channel = comm.AWGNChannel('EbNo',4,'BitsPerSymbol',2);

Create an error rate calculator. To account for the delay between the modulator and demodulator, set
the ReceiveDelay property to 2.

errorRate = comm.ErrorRate('ReceiveDelay',2);

Process 300 frames of data looping through these steps.

• Generate vectors with 100 elements of random binary data.
• OQPSK-modulate the data. The data frames are processed as 50 sample frames of 2-bit binary

data.
• Pass the modulated data through the AWGN channel.
• OQPSK-demodulate the data.
• Collect error statistics on the frames of data.

for counter = 1:300
    txData = randi([0 1],100,1);
    modSig = oqpskmod(txData);
    rxSig = channel(modSig);
    rxData = oqpskdemod(rxSig);
    errorStats = errorRate(txData,rxData);
end

Display the error statistics.

ber = errorStats(1)
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ber = 3.3336e-05

numErrors = errorStats(2)

numErrors = 1

numBits = errorStats(3)

numBits = 29998

OQPSK Signal with Root Raised Cosine Filtering

Perform OQPSK modulation and demodulation and apply root raised cosine filtering to a waveform.

System initialization

Define simulation parameters and create objects for OQPSK modulation and demodulation.

sps = 12; % samples per symbol
bits = randi([0, 1], 800, 1); % transmission data

modulator = comm.OQPSKModulator( ...
    'BitInput',true, ...
    'SamplesPerSymbol',sps, ...
    'PulseShape','Root raised cosine');
demodulator = comm.OQPSKDemodulator(modulator);

Waveform transmission and reception

Use the modulator object to apply OQPSK modulation and transmit filtering to the input data.

oqpskWaveform = modulator(bits);

Pass the waveform through a channel.

snr = 0;
rxWaveform = awgn(oqpskWaveform,snr);

Use the demodulator object to apply receive filtering and OQPSK demodulation to the waveform.

demodData = demodulator(rxWaveform);

Compute the bit error rate to confirm the quality of the data recovery.

delay = (1+modulator.BitInput)*modulator.FilterSpanInSymbols;
[~, ber] = biterr(bits(1:end-delay), demodData(delay+1:end))

ber = 0

Soft-Decision OQPSK Modulation-Demodulation

Use the qamdemod function to simulate soft decision output for OQPSK-modulated signals.

Generate an OQPSK modulated signal.
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sps = 4;
msg = randi([0 1],1000,1);
oqpskMod = comm.OQPSKModulator('SamplesPerSymbol',sps,'BitInput',true);
oqpskSig = oqpskMod(msg);

Add noise to the generated signal.

impairedSig = awgn(oqpskSig,15);

Perform Soft-Decision Demodulation

Create QPSK equivalent signal to align in-phase and quadrature.

impairedQPSK = complex( ...
    real(impairedSig(1+sps/2:end-sps/2)), ...
    imag(impairedSig(sps+1:end)));

Apply matched filtering to the received OQPSK signal.

halfSinePulse = sin(0:pi/sps:(sps)*pi/sps);
matchedFilter = dsp.FIRDecimator(sps,halfSinePulse, ...
    'DecimationOffset',sps/2);
filteredQPSK = matchedFilter(impairedQPSK);

To perform soft demodulation of the filtered OQPSK signal use the qamdemod function. Align symbol
mapping of qamdemod with the symbol mapping used by the comm.OQPSKModulator, then
demodulate the signal.

oqpskModSymbolMapping = [1 3 0 2];
demodulated = qamdemod(filteredQPSK,4,oqpskModSymbolMapping, ...
    'OutputType','llr');

More About
Modulation Delays

Digital modulation and demodulation objects incur delays between their inputs and outputs that
result in an offset in the arrival sample of the received data. When comparing transmitted data with
received data, such as when plotting or computing error statistics, you must take system delays into
account. As shown here, the OQPSK modulation-demodulation delay varies depending on the pulse
shaping filter and the input/output settings of the object pairs.

Pulse Shape Input/Output Data (*) End-to-End Delay Incurred by
ay an OQPSK Modulator-
Demodulator Object Pair (in
samples)

'Half sine' or 'Custom' Integer 1
Bit 2

'Normal raised cosine' or
'Root raised cosine'

Integer FilterSpanInSymbols
Bit 2*FilterSpanInSymbols

(*) Set the data type property (BitInput for modulation or BitOutput for demodulation) to
false for integer data and true for bit data.
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Pulse Shaping Filter

The OQPSK modulation scheme requires oversampling of two or greater in order to delay (or offset)
the quadrature channel by 90 degrees. This oversampling is achieved through interpolation filtering
implemented by pulse shaping.

Version History
Introduced in R2012a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See System Objects in MATLAB Code Generation (MATLAB Coder).

See Also
Objects
comm.OQPSKModulator | comm.QPSKDemodulator

Blocks
OQPSK Demodulator Baseband

Topics
Phase Modulation
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comm.OQPSKModulator
Package: comm

Modulation using OQPSK method

Description
The comm.OQPSKModulator object modulates the input signal using the offset quadrature phase shift
keying (OQPSK) method and applies pulse shape filtering to the output waveform. For more
information, see “Pulse Shaping Filter” on page 3-974. The output is a baseband representation of
the modulated signal.

For information about delays incurred by modulator-demodulator pair processing, see “Modulation
Delays” on page 3-974.

To modulate a signal using offset quadrature phase shift keying:

1 Create the comm.OQPSKModulator object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
oqpskmod = comm.OQPSKModulator
oqpskmod = comm.OQPSKModulator(demod)
oqpskmod = comm.OQPSKModulator(Name,Value)
oqpskmod = comm.OQPSKModulator(phase,Name,Value)

Description

oqpskmod = comm.OQPSKModulator creates a modulator System object. This object applies offset
quadrature phase shift keying (OQPSK) modulation and pulse shape filtering to the input signal.

oqpskmod = comm.OQPSKModulator(demod) creates a modulator System object with symmetric
configuration to the OQPSK demodulator object, demod.

oqpskmod = comm.OQPSKModulator(Name,Value) sets properties using one or more name-value
pairs. Enclose each property name in single quotes.
Example: comm.OQPSKModulator('BitInput',true)

oqpskmod = comm.OQPSKModulator(phase,Name,Value) sets the PhaseOffset property of the
created object to phase and sets any other specified Name, Value pairs.
Example: comm.OQPSKModulator(0.5*pi,'SymbolMapping','Binary')
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Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

PhaseOffset — Phase of zeroth point of signal constellation
0 (default) | scalar

Phase offset from π/4, specified as a scalar in radians. The phase offset is applied to the zeroth point
of the signal constellation before delay of quadrature component. After the OQPSK imaginary-
component delay, the signal is normalized with unity power.
Example: 'PhaseOffset',pi/4 aligns the zeroth point of the QPSK signal constellation point on the
axes, {(1,0), (0,j), (-1,0), (0,-j)}.
Data Types: double

BitInput — Option to provide input in bits
false (default) | true

Option to provide input in bits, specified as false or true.

• When this property is set to false, the input values must be integer representations of two-bit
input segments and range from 0 to 3.

• When this property is set to true, the input must be a binary vector of even length. Element pairs
are binary representations of integers.

Data Types: logical

SymbolMapping — Signal constellation bit mapping
'Gray' (default) | 'Binary' | custom 4-element numeric vector of integers with values from 0 to 3

Signal constellation bit mapping, specified as 'Gray', 'Binary', or a custom 4-element numeric
vector of integers with values from 0 to 3.

Setting Constellation
Mapping for Integers

Constellation
Mapping for Bits

Comment

Gray The signal constellation
mapping is Gray-
encoded.
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Setting Constellation
Mapping for Integers

Constellation
Mapping for Bits

Comment

Binary The signal constellation
mapping for the input
integer m (0 ≤ m ≤ 3) is
the complex value
e(j*(PhaseOffset+π/4) +
j*2*π*m/4).

Custom 4-element
numeric vector of
integers with values
from 0 to 3

Elements [a b c d] must
be composed of the set
of values [0, 1, 2, 3] in
any order.

Data Types: char | double

PulseShape — Filtering pulse shape
'Half sine' (default) | 'Normal raised cosine' | 'Root raised cosine' | 'Custom'

Filtering pulse shape, specified as 'Half sine', 'Normal raised cosine', 'Root raised
cosine', or 'Custom'.
Data Types: char

RolloffFactor — Raised cosine filter rolloff factor
0.2 (default) | scalar

Raised cosine filter rolloff factor, specified as a scalar from 0 to 1.

Dependencies

This property is enabled when PulseShape is 'Normal raised cosine' or 'Root raised
cosine'.
Data Types: double

FilterSpanInSymbols — Filter length
10 (default) | scalar

Filter length in symbols, specified as a scalar. An ideal raised cosine filter has an infinite impulse
response. However, to realize a practical implementation of this filter, the object truncates the
impulse response to FilterSpanInSymbols symbols.

Dependencies

This property is enabled when PulseShape is 'Normal raised cosine' or 'Root raised
cosine'.
Data Types: double

FilterNumerator — FIR filter numerator
[0.7071 0.7071] (default) | row vector

FIR filter numerator, specified as a row vector.
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Dependencies

This property is enabled when PulseShape is 'Custom'.
Data Types: double

SamplesPerSymbol — Number of samples per symbol
4 (default) | positive even integer

Number of samples per symbol, specified as a positive even integer.
Data Types: double

OutputDataType — Data type assigned to output
'double' (default) | 'single'

Data type assigned to output, specified as 'double' or 'single'.
Data Types: char

Usage

Syntax
waveform = oqpskmod(insignal)

Description

waveform = oqpskmod(insignal) returns baseband-modulated output. The output waveform is
pulse shaped according to the configuration properties PulseShape and SamplesPerSymbol.

Input Arguments

insignal — Input signal
integer column vector | bit column vector

Input signal, specified as an NS-element column vector of integers or bits, where NS is the number of
samples.

The setting of the BitInput property determines the interpretation of the input vector.
Data Types: double

Output Arguments

waveform — Output waveform
vector

Output waveform, returned as a vector. The output waveform is pulse-shaped according to the
configuration properties PulseShape and SamplesPerSymbol.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:
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release(obj)

Specific to comm.OQPSKModulator
constellation Calculate or plot ideal signal constellation

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

OQPSK Signal in AWGN

Create an OQPSK modulator and demodulator pair. Create an AWGN channel object having two bits
per symbol.

oqpskmod = comm.OQPSKModulator('BitInput',true);
oqpskdemod = comm.OQPSKDemodulator('BitOutput',true);
channel = comm.AWGNChannel('EbNo',4,'BitsPerSymbol',2);

Create an error rate calculator. To account for the delay between the modulator and demodulator, set
the ReceiveDelay property to 2.

errorRate = comm.ErrorRate('ReceiveDelay',2);

Process 300 frames of data looping through these steps.

• Generate vectors with 100 elements of random binary data.
• OQPSK-modulate the data. The data frames are processed as 50 sample frames of 2-bit binary

data.
• Pass the modulated data through the AWGN channel.
• OQPSK-demodulate the data.
• Collect error statistics on the frames of data.

for counter = 1:300
    txData = randi([0 1],100,1);
    modSig = oqpskmod(txData);
    rxSig = channel(modSig);
    rxData = oqpskdemod(rxSig);
    errorStats = errorRate(txData,rxData);
end

Display the error statistics.

ber = errorStats(1)

ber = 3.3336e-05

numErrors = errorStats(2)

numErrors = 1
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numBits = errorStats(3)

numBits = 29998

Create OQPSK Modulator Using Demodulator

Use an OQPSK demodulator object to initialize an OQPSK modulator object while creating it.

Create an OQPSK demodulator, assigning it a phase offset of 1
2π.

phase = 0.5*pi;
oqpskdemod = comm.OQPSKDemodulator(phase)

oqpskdemod = 
  comm.OQPSKDemodulator with properties:

   Modulation
         PhaseOffset: 1.5708
       SymbolMapping: 'Gray'
           BitOutput: false

   Filtering
          PulseShape: 'Half sine'
    SamplesPerSymbol: 4

      OutputDataType: 'double'

Use the demodulator object to initialize an OQPSK modulator while creating it.

oqpskmod = comm.OQPSKModulator(oqpskdemod)

oqpskmod = 
  comm.OQPSKModulator with properties:

   Modulation
         PhaseOffset: 1.5708
       SymbolMapping: 'Gray'
            BitInput: false

   Filtering
          PulseShape: 'Half sine'
    SamplesPerSymbol: 4

      OutputDataType: 'double'

OQPSK Signal with Root Raised Cosine Filtering

Perform OQPSK modulation and demodulation and apply root raised cosine filtering to a waveform.
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System initialization

Define simulation parameters and create objects for OQPSK modulation and demodulation.

sps = 12; % samples per symbol
bits = randi([0, 1], 800, 1); % transmission data

modulator = comm.OQPSKModulator( ...
    'BitInput',true, ...
    'SamplesPerSymbol',sps, ...
    'PulseShape','Root raised cosine');
demodulator = comm.OQPSKDemodulator(modulator);

Waveform transmission and reception

Use the modulator object to apply OQPSK modulation and transmit filtering to the input data.

oqpskWaveform = modulator(bits);

Pass the waveform through a channel.

snr = 0;
rxWaveform = awgn(oqpskWaveform,snr);

Use the demodulator object to apply receive filtering and OQPSK demodulation to the waveform.

demodData = demodulator(rxWaveform);

Compute the bit error rate to confirm the quality of the data recovery.

delay = (1+modulator.BitInput)*modulator.FilterSpanInSymbols;
[~, ber] = biterr(bits(1:end-delay), demodData(delay+1:end))

ber = 0

Soft-Decision OQPSK Modulation-Demodulation

Use the qamdemod function to simulate soft decision output for OQPSK-modulated signals.

Generate an OQPSK modulated signal.

sps = 4;
msg = randi([0 1],1000,1);
oqpskMod = comm.OQPSKModulator('SamplesPerSymbol',sps,'BitInput',true);
oqpskSig = oqpskMod(msg);

Add noise to the generated signal.

impairedSig = awgn(oqpskSig,15);

Perform Soft-Decision Demodulation

Create QPSK equivalent signal to align in-phase and quadrature.

impairedQPSK = complex( ...
    real(impairedSig(1+sps/2:end-sps/2)), ...
    imag(impairedSig(sps+1:end)));

 comm.OQPSKModulator

3-973



Apply matched filtering to the received OQPSK signal.

halfSinePulse = sin(0:pi/sps:(sps)*pi/sps);
matchedFilter = dsp.FIRDecimator(sps,halfSinePulse, ...
    'DecimationOffset',sps/2);
filteredQPSK = matchedFilter(impairedQPSK);

To perform soft demodulation of the filtered OQPSK signal use the qamdemod function. Align symbol
mapping of qamdemod with the symbol mapping used by the comm.OQPSKModulator, then
demodulate the signal.

oqpskModSymbolMapping = [1 3 0 2];
demodulated = qamdemod(filteredQPSK,4,oqpskModSymbolMapping, ...
    'OutputType','llr');

More About
Modulation Delays

Digital modulation and demodulation objects incur delays between their inputs and outputs that
result in an offset in the arrival sample of the received data. When comparing transmitted data with
received data, such as when plotting or computing error statistics, you must take system delays into
account. As shown here, the OQPSK modulation-demodulation delay varies depending on the pulse
shaping filter and the input/output settings of the object pairs.

Pulse Shape Input/Output Data (*) End-to-End Delay Incurred by
ay an OQPSK Modulator-
Demodulator Object Pair (in
samples)

'Half sine' or 'Custom' Integer 1
Bit 2

'Normal raised cosine' or
'Root raised cosine'

Integer FilterSpanInSymbols
Bit 2*FilterSpanInSymbols

(*) Set the data type property (BitInput for modulation or BitOutput for demodulation) to
false for integer data and true for bit data.

Pulse Shaping Filter

The OQPSK modulation scheme requires oversampling of two or greater in order to delay (or offset)
the quadrature channel by 90 degrees. This oversampling is achieved through interpolation filtering
implemented by pulse shaping.

Version History
Introduced in R2012a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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Usage notes and limitations:

See System Objects in MATLAB Code Generation (MATLAB Coder).

See Also
Objects
comm.OQPSKDemodulator | comm.QPSKModulator

Blocks
OQPSK Modulator Baseband

Topics
Phase Modulation
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comm.OSTBCCombiner
Package: comm

Combine inputs using orthogonal space-time block code

Description
The OSTBCCombiner object combines the input signal (from all of the receive antennas) and the
channel estimate signal to extract the soft information of the symbols encoded by an OSTBC. The
input channel estimate does not need to be constant and can vary at each call to the step method. The
combining algorithm uses only the estimate for the first symbol period per codeword block. A symbol
demodulator or decoder would follow the Combiner object in a MIMO communications system.

To combine input signals and extract the soft information of the symbols encoded by an OSTBC:

1 Define and set up your OSTBC combiner object. See “Construction” on page 3-976.
2 Call step to Combine inputs using an orthogonal space-time block code according to the

properties of comm.OSTBCCombiner. The behavior of step is specific to each object in the
toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
H = comm.OSTBCCombiner creates an orthogonal space-time block code (OSTBC) combiner System
object, H. This object combines the input signal (from all of the receive antennas) with the channel
estimate signal to extract the soft information of the symbols encoded by an OSTBC.

H = comm.OSTBCCombiner(Name,Value) creates an OSTBC Combiner object, H, with each
specified property set to the specified value. You can specify additional name-value pair arguments in
any order as (Name1,Value1,...,NameN,ValueN).

H = comm.OSTBCCombiner(N,M,Name,Value) creates an OSTBC Combiner object, H. This object
has the NumTransmitAntennas property set to N, the NumReceiveAntennas property set to N, and
the other specified properties set to the specified values.

Properties
NumTransmitAntennas

Number of transmit antennas

Specify the number of antennas at the transmitter as 2 | 3 | 4. The default is 2.

3 System Objects

3-976



SymbolRate

Symbol rate of code

Specify the symbol rate of the code as 3/4 | 1/2. The default is 3/4. This property applies when the
NumTransmitAntennas on page 3-0  property is greater than 2. For 2 transmit antennas, the
symbol rate defaults to 1.

NumReceiveAntennas

Number of receive antennas

Specify the number of antennas at the receiver as a double-precision, real, scalar integer value from
1 to 8. The default is 1.

Fixed-Point Properties

RoundingMethod

Rounding of fixed-point numeric values

Specify the rounding method as Ceiling | Convergent | Floor | Nearest | Round | Simplest |
Zero. The default is Floor.

OverflowAction

Action when fixed-point numeric values overflow

Specify the overflow action as one of Wrap | Saturate. The default is Wrap. This property specifies
the action to be taken in case of overflow. Such overflow occurs if the magnitude of a fixed-point
calculation result does not fit into the range of the data type and scaling that stores the result.

ProductDataType

Data type of product

Specify the product data type as one of Full precision | Custom. The default is Full
precision.

CustomProductDataType

Fixed-point data type of product

Specify the product fixed-point type as a scaled numerictype object with a signedness of Auto. The
default is numerictype([],32,16). This property applies when you set the ProductDataType
property to Custom.

AccumulatorDataType
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Data type of accumulator

Specify the accumulator data type as Full precision | Same as product | Custom. The default
is Full precision.

CustomAccumulatorDataType

Fixed-point data type of accumulator

Specify the accumulator fixed-point type as a scaled numerictype object with a signedness of Auto.
The default is numerictype([],32,16). This property applies when you set the
AccumulatorDataType property to Custom.

EnergyProductDataType

Data type of energy product

Specify the complex energy product data type as one of Full precision | Same as product |
Custom. The default is Full precision. This property sets the data type of the complex product in
the denominator to calculate the total energy in the MIMO channel.

CustomEnergyProductDataType

Fixed-point data type of energy product

Specify the energy product fixed-point type as a scaled numerictype object with a signedness of
Auto. The default is numerictype([],32,16). This property applies when you set the
EnergyProductDataType property to Custom.

EnergyAccumulatorDataType

Data type of energy accumulator

Specify the energy accumulator data type as one of Full precision | Same as energy product
| Same as accumulator | Custom. The default is Full precision. This property sets the data
type of the summation in the denominator to calculate the total energy in the MIMO channel.

CustomEnergyAccumulatorDataType

Fixed-point data type of energy accumulator

Specify the energy accumulator fixed-point type as a scaled numerictype object with a signedness
of Auto. The default is numerictype([],32,16). This property applies when you set the
EnergyAccumulatorDataType property to Custom.

DivisionDataType

Data type of division
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Specify the division data type as one of Same as accumulator | Custom. The default is Same as
accumulator. This property sets the data type at the output of the division operation. The setting
normalizes diversity combining by the total energy in the MIMO channel.

CustomDivisionDataType

Fixed-point data type of division

Specify the division fixed-point type as a scaled numerictype object with a signedness of Auto. The
default is numerictype([],32,16). This property applies when you set the DivisionDataType
property to Custom.

Methods

step Combine inputs using orthogonal space-time block code

Common to All System Objects
release Allow System object property value changes

Examples

Encode with OSTBC and Calculate Errors

Determine the bit error rate for a QSPK signal employing OSTBC encoding when transmitted through
a 4x2 MIMO channel. Perfect channel estimation is assumed to be used by the OSTBC combiner.

Define the system parameters.

numTx = 4;         % Number of transmit antennas
numRx = 2;         % Number of receive antennas
Rs = 1e6;          % Sampling rate (Hz)
tau = [0 2e-6];    % Path delays (sec)
pdb = [0 -10];     % Average path gains (dB)
maxDopp = 30;      % Maximum Doppler shift (Hz)
numBits = 12000;   % Number of bits
SNR = 6;           % Signal-to-noise ratio (dB)

Set the random number generator to its default state to ensure repeatable results.

rng default

Create a QPSK modulator System object™. Set the BitInput property to true and the
SymbolMapping property to Gray.

hMod = comm.QPSKModulator(...
    'BitInput',true,...
    'SymbolMapping','Gray');

Create a corresponding QPSK demodulator System object. Set the SymbolMapping property to Gray
and the BitOutput property to true.
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hDemod = comm.QPSKDemodulator(...
    'SymbolMapping','Gray',...
    'BitOutput',true);

Create an OSTBC encoder and combiner pair, where the number of antennas is specified in the
system parameters.

hOSTBCEnc = comm.OSTBCEncoder(...
    'NumTransmitAntennas',numTx);

hOSTBCComb = comm.OSTBCCombiner(...
    'NumTransmitAntennas',numTx,...
    'NumReceiveAntennas',numRx);

Create a flat 4x2 MIMO Channel System object, where the channel characteristics are set using
name-value pairs. The path gains are made available to serve as a perfect channel estimate for the
OSTBC combiner.

hChan = comm.MIMOChannel(...
    'SampleRate',Rs,...
    'PathDelays',tau,...
    'AveragePathGains',pdb,...
    'MaximumDopplerShift',maxDopp,...
    'SpatialCorrelationSpecification','None',...
    'NumTransmitAntennas',numTx,...
    'NumReceiveAntennas',numRx,...
    'PathGainsOutputPort',true);

Create an AWGN channel System object in which the noise method is specified as a signal-to-noise
ratio.

hAWGN = comm.AWGNChannel(...
    'NoiseMethod','Signal to noise ratio (SNR)',...
    'SNR',SNR,...
    'SignalPower',1);

Generate a random sequence of bits.

data = randi([0 1],numBits,1);

Apply QPSK modulation.

modData = step(hMod,data);

Encode the modulated data using the OSTBC encoder object.

encData = step(hOSTBCEnc,modData);

Transmit the encoded data through the MIMO channel and add white noise by using the step
functions of the MIMO and AWGN channel objects, respectively.

[chanOut,pathGains] = step(hChan,encData);
rxSignal = step(hAWGN,chanOut);

Sum the pathGains array along the number of paths (2nd dimension) to form the channel estimate.
Apply the squeeze function to make its dimensions conform with those of rxSignal.

chEst = squeeze(sum(pathGains,2));
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Combine the received MIMO signal and its channel estimate using the step function of the OSTBC
combiner object. Demodulate the combined signal.

combinedData = step(hOSTBCComb,rxSignal,chEst);
receivedData = step(hDemod,combinedData);

Compute the number of bit errors and the bit error rate.

[numErrors,ber] = biterr(data,receivedData)

numErrors = 11

ber = 9.1667e-04

Algorithms
This object implements the algorithm, inputs, and outputs described on the OSTBC Combiner block
reference page. The object properties correspond to the block parameters.

Version History
Introduced in R2012a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.OSTBCEncoder
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step
System object: comm.OSTBCCombiner
Package: comm

Combine inputs using orthogonal space-time block code

Syntax
Y = step(H,X,CEST)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Y = step(H,X,CEST) combines the received data, X, and the channel estimate, CEST, to extract the
symbols encoded by an OSTBC. Both X and CEST are complex-valued and of the same data type,
which can be double, single, or signed fixed point with power-of-two slope and zero bias. When the
step method input X has double or single precision, the output, Y, has the same data type as the
input. The input channel estimate can remain constant or can vary during each codeword block
transmission. The combining algorithm uses the estimate only for the first symbol period per
codeword block.

The time domain length, T/SymbolRate, must be a multiple of the codeword block length. T is the
output symbol sequence length in the time domain. Specifically, when you set the
NumTransmitAntennas property to 2, T/SymbolRate must be a multiple of two. When you set the
NumTransmitAntennas property greater than 2, T/SymbolRate must be a multiple of four. For an
input of T/SymbolRate rows by NumReceiveAntennas columns, the input channel estimate, CEST,
must be a matrix of size T/SymbolRateby NumTransmitAntennas by NumReceiveAntennas. In this
case, the extracted symbol data, Y, is a column vector with T elements. Input matrix size can be F by
T/SymbolRate by NumReceiveAntennas, where F is an optional dimension (typically frequency
domain) over which the combining calculation is independent. In this case, the input channel
estimate, CEST, must be a matrix of size F by T/SymbolRate by NumTransmitAntennas by
NumReceiveAntennas. The extracted symbol data, Y, is an F rows by T columns matrix.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This initialization
locks nontunable properties and input specifications. For more information on changing property
values, see “System Design in MATLAB Using System Objects”.
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comm.OSTBCEncoder
Package: comm

Encode input using orthogonal space-time block code

Description
The OSTBCEncoder object encodes an input symbol sequence using orthogonal space-time block
code (OSTBC). The block maps the input symbols block-wise and concatenates the output codeword
matrices in the time domain.

To encode an input symbol sequence using an orthogonal space-time block code:

1 Define and set up your OSTBC encoder object. See “Construction” on page 3-983.
2 Call step to encode an input symbol sequence according to the properties of

comm.OSTBCEncoder. The behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
H = comm.OSTBCEncoder creates an orthogonal space-time block code (OSTBC) encoder System
object, H. This object maps the input symbols block-wise and concatenates the output codeword
matrices in the time domain.

H = comm.OSTBCEncoder(Name,Value) creates an OSTBC encoder object, H, with each specified
property set to the specified value. You can specify additional name-value pair arguments in any order
as (Name1,Value1,...,NameN,ValueN).

H = comm.OSTBCEncoder(N,Name,Value) creates an OSTBC encoder object, H. This object has
the NumTransmitAntennas property set to N, and the other specified properties set to the specified
values.

Properties
NumTransmitAntennas

Number of transmit antennas

Specify the number of antennas at the transmitter as 2 | 3 | 4. The default is 2.

SymbolRate

Symbol rate of code
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Specify the symbol rate of the code as one of 3/4 | 1/2. The default is 3/4. This property applies
when you set the NumTransmitAntennas on page 3-0  property to greater than 2. For 2 transmit
antennas, the symbol rate defaults to 1.

Fixed-Point Properties

OverflowAction

Action when fixed-point numeric values overflow

Specify the overflow action as one of Wrap | Saturate. The default is Wrap. This property specifies
the action to be taken in the case of an overflow. Such overflow occurs when the magnitude of a fixed-
point calculation result does not fit into the range of the data type and scaling that stores the result.

Methods
step Encode input using orthogonal space-time block code

Common to All System Objects
release Allow System object property value changes

Examples

Encode BPSK Modulated Data with OSTBC

Generate random binary data, modulate using the BPSK modulation scheme, and encode the
modulated data using OSTBC.

Generate an 8-by-1 vector of random binary data.

data = randi([0 1],8,1);

Create BPSK Modulator System object and modulated the data using the step function.

bpskMod = comm.BPSKModulator;
modData = bpskMod(data);

Create an OSTBC Encoder and encode the modulated signal. As the default number of transmit
antennas is 2, you can see that encData is an 8-by-2 vector.

ostbcEnc = comm.OSTBCEncoder;
encData = ostbcEnc(modData)

encData = 8×2 complex

  -1.0000 + 0.0000i  -1.0000 + 0.0000i
   1.0000 + 0.0000i  -1.0000 - 0.0000i
   1.0000 + 0.0000i  -1.0000 + 0.0000i
   1.0000 + 0.0000i   1.0000 + 0.0000i
  -1.0000 + 0.0000i   1.0000 + 0.0000i
  -1.0000 + 0.0000i  -1.0000 - 0.0000i
   1.0000 + 0.0000i  -1.0000 + 0.0000i
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   1.0000 + 0.0000i   1.0000 + 0.0000i

Algorithms
This object implements the algorithm, inputs, and outputs described on the OSTBC Encoder block
reference page. The object properties correspond to the block parameters.

When this object processes variable-size signals:

• If the input signal is a column vector, the first dimension can change, but the second dimension
must remain fixed at 1.

• If the input signal is a matrix, both dimensions can change.

Version History
Introduced in R2012a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.OSTBCCombiner
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step
System object: comm.OSTBCEncoder
Package: comm

Encode input using orthogonal space-time block code

Syntax
Y = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Y = step(H,X) encodes the input data, X, using OSTBC encoder object, H. The input is a complex-
valued column vector or matrix of data type double, single, or signed fixed-point with power-of-two
slope and zero bias. The step method output, Y, is the same data type as the input data. The time
domain length, T, of X must be a multiple of the number of symbols in each codeword matrix.
Specifically, when you set the NumTransmitAntennas property is 2 or the SymbolRate property is
1/2, T must be a multiple of two and when the SymbolRate property to 3/4, T must be a multiple of
three. For a time or spatial domain input of T rows by one column, the encoded output data, Y, is a (T/
SymbolRate)-by-NumTransmitAntennas matrix. The input matrix size can be F rows by T columns,
where F is the additional dimension (typically the frequency domain) over which the encoding
calculation is independent. In this case, the output is an F-by-(T/SymbolRate)-by-
NumTransmitAntennas matrix.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This initialization
locks nontunable properties and input specifications. For more information on changing property
values, see “System Design in MATLAB Using System Objects”.
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comm.OVSFCode
Package: comm

Generate OVSF code

Description
The OVSFCode object generates an orthogonal variable spreading factor (OVSF) code from a set of
orthogonal codes. OVSF codes were first introduced for 3G communication systems. They are
primarily used to preserve orthogonality between different channels in a communication system.

To generate an OVSF code:

1 Define and set up your OVSF code object. See “Construction” on page 3-987.
2 Call step to generate an OVSF code according to the properties of comm.OVSFCode. The

behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
H = comm.OVSFCode creates an orthogonal variable spreading factor (OVSF) code generator
System object, H. This object generates an OVSF code.

H = comm.OVSFCode(Name,Value) creates an OVSF code generator object, H, with each specified
property set to the specified value. You can specify additional name-value pair arguments in any order
as (Name1,Value1,...,NameN,ValueN).

Properties
SpreadingFactor

Length of generated code

Specify the length of the generated code as an integer scalar value with a power of two. The default
is 64.

Index

Index of code of interest

Specify the index of the desired code from the available set of codes that have the spreading factor
specified in the SpreadingFactor on page 3-0  property. This property must be an integer scalar
in the range 0 to SpreadingFactor–1. The default is 60.
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OVSF codes are defined as the rows of an n-by-n matrix, Cn, where n is the value specified in the
SpreadingFactor property.

You can define the matrix Cn recursively as follows:
First, define C1 = [1].
Next, assume that Cn is defined and let Cn(k) denote the k-th row of Cn.
Then, C2n = [Cn(0) Cn(0); Cn(0) -Cn(0); ... ; Cn(n-1) Cn(n–1); Cn(n–1)–Cn(n–1)].
Cn is only defined for values of n that are a power of 2. Set this property to a value of k to choose the
k-th row of the C matrix as the code of interest.

SamplesPerFrame

Number of output samples per frame

Specify the number of OVSF code samples that the step method outputs as a numeric, positive,
integer scalar value. The default is 1. If you set this property to a value of M, then the step method
outputs M samples of an OVSF code of length N. N is the length of the OVSF code that you specify in
the SpreadingFactor on page 3-0  property.

OutputDataType

Data type of output

Specify output data type as one of double | int8. The default is double.

Methods

step Generate OVSF code

Common to All System Objects
release Allow System object property value changes
reset Reset internal states of System object

Examples
Generate 10 samples of an OVSF code with a spreading factor of 64.

    hOVSF = comm.OVSFCode('SamplesPerFrame', 10,'SpreadingFactor',64);
    seq = step(hOVSF)

Algorithms
This object implements the algorithm, inputs, and outputs described on the OVSF Code Generator
block reference page. The object properties correspond to the block parameters, except:

• The object does not have a property to select frame based outputs.
• The object does not have a property that corresponds to the Sample time parameter.
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Version History
Introduced in R2012a

See Also
comm.HadamardCode | comm.WalshCode
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step
System object: comm.OVSFCode
Package: comm

Generate OVSF code

Syntax
Y = step(H)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Y = step(H) outputs a frame of the OVSF code in column vector Y. Specify the frame length with
the SamplesPerFrame property.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This initialization
locks nontunable properties and input specifications. For more information on changing property
values, see “System Design in MATLAB Using System Objects”.
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comm.PAMDemodulator
Package: comm

(Not recommended) Demodulate using M-ary PAM method

Note comm.PAMDemodulator is not recommended. Use pamdemod instead.

Description
The PAMDemodulator object demodulates a signal that was modulated using M-ary pulse amplitude
modulation. The input is a baseband representation of the modulated signal.

To demodulate a signal that was modulated using M-ary pulse amplitude modulation:

1 Define and set up your PAM demodulator object. See “Construction” on page 3-991.
2 Call step to demodulate the signal according to the properties of comm.PAMDemodulator. The

behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
H = comm.PAMDemodulator creates a demodulator System object, H. This object demodulates the
input signal using the M-ary pulse amplitude modulation (M-PAM) method.

H = comm.PAMDemodulator(Name,Value) creates an M-PAM demodulator object, H, with each
specified property set to the specified value. You can specify additional name-value pair arguments in
any order as (Name1,Value1,...,NameN,ValueN).

H = comm.PAMDemodulator(M,Name,Value) creates an M-PAM demodulator object, H. This
object has the ModulationOrder property set to M, and the other specified properties set to the
specified values.

Properties
ModulationOrder

Number of points in signal constellation

Specify the number of points in the signal constellation as a positive, integer scalar value. The default
is 4. When you set the BitOutput on page 3-0  property to false, this value must be even. When
you set the BitOutput property to true, this value requires an integer power of two.

BitOutput
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Output data as bits

Specify whether the output consists of groups of bits or integer symbol values. The default is false.

When you set this property to true the step method outputs a column vector of bit values with
length equal to log2(ModulationOrder on page 3-0 ) times the number of demodulated symbols.

When you set this property to false, the step method outputs a column vector, with length equal to
the input data vector. This value contains integer symbol values between 0 and ModulationOrder–
1.

SymbolMapping

Constellation encoding

Specify how the object maps an integer or group of log2(ModulationOrder on page 3-0 ) bits to
the corresponding symbol as one of Binary | Gray. The default is Gray.

When you set this property to Gray, the object uses a Gray-encoded signal constellation.

When you set this property to Binary, the integer m, between 0 ≤ m ≤(ModulationOrder–1) maps
to the complex value 2m-ModulationOrder+1.

NormalizationMethod

Constellation normalization method

Specify the method used to normalize the signal constellation as one of Minimum distance
between symbols | Average power | Peak power. The default is Minimum distance between
symbols.

MinimumDistance

Minimum distance between symbols

Specify the distance between two nearest constellation points as a positive, real, numeric scalar
value. The default is 2. This property applies when you set the NormalizationMethod on page 3-
0  property to Minimum distance between symbols.

AveragePower

Average power of constellation

Specify the average power of the symbols in the constellation as a positive, real, numeric scalar
value. The default is 1. This property applies when you set the NormalizationMethod on page 3-
0  property to Average power.

PeakPower

Peak power of constellation
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Specify the maximum power of the symbols in the constellation as a positive, real, numeric scalar
value. The default is 1. This property applies when you set the NormalizationMethod on page 3-
0  property to Peak power.

OutputDataType

Data type of output

Specify the output data type as one of Full precision | Smallest unsigned integer | double
| single | int8 | uint8 | int16 | uint16 | int32 | uint32. The default is Full precision.

When you set this property to Full precision, and the input data type is single or double
precision, the output data has the same data type that of the input.

When the input signal is an integer data type, you must have a Fixed-Point Designer user license to
use this property in Smallest unsigned integer or Full precision mode.

When the input data is of a fixed-point type, the output data type behaves as if you had set the
OutputDataType on page 3-0  property to Smallest unsigned integer.

When you set the BitOutput on page 3-0  property to true, then logical data type becomes a
valid option.

Fixed-Point Properties

FullPrecisionOverride

Full precision override for fixed-point arithmetic

Specify whether to use full precision rules. If you set FullPrecisionOverride to true, which is
the default, the object computes all internal arithmetic and output data types using full precision
rules. These rules provide the most accurate fixed-point numerics. It also turns off the display of
other fixed-point properties because they do not apply individually. These rules guarantee that no
quantization occurs within the object. Bits are added, as needed, to ensure that no roundoff or
overflow occurs. If you set FullPrecisionOverride to false, fixed-point data types are controlled
through individual fixed-point property settings. For more information, see “Full Precision for Fixed-
Point System Objects” on page 3-996.

DenormalizationFactorDataType

Data type of denormalization factor

Specify the denormalization factor data type as one of Same word length as input | Custom.
The default is Same word length as input.

CustomDenormalizationFactorDataType

Fixed-point data type of denormalization factor

Specify the denormalization factor fixed-point type as an unscaled numerictype object with a
signedness of Auto. The default is numerictype([],16). This property applies when you set the
DenormalizationFactorDataType on page 3-0  property to Custom.
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ProductDataType

Data type of product

Specify the product data type as one of Full precision | Custom. The default is Full
precision. When you set this property to Full precision the object calculates the full-precision
product word and fraction lengths. This property applies when you set the
FullPrecisionOverride on page 3-0  property to false.

CustomProductDataType

Fixed-point data type of product

Specify the product fixed-point type as an unscaled numerictype object with a signedness of Auto.
The default is numerictype([],32). This property applies when you set the
FullPrecisionOverride on page 3-0  property to false and the ProductDataType on page 3-
0  property to Custom.

ProductRoundingMethod

Rounding of fixed-point numeric value of product

Specify the product rounding method as one of Ceiling | Convergent | Floor | Nearest | Round |
Simplest | Zero. The default is Floor. This property applies when the object is not in a full
precision configuration

ProductOverflowAction

Action when fixed-point numeric value of product overflows

Specify the product overflow action as one of Wrap | Saturate. The default is Wrap. This property
applies when the object is not in a full precision configuration.

SumDataType

Data type of sum

Specify the sum data type as one of Full precision | Same as product | Custom. The default is
Full precision. When you set this property to Full precision, the object calculates the full-
precision sum word and fraction lengths. This property applies when you set the
FullPrecisionOverride on page 3-0  property to false

CustomSumDataType

Fixed-point data type of sum

Specify the sum fixed-point type as an unscaled numerictype object with a signedness of Auto. The
default is numerictype([],32). This property applies when you set the FullPrecisionOverride
on page 3-0  property to false and the SumDataType on page 3-0  property to Custom.
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Methods

constellation (Not recommended) Calculate or plot ideal signal constellation
step (Not recommended) Demodulate using M-ary PAM method

Common to All System Objects
release Allow System object property value changes

Examples
Modulate and demodulate a signal using 16-PAM modulation.

    hMod = comm.PAMModulator(16);
    hAWGN = comm.AWGNChannel('NoiseMethod', ...
                    'Signal to noise ratio (SNR)', ...
                    'SNR',20, 'SignalPower', 85);
    hDemod = comm.PAMDemodulator(16);
    %Create an error rate calculator
    hError = comm.ErrorRate;
    for counter = 1:100
      % Transmit a 50-symbol frame
      data = randi([0 hMod.ModulationOrder-1],50,1);
      modSignal = step(hMod, data);
      noisySignal = step(hAWGN, modSignal);
      receivedData = step(hDemod, noisySignal);
      errorStats = step(hError, data, receivedData);
    end
    fprintf('Error rate = %f\nNumber of errors = %d\n', ...
      errorStats(1), errorStats(2))

Compatibility Considerations
comm.PAMDemodulator is not recommended

comm.PAMDEmodulator is not recommended. Use pamdemod instead.

n = 10000; % Number of symbols to process
M = 8; % Modulation order
x = randi([0 M-1],n,1); % Create message signal.

%% Using PAM modulation and demodulation system objects
pammodObj = comm.PAMModulator(M);
pamdemodObj = comm.PAMDemodulator(M);
yOld = pammodObj(x); % Modulate.
% ... channel filtering ...
zOld = pamdemodObj(complex(y)); % Demodulate.

%% Using PAM modulation and demodulation functions
yNew = pammod(x,M); % Modulate.
% ... channel filtering ...
zNew = pamdemod(y,M); % Demodulate.
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More About
Full Precision for Fixed-Point System Objects

FullPrecisionOverride is a convenience property that, when you set to true, automatically sets
the appropriate properties for an object to use full-precision to process fixed-point input.

For System objects, full precision, fixed-point operation refers to growing just enough additional bits
to compute the ideal full precision result. This operation has no minimum or maximum range overflow
nor any precision loss due to rounding or underflow. It is also independent of any hardware-specific
settings. The data types chosen are based only on known data type ranges and not on actual numeric
values. Full precision for System objects does not optimize coefficient values. When you set the
FullPrecisionOverride property to true, the other fixed-point properties it controls no longer
apply and any of their non-default values are ignored. These properties are also hidden. To specify
individual fixed-point properties, first set FullPrecisionOverride to false.

Algorithms
This object implements the algorithm, inputs, and outputs described on the M-PAM Demodulator
Baseband block reference page. The object properties correspond to the block parameters.

Version History
Introduced in R2012a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
pammod | pamdemod
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constellation
System object: comm.PAMDemodulator
Package: comm

(Not recommended) Calculate or plot ideal signal constellation

Note comm.PAMDemodulator is not recommended. Use pamdemod and
comm.ConstellationDiagram instead.

Syntax
y = constellation(h)
constellation(h)

Description
y = constellation(h) returns the numerical values of the constellation.

constellation(h) generates a constellation plot for the object.

Examples
Calculate Ideal PAM Signal Constellation

Create comm.PAMModulator and comm.PAMDemodulator System objects, and then calculate their
ideal signal constellations.

Create modulator and demodulator objects.

mod = comm.PAMModulator;
demod = comm.PAMModulator;

Calculate the constellation points.

refMod = constellation(mod)

refMod = 4×1

    -3
    -1
     1
     3

refDemod = constellation(demod)

refDemod = 4×1

    -3
    -1
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     1
     3

Verify that both objects produce the same points.

isequal(refMod,refDemod)

ans = logical
   1

Display the ideal signal constellation.

constellation(mod)
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step
System object: comm.PAMDemodulator
Package: comm

(Not recommended) Demodulate using M-ary PAM method

Note comm.PAMDemodulator is not recommended. Use pamdemod instead.

Syntax
Y = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Y = step(H,X) demodulates data, X, with the M-PAM demodulator System object, H, and returns Y.
Input X must be a scalar or column vector. The data type of the input can be double or single
precision, signed integer, or signed fixed point (fi objects). Depending on the BitOutput property
value, output Y can be integer or bit valued.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This initialization
locks nontunable properties and input specifications. For more information on changing property
values, see “System Design in MATLAB Using System Objects”.
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comm.PAMModulator
Package: comm

(Not recommended) Modulate using M-ary PAM method

Note comm.PAMModulator is not recommended. Use pammod instead.

Description
The PAMModulator object modulates using M-ary pulse amplitude modulation. The output is a
baseband representation of the modulated signal. The M-ary number parameter, M, represents the
number of points in the signal constellation and requires an even integer.

To modulate a signal using M-ary pulse amplitude modulation:

1 Define and set up your PAM modulator object. See “Construction” on page 3-1000.
2 Call step to modulate the signal according to the properties of comm.PAMModulator. The

behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
H = comm.PAMModulator creates a modulator System object, H. This object modulates the input
signal using the M-ary pulse amplitude modulation (M-PAM) method.

H = comm.PAMModulator(Name,Value) creates an M-PAM modulator object, H, with each
specified property set to the specified value. You can specify additional name-value pair arguments in
any order as (Name1,Value1,...,NameN,ValueN).

H = comm.PAMModulator(M,Name,Value) creates an M-PAM modulator object, H. This object has
the ModulationOrder property set to M and the other specified properties set to the specified
values.

Properties
ModulationOrder

Number of points in signal constellation

Specify the number of points in the signal constellation as a positive, integer scalar value. The default
is 4. When you set the BitInput on page 3-0  property to false, ModulationOrder must be even.
When you set the BitInput property to true, ModulationOrder must be an integer power of two.
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BitInput

Assume bit inputs

Specify whether the input is in bits or integers. The default is false.

When you set this property to true, the step method input requires a column vector of bit values
whose length is an integer multiple of log2(ModulationOrder on page 3-0 ). This vector contains
bit representations of integers between 0 and ModulationOrder–1.

When you set this property to false, the step method input must be a column vector of integer
symbol values between 0 and ModulationOrder–1.

SymbolMapping

Constellation encoding

Specify how the object maps an integer or group of log2(ModulationOrder on page 3-0 ) input
bits to the corresponding symbol as one of Binary | Gray. The default is Gray.

When you set this property to Gray, the object uses a Gray-encoded signal constellation.

When you set this property to Binary, the input integer m, between 0 ≤ m ≤ModulationOrder-1)
maps to the complex value 2m– ModulationOrder + 1.

NormalizationMethod

Constellation normalization method

Specify the method used to normalize the signal constellation as one of Minimum distance
between symbols | Average power | Peak power. The default is Minimum distance between
symbols.

MinimumDistance

Minimum distance between symbols

Specify the distance between two nearest constellation points as a positive, real, numeric scalar
value. The default is 2. This property applies when you set the NormalizationMethod on page 3-
0  property to Minimum distance between symbols.

AveragePower

Average power of constellation

Specify the average power of the symbols in the constellation as a positive, real, numeric scalar
value. The default is 1. This property applies when you set the NormalizationMethod on page 3-
0  property to Average power.

PeakPower
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Peak power of constellation

Specify the maximum power of the symbols in the constellation as a positive, real, numeric scalar
value. The default is 1. This property applies when you set the NormalizationMethod on page 3-
0  property to Peak power.

OutputDataType

Data type of output

Specify the output data type as one of double | single | Custom. The default is double.

Fixed-Point Properties

CustomOutputDataType

Fixed-point data type of output

Specify the output fixed-point type as a numerictype object with a signedness of Auto. The default is
numerictype([],16). This property applies when you set the OutputDataType on page 3-0
property to Custom.

Methods
constellation (Not recommended) Calculate or plot ideal signal constellation
step (Not recommended) Modulate using M-ary PAM method

Common to All System Objects
release Allow System object property value changes

Examples
Modulate data using 16-PAM modulation, and visualize the data in a scatter plot.

    % Create binary data for 100, 4-bit symbols 
    data = randi([0 1],400,1);
    % Create a 16-PAM modulator System object with bits as inputs and
    % Gray-coded signal constellation
    hModulator = comm.PAMModulator(16,'BitInput',true);
    % Modulate and plot the data
    modData = step(hModulator, data); 
    constellation(hModulator)

Compatibility Considerations
comm.PAMModulator is not recommended

comm.PAMModulator is not recommended. Use pammod instead.

n = 10000; % Number of symbols to process
M = 8; % Modulation order
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x = randi([0 M-1],n,1); % Create message signal.

%% Using PAM modulation and demodulation system objects
pammodObj = comm.PAMModulator(M);
pamdemodObj = comm.PAMDemodulator(M);
yOld = pammodObj(x); % Modulate.
% ... channel filtering ...
zOld = pamdemodObj(complex(y)); % Demodulate.

%% Using PAM modulation and demodulation functions
yNew = pammod(x,M); % Modulate.
% ... channel filtering ...
zNew = pamdemod(y,M); % Demodulate.

Algorithms
This object implements the algorithm, inputs, and outputs described on the M-PAM Modulator
Baseband block reference page. The object properties correspond to the block parameters.

Version History
Introduced in R2012a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
pammod | pamdemod
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constellation
System object: comm.PAMModulator
Package: comm

(Not recommended) Calculate or plot ideal signal constellation

Note comm.PAMModulator is not recommended. Use pammod and comm.ConstellationDiagram
instead.

Syntax
y = constellation(h)
constellation(h)

Description
y = constellation(h) returns the numerical values of the constellation.

constellation(h) generates a constellation plot for the object.

Examples
Calculate Ideal PAM Signal Constellation

Create comm.PAMModulator and comm.PAMDemodulator System objects, and then calculate their
ideal signal constellations.

Create modulator and demodulator objects.

mod = comm.PAMModulator;
demod = comm.PAMModulator;

Calculate the constellation points.

refMod = constellation(mod)

refMod = 4×1

    -3
    -1
     1
     3

refDemod = constellation(demod)

refDemod = 4×1

    -3
    -1
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     1
     3

Verify that both objects produce the same points.

isequal(refMod,refDemod)

ans = logical
   1

Display the ideal signal constellation.

constellation(mod)
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step
System object: comm.PAMModulator
Package: comm

(Not recommended) Modulate using M-ary PAM method

Note comm.PAMModulator is not recommended. Use pammod instead.

Syntax
Y = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Y = step(H,X) modulates input data, X, with the M-PAM modulator System object, H. It returns the
baseband modulated output, Y. Depending on the value of the BitInput property, input X can be an
integer or bit valued column vector with numeric, logical, or fixed-point data types.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This initialization
locks nontunable properties and input specifications. For more information on changing property
values, see “System Design in MATLAB Using System Objects”.
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comm.PhaseFrequencyOffset
Package: comm

Apply phase and frequency offsets to input signal

Description
The PhaseFrequencyOffset object applies phase and frequency offsets to an incoming signal.

To apply phase and frequency offsets to the input signal:

1 Create the comm.PhaseFrequencyOffset object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
pfo = comm.PhaseFrequencyOffset
pfo = comm.PhaseFrequencyOffset(Name=Value)

Description

pfo = comm.PhaseFrequencyOffset creates a phase and frequency offset System object. This
object applies phase and frequency offsets to an input signal.

pfo = comm.PhaseFrequencyOffset(Name=Value) creates a phase and frequency offset object
with each specified property set to the specified value. For example, SampleRate=20 sets a sample
rate of 20 Hz. You can specify additional name-value pair arguments in any order as
(Name1=Value1,...,NameN=ValueN).

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

PhaseOffset — Phase offset
0 (default) | scalar | row or column vector | matrix
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Phase offset in degrees, specified as numeric scalar, an M-by-1 or 1-by-N numeric vector, or an M-by-
N numeric matrix. For more information, see “Interdependent Property-Input Dimensions” on page 3-
1011.

Tunable: Yes
Data Types: double

FrequencyOffsetSource — Frequency offset source
"Property" (default) | "Input port"

Frequency offset source, specified as one of these values

• "Property" — Specify the frequency offset using the FrequencyOffset property.
• "Input port" — Specify the frequency offset in the fOffset input argument.

FrequencyOffset — Frequency offset
0 (default) | scalar | row or column vector | matrix

Frequency offset in Hz, specified as a numeric scalar, a numeric row or column vector, or a numeric
matrix.

For more information, see “Interdependent Property-Input Dimensions” on page 3-1011.

Tunable: Yes
Dependency

To enable this property, set the FrequencyOffsetSource property to "Property".
Data Types: double

SampleRate — Sample rate
1 (default) | positive scalar

Sample rate of the input signal in Hz, specified as a positive scalar.
Data Types: double

Usage

Syntax
y = pfo(x)
y = pfo(x,fOffset)

Description

y = pfo(x) applies phase and frequency offsets to input signal x. To use this syntax, set the
FrequencyOffsetSource to "Property".

y = pfo(x,fOffset) specifies the frequency offset to apply to x. To use this syntax, set the
FrequencyOffsetSource to "Input port".
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Input Arguments

x — Input signal
scalar | row or column vector | matrix

Input signal, specified as a numeric scalar, a numeric row or column vector, or a numeric matrix. For
more information, see “Interdependent Property-Input Dimensions” on page 3-1011.
Data Types: single | double

fOffset — Frequency offset
scalar | row or column vector | matrix

Frequency offset in Hz, specified as a numeric scalar, a numeric row or column vector, or a numeric
matrix. For more information, see the description of the FrequencyOffset property and
“Interdependent Property-Input Dimensions” on page 3-1011.

Dependency

To enable this input, set the FrequencyOffsetSource property to "Input port".
Data Types: single | double

Output Arguments

y — Output signal
scalar | row or column vector | matrix

Output signal, returned with the same dimensions and data type as x.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Introduce Phase Offset to 16-QAM Signal

Introduce a phase offset to a 16-QAM signal and view its effect on the constellation.

Create a phase frequency offset System object™, setting the phase offset to 30 degrees.

pfo = comm.PhaseFrequencyOffset(PhaseOffset=30);
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Generate random symbols and apply 16-QAM modulation.

M = 16;
data = (0:M-1)';
x = qammod(data,M);

Plot the 16-QAM constellation.

scatterplot(x);
title("Original Constellation")
xlim([-5 5])
ylim([-5 5])

Introduce a phase offset and plot the offset constellation.

y = pfo(x);
scatterplot(y);
title("Constellation After Phase Offset")
xlim([-5 5])
ylim([-5 5])
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More About
Interdependent Property-Input Dimensions

This table outlines the interdependency of property-to-input argument dimensions.

Number of
Dimensions

Data I/O
Dimension

Frame
Size

Number of
Channels

Frequency/Phase Offset
Property Dimension

Frequency Offset
Input Argument
Dimension

Any Scalar 1 1 Scalar Scalar
2 M-by-1 M 1 M-by-1

1-by-M

1-by-1

M

M-by-1

1

1-by-1
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Number of
Dimensions

Data I/O
Dimension

Frame
Size

Number of
Channels

Frequency/Phase Offset
Property Dimension

Frequency Offset
Input Argument
Dimension

2 1-by-N 1 N N-by-1

1-by-N

1-by-1

N

1-by-N

1

1-by-1
2 M-by-N M N M-by-N

N-by-1

1-by-N

M-by-1

1-by-M

1-by-1

M-by-N

N

1-by-N

1

1-by-1

M

M-by-1

For example:

• When you specify a scalar offset property, the object applies the same offset to all elements of the
input signal

• When you specify a 2-by-1 offset property for a 2-by-3 input signal (one offset value per sample),
the object applies the same sample offset across the three channels.

• When you specify a 1-by-3 offset property for a 2-by-3 input signal (one offset value per channel),
the same channel offset is applied across the two samples of a channel.

• When you specify a 2-by-3 offset property for a 2-by-3 input signal (one offset value per sample for
each channel), the offsets are applied element-wise to the input signal.

Algorithms
If the input signal is u(t), then the output signal is

y(t) = u(t) ⋅ cos 2π∫0 t
f τ dτ + φ(t) + jsin 2π∫0 t

f τ dτ + φ(t) ,

where f(t) is the frequency offset, and φ(t) is the phase offset.

The discrete-time output is given by

y(0) = u(0) cos φ(0) + jsin φ(0)  and 

y(i) = u(i) cos 2π ∑
n = 0

i− 1
f n Δt + φ(i) + jsin 2π ∑

n = 0

i− 1
f n Δt + φ(i) ,

where i > 0, and Δt is the sample time.
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Version History
Introduced in R2012a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.ThermalNoise | comm.PhaseNoise | comm.MemorylessNonlinearity |
frequencyOffset
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comm.PhaseNoise
Package: comm

Apply phase noise to baseband signal

Description
The comm.PhaseNoise System object adds phase noise to a complex signal. This object emulates
impairments introduced by the local oscillator of a wireless communication transmitter or receiver.
The object generates filtered phase noise according to the specified spectral mask and adds it to the
input signal. For a description of the phase noise modeling, see “Algorithms” on page 3-1020.

To add phase noise using a comm.PhaseNoise object:

1 Create the comm.PhaseNoise object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
phznoise = comm.PhaseNoise
phznoise = comm.PhaseNoise(Name,Value)
phznoise = comm.PhaseNoise(level,offset,samplerate)

Description

phznoise = comm.PhaseNoise creates a phase noise System object with default property values.

phznoise = comm.PhaseNoise(Name,Value) creates a phase noise object with the specified
property Name set to the specified Value. You can specify additional name-value pair arguments in
any order as (Name1,Value1,...,NameN,ValueN).

phznoise = comm.PhaseNoise(level,offset,samplerate) creates a phase noise object with
the phase noise level, frequency offset, and sample rate properties specified as value-only arguments.
When specifying a value-only argument, you must specify all preceding value-only arguments.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.
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Level — Phase noise level
[-80 -100] (default) | vector of negative scalars

Phase noise level in decibels relative to carrier per hertz (dBc/Hz), specified as a vector of negative
scalars. The Level and FrequencyOffset properties must have the same length.
Data Types: double

FrequencyOffset — Frequency offset
[2000 20000] (default) | vector of positive increasing values

Frequency offset in Hz, specified as a vector of positive increasing values. The maximum frequency
offset value must be less than FS/ 2, where FS represents the SampleRate property value.

The Level and FrequencyOffset properties must have the same length.
Data Types: double

SampleRate — Sample rate
1e6 (default) | positive scalar

Sample rate in Hz, specified as a positive scalar greater than two times the maximum value specified
by the FrequencyOffset property.
Data Types: double

RandomStream — Source of random stream
'Global stream' (default) | 'mt19937ar with seed'

Source of the random stream, specified as 'Global stream' or 'mt19937ar with seed'.If
RandomStream is set to 'mt19937ar with seed', the mt19937ar algorithm is used for normally
distributed random number generation, in which case the reset method reinitializes the random
number stream to the value of the Seed property.
Data Types: char | string

Seed — Initial seed
2137 (default) | positive scalar less than 232

Initial seed for RandomStream, specified as a positive scalar less than 232.
Dependencies

To enable this property, set RandomStream to 'mt19937ar with seed'.
Data Types: double

Usage

Syntax
out = phznoise(in)

Description

out = phznoise(in) adds phase noise, specified by the phznoise System object, to the input
signal. The result is returned in out.
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Input Arguments

in — Input signal
vector | matrix

Input signal, specified as an NS-by-1 numeric vector or NS-by-M numeric matrix. NS is the number of
samples and M is the number of channels.
Data Types: double | single
Complex Number Support: Yes

Output Arguments

out — Output signal
vector | matrix

Output signal, returned as a complex-valued signal with the same data type and size as the input
signal.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to comm.PhaseNoise
visualize Visualize spectrum mask of phase noise

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Phase Noise Effects on 16-QAM Signal

Add a phase noise vector and frequency offset vector to a 16-QAM signal. Then plot the signal.

Create a phase noise System object.

pnoise = comm.PhaseNoise('Level',-50,'FrequencyOffset',20);

Generate modulated symbols.

M = 16; % From 16-QAM
data = randi([0 M-1],1000,1);
modData = qammod(data,M);

Use pnoise to apply phase noise. Plot the impaired data.
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y = pnoise(modData);
scatterplot(y)

View Phase Noise Effects on Signal Spectrum

View the effects of phase noise on a 10 MHz sine wave by using a spectrum analyzer. Adjust the
resolution bandwidth of the spectrum analyzer to see its impact on the visualized spectral noise.

Initialize variables for the simulation.

fc = 1e6; % Carrier frequency in Hz
fs = 4e6; % Sample rate in Hz.
phNzLevel = [-85 -118 -125 -145]; % in dBc/Hz
phNzFreqOff = [1e3 9.5e3 19.5e3 195e3]; % in Hz
Nspf = 6e6; % Number of Samples per frame
freqSpan = 400e3; % in Hz, for spectrum computation

Create sine wave, phase noise, and spectrum analyzer objects.

sinewave = dsp.SineWave( ...
    Amplitude=1, ...
    Frequency=fc, ...
    SampleRate=fs, ...
    SamplesPerFrame=Nspf, ...
    ComplexOutput=true);
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pnoise = comm.PhaseNoise( ...
    Level=phNzLevel, ...
    FrequencyOffset=phNzFreqOff, ...
    SampleRate=fs);
sascopeRBW100 = spectrumAnalyzer( ...
    SampleRate=fs, ...
    Method="welch", ...
    FrequencySpan="Span and center frequency", ...
    CenterFrequency=fc, ...
    Span=freqSpan, ...
    RBWSource="Property", ...
    RBW=100, ...
    SpectrumType="Power density", ...
    SpectralAverages=10, ...
    SpectrumUnits="dBW", ...
    YLimits=[-150 10], ...
    Title="Resolution Bandwidth 100 Hz", ...
    ChannelNames={'signal','signal with phase noise'}, ...
    Position=[79 147 605 374]);
sascopeRBW1k = spectrumAnalyzer( ...
    SampleRate=fs, ...
    Method="welch", ...
    FrequencySpan="Span and center frequency", ...
    CenterFrequency=fc, ...
    Span=freqSpan, ...
    RBWSource="Property", ...
    RBW=1000, ...
    SpectrumType="Power density", ...
    SpectralAverages=10, ...
    SpectrumUnits="dBW", ...
    YLimits=[-150 10], ...
    Title="Resolution Bandwidth 1 kHz", ...
    ChannelNames={'signal','signal with phase noise'}, ...
    Position=[685 146 605 376]);

To analyze the spectrum and phase noise, the example includes two spectrum analyzer objects, with
100 Hz and 1 kHz resolution bandwidths, respectively. The spectrum analyzer objects use the default
Hann windowing setting, the spectrum units are set to dBW, and the number of spectral averages is
set to 10.

x = sinewave();
y = pnoise(x);

When the resolution bandwidth is 100 Hz, the dBW/Hz view for the spectrum analyzer shows the tone
at -20 dBW/Hz. The spectrum analyzer object corrects for the power spreading effect of the Hann
windowing. Results show the visual average of the phase noise match the specified phase noise
spectrum.

sascopeRBW100(x,y)
release(sascopeRBW100)
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When the resolution bandwidth is 1 kHz, the dBW/Hz view for the spectrum analyzer shows the tone
at -30 dBW/Hz. The tone energy of the sine wave is now spread across 1 kHz instead of 100 Hz, so
the sine wave PSD level reduces by 10 dB. With the resolution bandwidth at 1 kHz, the visual average
of the phase noise still achieves the phase noise defined by the phase noise object.

With the resolution bandwidth increased from 100 Hz to 1 kHz, the spectrum analyzer object still
corrects for the power spreading effect of the Hann window, and it achieves better spectral averaging
with the wider resolution bandwidth. For more information, see “Why Use Windows?”

sascopeRBW1k(x,y)
release(sascopeRBW1k)
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Calculate the RMS phase noise in degrees between the pure and noisy sine waves. In the general
case, the pure signal must be time aligned with the noisy signal to accurately determine the phase
error. However, in this case, the periodicity of the sine wave makes this step unnecessary.

ph_err = unwrap(angle(y) - angle(x));
rms_ph_nz_deg = rms(ph_err)*180/pi();
sprintf('The computed RMS phase noise is %3.2f degrees.', ...
    rms_ph_nz_deg)

ans = 
'The computed RMS phase noise is 0.37 degrees.'

Algorithms
The output signal, yk, is related to input sequence xk by yk=xkejφk, where φk is the phase noise. The
phase noise is filtered Gaussian noise such that φk=f(nk), where nk is the noise sequence and f
represents a filtering operation.
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To model the phase noise, define the power spectrum density (PSD) mask characteristic by specifying
scalar or vector values for the frequency offset and phase noise level.

• For a scalar frequency offset and phase noise level specification, an IIR digital filter computes the
spectrum mask. The spectrum mask has a 1 / f characteristic that passes through the specified
point. For more information, see “IIR Digital Filter” on page 3-1021.

• For a vector frequency offset and phase noise level specification, an FIR filter computes the
spectrum mask. The spectrum mask is interpolated across log10(f). For more information, see
“FIR Filter” on page 3-1021.

IIR Digital Filter

For the IIR digital filter, the numerator coefficient is

λ = 2πfof f set10L/10 ,

where foffset is the frequency offset in Hz and L is the phase noise level in dBc/Hz. The denominator
coefficients, γi, are recursively determined as

γi = i− 2.5
γi− 1
i− 1 ,

where γ1 = 1, i = {1, 2,..., Nt}, and Nt is the number of filter coefficients. Nt is a power of 2 in the
range [27 , 219]. The value of Nt grows as the phase noise offset decreases towards 0 Hz.

FIR Filter

For the FIR filter, the phase noise level is determined through log10(f) interpolation for frequency
offsets over the range [df, fs / 2], where df is the frequency resolution and fs is the sample rate. The
phase noise is flat over the range [0, df] in Hz, and from the largest frequency offset to fs / 2. The
phase noise has 1 / f3 characteristic from df to the smallest frequency offset. The phase noise is
linearly interpolated between the smallest and the largest frequency offset. The frequency resolution
is equal to (fs / 2)(1 / Nt), where Nt is the number of coefficients, and is a power of 2 less than or equal
to 216. If Nt < 28, a time domain FIR filter is used. Otherwise, a frequency domain FIR filter is used.

The algorithm increases Nt until these conditions are met:

• The frequency resolution is less than the minimum value of the frequency offset vector.
• The frequency resolution is less than the minimum difference between two consecutive

frequencies in the frequency offset vector.
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• The maximum number of FIR filter taps is 216.

Version History
Introduced in R2012a

References
[1] Kasdin, N. J., "Discrete Simulation of Colored Noise and Stochastic Processes and 1/(f^alpha);

Power Law Noise Generation." The Proceedings of the IEEE. Vol. 83, No. 5, May, 1995, pp
802–827.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
comm.PhaseFrequencyOffset | comm.MemorylessNonlinearity

Blocks
Phase Noise
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comm.PNSequence
Package: comm

Generate a pseudonoise (PN) sequence

Description
The comm.PNSequence System object generates a sequence of pseudorandom binary numbers using
a linear-feedback shift register (LFSR). This object implements LFSR using a simple shift register
generator (SSRG, or Fibonacci) configuration. Pseudonoise sequences are typically used for
pseudorandom scrambling and in direct-sequence spread-spectrum systems.

To generate a PN sequence:

1 Create the comm.PNSequence object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
pnSequence = comm.PNSequence
pnSequence = comm.PNSequence(Name,Value)

Description

pnSequence = comm.PNSequence creates a pseudonoise (PN) sequence generator System object.
This object generates a sequence of pseudorandom binary numbers using a linear-feedback shift
register (LFSR).

pnSequence = comm.PNSequence(Name,Value) sets properties using one or more name-value
pairs. Enclose each property name in quotes. For example, 'Mask',1 specifies a one sample offset of
the output sequence from the starting point.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Polynomial — Generator polynomial
'z^6 + z + 1' (default) | character vector | string scalar | binary row vector | integer vector
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Generator polynomial that determines the feedback connections of the shift register, specified as one
of these options:

• Character vector or string scalar of a polynomial whose constant term is 1. For more information,
see “Representation of Polynomials in Communications Toolbox”.

• Binary-valued row vector that represents the coefficients of the polynomial in order of descending
powers. The length of this vector must be N + 1, where N is the degree of the polynomial. The
first and last entries must be 1, indicating the leading term with degree N and a constant term of
1.

• Integer-valued row vector of elements that represent the exponents for the nonzero terms of the
polynomial in order of descending powers. The last entry must be 0, indicating a constant term of
1.

For more information, see “Simple Shift Register Generator” on page 3-1036.
Example: 'z^8 + z^2 + 1', [1 0 0 0 0 0 1 0 1], and [8 2 0] represent the same
polynomial, p(z) = z8 + z2 + 1.
Data Types: double | char

InitialConditionsSource — Source of initial conditions
'Property' (default) | 'Input port'

Source of the initial conditions used for the shift register of the PN sequence, specified as one of
these values:

• 'Property' — Specify PN sequence generator initial conditions by using the
InitialConditions property.

• 'Input port' — Specify PN sequence generator initial conditions by using the initcond input
argument.

Data Types: char

InitialConditions — Initial conditions of shift register
[0 0 0 0 0 1] (default) | binary scalar | binary vector

Initial conditions used for the shift register of the PN sequence generator when the simulation starts,
specified as a binary-valued scalar or binary-valued vector.

• If you set this property to a scalar, the initial value of all cells in the shift register are the specified
scalar value.

• If you set this property to a vector, each element of the vector corresponds to the initial value of
the corresponding cell in the shift register. The length of the vector must equal the degree of the
generator polynomial specified by the Polynomial property.

For more information, see “Simple Shift Register Generator” on page 3-1036.

Note For the object to generate a nonzero sequence, at least one element of the initial conditions for
the first or second preferred PN sequence generator must be nonzero. Specifically, the initial state of
at least one of the shift registers must be nonzero.
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Dependencies

To enable this property, set InitialConditionsSource to 'Property'.
Data Types: double

MaskSource — Source of mask to shift PN sequence
'Property' (default) | 'Input port'

Source of the mask that determines the shift of the PN sequence, specified as one of these:

• 'Property' — Specify the mask by using the Mask property.
• 'Input port' — Specify the mask by using the maskvec input argument.

Data Types: char

Mask — Mask to shift PN sequence
0 (default) | integer scalar | binary vector

Mask that determines how the PN sequence is shifted from its starting point, specified as an integer
scalar or a binary vector.

• When you set this property to an integer scalar, the value is the length of the shift. The object
wraps shift values that are negative or greater than the length of the PN sequence.

• When you set this property to a binary vector, its length must equal the degree of the generator
polynomial specified by the Polynomial property.

For more information, see “Shifting PN Sequence Starting Point” on page 3-1037. The mask vector
can be calculated using the shift2mask function.
Dependencies

To enable this property, set MaskSource to 'Property'.

VariableSizeOutput — Enable variable-size outputs
false (default) | true

Enable variable-size outputs, specified as a numeric or logical 0 (false) or 1 (true). To enable
variable-size outputs by using the outputsize input argument, set this property to true.The
enabled input specifies the output size of the PN sequence. The input value must be less than or
equal to the value of the MaximumOutputSize property.

When you set this property to false, the SamplesPerFrame property specifies the number of output
samples.

MaximumOutputSize — Maximum output size
[10 1] (default) | vector of the form [m 1]

Maximum output frame size, specified as a vector of the form [m 1], where m is a positive integer.
The first element of the vector indicates the maximum length of the output frame and the second
element of the vector must be 1.
Example: [20 1] specifies a maximum frame output size of 20-by-1.
Dependencies

To enable this property, set VariableSizeOutput to true.

 comm.PNSequence

3-1025



SamplesPerFrame — Number of samples output per frame
1 (default) | positive integer

Number of samples output per frame, specified as a positive integer. If you set this property to a
value of M, then the object outputs M samples of a PN sequence that has a period of N = 2n – 1,
where n represents the degree of the generator polynomial that the Polynomial specifies.

If you set the BitPackedOutput property to false, the samples are bits from the PN sequence. If
you set the BitPackedOutput property to true, then the output corresponds to SamplesPerFrame
groups of bit-packed samples.

ResetInputPort — Enable generator reset input
false (default) | true

Enable the generator reset input, specified as a numeric or logical 0 (false) or 1 (true). To enable
the ability to reset the sequence generator using the resetseq input argument, set this property to
true. This input resets the states of the PN sequence generator to the initial conditions specified in
the InitialConditions property. For more information, see “Resetting a Signal” on page 3-1037.

Dependencies

To enable this property, set InitialConditionsSource to 'Property'.

BitPackedOutput — Output bit-packed words
false (default) | true

Option to output bit-packed words, specified as false or true. Set this property to true to enable
bit-packed outputs.

When BitPackedOutput is true, the object outputs a column vector of length M, which contains
most-significant-bit (MSB) first integer representations of bit words of length P. M is the number of
samples per frame specified in the SamplesPerFrame property. P is the size of the bit-packed words
specified in the NumPackedBits property.

Note The first bit from the left in the bit-packed word contains the most significant bit for the integer
representation.

NumPackedBits — Number of bits per bit-packed word
8 (default) | integer in the range [1, 32]

Number of bits packed into each output data word, specified as an integer in the range [1, 32].

Dependencies

To enable this property, set BitPackedOutput to true.

SignedOutput — Output signed bit-packed words
false (default) | true

Set this property to true to obtain signed, bit-packed, output words. In this case, a 1 in the most
significant bit (sign bit) indicates a negative value. The property indicates negative numbers in a
two's complement format.
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Dependencies

To enable this property, set BitPackedOutput to true.

OutputDataType — Data type of output
'double' (default) | 'logical' | 'Smallest unsigned integer' | 'Smallest integer'

Output data type, specified as one of these values:

• When BitPackedOutput is set to false, OutputDataType can be 'double', 'logical', or
'Smallest unsigned integer'.

• When BitPackedOutput is set to true, OutputDataType can be 'double' or 'Smallest
integer'.

Note You must have a Fixed-Point Designer user license to use this property in 'Smallest
unsigned integer' or 'Smallest integer' mode.

Dependencies

The valid settings for this property depend on the setting of the BitPackedOutput property.

Usage

Syntax
outSequence = pnSequence()
outSequence = pnSequence(initcond)
outSequence = pnSequence(maskvec)
outSequence = pnSequence(outputsize)
outSequence = pnSequence(resetseq)
outSequence = pnSequence(initcond,maskvec,outputsize)
outSequence = pnSequence(maskvec,outputsize,resetseq)

Description

outSequence = pnSequence() outputs a frame of the PN sequence in a column vector based on
the configured object.

outSequence = pnSequence(initcond) uses initcond as the initial conditions for the PN
sequence of the linear-feedback shift register.

To enable this syntax, set the InitialConditionsSource property to 'Input port'.

outSequence = pnSequence(maskvec) uses the maskvec input to specify the mask vector that
determines how the PN sequence is shifted from its starting point.

To enable this syntax, set the MaskSource property to 'Input port'.

outSequence = pnSequence(outputsize) uses outputsize as the output size.

To enable this syntax, set the VariableSizeOutput property to true.
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outSequence = pnSequence(resetseq) uses resetseq as the reset signal.

To enable this syntax, set the InitialConditionsSource property to 'Property' and the
ResetInputPort property to true.

outSequence = pnSequence(initcond,maskvec,outputsize)

To enable this syntax, set the InitialConditionsSource property to 'Input port', the
ResetInputPort property to false, the MaskSource property to 'Input port', and the
VariableSizeOutput property to true.

outSequence = pnSequence(maskvec,outputsize,resetseq)

To enable this syntax, set the InitialConditionsSource property to 'Property', the
MaskSource property to 'Input port', the VariableSizeOutput property to true, the
ResetInputPort property to true.

Input Arguments

initcond — Initial register conditions used for shift register
binary-valued scalar | binary-valued vector

Initial conditions used for the shift register when the simulation starts, specified as a binary-valued
scalar or binary-valued vector.

• If you set this property to a scalar, the initial value of all cells in the shift register are the specified
scalar value.

• If you set this input to a vector, each element of the vector corresponds to the initial value of the
corresponding cell in the shift register. The length of the vector must equal the degree of the
generator polynomial specified by the Polynomial property.

Note For the object to generate a nonzero sequence, at least one element of the initial condition for
the PN sequence generator must be nonzero. Specifically, the initial state of at least one of the shift
registers must be nonzero.

Example: outSequence = pnSequence([1 1 0]) corresponds to possible initial register states
for a PN sequence generator specified by a generator polynomial of degree 3.
Data Types: double

maskvec — Mask vector
binary vector

Mask that determines how the PN sequence is shifted from its starting point, specified as a binary
vector. The length of the vector must equal the degree of the Polynomial property.

outputsize — Length of output sequence
nonnegative integer | vector of the form [n 1]

Length of output sequence, specified as a nonnegative integer, n, or a vector of the form [n 1], where
n is a positive integer. The first element of the vector indicates the length of the output frame and the
second element of the vector must be 1.
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The scalar or the first element of the row vector must be less than or equal to the first element of the
MaximumOutputSize property value.

resetseq — Reset PN sequence generator
scalar | column vector

Reset sequence generator, specified as a scalar or a column vector with length equal to the number of
samples per frame specified by the SamplesPerFrame property.

• When you specify this input as a nonzero scalar, the object resets to the specified initial conditions
and then generates a new output frame.

• When you specify this input as a column vector, the object resets to the specified initial conditions
at each sample in the output frame that aligns with a nonzero value in the reset vector.

For more information, see “Resetting a Signal” on page 3-1037.

Output Arguments

outSequence — PN Sequence
column vector

PN sequence generated by the object, returned as a column vector.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Configuring a PN Sequence Generator

When configuring a PN sequence generator System object™, you have options regarding how to
express the polynomial and the mask. This figure defines a PN sequence generator with a generator
polynomial p z = z6 + z + 1 and a mask m z = z5 + z4 + z2 + 1. The example shows a few of the
formatting options available to define the generator polynomial and the mask when you configure the
PN sequence generator in this figure.
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You can input the polynomial exponents of z for the nonzero terms of the polynomial in descending
order of powers and the mask as a binary vector.

pnseq1 = comm.PNSequence('Polynomial',[6 1 0], ...
    'Mask',[1 1 0 1 0 1],'SamplesPerFrame',20)

pnseq1 = 
  comm.PNSequence with properties:

                 Polynomial: [6 1 0]
    InitialConditionsSource: 'Property'
          InitialConditions: [0 0 0 0 0 1]
                 MaskSource: 'Property'
                       Mask: [1 1 0 1 0 1]
         VariableSizeOutput: false
            SamplesPerFrame: 20
             ResetInputPort: false
            BitPackedOutput: false
             OutputDataType: 'double'

You can input the polynomial exponents as a binary-valued row vector that represents the coefficients
of the polynomial in order of descending powers.

pnseq2 = comm.PNSequence('Polynomial',[1 0 0 0 0 1 1], ...
    'Mask',[1 1 0 1 0 1],'SamplesPerFrame',20)

pnseq2 = 
  comm.PNSequence with properties:

                 Polynomial: [1 0 0 0 0 1 1]
    InitialConditionsSource: 'Property'
          InitialConditions: [0 0 0 0 0 1]
                 MaskSource: 'Property'
                       Mask: [1 1 0 1 0 1]
         VariableSizeOutput: false
            SamplesPerFrame: 20
             ResetInputPort: false
            BitPackedOutput: false
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             OutputDataType: 'double'

You can also define the mask as a scalar value using the mask2shift function.

mask2shift ([1 0 0 0 0 1 1],[1 1 0 1 0 1])

ans = 22

pnseq3 = comm.PNSequence('Polynomial',[1 0 0 0 0 1 1], ...
    'Mask',22,'SamplesPerFrame',20)

pnseq3 = 
  comm.PNSequence with properties:

                 Polynomial: [1 0 0 0 0 1 1]
    InitialConditionsSource: 'Property'
          InitialConditions: [0 0 0 0 0 1]
                 MaskSource: 'Property'
                       Mask: 22
         VariableSizeOutput: false
            SamplesPerFrame: 20
             ResetInputPort: false
            BitPackedOutput: false
             OutputDataType: 'double'

Use each PN sequence object to generate a frame of 20 samples and compare the generated
sequences.

out_1 = pnseq1();
out_2 = pnseq2();
out_3 = pnseq3();
isequal(out_1,out_2)

ans = logical
   1

isequal(out_1,out_3)

ans = logical
   1

Generate Maximal Length PN Sequences

Generate a 14-sample frame of a maximal length PN sequence given generator polynomial,
x3 + x2 + 1.

Generate PN sequence data by using the comm.PNSequence object. The sequence repeats itself as it
contains 14 samples while the maximal sequence length is only 7 samples (23− 1).

pnSequence = comm.PNSequence('Polynomial',[3 2 0], ...
    'SamplesPerFrame',14,'InitialConditions',[0 0 1]);
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x1 = pnSequence();
[x1(1:7) x1(8:14)]

ans = 7×2

     1     1
     0     0
     0     0
     1     1
     1     1
     1     1
     0     0

Create another maximal length sequence based on the generator polynomial, x4 + x + 1. As it is a
fourth order polynomial, the sequence repeats itself after 15 samples (24− 1).

pnSequence2 = comm.PNSequence('Polynomial','x^4+x+1', ...
    'InitialConditions',[0 0 0 1],'SamplesPerFrame',30);
x2 = pnSequence2();
[x2(1:15) x2(16:30)]

ans = 15×2

     1     1
     0     0
     0     0
     0     0
     1     1
     0     0
     0     0
     1     1
     1     1
     0     0
      ⋮

Generate Galois Linear-Feedback Shift Register Output

The comm.PNSequence System object implements a linear-feedback shift register (LFSR) using a
simple shift register generator (SSRG, or Fibonacci configuration). This configuration differs from the
modular shift register generator (MSRG, or Galois configuration) by a phase difference, that can be
determined empirically from the System object.

This phase difference can be specified as the Mask parameter for the comm.PNSequence System
object to generate the equivalent MSRG configuration output. The block diagram represents the
implementation of a 5-bit LFSR in the Galois (MSRG) configuration.
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Load the file GaloisLFSR. The file contains the following variables that define the properties and
output PN sequence of the 5-bit Galois LFSR:

• polyVec: Generator polynomial
• polySize: Degree of the generator polynomial
• initStates: Initial conditions of the shift register
• maskVar: Mask to shift the PN sequence
• pn_msrg: Output PN sequence of maximal length, from the 5-bit Galois LFSR

load GaloisLFSR

Generate PN sequence data by using the comm.PNSequence object with the same set of properties
used to implement the 5-bit Galois LFSR. Compare this PN sequence with the output of the 5-bit
Galois LFSR. The two sequences differ by a phase shift.

pnSequence = comm.PNSequence( ...
    'Polynomial',polyVec, ...
    'InitialConditions',initStates,...
    'Mask',maskVar, ...
    'SamplesPerFrame',2^polySize-1);
pn = pnSequence();
isequal(pn,pn_msrg)

ans = logical
   0

Compute the phase shift between the two configurations. Set the value of the Mask property based on
this phase shift.

for i = 1:length(pn)
    exp_pn = [pn(i:end);pn(1:(i-1))];
    if isequal(exp_pn,pn_msrg)
        break
    end
end
maskVar = i-1;

Generate PN sequence data by using the comm.PNSequence System object with the modified Mask
property value. Compare this sequence with the output of the 5-bit Galois LFSR. The two sequences
are now equal.

pnSequence_mod = comm.PNSequence( ...
    'Polynomial',polyVec, ...
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    'InitialConditions',initStates,...
    'Mask',maskVar, ...
    'SamplesPerFrame',2^polySize-1);
pn_mod = pnSequence_mod();
isequal(pn_mod,pn_msrg)

ans = logical
   1

Additive Scrambling of Input Data

Digital communications systems commonly use additive scrambling to randomize input data to aid in
timing synchronization and power spectral requirements. The comm.Scrambler System object™
implements multiplicative scrambling but does not support additive scrambling. To perform additive
scrambling you can use the comm.PNSequence System object. This example implements the additive
scrambling specified in IEEE 802.11™ by scrambling input data with an output sequence generated
by the comm.PNSequence System object. For a Simulink® model that implements a similar workflow,
see the “Additive Scrambling of Input Data in Simulink” example.

This figure shows an additive scrambler, that uses the generator polynomial x7 + x4 + 1, as specified
in figure 17-7 of IEEE 802.11 Section 17.3.5.5 [1] on page 3-1036.

Comparing the shift register specified in 802.11 with the shift register implementated using a
comm.PNSequence System object, note that the two shift register schematics are mirror images of
each other. Therefore, when configuring the comm.PNSequence System object to implement an
additive scrambler, you must reverse values for the generator polynomial, the initial states, and the
mask output. To take the output of the register from the leading end, specify a shift value of 7.
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For more information about the 802.11 scrambler, see [1] on page 3-1036 and the wlanScramble
(WLAN Toolbox) reference page.

Define variables for the generator polynomial, shift value for the output, an initial shift register state,
a frame of input data, and a variable containing the 127-bit scrambler sequence specified in section
17.3.5.5 of the IEEE 802.11 standard. Create a PN sequence object that initializes the registers by
using an input argument.

genPoly = 'x^7 + x^3 + 1';   % Generator polynomial
shift = 7;                   % Shift value for output
spf = 127;                   % Samples per frame
initState = [1 1 1 1 1 1 1]; % Initial shift register state
dataIn = randi([0 1],spf,1);
ieee802_11_scram_seq = logical([ ...
    0 0 0 0 1 1 1 0 1 1 1 1 0 0 1 0 1 1 0 0 1 ...
    0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 0 0 0 ...
    1 0 1 1 1 0 1 0 1 1 0 1 1 0 0 0 0 0 1 1 0 ...
    0 1 1 0 1 0 1 0 0 1 1 1 0 0 1 1 1 1 0 1 1 ...
    0 1 0 0 0 0 1 0 1 0 1 0 1 1 1 1 1 0 1 0 0 ...
    1 0 1 0 0 0 1 1 0 1 1 1 0 0 0 1 1 1 1 1 1 1])';

pnSeq = comm.PNSequence( ...
    Polynomial=genPoly, ...
    InitialConditionsSource="Input Port", ...
    Mask=shift, ...
    SamplesPerFrame=spf, ...
    OutputDataType="logical");
pnsequence = pnSeq(initState);

Compare the PN sequence object output to the IEEE 802.11 127-bit scrambler sequence to confirm
the generated PN sequence matches the 802.11 specified sequence.

isequal(ieee802_11_scram_seq,pnsequence)

ans = logical
   1

Scramble input data according to the 802.11 specified additive scrambler by modulo-adding input
data with the PN sequence output.

scrambledOut = xor(dataIn,pnSeq(initState));
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Descramble the scrambled data by applying the same scrambler and initial conditions to the
scrambled data.

descrambledData = xor(scrambledOut,pnSeq(initState));

Verify that the descrambled data matches the input data.

isequal(dataIn,descrambledData)

ans = logical
   1

Reference

[1] IEEE Std 802.11™-2020 (Revision of IEEE Std 802.11™-2016). "Part 11: Wireless LAN Medium
Access Control (MAC) and Physical Layer (PHY) Specifications." IEEE Standard for Information
technology — Telecommunications and information exchange between systems. Local and
metropolitan area networks — Specific requirements.

More About
Simple Shift Register Generator

A linear-feedback shift register (LFSR), implemented as a simple shift register generator (SSRG), is
used to generate PN sequences. This type of shift register is also known as a Fibonacci
implementation.

The Polynomial property determines the feedback connections of the shift register. It is a primitive
binary polynomial in z, grzr+gr–1zr–1+gr–2zr–2+...+g0. For the coefficient, gk=0 to r, the coefficient gk is 1
if there is a connection from the kth register to the adder. The leading term, gr, and the constant
term, g0, of the Polynomial property must be 1 because the polynomial must be primitive. The
InitialConditions property specifies the initial values of the registers. For example, the following
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table indicates two sets of parameter values that correspond to a generator polynomial of p(z) = z8 +
z2 + 1.

Quantity Example 1 Example 2
Polynomial g1 = [1 0 0 0 0 0 1 0 1] g2 = [8 2 0]
Degree of generator
polynomial

8, which is length(g1)-1 8

InitialConditions [1 0 0 0 0 0 1 0] [1 0 0 0 0 0 1 0]

Each time you call the object, all r registers in the generator update their values according to the
value of the incoming arrow to the shift register. The adders perform addition modulo 2. The output
of the LFSR reflects the sum of all connections in the m mask vector.

The Mask property, m, determines the shift of the PN sequence starting point. For more information,
see “Shifting PN Sequence Starting Point” on page 3-1037.

Shifting PN Sequence Starting Point

To shift the starting point of the PN sequence, specify the Mask property as:

• An integer representing the length of the shift.

The default Mask setting of 0 corresponds to no shift. As illustrated in the LFSR shift register
diagram in “Simple Shift Register Generator” on page 3-1036, there is no shift when the only
connection is along the arrow labeled m0.

This table shows the shift that occurs when you set Mask to 0 versus a positive integer d.

T = 0 T = 1 T = 2 ... T = d T = d+1
Shift = 0 x0 x1 x2 ... xd xd+1

Shift = d xd xd+1 xd+2 ... x2d x2d+1

• A binary vector whose length is equal to the degree of the generator polynomial. The LFSR shift
register diagram in “Simple Shift Register Generator” on page 3-1036 shows Mask specified as a
mask vector, m. The binary vector must have N elements, where N is the degree of the generator
polynomial. To calculate the mask vector, use the shift2mask function.

The binary vector corresponds to a polynomial in z, mr–1zr–1 + mr–2zr–2 + ... + m1z + m0, of degree
at most r – 1. The mask vector that corresponds to a shift of d is the vector that represents m(z) =
zd modulo g(z), where g(z) is the generator polynomial.

For example, if the degree of the generator polynomial is 4, then the mask vector that corresponds
to d = 2 is [0 1 0 0], which represents the polynomial m(z) = z2.

Resetting a Signal

To reset the PN generator sequence, you must first set the ResetInputPort property to true.
Suppose that the system object generates a PN sequence of [1 0 0 1 1 0 1 1] when there is no
reset. When the reset signal [0 0 0 1] is passed as an input argument to the object, the PN
sequence is reset at the fourth bit, because the fourth bit of the reset signal is a 1.
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Sequences of Maximum Length

To generate a maximum length sequence for a generator polynomial that has the degree r, set
Polynomial to a value from the following table. The maximum sequence length is 2r – 1.

r Generator
Polynomial

r Generator
Polynomial

r Generator
Polynomial

r Generator
Polynomial

2 [2 1 0] 15 [15 14 0] 28 [28 25 0] 41 [41 3 0]
3 [3 2 0] 16 [16 15 13 4 0] 29 [29 27 0] 42 [42 23 22 1 0]
4 [4 3 0] 17 [17 14 0] 30 [30 29 28 7 0] 43 [43 6 4 3 0]
5 [5 3 0] 18 [18 11 0] 31 [31 28 0] 44 [44 6 5 2 0]
6 [6 5 0] 19 [19 18 17 14

0]
32 [32 31 30 10

0]
45 [45 4 3 1 0]

7 [7 6 0] 20 [20 17 0] 33 [33 20 0] 46 [46 21 10 1 0]
8 [8 6 5 4 0] 21 [21 19 0] 34 [34 15 14 1 0] 47 [47 14 0]
9 [9 5 0] 22 [22 21 0] 35 [35 2 0] 48 [48 28 27 1 0]
10 [10 7 0] 23 [23 18 0] 36 [36 11 0] 49 [49 9 0]
11 [11 9 0] 24 [24 23 22 17

0]
37 [37 12 10 2 0] 50 [50 4 3 2 0]

12 [12 11 8 6 0] 25 [25 22 0] 38 [38 6 5 1 0] 51 [51 6 3 1 0]
13 [13 12 10 9 0] 26 [26 25 24 20

0]
39 [39 8 0] 52 [52 3 0]

14 [14 13 8 4 0] 27 [27 26 25 22
0]

40 [40 5 4 3 0] 53 [53 6 2 1 0]

For more information about the shift register configurations that these polynomials represent, see
Digital Communications by John Proakis.[1].

Version History
Introduced in R2008a

References
[1] Proakis, John G. Digital Communications. 5th ed. New York: McGraw Hill, 2007.

[2] Lee, J. S., and L. E. Miller. CDMA Systems Engineering Handbook. Boston and London. Artech
House, 1998.

[3] Golomb, S.W. Shift Register Sequences. Laguna Hills. Aegean Park Press, 1967.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
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See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
comm.KasamiSequence | comm.GoldSequence

Blocks
PN Sequence Generator
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comm.PreambleDetector
Package: comm

Detect preamble in data

Description
The comm.PreambleDetector System object detects a preamble in an input data sequence. A
preamble is a set of symbols or bits used in packet-based communication systems to indicate the start
of a packet. The preamble detector object finds the location corresponding to the end of the
preamble.

To detect a preamble in an input data sequence:

1 Create a comm.PreambleDetector object and set the properties of the object.
2 Call step to detect the presence of a preamble.

Note Alternatively, instead of using the step method to perform the operation defined by the System
object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
prbdet = comm.PreambleDetector creates a preamble detector object, prbdet, using the
default properties.

prbdet = comm.PreambleDetector(Name,Value) specifies additional properties using
Name,Value pairs. Unspecified properties have default values.

prbdet = comm.PreambleDetector(prb,Name,Value) specifies the preamble, prb in addition
to those properties specified by using Name,Value pairs.

Example:

prbdet = comm.PreambleDetector('Input','Bit','Detections','First');

Properties
Input — Type of input data
'Symbol' (default) | 'Bit'

Type of input data, specified as 'Symbol' or 'Bit'. For binary inputs, set this parameter to 'Bit'.
For all other inputs, set this parameter to 'Symbol'. Symbol data can be of data type single or
double while bit data can, in addition, support the Boolean, int8, and uint8 data types.

Preamble — Preamble sequence
[1+1i; 1-1i] (default) | column vector
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Preamble sequence, specified as a real or complex column vector. The object uses this sequence to
detect the presence of the preamble in the input data. If Input is 'Bit', the preamble must be a
binary sequence. If Input is 'Symbol', the preamble can be any real or complex sequence.
Data Types: double | single | logical | int8 | uint8

Threshold — Detection threshold
3 (default) | nonnegative scalar

Detection threshold, specified as a nonnegative scalar. When the computed detection metric is
greater than or equal to Threshold, the preamble is detected. This property is available when
Input is set to 'Symbol'. Tunable.

Detections — Number of preambles to detect
'All' (default) | 'First'

Number of preambles to detect, specified as 'All' or 'First'.

• 'All' — Detects all the preambles in the input data sequence.
• 'First' — Detect only the first preamble in the input data sequence.

Methods

step Detect preamble in data

Common to All System Objects
release Allow System object property value changes
reset Reset internal states of System object

Examples

Detect Preamble from Binary Data Sequence

Specify a six-bit preamble.

prb = [1 0 0 1 0 1]';

Create a preamble detector object using preamble prb and taking bit inputs.

prbdet = comm.PreambleDetector(prb,'Input','Bit');

Generate a binary data sequence containing two preambles and using random bits to represent the
data fields.

pkt = [prb; randi([0 1],10,1); prb; randi([0 1],10,1)];

Locate the indices of the two preambles. The indices correspond to the end of the preambles. The
detector correctly identified indices 6 and 22 as the end of the two preambles inserted in the
sequence.
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idx = prbdet(pkt)

idx = 2×1

     6
    22

Find Preamble for Fractional Sample Delay

Using a preamble sequence with good correlation properties, find the last sample of the preamble for
a transmitted data frame in a stream of delayed received data.

Define the preamble with a length of 17 by using the ninth root of the Zadoff-Chu sequence. Generate
a transmission signal by concatenating several samples from a random signal, the preamble, and a
random signal of 100 samples.

M = 16;                                 % 16-QAM modulation
preamble = zadoffChuSeq(9,17);
x = randi([0 M-1],100,1);
xmod = qammod(x,M,UnitAverage=true);
txsig = [xmod(23:30); preamble; xmod];

Create a variable fractional delay System object. Introduce a variable fractional delay of 82.3
samples. To return the full frame when executing the variable fractional delay object, add zero
padding at the end of the transmitted signal. Add AWGN to the transmitted signal.

vfd = dsp.VariableFractionalDelay; 
samplesToDelay = 82.3;
txsigdelayed = vfd([txsig; zeros(ceil(samplesToDelay),1)],samplesToDelay);  

SNR = 40;
rxsig = awgn(txsigdelayed,SNR);

Create a preamble detector System object, specifying the preamble, the threshold level, and output of
the index for the first detection. For the conditions in the example, setting the threshold to 60% of the
total magnitude of the preamble samples finds the correct index for the preamble. Run the preamble
detection object, returning the preamble index and detection metric.

thr = 0.6*sum(abs(preamble).^2);
preambleDet = comm.PreambleDetector( ...
    Preamble=preamble, ...
    Threshold=thr, ...
    Detections='First');
[idx,detmet] = preambleDet(rxsig);
idx

idx = 107

The detection metric is the absolute value of the cross-correlation of the preamble and the input
signal. The cross-correlation peak should align with the returned preamble index. To confirm the
returned index has identified the preamble, plot the returned cross-correlation values and compare
the retuned index value to the peak in the cross-correlation values.

plot(detmet)
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Detect Preamble in Noisy QPSK Signal

Create a preamble and apply QPSK modulation.

p1 = [0 1 2 3 3 2 1 0]';
p = [p1; p1];
prb = pskmod(p,4,pi/4,'gray');

Create a comm.PreambleDetector object using preamble prb.

prbdet = comm.PreambleDetector(prb)

prbdet = 
  comm.PreambleDetector with properties:

         Input: 'Symbol'
      Preamble: [16x1 double]
     Threshold: 3
    Detections: 'All'

Generate a sequence of random symbols. The first sequence represents the last 20 symbols from a
previous packet. The second sequence represents the symbols from the current packet.

d1 = randi([0 3],20,1);
d2 = randi([0 3],100,1);
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Modulate the two sequences.

x1 = pskmod(d1,4,pi/4,'gray');
x2 = pskmod(d2,4,pi/4,'gray');

Create a sequence of modulated symbols consisting of the remnant of the previous packet, the
preamble, and the current packet.

y = [x1; prb; x2];

Add white Gaussian noise.

z = awgn(y,10);

Determine the preamble index and the detection metric.

[idx,detmet] = prbdet(z);

Calculate the number of elements in idx. Because the number of elements is greater than one, the
detection threshold is too low.

numel(idx)

ans = 80

Display the five largest detection metrics.

detmetSort = sort(detmet,'descend');
detmetSort(1:5)

ans = 5×1

   16.3115
   13.6900
   10.5698
    9.1920
    8.9706

Increase the threshold and determine the preamble index. The result of 36 corresponds to the sum of
the preamble length (16) and the remaining samples in the previous packet (20). This indicates that
the preamble has been successfully detected.

prbdet.Threshold = 15;
idx = prbdet(z)

idx = 36

Algorithms
Bit Inputs

When the input data is composed of bits, the preamble detector uses an exact pattern match.

Symbol Inputs

When the input data is composed of symbols, the preamble detector uses a cross-correlation
algorithm. A finite impulse response (FIR) filter, in which the coefficients are specified from the
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preamble, computes the cross-correlation between the input data and the preamble. When a
sequence of input samples match the preamble, the filter output reaches its peak. The index of the
peak corresponds to the end of the preamble sequence in the input data. See Discrete FIR Filter for
further information on the FIR filter algorithm.

The cross-correlation values that are greater than or equal to the specified threshold are reported as
peaks.

• If the detection threshold is too low, the algorithm will detect false peaks, or, in the extreme case,
detect as many detected peaks as there are input samples.

• If the detection threshold is too high, the algorithm will miss detecting peaks, or, in the extreme
case, detect no peaks.

Consequently, the selection of the detection threshold is critical.

Version History
Introduced in R2016b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.CarrierSynchronizer | comm.CoarseFrequencyCompensator |
comm.SymbolSynchronizer
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step
System object: comm.PreambleDetector
Package: comm

Detect preamble in data

Syntax
idx = step(prbdet,x)
[idx,detmet] = step(prbdet,x)
idx = prbdet(x)
[idx,detmet] = prbdet(x)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

idx = step(prbdet,x) returns the location of the end of the preamble in data sequence x, using
preamble detector prbdet. The index is of data type double.

[idx,detmet] = step(prbdet,x) also returns the detection metric, detmet. This syntax is
available when the Input property is 'Symbol'. detmet has the same dimensions and data type as
x.

The output, detmet, is determined by one of these algorithms:

• If either the preamble or input data is complex, the detection metric is the absolute value of the
cross-correlation of the preamble and the input signal.

• If both the preamble and input data are real, the detection metric is the cross-correlation of the
preamble and the input signal.

idx = prbdet(x) is equivalent to the first syntax.

[idx,detmet] = prbdet(x) is equivalent to the second syntax.

Note prbdet specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.
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Version History
Introduced in R2016b
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comm.PSKCoarseFrequencyEstimator
Package: comm

(Removed) Estimate frequency offset for PSK signal

Note  has been removed. Use comm.CoarseFrequencyCompensator instead.

Description
The PSKCoarseFrequencyEstimator System object estimates frequency offset for a PSK signal.

To estimate frequency offset for a PSK signal:

1 Define and set up your PSK coarse frequency estimator object. See “Construction” on page 3-
1048.

2 Call step to estimate frequency offset for a PSK signal according to the properties of
comm.PSKCoarseFrequencyEstimator. The behavior of step is specific to each object in the
toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
H = comm.PSKCoarseFrequencyEstimator creates a PSK coarse frequency offset estimator
object, H. This object uses an open-loop technique to estimate the carrier frequency offset in a
received PSK signal.

H = comm.PSKCoarseFrequencyEstimator(Name,Value) creates a PSK coarse frequency offset
estimator object, H, with the specified property Name set to the specified Value. You can specify
additional name-value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties
ModulationOrder

Modulation order the object uses

Specify the modulation order of the PSK signal as a positive, real scalar of data type double. This
value must be a positive power of 2. The default is 4.

Algorithm
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Estimation algorithm to object uses

Specify the estimation algorithm as one of FFT-based or Correlation-based. The default is FFT-
based.

FrequencyResolution

Desired frequency resolution (Hz)

Specify the desired frequency resolution for offset frequency estimation as a positive, real scalar of
data type double. This property establishes the FFT length used to perform spectral analysis, and
must be less than or equal to half the SampleRate on page 3-0  property. This property applies
only if the Algorithm property is FFT-based. The default is 0.001.

MaximumOffset

Maximum measurable frequency offset (Hz)

Specify the maximum measurable frequency offset as a positive, real scalar of data type double. The
default is 0.05.

The value of this property must be less than SampleRate on page 3-0 / ModulationOrder on
page 3-0 . It is recommended that MaximumOffset on page 3-0  be less than or equal to
SampleRate on page 3-0 /(4*ModulationOrder on page 3-0 ). This property is active only if
the Algorithm property is Correlation-based.

SampleRate

Sample rate (Hz)

Specify the sample rate in samples per second as a positive, real scalar of data type double. The
default is 1.

Methods

step (Removed) Estimate frequency offset for PSK signal

Common to All System Objects
release Allow System object property value changes
reset Reset internal states of System object

When using reset, note comm.PSKCoarseFrequencyEstimator has been removed. Use
comm.CoarseFrequencyCompensator instead.

Examples
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Compare Frequency Offset Estimation and Correction Methods for QPSK Signal

Estimate and correct for a frequency offset in a QPSK signal using the recommended
comm.CoarseFrequencyCompensator System object. Compare frequency correction results to a
workflow using the comm.PSKCoarseFrequencyEstimator System object.

Set example parameters.

nSym = 2048;     % Number of input symbols
M = 4;           % Modulation order
fs = 80000;      % Sampling frequency (Hz)
freqRez = 1;     % Frequency resolution (Hz)
freqOff = -2000; % Frequency offset

Create System objects for these operations:
% Square root raised cosine transmit filter
txfilter = comm.RaisedCosineTransmitFilter;
% Phase frequency offset - one to apply a frequency offset and a second
% that takes the frequency offset estimate as an input to correct the
% offset.
pfo = comm.PhaseFrequencyOffset('FrequencyOffset',freqOff, ...
    'SampleRate',fs);
pfoCorrect = comm.PhaseFrequencyOffset(...
    'FrequencyOffsetSource','Input port', ...
    'SampleRate',fs);
% PSK coarse frequency estimator
frequencyEst = comm.PSKCoarseFrequencyEstimator(...
    'SampleRate',fs,'FrequencyResolution',freqRez);

Error: comm.PSKCoarseFrequencyEstimator has been removed.
Use comm.CoarseFrequencyCompensator instead.

% Coarse frequency compensatator
freqComp = comm.CoarseFrequencyCompensator('Modulation','QPSK', ...
    'SampleRate',fs,'FrequencyResolution',freqRez);

Generate a QPSK signal, filter the signal, apply the frequency offset, and pass the signal through the
AWGN channel.

data = randi([0 M-1],nSym,1);
modData = pskmod(data,M,pi/4);  % Generate QPSK signal
txFiltData = txfilter(modData); % Apply Tx filter
offsetData = pfo(txFiltData);   % Apply frequency offset
rxData = awgn(offsetData,25);   % Pass through AWGN channel

This example does not apply receive filtering. In general, when the frequency offset is high, it is
beneficial to apply coarse frequency compensation prior to receive filtering because filtering
suppresses energy in the useful spectrum.

Compare the results for estimating and correcting the frequency offset by:

• Using the frequencyEst object to estimate the frequency offset and pfoCorrect to compensate
for the frequency offset.

• Using the freqComp object estimate and apply compensation to the signal.

Observe the frequency offset estimate returned by both estimation methods.

estFreqOffset1
estFreqOffset2

estFreqOffset1 =
  -2.0000e+03
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estFreqOffset2 =
  -2.0000e+03

Confirm the maximum resulting difference between the two compensation methods is negligible.

max(compensatedData1-compensatedData2)

ans =

  1.4710e-13 + 9.1149e-14i

Selected Bibliography

[1] Luise, M. and R. Regiannini. “Carrier recovery in all-digital modems for burst-mode
transmissions”, IEEE Transactions on Communications, Vol. 43, No. 2, 3, 4, Feb/Mar/April,
1995, pp. 1169–1178.

Version History
Introduced in R2013b

comm.PSKCoarseFrequencyEstimator has been removed
Errors starting in R2022a

comm.PSKCoarseFrequencyEstimator has been removed. Use
comm.CoarseFrequencyCompensator instead. For example, see “Compare Frequency Offset
Estimation and Correction Methods for QPSK Signal” on page 3-1049.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.CoarseFrequencyCompensator | comm.PhaseFrequencyOffset | dsp.FFT
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step
System object: comm.PSKCoarseFrequencyEstimator
Package: comm

(Removed) Estimate frequency offset for PSK signal

Note comm.PSKCoarseFrequencyEstimator has been removed. Use
comm.CoarseFrequencyCompensator instead.

Syntax
Y = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Y = step(H,X) estimates the carrier frequency offset of the input X and returns the result in Y. X
must be a complex column vector of data type double. The step method outputs the estimate Y as a
scalar of type double.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This initialization
locks nontunable properties and input specifications. For more information on changing property
values, see “System Design in MATLAB Using System Objects”.
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comm.PSKDemodulator
Package: comm

Demodulate using M-ary PSK method

Description
The comm.PSKDemodulator object demodulates a signal that was modulated using the M-ary phase
shift keying (M-PSK) method. The input is a baseband representation of the modulated signal.

To demodulate a signal that was modulated using the M-PSK method:

1 Create the comm.PSKDemodulator object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
mpskdemod = comm.PSKDemodulator
mpskdemod = comm.PSKDemodulator(Name=Value)
mpskdemod = comm.PSKDemodulator(M,Name=Value)
mpskdemod = comm.PSKDemodulator(M,phase,Name=Value)

Description

mpskdemod = comm.PSKDemodulator creates a System object to demodulate input M-PSK signals.

mpskdemod = comm.PSKDemodulator(Name=Value) sets properties using one or more name-
value arguments. For example, DecisionMethod="Hard decision" specifies demodulation using
the hard-decision method.

mpskdemod = comm.PSKDemodulator(M,Name=Value) sets the ModulationOrder property to M
and optional name-value arguments.

mpskdemod = comm.PSKDemodulator(M,phase,Name=Value) sets the ModulationOrder
property to M, the PhaseOffset property to phase, and optional name-value arguments. Specify
phase in radians.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.
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For more information on changing property values, see System Design in MATLAB Using System
Objects.

ModulationOrder — Number of points in signal constellation
8 (default) | positive integer

Number of points in signal constellation, specified as a positive integer.
Data Types: double

PhaseOffset — Phase of zeroth point in constellation
pi/8 (default) | scalar

Phase of the zeroth point in the constellation in radians, specified as a scalar.
Example: PhaseOffset=0 aligns the QPSK signal constellation points on the axes {(1,0), (0,j), (-1,0),
(0,-j)}.
Data Types: double

BitOutput — Option to output data as bits
0 or false (default) | 1 or true

Option to output data as bits, specified as a logical 0 (false) or 1 (true).

• Set this property to false to output symbols as integer values in the range [0, (M – 1)] with
length equal to the input data vector. M represents the value of the ModulationOrder .

• Set this property to true to output a column vector of bit values with length equal to log2(M)
times the number of demodulated symbols. Groups of log2(M) bits are mapped onto a symbol, with
the first bit representing the MSB and the last bit representing the LSB.

Data Types: logical

SymbolMapping — Symbol encoding mapping
'Gray' (default) | 'Binary' | 'Custom'

Symbol encoding mapping of constellation bits, specified as 'Gray', 'Binary', or 'Custom'. Each
integer or group of log2(ModulationOrder) bits corresponds to one symbol.

• When you set this property to 'Gray', the object map symbols to a Gray-encoded signal
constellation.

• When you set this property to 'Binary', the object map symbols to a natural binary-encoded
signal constellation. Specifically, the complex value ej(PhaseOffset + (2πm/ModulationOrder)), where m is an
integer in the range [0, (ModulationOrder – 1)].

• When you set this property to 'Custom', the object map symbols to the signal constellation
defined in the CustomSymbolMapping property.

CustomSymbolMapping — Custom symbol encoding
0:7 (default) | integer vector
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Custom symbol encoding, specified as an integer vector with length equal to the value of
ModulationOrder and unique values in the range [0, (ModulationOrder – 1)]. The first element of
this vector corresponds to the constellation point at an angle of 0 + PhaseOffset, with subsequent
elements running counterclockwise. The last element corresponds to the constellation point at an
angle of –2π/ModulationOrder + PhaseOffset.

Dependencies

To enable this property, set the SymbolMapping property to 'Custom'.
Data Types: double

DecisionMethod — Demodulation decision method
'Hard decision' (default) | 'Log-likelihood ratio' | 'Approximate log-likelihood
ratio'

Demodulation decision method, specified as 'Hard decision', 'Log-likelihood ratio', or
'Approximate log-likelihood ratio'. When you set the BitOutput property to false, the
object always performs hard-decision demodulation.

Dependencies

To enable this property, set the BitOutput property to true.

VarianceSource — Source of noise variance
'Property' (default) | 'Input port'

Source of noise variance, specified as 'Property' or 'Input port'.

Dependencies

To enable this property, set the BitOutput property to true and the DecisionMethod property to
'Log-likelihood ratio' or 'Approximate log-likelihood ratio'.

Variance — Noise variance
1 (default) | positive scalar

Noise variance, specified as a positive scalar.

Tunable: Yes

Tips

The exact LLR algorithm computes exponentials using finite precision arithmetic. For computations
involving very large positive or negative magnitudes, the exact LLR algorithm yields:

• Inf or -Inf if the noise variance is a very large value
• NaN if the noise variance and signal power are both very small values

The approximate LLR algorithm does not compute exponentials. You can avoid Inf, -Inf, and NaN
results by using the approximate LLR algorithm.
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Dependencies

To enable this property, set the BitOutput property to true, the DecisionMethod property to
'Log-likelihood ratio' or 'Approximate log-likelihood ratio', and the
VarianceSource property to 'Property'.
Data Types: double

OutputDataType — Data type of output
'Full precision' (default) | 'Smallest unsigned integer' | 'double' | ...

Data type of the output, specified as 'Full precision', 'Smallest unsigned integer',
'double', 'single', 'int8', 'uint8', 'int16', 'uint16', 'int32', or 'uint32','logical'.

• When the input data type is single or double precision and you set the BitOutput property to
true, the DecisionMethod property to 'Hard decision', and the OutputDataType property
to 'Full precision', the output has the same data type as that of the input.

• When the input data is of a fixed-point type, the output data type behaves as if you had set the
OutputDataType property to 'Smallest unsigned integer'.

• When you set BitOutput to true and the DecisionMethod property to 'Hard Decision',
then 'logical' data type is a valid option.

• When you set the BitOutput property to true and the DecisionMethod property to 'Log-
likelihood ratio' or 'Approximate log-likelihood ratio', the output data type is the
same as that of the input and the input data type must be single or double precision.

Dependencies

To enable this property, set the BitOutput property to false or set the BitOutput property to
true and the DecisionMethod property to 'Hard decision'.

Fixed-Point Properties

DerotateFactorDataType — Data type of derotate factor
'Same word length as input' (default) | 'Custom'

Data type of the derotate factor, specified as 'Same word length as input' or 'Custom'. The
object uses the derotate factor in the computations only when the ModulationOrder property is 2,
4, or 8, the input signal is a fixed-point type, and the PhaseOffset property has a nontrivial value.

• For ModulationOrder = 2, the phase offset is trivial if it is a multiple of π/2.
• For ModulationOrder = 4, the phase offset is trivial if it is an even multiple of π/4.
• For ModulationOrder = 8, there are no trivial phase offsets.

Dependencies

To enable this property, set the BitOutput property to false or set the BitOutput property to
true and the DecisionMethod property to 'Hard decision'.

CustomDerotateFactorDataType — Fixed-point data type of derotate factor
numerictype([],16) (default) | unscaled numerictype object
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Fixed-point data type of the derotate factor, specified as an unscaled numerictype object with a
Signedness of Auto. The word length must be a value in the range [2, 128].

Dependencies

To enable this property, set the DerotateFactorDataType property to 'Custom'.
Data Types: numerictype object

Usage

Syntax
y = mpskdemod(x)
y = mpskdemod(x,var)

Description

y = mpskdemod(x) applies M-PSK demodulation to the input signal and returns the demodulated
signal.

y = mpskdemod(x,var) uses soft decision demodulation and noise variance var. This syntax
applies when you set the BitOutput property to true, the DecisionMethod property to
'Approximate log-likelihood ratio' or 'Log-likelihood ratio', and the
VarianceSource property to 'Input port'.

Input Arguments

x — M-PSK-modulated signal
scalar | column vector

M-PSK-modulated signal, specified as a scalar or column vector.

Dependencies

The object accepts inputs with a signed integer data type or signed fixed point (sfi) objects when
you set the ModulationOrder property to a value less than or equal to 8 and you set the
BitOutput property to false or you set the DecisionMethod property to 'Hard decision' and
the BitOutput property to true.
Data Types: double | single | int | fi

var — Noise variance
scalar

Noise variance, specified as a scalar.

Dependencies

To enable this argument, set the VarianceSource property to 'Input port', the BitOutput
property to true, and the DecisionMethod property to 'Approximate log-likelihood ratio'
or 'Log-likelihood ratio'.
Data Types: single | double
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Output Arguments

y — Output signal
scalar | column vector

Output signal, returned as a scalar or column vector. To specify whether the object outputs values as
integers or bits, use the BitOutput property. To specify the output data type, use the
OutputDataType property.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to comm.PSKDemodulator
constellation Calculate or plot ideal signal constellation

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

16-PSK with Custom Symbol Mapping

Create 16-PSK modulator and demodulator System objects™ that use custom symbol mapping.
Estimate the BER in an AWGN channel and compare the performance to a theoretical Gray-coded
PSK system.

Create a custom symbol mapping for the 16-PSK modulation scheme. The 16 integer symbols must
have values in the range [0, 15].

custMap = [0 2 4 6 8 10 12 14 15 13 11 9 7 5 3 1];

Create a 16-PSK modulator and demodulator pair having custom symbol mapping defined by the
array custMap.

pskModulator = comm.PSKModulator(16,'BitInput',true, ...
    'SymbolMapping','Custom','CustomSymbolMapping',custMap);
pskDemodulator = comm.PSKDemodulator(16,'BitOutput',true, ...
    'SymbolMapping','Custom','CustomSymbolMapping',custMap);

Display the modulator constellation.

constellation(pskModulator)
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Create an AWGN channel System object for use with 16-ary data.

awgnChannel = comm.AWGNChannel('BitsPerSymbol',log2(16));

Create an error rate object to track the BER statistics.

errorRate = comm.ErrorRate;

Initialize the simulation vectors. Vary Eb/N0 from 6 to 18 dB in 1 dB steps.

ebnoVec = 6:18;
ber = zeros(size(ebnoVec));

Estimate the BER by modulating binary data, passing it through an AWGN channel, demodulating the
received signal, and collecting the error statistics.

for n = 1:length(ebnoVec)
    
    % Reset the error counter for each Eb/No value
    reset(errorRate)
    % Reset the array used to collect the error statistics
    errVec = [0 0 0];
    % Set the channel Eb/No
    awgnChannel.EbNo = ebnoVec(n);
    
    while errVec(2) < 200 && errVec(3) < 1e7
        % Generate a 1000-symbol frame
        data = randi([0 1],4000,1);
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        % Modulate the binary data
        modData = pskModulator(data);
        % Pass the modulated data through the AWGN channel
        rxSig = awgnChannel(modData);
        % Demodulate the received signal
        rxData = pskDemodulator(rxSig);
        % Collect the error statistics
        errVec = errorRate(data,rxData);
    end
    
    % Save the BER data
    ber(n) = errVec(1);
end

Generate theoretical BER data for an AWGN channel using the berawgn function.

berTheory = berawgn(ebnoVec,'psk',16,'nondiff');

Plot the simulated and theoretical results. The 16-PSK modulation BER performance of the simulated
custom symbol mapping is not as good as the theoretical prediction curve for Gray codes.

figure
semilogy(ebnoVec,[ber; berTheory])
xlabel('Eb/No (dB)')
ylabel('BER')
grid
legend('Simulation','Theory','location','ne')
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More About
Hard-Decision BPSK Demodulation

The signal preprocessing required for BPSK demodulation depends on the configuration.

This figure shows the hard-decision BPSK demodulation signal diagram for the trivial phase offset
(multiple of π/2) configuration.

This figure shows the hard-decision BPSK demodulation floating-point signal diagram for the
nontrivial phase offset configuration.

 comm.PSKDemodulator

3-1061



This figure shows the hard-decision BPSK demodulation fixed-point signal diagram for the nontrivial
phase offset configuration.
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Hard-Decision QPSK Demodulation

The signal preprocessing required for QPSK demodulation depends on the configuration.

This figure shows the hard-decision QPSK demodulation signal diagram for the trivial phase offset
(odd multiple of π/4) configuration.
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This figure shows the hard-decision QPSK demodulation floating-point signal diagram for the
nontrivial phase offset configuration.
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This figure shows the hard-decision QPSK demodulation fixed-point signal diagram for the nontrivial
phase offset configuration.

Hard-Decision Higher-Order PSK

The signal preprocessing required for higher order PSK demodulation depends on the configuration.

This figure shows the hard-decision 8-PSK demodulation signal diagram for the trivial phase offset
(odd multiple of π/8) configuration.
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This figure shows the hard-decision 8-PSK demodulation fixed-point signal diagram for trivial phase
offset (odd multiple of π/8) configuration.
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This figure shows the hard-decision M-PSK demodulation floating-point signal diagram for the
nontrivial phase offset configuration.
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For M > 8, to improve speed and implementation costs, no derotation arithmetic is performed for
trivial case (specifically, when phase offset is 0, π/2, π, or 3π/2).

Also, for M > 8, only double and single input types are supported.

Soft-Decision M-PSK Demodulation

For soft demodulation, two soft-decision log-likelihood ratio (LLR) algorithms are available: exact LLR
and approximate LLR. The exact LLR algorithm is more accurate but has slower execution speed than
the approximate LLR algorithm. For further description of these algorithms, see the “Hard- vs. Soft-
Decision Demodulation” topic.

Note The exact LLR algorithm computes exponentials using finite precision arithmetic. For
computations involving very large positive or negative magnitudes, the exact LLR algorithm yields:

• Inf or -Inf if the noise variance is a very large value
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• NaN if the noise variance and signal power are both very small values

The approximate LLR algorithm does not compute exponentials. You can avoid Inf, -Inf, and NaN
results by using the approximate LLR algorithm.

Version History
Introduced in R2012a

References
[1] Proakis, John G. Digital Communications. 4th ed. New York: McGraw Hill, 2001.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

double and single data types are supported for simulation, but not for HDL code generation.

To generate HDL code from predefined System objects, see “HDL Code Generation from Viterbi
Decoder System Object” (HDL Coder).

See Also
Functions
pskmod | pskdemod

Objects
comm.PSKModulator | comm.DPSKDemodulator | comm.QPSKDemodulator |
comm.OQPSKDemodulator | comm.gpu.PSKDemodulator

Blocks
M-PSK Demodulator Baseband
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comm.PSKModulator
Package: comm

Modulate signal using M-PSK method

Description
The PSKModulator System object modulates using the M-ary phase shift keying (M-PSK) method.
The output is a baseband representation of the modulated signal.

To modulate a signal by using the M-PSK method:

1 Create the comm.PSKModulator object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
mpskmod = comm.PSKModulator
mpskmod = comm.PSKModulator(Name=Value)
mpskmod = comm.PSKModulator(M,phase,Name=Value)
mpskmod = comm.PSKModulator(M,phase,Name=Value)

Description

mpskmod = comm.PSKModulator creates a modulator System object, that modulates the input
signal using the M-ary phase shift keying (M-PSK) method.

mpskmod = comm.PSKModulator(Name=Value) sets properties using one or more name-value
arguments. For example, BitInput=true specifies input values must be binary.

mpskmod = comm.PSKModulator(M,phase,Name=Value) sets the ModulationOrder property
to M, and optional name-value arguments.

mpskmod = comm.PSKModulator(M,phase,Name=Value) sets the ModulationOrder property
to M, the PhaseOffset property to phase, and optional name-value arguments. Specify phase in
radians.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.
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For more information on changing property values, see System Design in MATLAB Using System
Objects.

ModulationOrder — Number of points in signal constellation
8 (default) | positive integer

Number of points in the signal constellation, specified as a positive integer.
Data Types: double

PhaseOffset — Phase of zeroth point of constellation
pi/8 (default) | scalar

Phase of the zeroth point of the constellation in radians, specified as a scalar.
Example: PhaseOffset=0 aligns the QPSK signal constellation points on the axes {(1,0), (0,j), (-1,0),
(0,-j)}.
Data Types: double

BitInput — Option to provide input in bits
0 or false (default) | 1 or true

Option to provide input in bits, specified as a numeric or logical 0 (false) or 1 (true).

• If you set this property to false, the input values must be integers in the range [0, M–1], where
M is the ModulationOrder.

• If you set this property to true, the input values must be binary and the input vector length must
be an integer multiple of the number of bits per symbol, log2(M). Groups of log2(M) bits are
mapped onto a symbol, with the first bit representing the MSB and the last bit representing the
LSB.

.

Data Types: logical

SymbolMapping — Symbol encoding mapping of constellation bits
'Gray' (default) | 'Binary' | 'Custom'

Symbol encoding mapping of constellation bits, specified as 'Gray', 'Binary', or 'Custom'. Each
integer or group of log2(ModulationOrder) bits corresponds to one symbol.

• When you set this property to 'Gray', the object map symbols to a Gray-encoded signal
constellation.

• When you set this property to 'Binary', the object map symbols to a natural binary-encoded
signal constellation. Specifically, the complex value ej(PhaseOffset + (2πm/ModulationOrder)), where m is an
integer in the range [0, (ModulationOrder – 1)].

• When you set this property to 'Custom', the object map symbols to the signal constellation
defined in the CustomSymbolMapping property.

CustomSymbolMapping — Custom constellation encoding
0:7 (default) | integer vector
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Custom symbol encoding, specified as an integer vector with length equal to the value of
ModulationOrder and unique values in the range [0, (ModulationOrder – 1)]. The first element of
this vector corresponds to the constellation point at an angle of 0 + PhaseOffset, with subsequent
elements running counterclockwise. The last element corresponds to the constellation point at an
angle of –2π/ModulationOrder + PhaseOffset.

Dependencies

To enable this property, set the SymbolMapping property to 'Custom'.
Data Types: double

OutputDataType — Output datatype
'double' (default) | 'single' | 'Custom'

Output data type, specified as either 'double', 'single' or 'Custom'.

Fixed-Point Properties

CustomOutputDataType — Fixed-point data type of output
numerictype([],16) (default) | numerictype object

Fixed-point data type of the output signal, specified as a numerictype object with its Signedness
property set to Auto. To create this type of object, use the numerictype function.

Dependencies

To enable this property, set the OutputDataType property to 'Custom'.

Usage

Syntax
mpsksignal = mpskmod(insignal)

Description

mpsksignal = mpskmod(insignal) modulates the input signal by using the M-PSK method. The
output is the modulated M-PSK baseband signal.

Input Arguments

insignal — Input signal
column vector

Input signal, specified as a column vector of integers or bits. The BitInput property specifies the
expected input values and vector length.
Data Types: double
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Output Arguments

mpsksignal — M-PSK modulated baseband signal
scalar | vector

M-PSK modulated baseband signal, returned as a scalar or vector of complex-valued constellation
symbols. The OutputDataType property specifies the data type of the output.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to comm.PSKModulator
constellation Calculate or plot ideal signal constellation

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Add White Gaussian Noise to 8-PSK Signal

Modulate an 8-PSK signal, add white Gaussian noise, and plot the signal to visualize the effects of the
noise.

Create a M-PSK modulator System object™. The default modulation order for the object is 8.

pskModulator = comm.PSKModulator;

Modulate the signal.

modData = pskModulator(randi([0 7],2000,1));

Add white Gaussian noise to the modulated signal by passing the signal through an additive white
Gaussian noise (AWGN) channel.

channel = comm.AWGNChannel('EbNo',20,'BitsPerSymbol',3);

Transmit the signal through the AWGN channel.

channelOutput = channel(modData);

Plot the noiseless and noisy data by using scatter plots to visualize the effects of the noise.

scatterplot(modData)
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scatterplot(channelOutput)
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Change the EbNo property to 10 dB to increase the noise.

channel.EbNo = 10;

Pass the modulated data through the AWGN channel.

channelOutput = channel(modData);

Plot the channel output. You can see the effects of increased noise.

scatterplot(channelOutput)
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16-PSK with Custom Symbol Mapping

Create 16-PSK modulator and demodulator System objects™ that use custom symbol mapping.
Estimate the BER in an AWGN channel and compare the performance to a theoretical Gray-coded
PSK system.

Create a custom symbol mapping for the 16-PSK modulation scheme. The 16 integer symbols must
have values in the range [0, 15].

custMap = [0 2 4 6 8 10 12 14 15 13 11 9 7 5 3 1];

Create a 16-PSK modulator and demodulator pair having custom symbol mapping defined by the
array custMap.

pskModulator = comm.PSKModulator(16,'BitInput',true, ...
    'SymbolMapping','Custom','CustomSymbolMapping',custMap);
pskDemodulator = comm.PSKDemodulator(16,'BitOutput',true, ...
    'SymbolMapping','Custom','CustomSymbolMapping',custMap);

Display the modulator constellation.

constellation(pskModulator)
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Create an AWGN channel System object for use with 16-ary data.

awgnChannel = comm.AWGNChannel('BitsPerSymbol',log2(16));

Create an error rate object to track the BER statistics.

errorRate = comm.ErrorRate;

Initialize the simulation vectors. Vary Eb/N0 from 6 to 18 dB in 1 dB steps.

ebnoVec = 6:18;
ber = zeros(size(ebnoVec));

Estimate the BER by modulating binary data, passing it through an AWGN channel, demodulating the
received signal, and collecting the error statistics.

for n = 1:length(ebnoVec)
    
    % Reset the error counter for each Eb/No value
    reset(errorRate)
    % Reset the array used to collect the error statistics
    errVec = [0 0 0];
    % Set the channel Eb/No
    awgnChannel.EbNo = ebnoVec(n);
    
    while errVec(2) < 200 && errVec(3) < 1e7
        % Generate a 1000-symbol frame
        data = randi([0 1],4000,1);
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        % Modulate the binary data
        modData = pskModulator(data);
        % Pass the modulated data through the AWGN channel
        rxSig = awgnChannel(modData);
        % Demodulate the received signal
        rxData = pskDemodulator(rxSig);
        % Collect the error statistics
        errVec = errorRate(data,rxData);
    end
    
    % Save the BER data
    ber(n) = errVec(1);
end

Generate theoretical BER data for an AWGN channel using the berawgn function.

berTheory = berawgn(ebnoVec,'psk',16,'nondiff');

Plot the simulated and theoretical results. The 16-PSK modulation BER performance of the simulated
custom symbol mapping is not as good as the theoretical prediction curve for Gray codes.

figure
semilogy(ebnoVec,[ber; berTheory])
xlabel('Eb/No (dB)')
ylabel('BER')
grid
legend('Simulation','Theory','location','ne')
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Algorithms
For binary-encoding, the output baseband signal maps input bits or integers to complex symbols
according to:

sn(t) = exp jπ 2n + 1
M ; n ∈ 0, 1, …, M − 1 .

When the input is configured for bits, groups of log2(M) bits represent the complex symbols for the
configured symbol mapping. The mapping can be binary encoded, Gray encoded, or custom encoded.

Gray coding has the advantage that only one bit changes between adjacent constellation points,
which results in better bit error rate performance. This table shows the mapping between the input
and output symbols for 8-PSK modulation with Gray coding.

Input Output
0 0 (000)
1 1 (001)
2 3 (011)
3 2 (010)
4 6 (110)
5 7 (111)
6 5 (101)
7 4 (100)

This constellation diagram shows the corresponding symbols and their binary values.
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Version History
Introduced in R2012a

References
[1] Proakis, John G. Digital Communications. 4th ed. New York: McGraw Hill, 2001.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See System Objects in MATLAB Code Generation (MATLAB Coder).

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.
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double and single data types are supported for simulation, but not for HDL code generation.

To generate HDL code from predefined System objects, see “HDL Code Generation from Viterbi
Decoder System Object” (HDL Coder).

See Also
Functions
pskmod | pskdemod

Objects
comm.PSKDemodulator | comm.gpu.PSKModulator | comm.QPSKModulator |
comm.BPSKModulator

Blocks
M-PSK Modulator Baseband
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comm.PSKTCMDemodulator
Package: comm

Demodulate convolutionally encoded data mapped to M-ary PSK signal constellation

Description
The PSKTCMDemodulator object uses the Viterbi algorithm to decode a trellis-coded modulation
(TCM) signal that was previously modulated using a PSK signal constellation.

To demodulate a signal that was modulated using trellis-coded modulation:

1 Define and set up your PSK TCM demodulator object. See “Construction” on page 3-1082.
2 Call step to demodulate the signal according to the properties of comm.PSKTCMDemodulator.

The behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
H = comm.PSKTCMDemodulator creates a trellis-coded, M-ary phase shift, keying (PSK TCM)
demodulator System object, H. This object demodulates convolutionally encoded data that has been
mapped to an M-PSK constellation.

H = comm.PSKTCMDemodulator(Name,Value) creates a PSK TCM demodulator object, H, with
each specified property set to the specified value. You can specify additional name-value pair
arguments in any order as (Name1,Value1,...,NameN,ValueN).

H = comm.PSKTCMDemodulator(TRELLIS,Name,Value) creates a PSK TCM demodulator System
object, H. This object has the TrellisStructure property set to TRELLIS and the other specified
properties set to the specified values.

Properties
TrellisStructure

Trellis structure of convolutional code

Specify trellis as a MATLAB structure that contains the trellis description of the convolutional code.
Use the istrellis function to check whether the trellis structure is valid. The default is the result
of poly2trellis([1 3], [1 0 0; 0 5 2]).

TerminationMethod

Termination method of encoded frame
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Specify the termination method as one of Continuous | Truncated | Terminated. The default is
Continuous.

When you set this property to Continuous, the object saves the internal state metric at the end of
each frame. The next frame uses the same state metric. The object treats each traceback path
independently. If the input signal contains only one symbol, use Continuous mode.

When you set this property to Truncated, the object treats each input vector independently. The
traceback path starts at the state with the best metric and always ends in the all-zeros state.

When you set property to Terminated, the object treats each input vector independently, and the
traceback path always starts and ends in the all-zeros state.

TracebackDepth

Traceback depth for Viterbi decoder

Specify the scalar, integer number of trellis branches to construct each traceback path. The default is
21. The traceback depth influences the decoding accuracy and delay. The decoding delay is the
number of zero symbols that precede the first decoded symbol in the output.

When you set the TerminationMethod on page 3-0  property to Continuous, the decoding delay
consists of TracebackDepth zero symbols or TracebackDepth×K zero bits for a rate K/N convolutional
code.

When you set the TerminationMethod property to Truncated or Terminated, no output delay
occurs and the traceback depth must be less than or equal to the number of symbols in each input
vector.

ResetInputPort

Enable demodulator reset input

Set this property to true to enable an additional input to the step method. The default is false.
When this additional reset input is a nonzero value, the internal states of the encoder reset to initial
conditions. This property applies when you set the TerminationMethod on page 3-0  property to
Continuous.

ModulationOrder

Number of points in signal constellation

Specify the number of points in the signal constellation used to map the convolutionally encoded data
as a positive, integer scalar value. The number of points must be 4, 8, or 16. The default is 8. The
ModulationOrder on page 3-0  property value must equal the number of possible input symbols
to the convolutional decoder of the PSK TCM demodulator object. The ModulationOrder property
must equal 2N for a rate K/N convolutional code.

OutputDataType

Data type of output
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Specify output data type as logical | double. The default is double.

Methods
step Demodulate convolutionally encoded data mapped to M-ary PSK constellation

Common to All System Objects
release Allow System object property value changes
reset Reset internal states of System object

Examples

Demodulate Noisy PSK TCM Data

Modulate and demodulate data using 8-PSK TCM modulation in an AWGN channel. Estimate the
resulting error rate.

Define a trellis structure with four input symbols and eight output symbols.

t =  poly2trellis([5 4],[23 35 0; 0 5 13]);

Create 8-PSK TCM modulator and demodulator System objects using trellis, t.

M = 8;
psktcmod = comm.PSKTCMModulator(t,ModulationOrder=M);
psktcdemod = comm.PSKTCMDemodulator(t, ...
    ModulationOrder=M, ...
    TracebackDepth=16);

Create an AWGN channel object.

awgnchan = comm.AWGNChannel( ...
    NoiseMethod='Signal to noise ratio (SNR)', ...
    SNR=7);

Create an error rate calculator with delay in bits equal to TracebackDepth times the number of bits
per symbol.

errRate = comm.ErrorRate( ...
    ReceiveDelay=psktcdemod.TracebackDepth*log2(t.numInputSymbols));

Generate random binary data and modulate with 8-PSK TCM. Pass the modulated signal through the
AWGN channel and demodulate. Calculate the error statistics.

for counter = 1:10
    % Transmit frames of 250 2-bit symbols
    data = randi([0 1],500,1);
    % Modulate
    modSignal = psktcmod(data);
    % Pass through AWGN channel
    noisySignal = awgnchan(modSignal);
    % Demodulate
    receivedData = psktcdemod(noisySignal);
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    % Calculate error statistics
    errorStats = errRate(data,receivedData);
end

Display the BER and the number of bit errors.

fprintf('Error rate = %5.2e\nNumber of errors = %d\n', ...
    errorStats(1),errorStats(2))

Error rate = 2.17e-02
Number of errors = 108

Algorithms
This object implements the algorithm, inputs, and outputs described on the M-PSK TCM Decoder
block reference page. The object properties correspond to the block parameters.

Version History
Introduced in R2012a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.PSKTCMModulator | comm.GeneralQAMTCMDemodulator |
comm.RectangularQAMTCMDemodulator | comm.ViterbiDecoder
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step
System object: comm.PSKTCMDemodulator
Package: comm

Demodulate convolutionally encoded data mapped to M-ary PSK constellation

Syntax
Y = step(H,X)
Y = step(H,X,R)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Y = step(H,X) demodulates the PSK modulated input data, X, and uses the Viterbi algorithm to
decode the resulting demodulated, convolutionally encoded bits. X must be a complex, double or
single precision column vector. The step method outputs a demodulated, binary data column vector,
Y. When the convolutional encoder represents a rate K/N code, the length of the output vector is K×
L, where L is the length of the input vector, X.

Y = step(H,X,R) resets the decoder to the all-zeros state when you input a reset signal, R that is
non-zero. R must be a double precision or logical, scalar integer. This syntax applies when you set the
ResetInputPort property to true.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This initialization
locks nontunable properties and input specifications. For more information on changing property
values, see “System Design in MATLAB Using System Objects”.
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comm.PSKTCMModulator
Package: comm

Convolutionally encode binary data and map using M-ary PSK signal constellation

Description
The PSKTCMModulator object implements trellis-coded modulation (TCM) by convolutionally
encoding the binary input signal and then mapping the result to a PSK signal constellation.

To modulate a signal using trellis-coded modulation:

1 Define and set up your PSK TCM modulator object. See “Construction” on page 3-1087.
2 Call step to modulate the signal according to the properties of comm.PSKTCMModulator. The

behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
H = comm.PSKTCMModulator creates a trellis-coded M-ary phase shift keying (PSK TCM)
modulator System object, H. This object convolutionally encodes a binary input signal and maps the
result to an M-PSK constellation.

H = comm.PSKTCMModulator(Name,Value) creates a PSK TCM encoder object, H, with each
specified property set to the specified value. You can specify additional name-value pair arguments in
any order as (Name1,Value1,...,NameN,ValueN).

H = comm.PSKTCMModulator(TRELLIS,Name,Value) creates a PSK TCM encoder object, H. This
object has the TrellisStructure property set to TRELLIS and the other specified properties set to
the specified values.

Properties
TrellisStructure

Trellis structure of convolutional code

Specify trellis as a MATLAB structure that contains the trellis description of the convolutional code.
Use the istrellis function to check whether a trellis structure is valid. The default is the result of
poly2trellis([1 3], [1 0 0; 0 5 2]).

TerminationMethod

Termination method of encoded frame
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Specify the termination method as one of Continuous | Truncated | Terminated. The default is
Continuous.

When you set this property to Continuous, the object retains the encoder states at the end of each
input vector for use with the next input vector.

When you set this property to Truncated, the object treats each input vector independently. The
encoder is reset to the all-zeros state at the start of each input vector.

When you set this property to Terminated, the object treats each input vector independently.
However, for each input vector, the object uses extra bits to set the encoder to the all-zeros state at
the end of the vector. For a rate K/N code, the step method outputs the vector with a length given by
y = N × (L + S) K, where S = constraintLength–1 (or, in the case of multiple constraint lengths, S =
sum(constraintLength(i)–1)). L indicates the length of the input to the step method.

ResetInputPort

Enable modulator reset input

Set this property to true to enable an additional input to the step method. The default is false.
When this additional reset input is a nonzero value, the internal states of the encoder reset to initial
conditions. This property applies when you set the TerminationMethod on page 3-0  property to
Continuous.

ModulationOrder

Number of points in signal constellation

Specify the number of points in the signal constellation used to map the convolutionally encoded data
as a positive integer scalar value equal to 4, 8, or 16. The default is 8. The value of the
ModulationOrder on page 3-0  property must equal the number of possible output symbols from
the convolutional encoder of the PSK TCM modulator. Thus, the value for the ModulationOrder
property must equal 2N for a rate K/N convolutional code.

OutputDataType

Data type of output

Specify the output data type as one of double | single. The default is double.

Methods

step Convolutionally encode binary data and map using M-ary PSK constellation

Common to All System Objects
release Allow System object property value changes
reset Reset internal states of System object
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Examples

Modulate Data Using 8-PSK TCM Modulation

Modulate random data using 8-PSK TCM modulation and display the constellation diagram.

Create binary data.

data = randi([0 1],1000,1);

Define a trellis structure with four input symbols and eight output symbols.

t =  poly2trellis([5 4],[23 35 0; 0 5 13]);

Create an 8-PSK TCM modulator object using the trellis structure variable, t.

hMod = comm.PSKTCMModulator(t,'ModulationOrder',8);

Modulate and plot the data.

modData = step(hMod,data);
scatterplot(modData);
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Algorithms
This object implements the algorithm, inputs, and outputs described on the M-PSK TCM Decoder
block reference page. The object properties correspond to the block parameters.

Version History
Introduced in R2012a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.PSKTCMDemodulator | comm.GeneralQAMTCMModulator |
comm.RectangularQAMTCMModulator | comm.ConvolutionalEncoder
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step
System object: comm.PSKTCMModulator
Package: comm

Convolutionally encode binary data and map using M-ary PSK constellation

Syntax
Y = step(H,X)
Y = step(H,X,R)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Y = step(H,X) convolutionally encodes and modulates the input binary data column vector, X, and
returns the encoded and modulated data, Y. X must be of data type numeric, logical, or unsigned
fixed point of word length 1 (fi object). When the convolutional encoder represents a rate K/N code,
the length of the input vector, X, must be K×L, for some positive integer L. The step method outputs
a complex column vector, Y, of length L.

Y = step(H,X,R) resets the encoder of the PSK TCM modulator object to the all-zeros state when
you input a reset signal, R, that is non-zero. R must be a double precision or logical scalar integer.
This syntax applies when you set the ResetInputPort property to true.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This initialization
locks nontunable properties and input specifications. For more information on changing property
values, see “System Design in MATLAB Using System Objects”.
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comm.QAMCoarseFrequencyEstimator
Package: comm

(Removed) Estimate frequency offset for QAM signal

Note comm.QAMCoarseFrequencyEstimator has been removed. Use
comm.CoarseFrequencyCompensator instead.

Description
The QAMCoarseFrequencyEstimator System object estimates frequency offset for a QAM signal.

To estimate frequency offset for a QAM signal:

1 Define and set up your QAM Coarse Frequency Estimator object. See “Construction” on page 3-
1092.

2 Call step to estimate frequency offset for a QAM signal according to the properties of
comm.QAMCoarseFrequencyEstimator. The behavior of step is specific to each object in the
toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
H = comm.QAMCoarseFrequencyEstimator creates a rectangular QAM coarse frequency offset
estimator object, H. This object uses an open-loop, FFT-based technique to estimate the carrier
frequency offset in a received rectangular QAM signal.

H = comm.QAMCoarseFrequencyEstimator(Name,Value) creates a rectangular QAM coarse
frequency offset estimator object, H, with the specified property Name set to the specified Value. You
can specify additional name-value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties
FrequencyResolution

Desired frequency resolution (Hz)

Specify the desired frequency resolution for offset frequency estimation as a positive, real scalar of
data type double. This property establishes the FFT length that the object uses to perform spectral
analysis. The value for this property must be less than or equal to half the SampleRate on page 3-
0  property. The default is 0.001.
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SampleRate

Sample rate (Hz)

Specify the sample rate in samples per second as a positive, real scalar of data type double. The
default is 1.

Methods
step (Removed) Estimate frequency offset for QAM signal

Common to All System Objects
release Allow System object property value changes
reset Reset internal states of System object

When using reset, note comm.QAMCoarseFrequencyEstimator has been removed. Use
comm.CoarseFrequencyCompensator instead.

Examples

Compare Frequency Offset Estimation and Correction Methods for 16-QAM Signal

Estimate and correct for a frequency offset in a 16-QAM signal using the recommended
comm.CoarseFrequencyCompensator System object. Compare frequency correction results to a
workflow using the comm.QAMCoarseFrequencyEstimator System object.

Set example parameters.

nSym = 2048;     % Number of input symbols
M = 16;          % Modulation order
fs = 80000;      % Sampling frequency (Hz)
freqRez = 1;     % Frequency resolution (Hz)
freqOff = -3000; % Frequency offset

Create System objects for these operations:

% Square root raised cosine transmit filter
txfilter = comm.RaisedCosineTransmitFilter;
% Phase frequency offset - one to apply a frequency offset and a
% second that takes the frequency offset estimate as an input to correct
% the offset.
pfo = comm.PhaseFrequencyOffset('FrequencyOffset',freqOff, ...
    'SampleRate',fs);
pfoCorrect = comm.PhaseFrequencyOffset(...
    'FrequencyOffsetSource','Input port', ...
    'SampleRate',fs);
% QAM coarse frequency estimator
frequencyEst = comm.QAMCoarseFrequencyEstimator(...
    'SampleRate',fs, ...
    'FrequencyResolution',freqRez);

Error: comm.QAMCoarseFrequencyEstimator has been removed.
Use comm.CoarseFrequencyCompensator instead.
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% Coarse frequency compensatator
freqComp = comm.CoarseFrequencyCompensator('Modulation','QAM', ...
    'SampleRate',fs,'FrequencyResolution',freqRez);

Generate a 16-QAM signal, filter the signal, apply the frequency offset, and pass the signal through
the AWGN channel.
data = randi([0 M-1],nSym,1);
modData = qammod(data,M,'UnitAveragePower',true); % Generate QAM signal
txFiltData = txfilter(modData);                   % Apply Tx filter
offsetData = pfo(txFiltData);                     % Apply frequency offset
rxData = awgn(offsetData,25,'measured');          % Pass through AWGN channel

This example does not apply receive filtering. In general, when the frequency offset is high, it is
beneficial to apply coarse frequency compensation prior to receive filtering because filtering
suppresses energy in the useful spectrum.

Compare the results for estimating and correcting the frequency offset by:

• Using the frequencyEst object to estimate the frequency offset and pfoCorrect to compensate
for the frequency offset.

• Using the freqComp object estimate and apply compensation to the signal.

Observe the frequency offset estimate returned by both estimation methods.

estFreqOffset1
estFreqOffset2

estFreqOffset1 =
  -3.0000e+03
estFreqOffset2 =
  -3.0000e+03

Confirm the maximum resulting difference between the two compensation methods is negligible.

max(compensatedData1-compensatedData2)

ans =

  -1.3051e-13 - 1.7614e-13i

Selected Bibliography

[1] Nakagawa, T., Matsui, M., Kobayashi, T., Ishihara, K., Kudo, R., Mizoguchi, M., and Y. Miyamoto.
“Non-data-aided wide-range frequency offset estimator for QAM optical coherent receivers”,
Optical Fiber Communication Conference and Exposition (OFC/NFOEC), 2011 and the
National Fiber Optic Engineers Conference , March, 2011, pp. 1–3.

[2] Wang, Y., Shi. K., and E. Serpedin. “Non-Data-Aided Feedforward Carrier Frequency Offset
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Version History
Introduced in R2013b
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comm.QAMCoarseFrequencyEstimator has been removed
Errors starting in R2022a

comm.QAMCoarseFrequencyEstimator has been removed. Use
comm.CoarseFrequencyCompensator instead. For an example, see “Compare Frequency Offset
Estimation and Correction Methods for 16-QAM Signal” on page 3-1093.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.CoarseFrequencyCompensator | comm.PhaseFrequencyOffset | dsp.FFT
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step
System object: comm.QAMCoarseFrequencyEstimator
Package: comm

(Removed) Estimate frequency offset for QAM signal

Note comm.QAMCoarseFrequencyEstimator has been removed. Use
comm.CoarseFrequencyCompensator instead.

Syntax
Y = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Y = step(H,X) estimates the carrier frequency offset of the input X and returns the result in Y. X
must be a complex column vector of data type double. The step method outputs the estimate Y as a
scalar of type double.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This initialization
locks nontunable properties and input specifications. For more information on changing property
values, see “System Design in MATLAB Using System Objects”.
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comm.QPSKDemodulator
Package: comm

Demodulate using QPSK method

Description
The comm.QPSKDemodulator object demodulates a signal that was modulated using the quadrature
phase shift keying (QPSK) method. The input is a baseband representation of the modulated signal.

To demodulate a signal that was modulated using the QPSK method:

1 Create the comm.QPSKDemodulator object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
qpskdemod = comm.QPSKDemodulator
qpskdemod = comm.QPSKDemodulator(Name=Value)
qpskdemod = comm.QPSKDemodulator(phase=Name,Value)

Description

qpskdemod = comm.QPSKDemodulator creates a System object to demodulate input QPSK signals.

qpskdemod = comm.QPSKDemodulator(Name=Value) sets properties using one or more name-
value arguments. For example, DecisionMethod="Hard decision" specifies demodulation using
the hard-decision method.

qpskdemod = comm.QPSKDemodulator(phase=Name,Value) sets the PhaseOffset property to
phase, and optional name-value arguments. Specify phase in radians.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

PhaseOffset — Phase of zeroth point in constellation
pi/4 (default) | scalar
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Phase of the zeroth point in the constellation in radians, specified as a scalar.
Example: PhaseOffset=0 aligns the QPSK signal constellation points on the axes {(1,0), (0,j), (-1,0),
(0,-j)}.
Data Types: double

BitOutput — Option to output data as bits
0 or false (default) | 1 or true

Option to output data as bits, specified as a logical 0 (false) or 1 (true).

• Set this property to false to output symbols as integer values in the range [0, 3] with length
equal to the input data vector length.

• Set this property to true to output a column vector of bit values with length equal to twice the
input data vector length.

Data Types: logical

SymbolMapping — Symbol encoding
'Gray' (default) | 'Binary'

Symbol encoding mapping of constellation bits, specified as 'Gray' or 'Binary'.

Setting Constellation
Mapping for Integers

Constellation
Mapping for Bits

Comment

Gray Map symbols using
Gray-coded ordering.

Binary Map symbols using
natural binary-coded
ordering. The signal
constellation maps to
the complex value
ej(PhaseOffset + (2πm/4)),
where m is an integer in
the range [0, 3].

DecisionMethod — Demodulation decision method
'Hard decision' (default) | 'Log-likelihood ratio' | 'Approximate log-likelihood
ratio'

Demodulation decision method, specified as 'Hard decision', 'Log-likelihood ratio', or
'Approximate log-likelihood ratio'. When you set the BitOutput property to false, the
object always performs hard-decision demodulation.
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Dependencies

To enable this property, set the BitOutput property to true.

VarianceSource — Source of noise variance
'Property' (default) | 'Input port'

Source of noise variance, specified as 'Property' or 'Input port'.

Dependencies

To enable this property, set the BitOutput property to true and the DecisionMethod property to
'Log-likelihood ratio' or 'Approximate log-likelihood ratio'.

Variance — Noise variance
1 (default) | positive scalar

Noise variance, specified as a positive scalar.

Tunable: Yes

Tips

The exact LLR algorithm computes exponentials using finite precision arithmetic. For computations
involving very large positive or negative magnitudes, the exact LLR algorithm yields:

• Inf or -Inf if the noise variance is a very large value
• NaN if the noise variance and signal power are both very small values

The approximate LLR algorithm does not compute exponentials. You can avoid Inf, -Inf, and NaN
results by using the approximate LLR algorithm.

Dependencies

To enable this property, set the BitOutput property to true, the DecisionMethod property to
'Log-likelihood ratio' or 'Approximate log-likelihood ratio', and the
VarianceSource property to 'Property'.
Data Types: double

OutputDataType — Data type of output
'Full precision' (default) | 'Smallest unsigned integer' | 'double' | ...

Data type of the output, specified as 'Full precision', 'Smallest unsigned integer',
'double', 'single', 'int8', 'uint8', 'int16', 'uint16', 'int32', or 'uint32','logical'.

• When the input data type is single or double precision and you set the BitOutput property to
true, the DecisionMethod property to 'Hard decision', and the OutputDataType property
to 'Full precision', the output has the same data type as that of the input.

• When the input data is of a fixed-point type, the output data type behaves as if you had set the
OutputDataType property to 'Smallest unsigned integer'.

• When you set BitOutput to true and the DecisionMethod property to 'Hard Decision',
then 'logical' data type is a valid option.
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• When you set the BitOutput property to true and the DecisionMethod property to 'Log-
likelihood ratio' or 'Approximate log-likelihood ratio', the output data type is the
same as that of the input and the input data type must be single or double precision.

Dependencies

To enable this property, set the BitOutput property to false or set the BitOutput property to
true and the DecisionMethod property to 'Hard decision'.

Fixed-Point Properties

DerotateFactorDataType — Data type of derotate factor
'Same word length as input' (default) | 'Custom'

Data type of the derotate factor, specified as 'Same word length as input' or 'Custom'. The
object uses the derotate factor in the computations only when the input signal is a fixed-point type
and the PhaseOffset property has a value that is not an even multiple of π/4.

Dependencies

To enable this property, set the BitOutput property to false or set the BitOutput property to
true and the DecisionMethod property to 'Hard decision'.

CustomDerotateFactorDataType — Fixed-point data type of derotate factor
numerictype([],16) (default) | unscaled numerictype object

Fixed-point data type of the derotate factor, specified as an unscaled numerictype object with a
Signedness of Auto.

Dependencies

To enable this property, set the DerotateFactorDataType property to 'Custom'.
Data Types: numerictype object

Usage

Syntax
y = qpskdemod(x)
y = qpskdemod(x,var)

Description

y = qpskdemod(x) applies QPSK demodulation to the input signal and returns the demodulated
signal.

y = qpskdemod(x,var) uses soft decision demodulation and noise variance var. This syntax
applies when you set the BitOutput property to true, the DecisionMethod property to
'Approximate log-likelihood ratio' or 'Log-likelihood ratio', and the
VarianceSource property to 'Input port'.
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Input Arguments

x — QPSK-modulated signal
scalar | column vector

QPSK-modulated signal, specified as a scalar or column vector.

Dependencies

The object accepts inputs with a signed integer data type or signed fixed point (sfi) objects when
you set the BitOutput property to false or you set the DecisionMethod property to 'Hard
decision' and the BitOutput property to true.
Data Types: double | single | int | fi

var — Noise variance
scalar

Noise variance, specified as a scalar.

Dependencies

To enable this argument, set the VarianceSource property to 'Input port', the BitOutput
property to true, and the DecisionMethod property to 'Approximate log-likelihood ratio'
or 'Log-likelihood ratio'.
Data Types: single | double

Output Arguments

y — Output signal
scalar | column vector

Output signal, returned as a scalar or column vector. To specify whether the object outputs values as
integers or bits, use the BitOutput property. To specify the output data type, use the
OutputDataType property.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to comm.QPSKDemodulator
constellation Calculate or plot ideal signal constellation

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object
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Examples

Plot QPSK Reference Constellation

Create a QPSK modulator.

mod = comm.QPSKModulator;

Determine the reference constellation points.

refC = constellation(mod)

refC = 4×1 complex

   0.7071 + 0.7071i
  -0.7071 + 0.7071i
  -0.7071 - 0.7071i
   0.7071 - 0.7071i

Plot the constellation.

constellation(mod)

Reconfigure the object for bit input and plot the constellation to show the binary values of the Gray-
encoded mapping.
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release(mod)
mod.BitInput = true; 
constellation(mod)

Create a QPSK demodulator having phase offset set to 0.

demod = comm.QPSKDemodulator(0);

Plot the reference constellation. The constellation method works for both modulator and
demodulator objects.

constellation(demod)
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BER Estimate of QPSK Signal

Create a QPSK modulator and demodulator pair that operate on bits.

qpskModulator = comm.QPSKModulator('BitInput',true);
qpskDemodulator = comm.QPSKDemodulator('BitOutput',true);

Create an AWGN channel object and an error rate counter.

channel = comm.AWGNChannel('EbNo',4,'BitsPerSymbol',2);
errorRate = comm.ErrorRate;

Generate random binary data and apply QPSK modulation.

data = randi([0 1],1000,1);
txSig = qpskModulator(data);

Pass the signal through the AWGN channel and demodulate it.

rxSig = channel(txSig);
rxData = qpskDemodulator(rxSig);

Calculate the error statistics. Display the BER.
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errorStats = errorRate(data,rxData);

errorStats(1)

ans = 0.0100

Log-Likelihood Ratio (LLR) Demodulation

This example shows the BER performance improvement for QPSK modulation when using log-
likelihood ratio (LLR) instead of hard-decision demodulation in a convolutionally coded
communication link. With LLR demodulation, one can use the Viterbi decoder either in the
unquantized decoding mode or the soft-decision decoding mode. Unquantized decoding, where the
decoder inputs are real values, though better in terms of BER, is not practically viable. In the more
practical soft-decision decoding, the demodulator output is quantized before being fed to the decoder.
It is generally observed that this does not incur a significant cost in BER while significantly reducing
the decoder complexity. We validate this experimentally through this example.

For a Simulink™ version of this example, see “LLR vs. Hard Decision Demodulation in Simulink”.

Initialization

Initialize simulation parameters.

M = 4;               % Modulation order
bitsPerIter = 1.2e4; % Number of bits to simulate
EbNo = 3;            % Information bit Eb/No in dB

Initialize coding properties for a rate 1/2, constraint length 7 code.

codeRate = 1/2;          % Code rate of convolutional encoder
constLen = 7;            % Constraint length of encoder
codeGenPoly = [171 133]; % Code generator polynomial of encoder
tblen = 32;              % Traceback depth of Viterbi decoder
trellis = poly2trellis(constLen,codeGenPoly);

Create a comm.ConvolutionalEncoder System object™ by using trellis as an input.

enc = comm.ConvolutionalEncoder(trellis);

Channel

The signal going into the AWGN channel is the modulated encoded signal. To achieve the required
noise level, adjust the Eb/No for coded bits and multi-bit symbols. Calculate the SNR value based on
the Eb/No value you want to simulate.

SNR = convertSNR(EbNo,"ebno","BitsPerSymbol",log2(M),"CodingRate",codeRate);

Viterbi Decoding

Create comm.ViterbiDecoder objects to act as the hard-decision, unquantized, and soft-decision
decoders. For all three decoders, set the traceback depth to tblen.

decHard = comm.ViterbiDecoder(trellis,'InputFormat','Hard', ...
    'TracebackDepth',tblen);
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decUnquant = comm.ViterbiDecoder(trellis,'InputFormat','Unquantized', ...
    'TracebackDepth',tblen);

decSoft = comm.ViterbiDecoder(trellis,'InputFormat','Soft', ...
    'SoftInputWordLength',3,'TracebackDepth',tblen);

Calculating the Error Rate

Create comm.ErrorRate objects to compare the decoded bits to the original transmitted bits. The
Viterbi decoder creates a delay in the decoded bit stream output equal to the traceback length. To
account for this delay, set the ReceiveDelay property of the comm.ErrorRate objects to tblen.

errHard = comm.ErrorRate('ReceiveDelay',tblen);
errUnquant = comm.ErrorRate('ReceiveDelay',tblen);
errSoft = comm.ErrorRate('ReceiveDelay',tblen);

System Simulation

Generate bitsPerIter message bits. Then convolutionally encode and modulate the data.

txData = randi([0 1],bitsPerIter,1); 
encData = enc(txData);
modData = pskmod(encData,M,pi/4,InputType="bit");

Pass the modulated signal through an AWGN channel.

[rxSig,noiseVariance] = awgn(modData,SNR);

Before using a comm.ViterbiDecoder object in the soft-decision mode, the output of the
demodulator needs to be quantized. This example uses a comm.ViterbiDecoder object with a
SoftInputWordLength of 3. This value is a good compromise between short word lengths and a
small BER penalty. Define partition points for 3-bit quantization.

demodLLR.Variance = noiseVariance;
partitionPoints = (-1.5:0.5:1.5)/noiseVariance;

Demodulate the received signal and output hard-decision bits.

hardData = pskdemod(rxSig,M,pi/4,OutputType="bit");

Demodulate the received signal and output LLR values.

LLRData = pskdemod(rxSig,M,OutputType="llr");

Hard-decision decoding

Pass the demodulated data through the Viterbi decoder. Compute the error statistics.

rxDataHard = decHard(hardData);
berHard = errHard(txData,rxDataHard);

Unquantized decoding

Pass the demodulated data through the Viterbi decoder. Compute the error statistics.

rxDataUnquant = decUnquant(LLRData);
berUnquant = errUnquant(txData,rxDataUnquant);

Soft-decision decoding
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Pass the demodulated data to the quantiz function. This data must be multiplied by -1 before being
passed to the quantizer, because, in soft-decision mode, the Viterbi decoder assumes that positive
numbers correspond to 1s and negative numbers to 0s. Pass the quantizer output to the Viterbi
decoder. Compute the error statistics.

quantizedValue = quantiz(-LLRData,partitionPoints);
rxDataSoft = decSoft(double(quantizedValue));
berSoft = errSoft(txData,rxDataSoft);

Running Simulation Example

Simulate the previously described communications system over a range of Eb/No values by executing
the simulation file simLLRvsHD. It plots BER results as they are generated. BER results for hard-
decision demodulation and LLR demodulation with unquantized and soft-decision decoding are
plotted in red, blue, and black, respectively. A comparison of simulation results with theoretical
results is also shown. Observe that the BER is only slightly degraded by using soft-decision decoding
instead of unquantized decoding. The gap between the BER curves for soft-decision decoding and the
theoretical bound can be narrowed by increasing the number of quantizer levels.

This example may take some time to compute BER results. If you have the Parallel Computing
Toolbox™ (PCT) installed, you can set usePCT to true to run the simulation in parallel. In this case,
the file LLRvsHDwithPCT is run.

To obtain results over a larger range of Eb/No values, modify the appropriate supporting files. Note
that you can obtain more statistically reliable results by collecting more errors.

usePCT = false;
if usePCT && license('checkout','Distrib_Computing_Toolbox') ...
        && ~isempty(ver('parallel'))
    LLRvsHDwithPCT(1.5:0.5:5.5,5);
else
    simLLRvsHD(1.5:0.5:5.5,5);
end
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Appendix

The following functions are used in this example:

• simLLRvsHD.m — Simulates system without PCT.
• LLRvsHDwithPCT.m — Simulates system with PCT.
• simLLRvsHDPCT.m — Helper function called by LLRvsHDwithPCT.

More About
Hard-Decision QPSK Demodulation

The signal preprocessing required for QPSK demodulation depends on the configuration.

This figure shows the hard-decision QPSK demodulation signal diagram for the trivial phase offset
(odd multiple of π/4) configuration.
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This figure shows the hard-decision QPSK demodulation floating point signal diagram for the
nontrivial phase offset configuration.
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This figure shows the hard-decision QPSK demodulation fixed-point signal diagram for the nontrivial
phase offset configuration.

Soft-Decision QPSK Demodulation

For soft demodulation, two soft-decision log-likelihood ratio (LLR) algorithms are available: exact LLR
and approximate LLR. The exact LLR algorithm is more accurate but has slower execution speed than
the approximate LLR algorithm. For further description of these algorithms, see the “Hard- vs. Soft-
Decision Demodulation” topic.

Note The exact LLR algorithm computes exponentials using finite precision arithmetic. For
computations involving very large positive or negative magnitudes, the exact LLR algorithm yields:

• Inf or -Inf if the noise variance is a very large value
• NaN if the noise variance and signal power are both very small values

The approximate LLR algorithm does not compute exponentials. You can avoid Inf, -Inf, and NaN
results by using the approximate LLR algorithm.

Version History
Introduced in R2012a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

double and single data types are supported for simulation, but not for HDL code generation.

To generate HDL code from predefined System objects, see “HDL Code Generation from Viterbi
Decoder System Object” (HDL Coder).

See Also
Functions
pskmod | pskdemod

Objects
comm.QPSKModulator | comm.PSKDemodulator | comm.PSKModulator |
comm.DPSKDemodulator | comm.OQPSKDemodulator

Blocks
QPSK Demodulator Baseband | M-PSK Demodulator Baseband
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comm.QPSKModulator
Package: comm

Modulate using QPSK method

Description
The comm.QPSKModulator object modulates a signal using the quadrature phase shift keying
(QPSK) method. The output is a baseband representation of the modulated signal.

To modulate using the QPSK method:

1 Create the comm.QPSKModulator object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation
Syntax
qpskmod = comm.QPSKModulator
qpskmod = comm.QPSKModulator(Name,Value)
qpskmod = comm.QPSKModulator(phase,Name,Value)

Description

qpskmod = comm.QPSKModulator creates a System object to modulate input signals using the
QPSK method.

qpskmod = comm.QPSKModulator(Name,Value) sets properties using one or more name-value
arguments. For example, 'OutputDataType'='single' specifies output of the modulated signal
values in single precision data type.

qpskmod = comm.QPSKModulator(phase,Name,Value) sets the PhaseOffset property to
phase and optional name-value arguments. Specify phase in radians.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

PhaseOffset — Phase offset of zeroth point in constellation
pi/4 (default) | scalar
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Phase of zeroth point of the signal constellation in radians, specified as a scalar.
Example: 'PhaseOffset',0 aligns the QPSK signal constellation points on the axes, {(1,0), (0,j),
(-1,0), (0,-j)}.
Data Types: double

BitInput — Option to provide input in bits
0 or false (default) | 1 or true

Option to provide input in bits, specified as a logical 0 (false) or 1 (true).

• When this property is set to false, the input values must be integer representations of two-bit
input segments in the range [0, 3].

• When this property is set to true, the input must be a binary vector of even length. Element pairs
are binary representations of integers.

Data Types: logical

SymbolMapping — Symbol encoding
'Gray' (default) | 'Binary'

Symbol encoding mapping of constellation bits, specified as 'Gray' or 'Binary'.

Setting Constellation
Mapping for Integers

Constellation
Mapping for Bits

Comment

Gray Map symbols using
Gray-coded ordering.

Binary Map symbols using
natural binary-coded
ordering. The signal
constellation maps to
the complex value
ej(PhaseOffset + (2πm/4)),
where m is an integer in
the range [0, 3].

Data Types: char

OutputDataType — Data type assigned to output
'double' (default) | 'single' | 'Custom'

Data type assigned to output, specified as 'double', 'single', or 'Custom'.
Data Types: char
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Fixed-Point Properties

CustomOutputDataType — Fixed-point data type of output
numerictype([],16) (default) | numerictype object

Fixed-point data type of output, specified as a numerictype object with a signedness of Auto.

Dependencies

This property applies when you set the OutputDataType property to 'Custom'.

Usage

Syntax
y = qpskmod(x)

Description

y = qpskmod(x) returns baseband-modulated output.

Input Arguments

x — Input signal
integer column vector | bit column vector

Input signal, specified as an NS-element column vector of integers or bits, where NS is the number of
samples.

The setting of the BitInput property determines the interpretation of the input vector.
Data Types: double | int8 | logical | fi

Output Arguments

y — Output QPSK-modulated signal
vector

Output QPSK-modulated signal, returned as a complex-valued vector.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to comm.QPSKModulator
constellation Calculate or plot ideal signal constellation
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Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Plot QPSK Reference Constellation

Create a QPSK modulator.

mod = comm.QPSKModulator;

Determine the reference constellation points.

refC = constellation(mod)

refC = 4×1 complex

   0.7071 + 0.7071i
  -0.7071 + 0.7071i
  -0.7071 - 0.7071i
   0.7071 - 0.7071i

Plot the constellation.

constellation(mod)
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Reconfigure the object for bit input and plot the constellation to show the binary values of the Gray-
encoded mapping.

release(mod)
mod.BitInput = true; 
constellation(mod)
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Create a QPSK demodulator having phase offset set to 0.

demod = comm.QPSKDemodulator(0);

Plot the reference constellation. The constellation method works for both modulator and
demodulator objects.

constellation(demod)
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Phase Noise on QPSK Signal

Create a QPSK modulator object and a phase noise object.

qpskmod = comm.QPSKModulator;
phNoise = comm.PhaseNoise( ...
    Level=-55, ...
    FrequencyOffset=20, ...
    SampleRate=1000);

Generate random QPSK data. Pass the signal through the phase noise object.

d = randi([0 3],1000,1);
x = qpskmod(d);
y = phNoise(x);

Display the constellation diagram of the QPSK signal. The phase noise has introduced a rotational
distortion on the constellation diagram.

constDiagram = comm.ConstellationDiagram;
constDiagram(y)
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Create QPSK Modulator Object with Bit Input

Create QPSK modulator object setting the BitInput property to true. Display the properties.

qpskmod = comm.QPSKModulator('BitInput',true)

qpskmod = 
  comm.QPSKModulator with properties:

       PhaseOffset: 0.7854
          BitInput: true
     SymbolMapping: 'Gray'
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    OutputDataType: 'double'

Determine the reference constellation points.

refC = constellation(qpskmod)

refC = 4×1 complex

   0.7071 + 0.7071i
  -0.7071 + 0.7071i
  -0.7071 - 0.7071i
   0.7071 - 0.7071i

Plot the constellation. Since BitInput is true, the constellation symbols are label with bit values.

constellation(qpskmod)

Create QPSK modulator object with default properties settings. Display the properties.

qpskmod2 = comm.QPSKModulator

qpskmod2 = 
  comm.QPSKModulator with properties:

       PhaseOffset: 0.7854
          BitInput: false

3 System Objects

3-1120



     SymbolMapping: 'Gray'
    OutputDataType: 'double'

Plot constellation with default settings. Since BitInput is false, the constellation symbols are label
with integer values.

constellation(qpskmod2)

Version History
Introduced in R2012a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.
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double and single data types are supported for simulation, but not for HDL code generation.

To generate HDL code from predefined System objects, see “HDL Code Generation from Viterbi
Decoder System Object” (HDL Coder).

See Also
Functions
pskmod | pskdemod

Objects
comm.QPSKDemodulator | comm.PSKModulator | comm.PSKDemodulator |
comm.OQPSKDemodulator

Blocks
QPSK Modulator Baseband
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comm.RaisedCosineReceiveFilter
Package: comm

Apply pulse shaping by decimating signal using raised-cosine FIR filter

Description
The comm.RaisedCosineReceiveFilter System object applies pulse shaping by decimating an
input signal using a raised-cosine finite impulse response (FIR) filter. The FIR filter has
(FilterSpanInSymbols × InputSamplesPerSymbol + 1) tap coefficients.

To apply pulse shaping by decimating an input signal using a raised-cosine FIR filter:

1 Create the comm.RaisedCosineReceiveFilter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
rxfilter = comm.RaisedCosineReceiveFilter
rxfilter = comm.RaisedCosineReceiveFilter(Name,Value)

Description

rxfilter = comm.RaisedCosineReceiveFilter returns a raised-cosine FIR receive filter
System object, which decimates the input signal using a raised-cosine FIR filter. The filter uses an
efficient polyphase FIR decimation structure and has unit energy.

rxfilter = comm.RaisedCosineReceiveFilter(Name,Value) sets properties using one or
more name-value pairs. Enclose each property name in quotes. For example,
comm.RaisedCosineReceiveFilter('RolloffFactor',0.3) configures a raised-cosine receive
filter System object with the roll-off factor set to 0.3.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Shape — Filter shape
Square root (default) | Normal
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Filter shape, specified as 'Square root' or 'Normal'.
Data Types: char | string

RolloffFactor — Roll-off factor
0.2 (default) | scalar in the range [0, 1]

Roll-off factor, specified as a scalar in the range [0, 1].
Data Types: double

FilterSpanInSymbols — Filter span in symbols
10 (default) | positive integer

Filter span in symbols, specified as a positive integer. The object truncates the infinite impulse
response (IIR) of an ideal raised-cosine filter to an impulse response that spans the number of
symbols specified by this property.
Data Types: double

InputSamplesPerSymbol — Input samples per symbol
8 (default) | positive integer

Input samples per symbol, specified as a positive integer.
Data Types: double

DecimationFactor — Decimation factor
8 (default) | integer

Decimation factor, specified as an integer in the range [1, InputSamplesPerSymbol]. This value
must evenly divide into InputSamplesPerSymbol. The sampling rate of the output signal is reduced
by the decimation factor such that length(y)/length(x) is equal to DecimationFactor. For a
matrix input signal, the number of input rows must be a multiple of the decimation factor.
Data Types: double

DecimationOffset — Decimation offset
0 (default) | integer

Decimation offset, specified as an integer in the range [0, (DecimationFactor − 1)]. This property
specifies the number of filtered samples the object discards before downsampling.
Data Types: double

Gain — Linear filter gain
1 (default) | positive scalar

Linear filter gain, specified as a positive scalar. The object designs a raised-cosine filter that has unit
energy and then applies the linear filter gain to obtain final tap coefficient values.
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Data Types: double

Usage

Syntax
y = rxfilter(x)

Description

y = rxfilter(x) applies pulse shaping by decimating an input signal using a raised cosine FIR
filter. The output consists of decimated signal values.

Input Arguments

x — Input signal
column vector | matrix

Input signal, specified as a column vector or a Ki-by-N matrix. Ki is the number of input samples per
signal channel, and N is the number of signal channels.

For a Ki-by-N matrix input, the object processes columns of the input matrix as N independent
channels.
Data Types: double | single

Output Arguments

y — Output signal
column vector | matrix

Output signal, returned as a column vector or a Ko-by-N matrix. Ko is equal to Ki /
DecimationFactor. Ki is the number of input samples per signal channel, and N is the number of
signal channels.

The System object filters each channel over time and generates a Ko-by-N output matrix. The output
signal is the same data type as the input signal.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to comm.RaisedCosineReceiveFilter
info Information about filter System object
coeffs Coefficients for filters
cost Computational cost of implementing filter System object
freqz Frequency response of discrete-time filter
fvtool Plot frequency response of filter
grpdelay Group delay response of discrete-time filter

 comm.RaisedCosineReceiveFilter

3-1125



impz Impulse response of discrete-time filter
order Order of discrete-time filter System object

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Filter Signal Using Square-Root-Raised-Cosine Receive Filter

Filter the output of a square-root-raised-cosine (SRRC) transmit filter by using a matched SRRC
receive filter. The input signal has eight samples per symbol.

Create an SRRC transmit filter object, setting the number of output samples per symbol to 8.

 txfilter = comm.RaisedCosineTransmitFilter('OutputSamplesPerSymbol',8);

Create an SRRC receive filter, setting the number of input samples per symbol to 8 and the
decimation factor to 8.

rxfilter = comm.RaisedCosineReceiveFilter('InputSamplesPerSymbol',8, ...
    'DecimationFactor',8);

Use the coeffs function to determine the filter coefficients for both filters.

txCoef = coeffs(txfilter);
rxCoef = coeffs(rxfilter);

Launch the filter visualization tool and display the magnitude responses of the two filters. The results
show that the responses are the same.

 fvt = fvtool(txCoef.Numerator,1,rxCoef.Numerator,1);
 legend(fvt,'Tx Filter','Rx Filter')
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Generate a random bipolar signal. Interpolate the signal by using the SRRC transmit filter object.

 preTx = 2*randi([0 1],100,1) - 1;
 y = txfilter(preTx);

Decimate the signal by using the SRRC receive filter object.

 postRx = rxfilter(y);

The filter delay is equal to the filter span. Accounting for the filter delay, adjust the plotted samples to
compare the pre-Tx filter signal with the post-Rx filter signal. Because the combined receive and the
transmit RRC filters generate a matched filter pair, the two signals overlap one another.

delay = txfilter.FilterSpanInSymbols;
x = (1:(length(preTx)-delay));
plot(x,preTx(1:end-delay),x,postRx(delay+1:end))
legend('Pre-Tx filter','Post-Rx filter')
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Specify Filter Span of Square-Root-Raised-Cosine Receive Filter

Decimate a bipolar signal using a square-root-raised-cosine (SRRC) filter whose impulse response is
truncated to filter a span of six symbol durations.

Create a SRRC transmit FIR filter, setting the filter span to six symbols. The object truncates the
impulse response to six symbols.

txfilter = comm.RaisedCosineTransmitFilter('FilterSpanInSymbols',6);

Generate a random bipolar signal . Filter the signal by using the SRRC transmit FIR filter object.

x = 2*randi([0 1],25,1) - 1;
y = txfilter(x);

Create a matched SRRC receive filter object.

rxfilter = comm.RaisedCosineReceiveFilter('FilterSpanInSymbols',6);

Launch the filter visualization tool to show the impulse response of the receive filter.

fvtool(rxfilter,'Analysis','impulse')

3 System Objects

3-1128



Filter the output signal from the transmit filter by using the matched SRRC receive filter object.

r = rxfilter(y);

Plot the interpolated signal. The results show a delay equal to the filter span (six symbols) before data
passes through the filter.

stem(r)
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Create Square-Root-Raised-Cosine Receive Filter with Unity Passband Gain

Create a square-root-raised-cosine (SRRC) receive filter object. Use FVTool to plot the filter response.
The results show that the linear filter gain is greater than unity. Specifically, the passband gain is
more than 0 dB.

rxfilter = comm.RaisedCosineReceiveFilter;
fvtool(rxfilter)

3 System Objects

3-1130



Use the coeffs object function to obtain the filter coefficients and adjust the filter gain to unit
energy.

b = coeffs(rxfilter);

Because a filter with unity passband gain must have filter coefficients that sum to 1, set the linear
filter gain to the inverse of the sum of the filter tap coefficients, b.Numerator.

rxfilter.Gain = 1/sum(b.Numerator);

Verify that the resulting filter coefficients sum to 1.

bNorm = coeffs(rxfilter);
sum(bNorm.Numerator)

ans = 1.0000

Plot the filter frequency response. The results now show that the passband gain is 0 dB, which is
unity gain.

fvtool(rxfilter)
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Version History
Introduced in R2013b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

The comm.RaisedCosineReceiveFilter System object supports SIMD code generation using Intel
AVX2 technology under these conditions:

• Input signal is real-valued with real filter coefficients.
• Input signal is complex-valued with real or complex filter coefficients.
• Input signal has a data type of single or double.

The SIMD technology significantly improves the performance of the generated code. For details, see
“Generate SIMD Code for MATLAB Functions” (Embedded Coder).
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See Also
Objects
comm.RaisedCosineTransmitFilter | dsp.FIRInterpolator | dsp.FIRDecimator

Functions
rcosdesign
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comm.RaisedCosineTransmitFilter
Package: comm

Apply pulse shaping by interpolating signal using raised-cosine FIR filter

Description
The comm.RaisedCosineTransmitFilter System object applies pulse shaping by interpolating an
input signal using a raised cosine finite impulse response (FIR) filter. The FIR filter has
(FilterSpanInSymbols × OutputSamplesPerSymbol + 1) tap coefficients.

To apply pulse shaping by interpolating an input signal using a raised cosine FIR filter:

1 Create the comm.RaisedCosineTransmitFilter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
txfilter = comm.RaisedCosineTransmitFilter
txfilter = comm.RaisedCosineTransmitFilter(Name,Value)

Description

txfilter = comm.RaisedCosineTransmitFilter returns a raised cosine transmit FIR filter
System object, which interpolates an input signal using a raised cosine FIR filter. The filter uses an
efficient polyphase FIR interpolation structure and has unit energy.

txfilter = comm.RaisedCosineTransmitFilter(Name,Value) sets properties using one or
more name-value pairs. Enclose each property name in quotes. For example,
comm.RaisedCosineTransmitFilter('FilterSpanInSymbols',15) configures a raised cosine
transmit filter System object with the filter span set to 15 symbols.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Shape — Filter shape
'Square root' (default) | 'Normal'
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Filter shape, specified as 'Square root' or 'Normal'.
Data Types: char | string

RolloffFactor — Roll-off factor
0.2 (default) | scalar in the range [0, 1]

Roll-off factor, specified as a scalar in the range [0, 1].
Data Types: double

FilterSpanInSymbols — Filter span in symbols
10 (default) | positive integer

Filter span in symbols, specified as a positive integer. The object truncates the infinite impulse
response (IIR) of an ideal raised-cosine filter to an impulse response that spans the number of
symbols specified by this property.
Data Types: double

OutputSamplesPerSymbol — Output samples per symbol
8 (default) | positive integer

Output samples per symbol, specified as a positive integer.
Data Types: double

Gain — Linear filter gain
1 (default) | positive scalar

Linear filter gain, specified as a positive scalar. The object designs a raised-cosine filter that has unit
energy and then applies the linear filter gain to obtain final tap coefficient values.
Data Types: double

Usage

Syntax
y = txfilter(x)

Description

y = txfilter(x) applies pulse shaping by interpolating an input signal using a raised cosine FIR
filter. The output consists of interpolated signal values.

Input Arguments

x — Input signal
column vector | matrix
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Input signal, specified as a column vector or a Ki-by-N matrix. Ki is the number of input samples per
signal channel, and N is the number of signal channels.

For a Ki-by-N matrix input, the object processes columns of the input matrix as N independent
channels.
Data Types: double | single

Output Arguments

y — Output signal
column vector | matrix

Output signal, returned as a column vector or a Ko-by-N matrix. Ko is equal to Ki ×
OutputSamplesPerSymbol. Ki is the number of input samples per signal channel, and N is the
number of signal channels.

The object interpolates and filters each channel over the first dimension and then generates a Ko-by-N
output matrix. The output signal is the same data type as the input signal.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to comm.RaisedCosineTransmitFilter
info Information about filter System object
coeffs Coefficients for filters
cost Computational cost of implementing filter System object
freqz Frequency response of discrete-time filter
fvtool Plot frequency response of filter
grpdelay Group delay response of discrete-time filter
impz Impulse response of discrete-time filter
order Order of discrete-time filter System object

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Interpolate Signal Using Square-Root-Raised-Cosine Filter

Interpolate a signal using square-root-raised-cosine (SRRC) transmit filter object and display the
spectrum of the filtered signal.

Create random bipolar symbols at a symbol rate of 1e6 symbols per second.
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data = 2*randi([0 1],1e6,1) - 1;

Create a SRRC transmit filter object. The default sets the filter to a square-root shape and the
number of samples per symbol to 8.

txfilter = comm.RaisedCosineTransmitFilter

txfilter = 
  comm.RaisedCosineTransmitFilter with properties:

                     Shape: 'Square root'
             RolloffFactor: 0.2000
       FilterSpanInSymbols: 10
    OutputSamplesPerSymbol: 8
                      Gain: 1

Filter the data by using the SRRC filter.

filteredData = txfilter(data);

Create a spectrum analyzer object with an 8e6 sampling rate. This sampling rate matches the
sampling rate of the filtered signal.

spectrumAnalyzer = spectrumAnalyzer(SampleRate=8e6);

View the spectrum of the filtered signal by using the spectrum analyzer object.

spectrumAnalyzer(filteredData)
release(spectrumAnalyzer)
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Examine Effect of Filter Span on Magnitude Response

Create interpolated signals from a square-root-raised-cosine (SRRC) filter with various filter spans.
Examine the magnitude response of the various filter designs.

Create SRRC filter objects setting various filter spans. Use the coeffs object function to obtain the
filter coefficients.

txfilt2 = comm.RaisedCosineTransmitFilter('FilterSpanInSymbols',2);
txfilt4 = comm.RaisedCosineTransmitFilter('FilterSpanInSymbols',4);
txfilt6 = comm.RaisedCosineTransmitFilter('FilterSpanInSymbols',6);
txfilt8 = comm.RaisedCosineTransmitFilter('FilterSpanInSymbols',8);
txfilt16 = comm.RaisedCosineTransmitFilter('FilterSpanInSymbols',16);

taps2 = coeffs(txfilt2).Numerator;
taps4 = coeffs(txfilt4).Numerator;
taps6 = coeffs(txfilt6).Numerator;
taps8 = coeffs(txfilt8).Numerator;
taps16 = coeffs(txfilt16).Numerator;

Launch the filter visualization tool to show the magnitude response for various filter spans. Specify a
sample rate of 1 kHz. Display the two-sided centered response.

fvt = fvtool(taps2,1,taps4,1,taps8,1,taps16,1);
fvt.Fs = 1e3;
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fvt.FrequencyRange = '[-Fs/2, Fs/2)';
legend(fvt,'Span 2 symbols','Span 4 symbols', ...
    'Span 8 symbols','Span 10 symbols')

Create Square-Root-Raised-Cosine Transmit Filter with Unity Passband Gain

Create a square-root-raised-cosine (SRRC) transmit filter System object™, and then plot the filter
response. The results show that the linear filter gain is greater than unity. Specifically, the passband
gain is greater than 0 dB.

txfilter = comm.RaisedCosineTransmitFilter;
fvtool(txfilter)
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Obtain the filter coefficients by using the coeffs object function and adjust the filter gain to unit
energy.

b = coeffs(txfilter);

Because a filter with unity passband gain must have filter coefficients that sum to 1, set the linear
filter gain to the inverse of the sum of the filter tap coefficients, b.Numerator.

txfilter.Gain = 1/sum(b.Numerator);

Verify that the resulting filter coefficients sum to 1.

bNorm = coeffs(txfilter);
sum(bNorm.Numerator)

ans = 1.0000

Plot the filter frequency response again. The results now show that the passband gain is 0 dB, which
is unity gain.

fvtool(txfilter)
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Version History
Introduced in R2013b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

The comm.RaisedCosineTransmitFilter System object supports SIMD code generation using
Intel AVX2 technology under these conditions:

• Input signal is real-valued with real filter coefficients.
• Input signal is complex-valued with real or complex filter coefficients.
• Input signal has a data type of single or double.

The SIMD technology significantly improves the performance of the generated code. For details, see
“Generate SIMD Code for MATLAB Functions” (Embedded Coder).
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See Also
Objects
comm.RaisedCosineReceiveFilter | dsp.FIRInterpolator | dsp.FIRDecimator

Functions
rcosdesign
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comm.RayleighChannel
Package: comm

Filter input signal through multipath Rayleigh fading channel

Description
The comm.RayleighChannel System object filters an input signal through the multipath Rayleigh
fading channel. For more information on fading model processing, see the Methodology for
Simulating Multipath Fading Channels section.

To filter an input signal through a multipath Rayleigh fading channel:

1 Create the comm.RayleighChannel object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation
Syntax
rayleighchan = comm.RayleighChannel
rayleighchan = comm.RayleighChannel(Name,Value)

Description

rayleighchan = comm.RayleighChannel creates a frequency-selective or frequency-flat
multipath Rayleigh fading channel System object. This object filters a real or complex input signal
through the multipath channel to obtain a channel-impaired signal.

rayleighchan = comm.RayleighChannel(Name,Value) sets properties using one or more
name-value arguments. For example, 'SampleRate',2 sets the input signal sample rate to 2.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

SampleRate — Input signal sample rate
1 (default) | positive scalar

Input signal sample rate in hertz, specified as a positive scalar.
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Data Types: double

PathDelays — Discrete path delay
0 (default) | scalar | row vector

Discrete path delay in seconds, specified as a scalar or row vector.

• When you set PathDelays to a scalar, the channel is frequency flat.
• When you set PathDelays to a vector, the channel is frequency selective.

The PathDelays and AveragePathGains properties must be the same length.
Data Types: double

AveragePathGains — Average gains of discrete paths
0 (default) | scalar | row vector

Average gains of the discrete paths in decibels, specified as a scalar or row vector. The
AveragePathGains and PathDelays properties must be the same length.
Data Types: double

NormalizePathGains — Normalize average path gains
trueor 1 (default) | false or 0

Normalize average path gains, specified as one of these logical values:

• 1 (true) — The fading processes are normalized so that the total power of the path gains,
averaged over time, is 0 dB.

• 0 (false) — The total power of the path gains is not normalized.

The AveragePathGains property specifies the average powers of the path gains.
Data Types: logical

MaximumDopplerShift — Maximum Doppler shift for all channel paths
0.001 (default) | nonnegative scalar

Maximum Doppler shift for all channel paths, specified as a nonnegative scalar. Units are in hertz.

The maximum Doppler shift limit applies to each channel path. When you set this property to 0, the
channel remains static for the entire input. You can use the reset object function to generate a new
channel realization. The MaximumDopplerShift property value must be smaller than
SampleRate/10/fc for each path. fc is the cutoff frequency factor of the path. For most Doppler
spectrum types, the value of fc is 1. For Gaussian and bi-Gaussian Doppler spectrum types, fc is
dependent on the Doppler spectrum structure fields. For more details about how fc is defined, see the
“Cutoff Frequency Factor” on page 3-1161 section.
Data Types: double

DopplerSpectrum — Doppler spectrum shape for all channel paths
doppler('Jakes') (default) | Doppler spectrum structure | 1-by-NP cell array of Doppler spectrum
structures

3 System Objects

3-1144



Doppler spectrum shape for all channel paths, specified as a Doppler spectrum structure or a 1-by-NP
cell array of Doppler spectrum structures. These Doppler spectrum structures must be outputs of the
form returned from the doppler function. NP is the number of discrete delay paths specified by the
PathDelays property. The MaximumDopplerShift property defines the maximum Doppler shift
value that the DopplerSpectrum property permits when you specify the Doppler spectrum..

• When you set DopplerSpectrum to a single Doppler spectrum structure, all paths have the same
specified Doppler spectrum.

• When you set DopplerSpectrum to a cell array of Doppler spectrum structures, each path has
the Doppler spectrum specified by the corresponding structure in the cell array.

Specify options for the spectrum type by using the specType input to the doppler function. If you
set the FadingTechnique property to 'Sum of sinusoids', you must set DopplerSpectrum to
doppler('Jakes').

Dependencies

To enable this property, set the MaximumDopplerShift property to a positive scalar.
Data Types: struct | cell

ChannelFiltering — Channel filtering
trueor 1 (default) | false or 0

Channel filtering, specified as one of these logical values:

• 1 (true) — The channel accepts an input signal and produces a filtered output signal.
• 0 (false) — The object does not accept an input signal, produces no filtered output signal, and

outputs only channel path gains. You must specify the duration of the fading process by using the
NumSamples property.

Data Types: logical

PathGainsOutputPort — Output channel path gains
false or 0 (default) | true or 1

Output channel path gains, specified as a logical 0 (false) or 1 (true). Set this property to true to
output the channel path gains of the underlying fading process.

Dependencies

To enable this property, set the ChannelFiltering property to true.
Data Types: logical

NumSamples — Number of samples
100 (default) | nonnegative integer

Number of samples used for the duration of the fading process, specified as a nonnegative integer.

Tunable: Yes
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Dependencies

To enable this property, set the ChannelFiltering property to false.
Data Types: double

OutputDataType — Path gain output data type
'double' (default) | 'single'

Path gain output data type, specified as 'double' or 'single'.

Dependencies

To enable this property, set the ChannelFiltering property to false.
Data Types: char | string

FadingTechnique — Channel model fading technique
'Filtered Gaussian noise' (default) | 'Sum of sinusoids'

Channel model fading technique, specified as 'Filtered Gaussian noise' or 'Sum of
sinusoids'.
Data Types: char | string

NumSinusoids — Number of sinusoids used
48 (default) | positive integer

Number of sinusoids used to model the fading process, specified as a positive integer.

Dependencies

To enable this property, set the FadingTechnique property to 'Sum of sinusoids'.
Data Types: double

InitialTimeSource — Source to control start time of fading process
'Property' (default) | 'Input port'

Source to control the start time of the fading process, specified as 'Property' or 'Input port'.

• When you set InitialTimeSource to 'Property', set the initial time offset by using the
InitialTime property.

• When you set InitialTimeSource to 'Input port', specify the start time of the fading
process by using the inittime input argument. The input value can change in consecutive calls
to the object.

Dependencies

To enable this property, set the FadingTechnique property to 'Sum of sinusoids'.
Data Types: char | string

InitialTime — Initial time offset
0 (default) | nonnegative scalar
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Initial time offset for the fading model in seconds, specified as a nonnegative scalar.

When mod(InitialTime/SampleRate) is nonzero, the initial time offset is rounded up to the nearest
sample position.

Dependencies

To enable this property, set the FadingTechnique property to 'Sum of sinusoids' and the
InitialTimeSource property to 'Property'.
Data Types: double

RandomStream — Source of random number stream
'Global stream' (default) | 'mt19937ar with seed'

Source of the random number stream, specified as 'Global stream' or 'mt19937ar with
seed'.

• When you specify 'Global stream', the object uses the current global random number stream
for random number generation. In this case, the reset object function resets only the filters.

• When you specify 'mt19937ar with seed', the object uses the mt19937ar algorithm for
random number generation. In this case, the reset object function resets the filters and
reinitializes the random number stream to the value of the Seed property.

Data Types: char | string

Seed — Initial seed of mt19937ar random number stream
73 (default) | nonnegative integer

Initial seed of the mt19937ar random number stream generator algorithm, specified as a nonnegative
integer. When you call the reset object function, it reinitializes the mt19937ar random number
stream to the Seed value.

Dependencies

To enable this property, set the RandomStream property to 'mt19937ar with seed'.
Data Types: double

Visualization — Channel visualization
'Off' (default) | 'Impulse response' | 'Frequency response' | 'Impulse and frequency
responses' | 'Doppler spectrum'

Channel visualization, specified as 'Off', 'Impulse response', 'Frequency response',
'Impulse and frequency responses', or 'Doppler spectrum'. For more information, see the
Channel Visualization topic.

Dependencies

To enable this property, set the FadingTechnique property to 'Filtered Gaussian noise'.
Data Types: char | string
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PathsForDopplerDisplay — Path used for displaying Doppler spectrum
1 (default) | positive integer

Path used for displaying the Doppler spectrum, specified as a positive integer in the range [1, NP]. NP
is the number of discrete delay paths specified by the PathDelays property. Use this property to
select the discrete path used in constructing a Doppler spectrum plot.
Dependencies

To enable this property, set the Visualization property to 'Doppler spectrum'.
Data Types: double

SamplesToDisplay — Percentage of samples to display
'25%' (default) | '10%' | '50%' | '100%'

Percentage of samples to display, specified as '25%', '10%', '50%', or '100%'. Increasing the
percentage improves display accuracy at the expense of simulation speed.
Dependencies

To enable this property, set the Visualization property to 'Impulse response', 'Frequency
response', or 'Impulse and frequency responses'.
Data Types: char | string

Usage

Syntax
y = rayleighchan(x)
y = rayleighchan(x,inittime)
[y,pathgains] = rayleighchan( ___ )

pathgains = rayleighchan()
pathgains = rayleighchan(inittime)

Description

y = rayleighchan(x) filters the input signal x through a multipath Rayleigh fading channel and
returns the result in y.

To enable this syntax, set the ChannelFiltering property to true.

y = rayleighchan(x,inittime) specifies a start time for the fading process.

To enable this syntax, set the FadingTechnique property to 'Sum of sinusoids' and the
InitialTimeSource property to 'Input port'.

[y,pathgains] = rayleighchan( ___ ) also returns the channel path gains of the underlying
multipath Rayleigh fading process in pathgains using any of the input argument combinations in
the previous syntaxes.

To enable this syntax, set the PathGainsOutputPort property set to true.
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pathgains = rayleighchan() returns the channel path gains of the underlying fading process. In
this case, the channel requires no input signal and acts as a source of path gains.

To enable this syntax, set the ChannelFiltering property to false.

pathgains = rayleighchan(inittime) returns the channel path gains of the underlying fading
process beginning at the specified initial time. In this case, the channel requires no input signal and
acts as a source of path gains.

To enable this syntax, set the FadingTechnique property to 'Sum of sinusoids', the
InitialTimeSource property to 'Input port', and the ChannelFiltering property to false.

Input Arguments

x — Input signal
NS-by-1 vector

Input signal, specified as an NS-by-1 vector, where NS is the number of samples.
Data Types: single | double
Complex Number Support: Yes

inittime — Initial time offset
0 | nonnegative scalar

Initial time offset in seconds, specified as a nonnegative scalar.

When mod(inittime/SampleRate) is nonzero, the initial time offset is rounded up to the nearest
sample position.
Data Types: single | double

Output Arguments

y — Output signal
NS-by-1 vector

Output signal, returned as an NS-by-1 vector of complex values with the same data precision as the
input signal x. NS is the number of samples.

pathgains — Output path gains
NS-by-NP matrix

Output path gains, returned as an NS-by-NP matrix. NS is the number of samples. NP is the number of
discrete delay paths specified by the PathDelays property. pathgains contains complex values.

When you set the ChannelFiltering property to false, the data type of this output has the same
precision as the input signal x. When you set the ChannelFiltering property to true, the data
type of this output is specified by the OutputDataType property.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)
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Specific to comm.RayleighChannel
info Characteristic information about fading channel object

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Produce Same Rayleigh Channel Outputs Using Two Random Number Generation Methods

Produce the same multipath Rayleigh fading channel response by using two different methods for
random number generation. The multipath Rayleigh fading channel System object includes two
methods for random number generation. You can use the current global stream or the mt19937ar
algorithm with a specified seed. By interacting with the global stream, the System object can produce
the same outputs from these two methods.

Create a PSK modulator System object to modulate randomly generated data.

pskModulator = comm.PSKModulator;
insig = randi([0,pskModulator.ModulationOrder-1],1024,1);
channelInput = pskModulator(insig);

Create a multipath Rayleigh fading channel System object, specifying the random number generation
method as the my19937ar algorithm and the random number seed as 22.

rayleighchan = comm.RayleighChannel( ...
    'SampleRate',10e3, ...
    'PathDelays',[0 1.5e-4], ...
    'AveragePathGains',[2 3], ...
    'NormalizePathGains',true, ...
    'MaximumDopplerShift',30, ...
    'DopplerSpectrum',{doppler('Gaussian',0.6),doppler('Flat')}, ...
    'RandomStream','mt19937ar with seed', ...
    'Seed',22, ...
    'PathGainsOutputPort',true);

Filter the modulated data by using the multipath Rayleigh fading channel System object.

[chanOut1,pathGains1] = rayleighchan(channelInput);

Set the System object to use the global stream for random number generation.

release(rayleighchan);
rayleighchan.RandomStream = 'Global stream';

Set the global stream to have the same seed that you specified when creating the multipath Rayleigh
fading channel System object.

rng(22)

Filter the modulated data by using the multipath Rayleigh fading channel System object again.
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[chanOut2,pathGains2] = rayleighchan(channelInput);

Verify that the channel and path gain outputs are the same for each of the two methods.

isequal(chanOut1,chanOut2)

ans = logical
   1

isequal(pathGains1,pathGains2)

ans = logical
   1

Display Impulse and Frequency Responses of Multipath Rayleigh Fading Channel

Display the impulse and frequency responses of a frequency-selective multipath Rayleigh fading
channel that is configured to disable channel filtering.

Define simulation variables. Specify path delays and gains by using the ITU pedestrian B channel
configuration.

fs = 3.84e6;                                  % Sample rate in Hz
pathDelays = [0 200 800 1200 2300 3700]*1e-9; % in seconds
avgPathGains = [0 -0.9 -4.9 -8 -7.8 -23.9];   % dB
fD = 50;                                      % Max Doppler shift in Hz

Create a multipath Rayleigh fading channel System object to visualize the impulse response and
frequency response plots.

rayleighchan = comm.RayleighChannel('SampleRate',fs, ...
    'PathDelays',pathDelays, ...
    'AveragePathGains',avgPathGains, ...
    'MaximumDopplerShift',fD, ...
    'ChannelFiltering',false, ...
    'Visualization','Impulse and frequency responses');

Visualize the channel response by running the multipath Rayleigh fading channel System object with
no input signal. The impulse response plot enables you to identify the individual paths and their
corresponding filter coefficients. The frequency response plot shows the frequency-selective nature of
the ITU pedestrian B channel.

rayleighchan();
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Model Multipath Rayleigh Fading Channel by Using Sum-of-Sinusoids Technique

Show that the channel state is maintained for discontinuous transmissions by using multipath
Rayleigh fading channel System objects that use the sum-of-sinusoids technique. Observe
discontinuous channel response segments overlaid on a continuous channel response.

Set the channel properties.

fs = 1000;               % Sample rate (Hz)
pathDelays = [0 2.5e-3]; % In seconds
pathPower = [0 -6];      % In dB
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fD = 5;                  % Maximum Doppler shift (Hz)
ns = 1000;               % Number of samples
nsdel = 100;             % Number of samples for delayed paths

Define a continuous time span and three discontinuous time segments over which to plot and view the
channel response. View a 1000-sample continuous channel response that starts at time 0 and three
100-sample channel responses that start at times 0.1, 0.4, and 0.7 seconds, respectively.

to0 = 0.0;
to1 = 0.1;
to2 = 0.4;
to3 = 0.7;
t0 = (to0:ns-1)/fs;      % Transmission 0
t1 = to1+(0:nsdel-1)/fs; % Transmission 1
t2 = to2+(0:nsdel-1)/fs; % Transmission 2
t3 = to3+(0:nsdel-1)/fs; % Transmission 3

Create a frequency-flat multipath Rayleigh fading System object, specifying a 1000 Hz sampling rate,
the sum-of-sinusoids fading technique, disabled channel filtering, and the number of samples to view.
Specify a seed value so that results can be repeated. Use the default InitialTime property setting
so that the fading channel is simulated from time 0.

rayleighchan1 = comm.RayleighChannel('SampleRate',fs, ...
    'MaximumDopplerShift',fD, ...
    'RandomStream','mt19937ar with seed', ...
    'Seed',17, ...
    'FadingTechnique','Sum of sinusoids', ...
    'ChannelFiltering',false, ...
    'NumSamples',ns);

Create a clone of the multipath Rayleigh fading channel System object. In the cloned object, set the
number of samples to view for the delayed paths. Also configure the initial time source as an input so
that you can specify the fading channel offset time as an input argument when using the System
object.

rayleighchan2 = clone(rayleighchan1);
rayleighchan2.NumSamples = nsdel;
rayleighchan2.InitialTimeSource = 'Input port';

Save the path gain output for the continuous channel response by using the rayleighchan1 object
and for the discontinuous delayed channel responses by using the rayleighchan2 object with initial
time offsets are provided as input arguments.

pg0 = rayleighchan1();
pg1 = rayleighchan2(to1);
pg2 = rayleighchan2(to2);
pg3 = rayleighchan2(to3);

Compare the number of samples processed by the two channels by using the info object function.
The rayleighchan1 object processed 1000 samples, while the rayleighchan2 object processed
only 300 samples.

G = info(rayleighchan1);
H = info(rayleighchan2);
[G.NumSamplesProcessed H.NumSamplesProcessed]

ans = 1×2
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Convert the path gains into decibels.

pathGain0 = 20*log10(abs(pg0));
pathGain1 = 20*log10(abs(pg1));
pathGain2 = 20*log10(abs(pg2));
pathGain3 = 20*log10(abs(pg3));

Plot the path gains for the continuous and discontinuous cases. The gains for the three segments
match the gain for the continuous case. Because the channel characteristics are maintained even
when data is not transmitted, the alignment of the two plots shows that the sum-of-sinusoids
technique is suited to the simulation of packetized data.

plot(t0,pathGain0,'r--')
hold on
plot(t1,pathGain1,'b')
plot(t2,pathGain2,'b')
plot(t3,pathGain3,'b')
grid
xlabel('Time (sec)')
ylabel('Path Gain (dB)')
legend('Continuous','Discontinuous','location','nw')
title('Continuous and Discontinuous Transmission Path Gains')
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Reproduce Multipath Rayleigh Fading Channel Response

Reproduce the multipath Rayleigh fading channel output across multiple frames by using the
ChannelFilterCoefficients property returned by the info object function of the
comm.RayleighChannel System object.

Create a multipath Rayleigh fading channel System object, defining two paths. Generate data to pass
through the channel.

rayleighchan = comm.RayleighChannel( ...
    'SampleRate',1000, ...
    'PathDelays',[0 1.5e-3], ...
    'AveragePathGains',[0 -3], ...
    'PathGainsOutputPort',true)

rayleighchan = 
  comm.RayleighChannel with properties:

             SampleRate: 1000
             PathDelays: [0 0.0015]
       AveragePathGains: [0 -3]
     NormalizePathGains: true
    MaximumDopplerShift: 1.0000e-03
        DopplerSpectrum: [1x1 struct]
       ChannelFiltering: true
    PathGainsOutputPort: true

  Show all properties

data = randi([0 1],600,1);

Pass data through the channel. Assign the ChannelFilterCoefficients property value to the
variable coeff. Within a for loop, calculate the fractional delayed input signal at the path delay
locations stored in coeff, apply the path gains, and sum the results for all of the paths. Compare the
output of the multipath Rayleigh fading channel System object (chanout1) to the output reproduced
using the path gains and the ChannelFilterCoefficients property of the multipath Rayleigh
fading channel System object (chanout2).

chaninfo = info(rayleighchan);
coeff = chaninfo.ChannelFilterCoefficients;
Np = length(rayleighchan.PathDelays);
state = zeros(size(coeff,2)-1,size(coeff,1));
nFrames = 10;
chkChan = zeros(nFrames,1);
for jj = 1 : nFrames
    data = randi([0 1],600,1);
    [chanout1,pg] = rayleighchan(data);
    fracdelaydata = zeros(size(data,1),Np);
    % Calculate the fractional delayed input signal.
    for ii = 1:Np
        [fracdelaydata(:,ii),state(:,ii)] = ...
            filter(coeff(ii,:),1,data,state(:,ii));
    end
    % Apply the path gains and sum the results for all of the paths.
    % Compare the channel outputs.
    chanout2 = sum(pg .* fracdelaydata,2);
    chkChan(jj) = isequal(chanout1,chanout2);
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end
chkChan'

ans = 1×10

     1     1     1     1     1     1     1     1     1     1

Verify Autocorrelation of Rayleigh Channel Path Gains

Verify that the autocorrelation of the path gain output from the Rayleigh channel System object is a
Bessel function. The results in [ 1 ] on page 3-1159 and Appendix A of [ 2 ] on page 3-1159, show that
when the autocorrelation of the path gain outputs is a Bessel function, the Doppler spectrum is Jakes-
shaped.

Initialize simulation parameters.

Rsym = 9600;          % Input symbol rate (symbols/s)
sps = 10;             % Number of samples per input symbol
Fs = sps*Rsym;        % Input sampling frequency (samples/s)
Ts = 1/Fs;            % Input sampling period (s)
numsym = 1e6;         % Number of input symbols to simulate
numsamp = numsym*sps; % Number of channel samples to simulate
fd = 100;             % Maximum Doppler frequency shift (Hz)
num_acsamp = 5000;    % Number of samples of autocovariance
                      % of complex fading process calculated
numtx = 1;            % Number of transmit antennas
numrx = 1;            % Number of receive antennas
numsin = 48;          % Number of sinusoids
frmLen = 10000;
numFrames = numsamp/frmLen;

Configure a Rayleigh channel System object.

chan = comm.RayleighChannel( ...
    'FadingTechnique','Sum of sinusoids', ...
    'NumSinusoids',numsin, ...
    'RandomStream','mt19937ar with seed', ...
    'PathDelays',0, ...
    'AveragePathGains',0, ...
    'SampleRate',Fs, ...
    'MaximumDopplerShift',fd, ...
    'PathGainsOutputPort',true);

Apply DPSK modulation to a random bit stream.

tx = randi([0 1],numsamp,numtx); % Random bit stream 
dpskSig = dpskmod(tx,2);         % DPSK signal 

Pass the modulated signal through the channel.

outsig = zeros(numsamp,numrx); 
pg_rx = zeros(numsamp,numrx,numtx);
for frmNum = 1:numFrames  
    [outsig((1:frmLen)+(frmNum-1)*frmLen,:),pathGains] = ...
        chan(dpskSig((1:frmLen)+(frmNum-1)*frmLen,:));
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    for i = 1:numrx 
        pg_rx((1:frmLen)+(frmNum-1)*frmLen,i,:) = ... 
        pathGains(:,:,:,i);
    end 
end 

Using the channel path gains received per antenna, compute the autocovariance of the fading process
for each transmit-receive path.

autocov = zeros(frmLen+1,numrx,numtx); 
autocov_normalized_real = zeros(num_acsamp+1,numrx,numtx); 
autocov_normalized_imag = zeros(num_acsamp+1,numrx,numtx); 
for i = 1:numrx 
    % Compute autocovariance of simulated complex fading process
    for j = 1:numtx 
        autocov(:,i,j) = xcov(pg_rx(:,i,j),num_acsamp); 
        % Real part of normalized autocovariance 
        autocov_normalized_real(:,i,j) = ...
            real(autocov(num_acsamp+1:end,i,j) ...
            / autocov(num_acsamp+1,i,j));
        % Imaginary part of normalized autocovariance 
        autocov_normalized_imag(:,i,j) = ...
            imag(autocov(num_acsamp+1:end,i,j) ...
            / autocov(num_acsamp+1,i,j));
    end 
end 

Compute the theoretical autocovariance of the complex fading process by using the besselj
function.

Rrr = zeros(1,num_acsamp+1); 
for n = 1:1:num_acsamp+1 
    Rrr(n) = besselj(0,2*pi*fd*(n-1)*Ts); 
end 
Rrr_normalized = Rrr/Rrr(1); 

Display the autocovariance to compare the results from the Rayleigh channel System object and the
besselj function.

subplot(2,1,1)
plot(autocov_normalized_real,'b-') 
hold on 
plot(Rrr_normalized,'r-') 
hold off 
legend('comm.RayleighChannel', ...
    'Bessel function of the first kind') 
title('Autocovariance of Real Part of Rayleigh Process') 
subplot(2,1,2)
plot(autocov_normalized_imag) 
legend('comm.RayleighChannel') 
title('Autocovariance of Imaginary Part of Rayleigh Process') 
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As computed below, the mean square error comparing the results from the Rayleigh channel object
versus the Bessel function is insignificant.

act_mse_real = ...
    sum((autocov_normalized_real-repmat(Rrr_normalized.',1,numrx,numtx)).^2,1) ...
    / size(autocov_normalized_real,1) 

act_mse_real = 7.0043e-08

act_mse_imag = sum((autocov_normalized_imag-0).^2,1) ...
    / size(autocov_normalized_imag,1)

act_mse_imag = 4.1064e-07

References

1. Dent, P., G.E. Bottomley, and T. Croft. “Jakes Fading Model Revisited.” Electronics Letters 29, no.
13 (1993): 1162. https://doi.org/10.1049/el:19930777.

2. Pätzold, Matthias. Mobile Fading Channels. Chichester, UK: John Wiley & Sons, Ltd, 2002. https://
doi.org/10.1002/0470847808.

 comm.RayleighChannel

3-1159



Compare PDF of Empirical and Theoretical Rayleigh Channel

Compute and plot the empirical and theoretical probability density function (PDF) for a Rayleigh
channel with one path.

Initialize parameters and create a Rayleigh channel System object that does not apply channel
filtering.

Ns = 1.92e6;
Rs = 1.92e6;
dopplerShift = 2000;

chan = comm.RayleighChannel( ...
    'SampleRate',Rs, ...
    'PathDelays',0, ...
    'AveragePathGains',0, ...
    'MaximumDopplerShift',dopplerShift, ...
    'ChannelFiltering',false, ...
    'NumSamples',Ns, ...
    'FadingTechnique','Sum of sinusoids');

Compute and plot the empirical and theoretical PDF for the Rayleigh channel.

figure;
hold on;

% Empirical PDF plot
gain = chan();
pd = fitdist(abs(gain),'Kernel','BandWidth',.01);
r = 0:.1:3;
y = pdf(pd,r);
plot(r,y)

% Theoretical PDF plot
exp_pdf_amplitude = raylpdf(r,0.7);
plot(r,exp_pdf_amplitude')
legend('Empirical','Theoretical')
title('Empirical and Theoretical PDF Curves')
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More About
Cutoff Frequency Factor

The cutoff frequency factor, fc, is dependent on the type of Doppler spectrum.

• For any Doppler spectrum type other than Gaussian and bi-Gaussian, fc equals 1.
• For a doppler('Gaussian') spectrum type, fc equals NormalizedStandardDeviation

× 2log2.
• For a doppler('BiGaussian') spectrum type:

• If the PowerGains(1) and NormalizedCenterFrequencies(2) field values are both 0,
then fc equals NormalizedStandardDeviation(1) × 2log2.

• If the PowerGains(2) and NormalizedCenterFrequencies(1) field values are both 0,
then fc equals NormalizedStandardDeviation(2) × 2log2.

• If the NormalizedCenterFrequencies field value is [0,0] and the
NormalizedStandardDeviation field has two identical elements, then fc equals
NormalizedStandardDeviation(1) × 2log2.

• In all other cases, fc equals 1.
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Version History
Introduced in R2013b

Updates to channel visualization display

The channel visualization feature now presents:

• Configuration settings in the bottom toolbar on the plot window.
• Plots side-by-side in one window when you select the Impulse and frequency response

channel visualization option.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• To generate C code, set the DopplerSpectrum property to a single Doppler spectrum structure.
• Code generation is available only when you set the Visualization property to 'Off'.
• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
comm.AWGNChannel | comm.MIMOChannel | comm.RicianChannel | comm.RayTracingChannel |
comm.ChannelFilter | comm.WINNER2Channel
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Functions
doppler

Blocks
MIMO Fading Channel | SISO Fading Channel

Topics
Methodology for Simulating Multipath Fading Channels
Channel Visualization
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comm.RayTracingChannel
Package: comm

Filter signal through multipath fading channel defined by propagation rays

Description
The comm.RayTracingChannel System object filters a signal through a multipath fading channel
that is defined by propagation rays. For more information, see the “Channel Impulse Response” on
page 3-1178 section.

To filter an input signal through a fading channel defined by propagation rays:

1 Create the comm.RayTracingChannel object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
rtchan = comm.RayTracingChannel
rtchan = comm.RayTracingChannel(Name,Value)
rtchan = comm.RayTracingChannel(rays,tx,rx)

Description

rtchan = comm.RayTracingChannel creates a ray-tracing fading channel System object, which
defines the multipath environment using a set of propagation rays.

rtchan = comm.RayTracingChannel(Name,Value) sets properties using one or more name-
value arguments. For example, 'SampleRate',1e6 sets the sample rate to 1 MHz.

rtchan = comm.RayTracingChannel(rays,tx,rx) creates a ray-tracing fading channel System
object given inputs rays, tx, and rx.

• rays, specified as a set of comm.Ray objects, is used to set the PropagationRays property.
• tx, specified as a txsite object, is used to set the TransmitArray and

TransmitArrayOrientationAxes properties.
• rx, specified as an rxsite, is used to set the ReceiveArray and

ReceiveArrayOrientationAxes properties.

When you use this syntax, to configure other properties set their values after creating the System
object. For example, see “Configure Sample Rate for Ray Tracing Channel” on page 3-1176.

3 System Objects

3-1164



Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

SampleRate — Input signal sample rate
10000000 (default) | positive scalar

Input signal sample rate in hertz, specified as a positive scalar. The “Configure Sample Rate for Ray
Tracing Channel” on page 3-1176 example shows workflows to set the sample rate.
Data Types: double

PropagationRays — Propagation rays
comm.Ray object (default) | row vector of comm.Ray objects | row cell array of comm.Ray objects

Propagation rays, specified as a comm.Ray object, a row vector of comm.Ray objects, or a row cell
array of comm.Ray objects. This property specifies the propagation rays between the transmit and
receive antenna arrays. All of the specified comm.Ray objects must have the same Frequency
property setting. Any of the specified comm.Ray objects that have their PathSpecification
property set to 'Locations' must have the same CoordinateSystem, TransmitterLocation,
and ReceiverLocation property settings.

For code generation, the PropagationRays property must be a cell array of comm.Ray objects.
Data Types: object | cell

MinimizePropagationDelay — Option to force zero minimum propagation delay
trueor 1 (default) | false or 0

Option to force zero minimum propagation delay, specified as a logical 1 (true) or 0 (false). Set this
property to true to subtract the minimum propagation delay from all of the propagation delays of the
rays to force zero minimum delay. For more information, see the “Tips” on page 3-1178 section.
Data Types: logical | double

TransmitArray — Transmit antenna array
arrayConfig object (default) | phased.IsotropicAntennaElement System object | phased array
antenna System object

Transmit antenna array, specified as one of these options.

• When you set TransmitArray to an arrayConfig object, you can adjust the Size property of
the arrayConfig object to have the transmit array represent a uniform rectangular array (URA),
uniform linear array (ULA), or single phased.IsotropicAntennaElement System object. The
default configuration for an arrayConfig object is a 2-by-2 URA with an element spacing of 0.5
m.

• When you configure the TransmitArray to use a phased array antenna System object, you must
have the “Phased Array System Toolbox” product. For a list of these additional supported values,
see the “Phased Array Antenna Options” on page 3-1178 section.
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TransmitArrayOrientationAxes — Orientation axes of transmit antenna array
eye(3) (default) | 3-by-3 unitary matrix

Orientation axes of the transmit antenna array, specified as a 3-by-3 unitary matrix indicating the
rotation from the local coordinate system (LCS) to the global coordinate system (GCS). If the
comm.Ray objects defined in the PropagationRays property set the CoordinateSystem property
to 'Geographic', the GCS is the East-North-Up (ENU) coordinate system at the transmitter.
Data Types: double

ReceiveArray — Receive antenna array
arrayConfig object | phased.IsotropicAntennaElement System object | phased array antenna
System object | ...

Receive antenna array, specified as one of these options.

• When you set ReceiveArray to an arrayConfig object, you can adjust the Size property of the
arrayConfig object to have the receive array represent a uniform rectangular array (URA),
uniform linear array (ULA), or single phased.IsotropicAntennaElement System object. The
default configuration for an arrayConfig object is a 2-by-2 URA with an element spacing of 0.5
m.

• When you set ReceiveArray to a phased array antenna System object configuration, you must
have the “Phased Array System Toolbox” product. For a list of these additional supported values,
see the “Phased Array Antenna Options” on page 3-1178 section.

ReceiveArrayOrientationAxes — Orientation axes of receive antenna array
eye(3) (default) | 3-by-3 unitary matrix

Orientation axes of the receive antenna array, specified as a 3-by-3 unitary matrix indicating the
rotation from the LCS to the GCS. If the comm.Ray objects defined in the PropagationRays
property set the CoordinateSystem property to 'Geographic', the GCS is the East-North-Up
(ENU) coordinate system at the receiver.
Data Types: double

ReceiverVirtualVelocity — Receive antenna array instantaneous velocity
[1; 1; 0] (default) | three-element column vector

Receive antenna array instantaneous velocity in the GCS in m/s, specified as a three-element column
vector of the form [x; y; z]. The three elements in this vector specify the x-, y-, and z-velocity,
respectively. If the comm.Ray objects defined in the PropagationRays property set the
CoordinateSystem property to 'Geographic', the GCS is the East-North-Up (ENU) coordinate
system at the receiver.
Data Types: double

NormalizeImpulseResponses — Option to normalize channel impulse responses
trueor 1 (default) | false or 0

Option to normalize channel impulse responses, specified as a logical 1 (true) or 0 (false). Set this
property to true to normalize the gains of CIRs to 0 dB from each transmit array element to each
receive array element.
Data Types: logical
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NormalizeChannelOutputs — Option to normalize channel outputs by number of receive
elements
trueor 1 (default) | false or 0

Option to normalize channel outputs by the number of receive elements, specified as a logical 1
(true) or 0 (false). Set this property to true to normalize the channel output by the number of
receive array elements.
Data Types: logical

ChannelFiltering — Channel filtering
trueor 1 (default) | false or 0

Channel filtering, specified as one of these logical values:

• 1 (true) — The channel accepts an input signal and produces a filtered output signal.
• 0 (false) — The object does not accept an input signal, produces no filtered output signal, and

outputs only channel impulse responses. You must specify the duration of the fading process by
using the NumSamples property.

Data Types: logical | double

NumSamples — Number of samples
100 (default) | nonnegative integer

Number of samples used for the duration of the channel impulse responses, specified as a
nonnegative integer.

Tunable: Yes
Dependencies

To enable this property, set the ChannelFiltering property to false.
Data Types: double

OutputDataType — Channel impulse response output data type
'double' (default) | 'single'

Channel impulse response output data type, specified as 'double' or 'single'.
Dependencies

To enable this property, set the ChannelFiltering property to false.
Data Types: char | string

Usage

Syntax
y = rtchan(x)
y = rtchan(x,starttime)
[y,cir] = rtchan( ___ )

cir = rtchan()
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cir = rtchan(starttime)

Description

y = rtchan(x) filters the input signal through a multipath fading channel defined by a set of
propagation rays and returns the result in y.

y = rtchan(x,starttime) specifies the start time of the input signal. When the last and current
frames are not continuous in time, the System object resets the channel filter states.

[y,cir] = rtchan( ___ ) also returns the channel impulse response using an input argument
combination from either of the prior syntaxes.

cir = rtchan() returns the channel impulse response. To enable this syntax, set the
ChannelFiltering property to false.

cir = rtchan(starttime) specifies the start time for the channel impulse response generation.
To enable this syntax set the ChannelFiltering property to false.

Input Arguments

x — Input signal
NS-by-NT matrix

Input signal, specified as an NS-by-NT matrix.

• NS is the number of samples.
• NT is the number of transmit array elements.

Data Types: single | double
Complex Number Support: Yes

starttime — Start time
0 (default) | nonnegative scalar

Start time of input signal in seconds, specified as a nonnegative scalar.

When mod(starttime/SampleRate) is nonzero, the start time is rounded up to the nearest sample
position. The start time must be greater than the end time of the last frame processed by the channel.
You can use the info function to obtain the end time of the last processed frame.
Data Types: double

Output Arguments

y — Output signal
NS-by-NR matrix

Output signal, returned as an NS-by-NR matrix.

• NS is the number of samples.
• NR is the number of receive array elements.

y is the same data type as input x.
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cir — Channel impulse response
NS-by-NP-by-NT-by-NR array

Channel impulse response, returned as an NS-by-NP-by-NT-by-NR array.

• NS is the number of samples. When you set the ChannelFiltering property to true, NS is the
length of the input. When you set ChannelFiltering to false, NS is specified by the
NumSamples property.

• NP is the number of paths (specifically, the number of rays as indicated by the length of the
PropagationRays property).

• NT is the number of transmit array elements.
• NR is the number of receive array elements.

When you set ChannelFiltering to true, the data type for this output is the same data type as
input x. When you set ChannelFiltering to false, the data type for this output is specified by the
OutputDataType property.

For more information, see the “Channel Impulse Response” on page 3-1178 section.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to comm.RayTracingChannel
info Characteristic information about ray-tracing channel
showProfile Plot temporal and spatial profiles of ray-tracing channel
clone Create duplicate System object
isLocked Determine if System object is in use

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Remove Minimum Propagation Path Delay from Multipath Ray Trace Channel

Show the impact of not forcing the smallest propagation delay to be zero for a multipath channel
model. Filter signals through a multipath ray tracing channel between two sites in Hong Kong, China.
Build two multipath channel models by using the result from ray tracing. For the first ray tracing
channel model, force the minimum propagation delay to zero. For the second ray tracing channel
model, do not force the minimum propagation delay to zero.

Create a Site Viewer map display of buildings in Hong Kong. For more information about the OSM
file, see [1] on page 3-1173.
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sv = siteviewer("Buildings","hongkong.osm");

tx = txsite( ...
    "Latitude",22.2789, ...
    "Longitude",114.1625, ...
    "AntennaAngle",30, ...        % Azimuth angle
    "AntennaHeight",10, ...
    "TransmitterFrequency",28e9);
rx = rxsite( ...
    "Latitude",22.2799, ...
    "Longitude",114.1617, ...
    "AntennaAngle",120, ...       % Azimuth angle
    "AntennaHeight",1);

Create a ray tracing propagation model with up to two reflections using the image method. Perform
ray tracing to find rays by using the propagation model.

pm = propagationModel("raytracing", ...
    "Method","image", ...
    "MaxNumReflections",2);
rays = raytrace(tx,rx,pm);

Create a channel model using the calculated rays in between the transmitter and receiver sites. The
default configuration forces zero minimum propagation delay. Show the temporal and spatial profiles
of the channel.

rtchan = comm.RayTracingChannel(rays{1},tx,rx);
rtchan.SampleRate = 50e6;
showProfile(rtchan);
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Create a clone of the ray tracing channel model and reconfigure it to not force zero minimum
propagation delay. Show the temporal and spatial profiles of the channel. The angle of departure and
arrival plots do not change, but the power delay profile plot shows the updated delay profile result
when the minimum delay profile is not forced to zero.

rtchandelayed= clone(rtchan);
rtchandelayed.MinimizePropagationDelay = false;
showProfile(rtchandelayed);
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Filter randomly generated 16-QAM signals through the channel models. Display the leading 15
elements of y and ydelayed, which are output by the ray tracing channel objects rtchan and
rtchandelayed, respectively. The leading samples in the delayed signal, ydelayed, are all zeros.
When you model your communications system, you must account for this signal delay to avoid losing
trailing signal data.

M = 16;       % Modulation order
frmLen = 1e3; % Frame length
numTx = rtchan.info.NumTransmitElements;

x = qammod(randi([0,M-1],frmLen,numTx),M);
y = rtchan(x);
numTxdelayed = rtchandelayed.info.NumTransmitElements;
x = qammod(randi([0,M-1],frmLen,numTxdelayed),M);
ydelayed = rtchandelayed(x);
y(1:15)

ans = 15×1 complex

  -0.0000 - 0.0000i
   0.0000 + 0.0000i
  -0.0000 - 0.0000i
   0.0000 + 0.0000i
  -0.0001 - 0.0000i
   0.0023 + 0.0003i
  -0.0209 - 0.0034i
   0.9847 - 2.0585i
  -1.0182 - 2.0318i
  -2.0224 + 1.0663i
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      ⋮

ydelayed(1:15)

ans = 15×1

     0
     0
     0
     0
     0
     0
     0
     0
     0
     0
      ⋮

Appendix

[1] The OSM file is downloaded from https://www.openstreetmap.org, which provides access to
crowd-sourced map data all over the world. The data is licensed under the Open Data Commons Open
Database License (ODbL), https://opendatacommons.org/licenses/odbl/.

Show Multipath Ray Trace Channel Modeling in Conference Room

Filter signals through a multipath ray tracing channel model between two sites in a conference room.
Build the multipath channel model by using the result from ray tracing.

Define a 3-D map for a conference room with one table and four chairs by using a standard
tessellation language (STL) data file. Define a transmitter site close to the wall and a receiver site
above the table.

mapFileName = "conferenceroom.stl";

tx = txsite("cartesian", ...
    "AntennaPosition",[-1.45; -1.4; 2.3], ...
    "TransmitterFrequency",2.8e9);
rx = rxsite("cartesian", ...
    "AntennaPosition",[.6; .2; 1.0]);

Use the siteviewer object and the show object function to visualize the 3-D scenario. The
transmitter and receiver sites are colored in red and blue, respectively.

siteviewer(SceneModel=mapFileName);
show(tx,"ShowAntennaHeight",false);
show(rx,"ShowAntennaHeight",false);

Create a ray tracing propagation model with up to three reflections using the shooting-bouncing-rays
(SBR) method. Perform ray tracing to find rays by using the propagation model.

pm = propagationModel("raytracing", ...
    "CoordinateSystem","cartesian", ...
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    "Method","sbr", ...
    "MaxNumReflections",3);
rays = raytrace(tx,rx,pm,"Map",mapFileName);

Extract the computed rays from the returned cell array, and then plot the rays. Each ray is colored
based on its path loss value.

rays = rays{1,1};
plot(rays)

Create a channel model using the calculated rays in between the transmitter and receiver sites. Show
the temporal and spatial profiles of the channel.

rtchan = comm.RayTracingChannel(rays,tx,rx);
showProfile(rtchan);
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Filter randomly generated 16-QAM signals through the channel. With the default sample rate of 10e6,
the channel frequency response is flat. Increasing the sample rate to 1e9 results in a frequency
selective channel. Show the filtered signal for the flat frequency response channel and the frequency
selective channel in a constellation diagram.

M = 16;       % Modulation order
frmLen = 1e3; % Frame length

numTx = rtchan.info.NumTransmitElements;
x = qammod(randi([0,M-1],frmLen,numTx),M);
y_samprate10e6 = rtchan(x);

release(rtchan);
rtchan.SampleRate = 1e9;
y_samprate1e9 = rtchan(x);
constellationdiag = comm.ConstellationDiagram( ...
    NumInputPorts=2, ...
    ChannelNames={ ...
    "Flat frequency response channel","Frequency selective channel"}, ...
    XLimits=[-5 5], ...
    YLimits=[-5 5], ...
    ReferenceConstellation=qammod(0:M-1,M));
constellationdiag(y_samprate10e6(:),y_samprate1e9);
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Configure Sample Rate for Ray Tracing Channel

To modify the sample rate of the ray tracing channel, you can set the SampleRate property by using
a name-value argument when you create the object or you can create a channel model by using the
rays and site and set the SampleRate property after you create the object.

Set Sample Rate when Creating Ray Tracing Channel Object

Create a ray tracing channel model, specifying the sample rate as 20 MHz.

rtchan1 = comm.RayTracingChannel(SampleRate=2e7)
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rtchan1 = 
  comm.RayTracingChannel with properties:

                      SampleRate: 20000000
                 PropagationRays: [1×1 comm.Ray]
        MinimizePropagationDelay: true
                   TransmitArray: [1×1 arrayConfig]
    TransmitArrayOrientationAxes: [3×3 double]
                    ReceiveArray: [1×1 arrayConfig]
     ReceiveArrayOrientationAxes: [3×3 double]
         ReceiverVirtualVelocity: [3×1 double]
       NormalizeImpulseResponses: true
         NormalizeChannelOutputs: true
                ChannelFiltering: true

Set Sample Rate After Creating Ray Tracing Channel Object

Create a channel model by using the transmitter site, receiver site, and calculated rays between the
sites. After creating the object, set the sample rate to 20 MHz.

tx = txsite( ...
    "Latitude",22.2789, ...
    "Longitude",114.1625, ...
    "AntennaAngle",30, ...        % Azimuth angle
    "AntennaHeight",10, ...
    "TransmitterFrequency",28e9);
rx = rxsite( ...
    "Latitude",22.2799, ...
    "Longitude",114.1617, ...
    "AntennaAngle",120, ...       % Azimuth angle
    "AntennaHeight",1);
pm = propagationModel("raytracing", ...
    "Method","sbr", ...
    "MaxNumReflections",3);
rays = raytrace(tx,rx,pm);

rtchan2 = comm.RayTracingChannel(rays{1},tx,rx);
rtchan2.SampleRate = 2e7

rtchan2 = 
  comm.RayTracingChannel with properties:

                      SampleRate: 20000000
                 PropagationRays: [1×2 comm.Ray]
        MinimizePropagationDelay: true
                   TransmitArray: [1×1 arrayConfig]
    TransmitArrayOrientationAxes: [3×3 double]
                    ReceiveArray: [1×1 arrayConfig]
     ReceiveArrayOrientationAxes: [3×3 double]
         ReceiverVirtualVelocity: [3×1 double]
       NormalizeImpulseResponses: true
         NormalizeChannelOutputs: true
                ChannelFiltering: true

After configuring the channel object, you would typically filter a modulated signal through the
channel. Here a 16-QAM signal is passed through the rtchan2 ray tracing channel.
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modOrd = 16;
frmLen = 1e3;
numTx = rtchan2.info.NumTransmitElements;
x = qammod(randi([0,modOrd-1],frmLen,numTx),modOrd);
y = rtchan2(x);

More About
Channel Impulse Response

The channel impulse response contains the computed Doppler fading over all rays individually. The
phases of individual rays change over time, and their combination contributes to the channel fading.
The rate of phase change depends on the angle between the receiver velocity and the angle of arrival
(AoA) of the individual ray.

Phased Array Antenna Options

If you have the “Phased Array System Toolbox” product, you can specify any of these phased array
antenna System object configurations for the TransmitArray and ReceiveArray properties.

• phased.IsotropicAntennaElement
• phased.NRAntennaElement
• phased.CustomAntennaElement
• phased.URA with the Element property set to a phased.IsotropicAntennaElement,

phased.NRAntennaElement, or phased.CustomAntennaElement System object
• phased.ULA with the Element property set to a phased.IsotropicAntennaElement,

phased.NRAntennaElement, or phased.CustomAntennaElement System object
• phased.ConformalArray with the Element property set to a

phased.IsotropicAntennaElement, phased.NRAntennaElement, or
phased.CustomAntennaElement System object

• phased.NRRectangularPanelArray with the ElementSet property set to a
phased.IsotropicAntennaElement, phased.NRAntennaElement, or
phased.CustomAntennaElement System object

Tips
• When you set the MinimizePropagationDelay property to true, the System object shifts all

propagation delay paths to remove the amount of delay that is associated with the minimum
propagation delay path. Shifting the paths removes potential leading zeros in the channel output
and eliminates the need to account for the delay to receive the trailing signal samples.

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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• For code generation, the PropagationRays property must be a cell array of comm.Ray objects.
• For comm.Ray objects, when you set the PathSpecification property to 'Locations' and the

LineOfSight property to false, the Type field setting must be the same (either all
'Reflection' or all 'Diffraction') in the structures specified by the Interactions
property for each individual comm.Ray object.

See Also
Objects
arrayConfig | siteviewer | rxsite | txsite | comm.Ray | comm.ChannelFilter |
phased.IsotropicAntennaElement | phased.ULA | phased.URA | phased.ConformalArray |
phased.CustomAntennaElement | phased.NRAntennaElement |
phased.NRRectangularPanelArray

Functions
raytrace

Topics
“Indoor MIMO-OFDM Communication Link using Ray Tracing”
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comm.RBDSWaveformGenerator
Package: comm

Generate RDS/RBDS waveform

Description
The comm.RBDSWaveformGenerator System object generates configurable standard-compliant
baseband RDS/RBDS waveforms in MATLAB. RDS/RBDS waveforms supplement FM radio stations
with additional textual information, such as song title, artist name, and station description. The RDS/
RBDS signal lies in the 57-kHz band of the baseband FM radio signal.

Use this object to generate a waveform containing RadioText Plus (RT+) information and register a
custom encoding implementation for an Open Data Application (ODA). You can also specify the time,
data, and the program type. The object supports short, scrolling 8-character text, and longer 32-
character or 64-character text.

To generate baseband RDS/RBDS waveforms:

1 Create a comm.RBDSWaveformGenerator object and set the properties of the object.
2 Call step to generate the waveform.

Note Alternatively, instead of using the step method to perform the operation defined by the System
object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
rbdsgen = comm.RBDSWaveformGenerator creates an RDS/RBDS waveform generator object,
rbdsgen, using the default properties.

rbdsgen = comm.RBDSWaveformGenerator(Name,Value) specifies additional properties using
Name,Value pairs. Unspecified properties have default values.

Example:

rbdsgen = comm.RBDSWaveformGenerator( ...
     'GroupsPerFrame',20,'SamplesPerSymbol',10, ...
     'SendRadioTextPlus',true);

Properties
If a property is listed as tunable, then you can change its value even when the object is locked.

SamplesPerSymbol — Number of samples per symbol
10 (default) | positive even integer
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Number of samples per symbol (bit), specified as a positive even integer. Half of the samples
represent one amplitude level of Manchester coding. The other half of the samples represent the
opposite level.

GroupsPerFrame — Number of groups per output frame
10 (default) | scalar integer

Number of groups per output frame, specified as a scalar integer. Each group is 104 symbols (bits)
long.

RadioText — Long text conveyed with type 2A groups
'Long text' (default) | character vector

Radio text conveyed with type 2A groups, specified as a character vector that is up to 64 characters
long. The object transmits the specified text four characters at a time, using type 2A groups.

Tunable: Yes

ProgramServiceName — Label of the program service
'ShortTxt' (default) | character vector

Label of the program service, specified as a character vector that is up to eight characters long. This
information is conveyed as a short text with type 0A groups, two characters at a time.

Tunable: Yes

ProgramIdentificationCode — Program identification code
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] (default) | 16-bit row vector

Program identification (PI) code, specified as a 16-bit row vector. In North America, the PI code
conveys the call letters of the station. Example call letters include 'WABC' and 'KXYZ'.

To generate North American PI codes for a station's call letters, use the callLettersToPICode
method.

ProgramType — Program type
'No program type or undefined' (default) | character vector

Program type, specified as a character vector containing one of the 31 values allowed by the RDS/
RBDS standard. For a list of program types that the RDS/RBDS standard allows in North America, see
[1].

Tunable: Yes

ProgramTypeName — Program type name
'' (default) | character vector

Program type name, specified as a character vector that is up to eight characters long. This text
further characterizes the program type, such as 'Football' for the program type 'Sports'. The
object conveys the program type name using type 10A groups. If this property is empty, then no 10A
groups are generated.

Tunable: Yes

SendDateTime — Option to advertise date and time
false (default) | true
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Option to advertise the date and time, specified as either false or true. When you set this property
to true, one 4A group is periodically generated every 685 groups (once a minute).

AlternativeFrequencies — Alternative frequencies
[] (default) | row vector

Alternative frequencies, specified as a row vector in MHz. This information is conveyed with type 0A
groups. It indicates other transmitters broadcasting the same program in the same or adjacent
reception areas. With this information, receivers can switch to a different frequency with better
reception.

SendRadioTextPlus — Option to send RT+ information
false (default) | true

Option to transmit RadioText Plus (RT+) information, specified as a scalar logical. When you set this
property to true, the RT+ ODA information is advertised with type 3A groups. In addition, the RT+
content types, specified in RadioTextType1, RadioTextType2, and the two RT+ substrings
indexed by RadioTextIndices are conveyed with the open-format type 11A group.

RadioTextType1 — Content type of first RT+ substring
'Item.Artist' (default) | character vector

Content type of the first RT+ substring, specified as a character vector. Allowed values are the class
names specified in the RT+ standard. For more details, see [2].

Tunable: Yes

RadioTextType2 — Content type of second RT+ substring
'Item.Title' (default) | character vector

Content type of the second RT+ substring, specified as a character vector. Allowed values are the
class names specified in the RT+ standard. For more details, see [2].

Tunable: Yes

RadioTextIndices — Start and end indices of RT+ substrings
[1 2; 3 4] (default) | 2-by-2 matrix of positive integers

Start and end indices of RT+ substrings, specified as a 2-by-2 matrix of positive integers. The first
column indexes the beginning of each RT+ substring. The second column indexes the end of each
substring.

Tunable: Yes

Methods

callLettersToPICode Convert North-American call letters to binary PI code
registerODA Register a custom encoding implementation for an ODA
step Generate RDS/RBDS waveform

Common to All System Objects
release Allow System object property value changes
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Common to All System Objects
reset Reset internal states of System object

Examples

Generate a Basic RBDS Waveform

Generate a basic RBDS waveform, FM modulate the waveform with an audio signal, and then
demodulate the waveform.

Each frame of the RBDS waveform contains 19 groups, with a group length of 104 bits (symbols)
each. Set the number of samples per RBDS symbol to 10. Therefore, the number of samples in each
frame of RBDS waveform is 104 x 10 x 19 = 19,760. According to the RBDS standard, the bit rate is
1187.5 Hz. So, the RBDS sample rate = 1187.5 x samples per RBDS symbol. Set the audio frame rate
to 40 x 1187.5 = 47,500.

groupLen = 104;
sps = 10;
groupsPerFrame = 19;
rbdsFrameLen = groupLen*sps*groupsPerFrame;
afrRate = 40*1187.5;
rbdsRate = 1187.5*sps;
outRate = 4*57000;

afr = dsp.AudioFileReader( ...
    "rbds_capture_47500.wav", ...
    SamplesPerFrame=rbdsFrameLen*afrRate/rbdsRate);
rbds = comm.RBDSWaveformGenerator( ...
    GroupsPerFrame=groupsPerFrame, ...
    SamplesPerSymbol=sps);

fmMod = comm.FMBroadcastModulator( ...
    AudioSampleRate=afr.SampleRate, ...
    SampleRate=outRate,...
    Stereo=true, ...
    RBDS=true, ...
    RBDSSamplesPerSymbol=sps);
fmDemod = comm.FMBroadcastDemodulator( ...
    SampleRate=outRate,...
    Stereo=true, ...
    RBDS=true, ...
    PlaySound=true);
scope = timescope(SampleRate=outRate,YLimits=10^-2*[-1 1]);

Get the audio input and generate the RBDS waveform. FM modulate the stereo audio with the RBDS
waveform, add noise, and FM demodulate the audio and RBDS waveforms. View the demodulated
RBDS waveform in the time scope.

for idx = 1:7
    % Get current audio input
    input = afr();              
    % Generate RBDS info at the same configured rate
    rbdsWave = rbds();
    % FM modulate stereo audio with RBDS info
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    yFM = fmMod( ...
        [input input], ...
        rbdsWave);
    % Add noise
    rcv = awgn(yFM, 40);
    % FM demodulate the audio and RBDS waveforms
    [audioRcv, rbdsRcv] = fmDemod(rcv);
    scope(rbdsRcv);
end
release(scope)

Generate RBDS Waveform with RadioText Plus Information

Create a comm.RBDSWaveformGenerator System object™ with 20 groups per frame and 10 samples
per symbol. Add the Radio Text plus (RT+) information, such as artist name and song, title, to the
waveform. Indicate the start and end of the RT+ substrings by using the RadioTextIndices
property.

rbds = comm.RBDSWaveformGenerator('GroupsPerFrame',20,'SamplesPerSymbol',10,...
    'SendRadioTextPlus', true);
rbds.RadioText = 'MyArtist - MySongTitle';
rbds.RadioTextType1 = 'Item.Artist';
rbds.RadioTextType2 = 'Item.Title';
rbds.RadioTextIndices = [1 8; 12 22]; 
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for idx = 1:10
    rbds.step();
end

Register a Custom Encoding Implementation

Register a custom encoding implementation for an Open Data Application (ODA) by using the
registerODA method of the comm.RBDSWaveformGenerator System object™. Set the ODA ID to
'CD46', which is the ID for the traffic message channel. The allocated group type is 8A.

rbds = comm.RBDSWaveformGenerator();
odaID = 'CD46';
allocatedGroupType = '8A';

This example uses the following templates as a starting point for custom encoding implementation.

mainProcessingFcn = @CustomODAEncodingMain;
fcn3A             = @CustomODAEncoding3A;
registerODA(rbds,odaID,allocatedGroupType,mainProcessingFcn,fcn3A);
s = info(rbds);
s.ODAMap

ans=2×1 struct array with fields:
    ID
    GroupType
    FunctionMain
    Function3A

Configure RBDS Waveforms with Date and Time Information

Generate RBDS waveform with date and time information, the program type, and alternative
frequencies. The comm.RBDSWaveformGenerator object uses type 4A groups for date and time
information, type 10A groups for the program type information, and type 0A groups for alternative
frequencies. View the waveform in a spectrum analyzer.

rbds = comm.RBDSWaveformGenerator( ...
    GroupsPerFrame=1000);
sa = spectrumAnalyzer( ...
    SampleRate=1187.5*rbds.SamplesPerSymbol, ...
    YLimits=[-140 20]);
rbds.SendDateTime = true;          % send type 4A groups
rbds.ProgramType = "Sports";
rbds.ProgramTypeName = "Football"; % send type 10A groups
rbds.AlternativeFrequencies = ...  % info sent in type 0A groups
    [99.1 102.5];
wave = rbds();
sa(wave)
release(sa)
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Algorithms
comm.RBDSWaveformGenerator generates waveforms according to the RDS/RBDS standard [1].
The RDS/RBDS standard consists of three layers: physical layer, data-link layer, and session and
application layer.

Physical Layer

The physical layer (first layer) converts the data-link bits to an analog waveform by conducting
differential encoding and biphase symbol encoding (Manchester encoding) and pulse-shaping
filtering.

Data-Link Layer

The data-link layer (second layer) performs (26,16) cyclic encoding shortened from (341,331)
encoding [1]. The second layer is responsible for error detection, error correction, and the
establishment of group-level synchronization. Each group of RDS/RBDS frames contains four blocks
of 26 bits (that is 104 bits) each. Each block contains an information word and a check word. Each
information word contains 16 bits, and each check word contains 10 bits.

Here is the baseband coding structure for the RDS/RBDS waveform. For more details, see [1].
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For each block, a unique offset word is modulo-2 added to the checkword bits. The added offset word
provides a group and block synchronization system in the receiver (decoder). Because the addition of
the offset is reversible in the decoder, the normal additive error-correcting and detecting properties
of the basic code are unaffected.

Session and Application Layer

The first block in every group contains a program identification (PI) code. The first four bits of the
second block of every group are allocated to a four-bit code. This code specifies the application of the
group. Groups are referred to as types 0–15 according to the binary weighting A3 = 8, A2 = 4, A1 = 2,
A0 = 1. The fifth bit of the second block, B0, defines the version of the application. If B0 = 0, the
version of the group is A. The PI code in this version is inserted into block 1 only. Example group
types include 0A, 1A, 2A, 3A, and 4A.

The Program Type code and Traffic Program Identification (PI) occupy fixed locations in block 2 of
every group.

Group Types
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Version History
Introduced in R2017a

References
[1] National Radio Systems Committee. United States RBDS Standard: Specification of the radio

broadcast data system (RBDS). Electronic Industries Association and National Association of
Broadcasters. April 9, 1998.

[2] Westdeutscher Rundfunk WDR, Nokia, and Institut für Rundfunktechnik IRT. RadioText Plus (RT+)
Specification, Version 2.1. 2006.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

In addition, the following limitations apply when you generate code that contains this System object
or when you use this object in a MATLAB function block.

• The group type 4A cannot be transmitted in the generated code.
• The registerODA method is not supported.
• The ProgramType property is not tunable.

See Also
Objects
comm.FMBroadcastModulator | comm.FMBroadcastDemodulator
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callLettersToPICode
System object: comm.RBDSWaveformGenerator
Package: comm

Convert North-American call letters to binary PI code

Syntax
picode = callLettersToPICode(rbdsgen, callLetters)

Description
picode = callLettersToPICode(rbdsgen, callLetters) returns the 16-bit program
identification (PI) code that corresponds to callLetters. Acceptable call letter formats are 3-
character or 4-character vectors beginning with 'K' or 'W'.

Version History
Introduced in R2017a
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registerODA
System object: comm.RBDSWaveformGenerator
Package: comm

Register a custom encoding implementation for an ODA

Syntax
registerODA(rbdsgen,odaID,group,handleMain,handle3A)

Description
registerODA(rbdsgen,odaID,group,handleMain,handle3A) associates the Open Data
Application (ODA) specified by the hexadecimal ID odaID, with the type group groups generated by
rbdsgen. The four 16-bit information words of these groups are generated by the function handle
handleMain. The third information word of type 3A groups, which is ODA-specific, is generated by
the function handle handle3A.

Version History
Introduced in R2017a
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step
System object: comm.RBDSWaveformGenerator
Package: comm

Generate RDS/RBDS waveform

Syntax
y = step(rbdsgen)

Description

Note Alternatively, instead of using the step method to perform the operation defined by the System
object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

y = step(rbdsgen) outputs a frame of the baseband RDS/RBDS waveform in column vector y. The
waveform contains the number of 104-bit groups, specified in the GroupsPerFrame property of the
object. Each symbol is oversampled according to the SamplesPerSymbol property. Thus, the output
length is SamplesPerSymbol × 104 × GroupsPerFrame samples. The object uses an internal
scheduler to determine the order and frequency of the transmitted group types.

Note rbdsgen specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

Version History
Introduced in R2017a
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comm.RectangularQAMDemodulator
Package: comm

(To be removed) Demodulate using rectangular QAM signal constellation

Note comm.RectangularQAMDemodulator will be removed in a future release. Use qamdemod
instead. For more information, see “Compatibility Considerations”.

Description
The RectangularQAMDemodulator object demodulates a signal that was modulated using
quadrature amplitude modulation with a constellation on a rectangular lattice.

To demodulate a signal that was modulated using quadrature amplitude modulation:

1 Define and set up your rectangular QAM demodulator object. See “Construction” on page 3-
1192.

2 Call step to demodulate the signal according to the properties of
comm.RectangularQAMDemodulator. The behavior of step is specific to each object in the
toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
H = comm.RectangularQAMDemodulator creates a demodulator System object, H. This object
demodulates the input signal using the rectangular quadrature amplitude modulation (QAM) method.

H = comm.RectangularQAMDemodulator(Name,Value) creates a rectangular QAM demodulator
object, H, with each specified property set to the specified value. You can specify additional name-
value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

H = comm.RectangularQAMDemodulator(M,Name,Value) creates a rectangular QAM
demodulator object, H. This object has the ModulationOrder property set to M, and the other
specified properties set to the specified values.

Properties
ModulationOrder

Number of points in signal constellation

Specify the number of points in the signal constellation as scalar value with a positive, integer power
of two. The default is 16.
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PhaseOffset

Phase offset of constellation

Specify the phase offset of the signal constellation, in radians, as a real scalar value. The default is 0.

BitOutput

Output data as bits

Specify whether the output consists of groups of bits or integer symbol values. When you set this
property to true the step method outputs a column vector of bit values whose length equals
log2(ModulationOrder on page 3-0 ) times the number of demodulated symbols. When you set
this property to false, the step method outputs a column vector with a length equal to the input
data vector. This vector contains integer symbol values between 0 and ModulationOrder-1. The
default is false.

SymbolMapping

Constellation encoding

Specify how the object maps an integer or group of log2(ModulationOrder on page 3-0 ) bits to
the corresponding symbol as one of Binary | Gray | Custom. The default is Gray. When you set this
property to Gray, the object uses a Gray-coded signal constellation. When you set this property to
Binary, the object uses a natural binary-coded constellation. When you set this property to Custom,
the object uses the signal constellation defined in the CustomSymbolMapping on page 3-0
property.

CustomSymbolMapping

Custom constellation encoding

Specify a custom constellation symbol mapping vector. The default is 0:15. This property is a row or
column vector with a size of ModulationOrder on page 3-0  and with unique integer values in
the range [0, ModulationOrder-1]. The values must be of data type double. The first element of
this vector corresponds to the top-leftmost point of the constellation, with subsequent elements
running down column-wise, from left to right. The last element corresponds to the bottom-rightmost
point. This property applies when you set the SymbolMapping on page 3-0  property to Custom.

NormalizationMethod

Constellation normalization method

Specify the method used to normalize the signal constellation as Minimum distance between
symbols | Average power | Peak power. The default is Minimum distance between symbols.

MinimumDistance

Minimum distance between symbols
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Specify the distance between two nearest constellation points as a positive, real, numeric scalar
value. The default is 2. This property applies when you set the NormalizationMethod on page 3-
0  property to Minimum distance between symbols.

AveragePower

Average power of constellation

Specify the average power of the symbols in the constellation as a positive, real, numeric scalar
value. The default is 1. This property applies when you set the NormalizationMethod on page 3-
0  property to Average power.

PeakPower

Peak power of constellation

Specify the maximum power of the symbols in the constellation as a positive, real, numeric scalar
value. The default is 1. This property applies when you set the NormalizationMethod on page 3-
0  property to Peak power.

DecisionMethod

Demodulation decision method

Specify the decision method the object uses as Hard decision | Log-likelihood ratio |
Approximate log-likelihood ratio. The default is Hard decision. When you set the
BitOutput on page 3-0  property to false the object always performs hard-decision
demodulation. This property applies when you set the BitOutput property to true.

VarianceSource

Source of noise variance

Specify the source of the noise variance as Property | Input port. The default is Property. This
property applies when you set the BitOutput on page 3-0  property to true and the
DecisionMethod on page 3-0  property to Log-likelihood ratio or Approximate log-
likelihood ratio.

Variance

Noise variance

Specify the variance of the noise as a positive, real scalar value. The default is 1. If this value is very
small (i.e., SNR is very high), log-likelihood ratio (LLR) computations may yield Inf or -Inf. This result
occurs because the LLR algorithm computes the exponential of very large or very small numbers
using finite-precision arithmetic. In such cases, using approximate LLR is recommended because its
algorithm does not compute exponentials. This property applies when you set the BitOutput on
page 3-0  property to true, the DecisionMethod on page 3-0  property to Log-likelihood
ratio or Approximate log-likelihood ratio, and the VarianceSource on page 3-0
property to Property. This property is tunable.
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OutputDataType

Data type of output

Specify the output data type as Full precision | Smallest unsigned integer | double |
single | int8 | uint8 | int16 | uint16 | int32 | uint32. The default is Full precision.

This property applies only when you set the BitOutput on page 3-0  property to false or when
you set the BitOutput property to true and the DecisionMethod on page 3-0  property to Hard
decision. In this case, when the OutputDataType on page 3-0  property is set to Full
precision, and the input data type is single- or double-precision, the output data has the same data
type as the input.

When the input data is of a fixed-point type, the output data type behaves as if you had set the
OutputDataType property to Smallest unsigned integer.

When you set the BitOutput property to true and the DecisionMethod property to Hard
Decision, then logical data type becomes a valid option.

When you set the BitOutput property to true and the DecisionMethod property to Log-
likelihood ratio or Approximate log-likelihood ratio, the output data type is the same
as that of the input. In this case, that data type can only be single- or double-precision.

Fixed-Point Properties

FullPrecisionOverride

Full precision override for fixed-point arithmetic

Specify whether to use full precision rules. If you set FullPrecisionOverride to true, which is
the default, the object computes all internal arithmetic and output data types using full precision
rules. These rules provide the most accurate fixed-point numerics. It also turns off the display of
other fixed-point properties because they do not apply individually. These rules guarantee that no
quantization occurs within the object. Bits are added, as needed, to ensure that no roundoff or
overflow occurs. If you set FullPrecisionOverride to false, fixed-point data types are controlled
through individual fixed-point property settings. For more information, see “Full Precision for Fixed-
Point System Objects” on page 3-1197.

DerotateFactorDataType

Data type of derotate factor

Specify the derotate factor data type as Same word length as input | Custom. The default is
Same word length as input. This property applies when you set the BitOutput on page 3-0
property to false, or when you set the BitOutput property to true and the DecisionMethod on
page 3-0  property to Hard decision. The object uses the derotate factor in the computations
only when the step method input is of a fixed-point type and the PhaseOffset on page 3-0
property has a value that is not a multiple of π 2.

CustomDerotateFactorDataType
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Fixed-point data type of derotate factor

Specify the derotate factor fixed-point type as an unscaled numerictype object with a signedness of
Auto. The default is numerictype([],16). This property applies when you set the
DerotateFactorDataType on page 3-0  property to Custom.

DenormalizationFactorDataType

Data type of denormalization factor

Specify the denormalization factor data type as Same word length as input | Custom. The
default is Same word length as input. This property applies when you set the BitOutput on
page 3-0  property to false or when you set the BitOutput property to true and the
DecisionMethod on page 3-0  property to Hard decision.

CustomDenormalizationFactorDataType

Fixed-point data type of denormalization factor

Specify the denormalization factor fixed-point type as an unscaled numerictype object with a
signedness of Auto. The default is numerictype([],16). This property applies when you set the
DenormalizationFactorDataType on page 3-0  property to Custom.

ProductDataType

Data type of product

Specify the product data type as Full precision | Custom. The default is Full precision. This
property applies when you set the BitOutput on page 3-0  property to false or when you set the
BitOutput property to true and the DecisionMethod on page 3-0  property to Hard
decision.

CustomProductDataType

Fixed-point data type of product

Specify the product fixed-point type as an unscaled numerictype object with a signedness of Auto.
The default is numerictype([],32). This property applies when you set the ProductDataType on
page 3-0  property to Custom.

ProductRoundingMethod

Rounding of fixed-point numeric value of product

Specify the product rounding method as Ceiling | Convergent | Floor | Nearest | Round |
Simplest | Zero. The default is Floor. This property applies when the object is not in a full
precision configuration, when you set the BitOutput on page 3-0  property to false or when you
set the BitOutput property to true and the DecisionMethod on page 3-0  property to Hard
decision.
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ProductOverflowAction

Action when fixed-point numeric value of product overflows

Specify the product overflow action as Wrap | Saturate. The default is Wrap. This property applies
when the object is not in a full precision configuration, when you set the BitOutput on page 3-0
property to false or when you set the BitOutput property to true and the DecisionMethod on
page 3-0  property to Hard decision.

SumDataType

Data type of sum

Specify the sum data type as Full precision | Same as product | Custom. The default is Full
precision. This property applies when you set the FullPrecisionOverride on page 3-0
property to false, when you set the BitOutput on page 3-0  property to false or when you set
the BitOutput property to true and the DecisionMethod on page 3-0  property to Hard
decision.

CustomSumDataType

Fixed-point data type of sum

Specify the sum fixed-point type as an unscaled numerictype object with a signedness of Auto. The
default is numerictype([],32). This property applies when you set the FullPrecisionOverride
on page 3-0  property to false or when you set the SumDataType on page 3-0  property
Custom.

Methods
constellation (To be removed) Calculate or plot ideal signal constellation
step (To be removed) Demodulate using rectangular QAM method

Common to All System Objects
release Allow System object property value changes

More About
Full Precision for Fixed-Point System Objects

FullPrecisionOverride is a convenience property that, when you set to true, automatically sets
the appropriate properties for an object to use full-precision to process fixed-point input.

For System objects, full precision, fixed-point operation refers to growing just enough additional bits
to compute the ideal full precision result. This operation has no minimum or maximum range overflow
nor any precision loss due to rounding or underflow. It is also independent of any hardware-specific
settings. The data types chosen are based only on known data type ranges and not on actual numeric
values. Full precision for System objects does not optimize coefficient values. When you set the
FullPrecisionOverride property to true, the other fixed-point properties it controls no longer
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apply and any of their non-default values are ignored. These properties are also hidden. To specify
individual fixed-point properties, first set FullPrecisionOverride to false.

Algorithms
This object implements the algorithm, inputs, and outputs described on the Rectangular QAM
Demodulator Baseband block reference page. The object properties correspond to the block
parameters.

Version History
Introduced in R2012a

comm.RectangularQAMDemodulator will be removed in a future release. Use qamdemod
instead.
Not recommended starting in R2018b

Constellation normalization by PeakPower and AveragePower (other than unit average power) as
supported by comm.RectangularQAMModulator and comm.RectangularQAMDemodulator is not
inherently provided by functions. To perform peak power and average power normalization using
qammod and qamdemod functions, you can use these utility functions to scale symbols from peak or
average power normalization to minimum distance normalization.

function minD = pkPow2MinD(pkPow,M)
% Peak power to minimum distance
    nBits = log2(M);
    if (mod(nBits,2)==0)
        % Square QAM
        sf = 0.5*M - sqrt(M) + 0.5;
    else
        % Cross QAM
        mBy32 = M/32;
        if (nBits > 4)
            sf = (13 * mBy32) - (5 * sqrt(mBy32)) + 0.5;
        else
            sf = (20 * mBy32) - (6 * sqrt(mBy32)) + 0.5;
        end
    end
    minD = sqrt(pkPow/sf);
end

function minD = avgPow2MinD(avgPow,M)
% Average power to minimum distance
    nBits = log2(M);
    if (mod(nBits,2)==0)
        % Square QAM
        sf = (M - 1)/6;
    else
        % Cross QAM
        if (nBits > 4)
            sf = ((31 * M / 32) - 1) / 6;
        else
            sf = ((5 * M / 4) - 1) / 6;
        end
    end
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    minD = sqrt(avgPow/sf);
end

Peak Power Normalization for Hard Decision

This example compares computation of peak power normalization for hard decision by using the
qammod and qamdemod functions and the pkPow2MinD utility function.
% QAM alternative for "Peak power" normalization method for
% hard decision output when using functions.
M = 128;
pkPow = 5;
minD = pkPow2MinD(pkPow,M);

modObj = comm.RectangularQAMModulator('ModulationOrder',M, ...
    'NormalizationMethod','Peak power', ...
    'PeakPower',pkPow);
demodObj = comm.RectangularQAMDemodulator('ModulationOrder',M, ...
    'NormalizationMethod','Peak power', ...
    'PeakPower',pkPow);

% Check 1 - Verify that the two constellations are same by 
% comparing symbols.
constellationSO = modObj([0:M-1]');
constellationFcn = qammod([0:M-1]',M);
scaledConstellationFcn = (minD/2) .* constellationFcn;
err = constellationSO - scaledConstellationFcn;
maxConstellationErr = max(abs(err))

maxConstellationErr =
     0

Check 2 - Modulate and demodulate symbols using the System objects.
x = randi([0,M-1],100,1);
y1 = modObj(x);
z1 = demodObj(y1);
objModDemodOutputIsEqual = isequal(x,z1)

objModDemodOutputIsEqual =
  logical
   1

% Check 3 - Demodulate the modulator System object output 
% using the qamdemod function.
y1ScaledForFcn = (2/minD) .* y1;
z2 = qamdemod(y1ScaledForFcn,M);
objModFcnDemodIsEqual = isequal(x,z2)

objModFcnDemodIsEqual =
  logical
   1

%  Check 4 - Demodulate the qammod output using the 
% demodulator System object.
y2 = qammod(x,M);
y2ScaledForSO = (minD/2) .* y2;
z3 = demodObj(y2ScaledForSO);
fcnModObjDemodIsEqual = isequal(x,z3)

fcnModObjDemodIsEqual =
  logical
   1

Average Power Normalization for Hard Decision

This example compares computation of average power normalization for hard decision by using the
qammod and qamdemod functions and the avgPow2MinD utility function..

% QAM alternative for "Average power" normalization method for
% hard decision output when using functions.
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M = 64;       % Modulation order
avgPow = 100; % Average constellation power

minD = avgPow2MinD(avgPow,M);

modObj = comm.RectangularQAMModulator('ModulationOrder',M, ...
    'NormalizationMethod','Average power', ...
    'AveragePower',avgPow);
demodObj = comm.RectangularQAMDemodulator('ModulationOrder',M, ...
    'NormalizationMethod','Average power', ...
    'AveragePower',avgPow);

% Check 1 - Verify that the two constellations are same by 
% comparing symbols.
constellationSO = modObj([0:M-1]');
constellationFcn = qammod([0:M-1]',M);
scaledConstellationFcn = (minD/2) .* constellationFcn;
err = constellationSO - scaledConstellationFcn;
maxConstellationErr = max(abs(err))

maxConstellationErr =
     0

Check 2 - Modulate and demodulate symbols using the System objects.
x = randi([0,M-1],100,1);
y1 = modObj(x);
z1 = demodObj(y1);
objModDemodOutputIsEqual = isequal(x,z1)

objModDemodOutputIsEqual =
  logical
   1

% Check 3 - Demodulate the modulator System object output 
% using the qamdemod function.
y1ScaledForFcn = (2/minD) .* y1;
z2 = qamdemod(y1ScaledForFcn,M);
objModFcnDemodIsEqual = isequal(x,z2)

objModFcnDemodIsEqual =
  logical
   1

% Check 4 - Demodulate the qammod output using the 
% demodulator System object.
y2 = qammod(x,M);
y2ScaledForSO = (minD/2) .* y2;
z3 = demodObj(y2ScaledForSO);
fcnModObjDemodIsEqual = isequal(x,z3)

fcnModObjDemodIsEqual =
  logical
   1

Peak Power Normalization for Approximate LLR

Output shown here compares computation of peak power normalization for approximate LLR by using
the qammod and qamdemod functions and the pkPow2MinD utility function.
% QAM alternative for "Peak power" normalization method for
% Approximate LLR output when using functions.
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%
% Modulation order must be supported by QAM modulator-demodulator.
M = 256;     % Modulation order
pkPow = 221; % Peak constellation power
snrdB=16;    % SNR in dB

minD = pkPow2MinD(pkPow,M);

modObj = comm.RectangularQAMModulator('ModulationOrder',M, ...
    'NormalizationMethod','Peak power', ...
    'PeakPower',pkPow);

% Check 1 - Verify that the two constellations are same by 
% comparing symbols.
constellationSO = modObj((0:M-1)');
constellationFcn = qammod((0:M-1)',M);
scaledConstellationFcn = (minD/2) .* constellationFcn;
err = constellationSO - scaledConstellationFcn;
maxConstellationErr = max(abs(err))

maxConstellationErr =
     0

x = randi([0,M-1],100,1);
y1 = modObj(x);;
    

% Reset global rng stream for repeatable noise samples, then add noise
reset(RandStream.getGlobalStream);
y1Rec = awgn(y1,snrdB,'measured','db');

% Compute noise variance to use when demodulating.
nv = mean(abs(y1).^2) / 10^(snrdB/10);

demodObj = comm.RectangularQAMDemodulator('ModulationOrder',M, ...
    'NormalizationMethod','Peak power', ...
    'PeakPower',pkPow, ...
    'BitOutput',true, ...
    'DecisionMethod','Approximate log-likelihood ratio', ...
    'Variance',nv);
    
    z1 = demodObj(y1Rec);

% With proper scaling, the demodulated output from the function 
% is the same as that from the System object.
y2 = qammod(x,M);
% Scale function output so that it matches System object output.
y2Scaled = (minD/2) .* y2;

% Reset global rng stream for repeatable noise samples, then add noise.
reset(RandStream.getGlobalStream);
y2Rec = awgn(y2Scaled,snrdB,'measured','db');

% Compute noise variance to use when demodulating.
nv1 = mean(abs(y2Scaled).^2) / 10^(snrdB/10);

% Scale the received signal for the constellation used by function
y2RecScaled = (2/minD) .* y2Rec;
% Scale the noise variance appropriately.
z2 = qamdemod(y2RecScaled,M,'OutputType','approxllr', ...
    'NoiseVariance',nv1 * (2/minD)^2);

% Check 2 - Compare deomodulated output from System object and function is minimal.
maxOutputErr = max(abs(z1-z2))

maxOutputErr =
   2.8422e-14

Average Power Normalization for Approximate LLR

This example compares computation of average power normalization for approximate LLR by using
the qammod and qamdemod functions and the avgPow2MinD utility function.
% QAM alternative for "Average power" normalization method for
% Approximate LLR output when using functions.
%
% Modulation order must be supported by QAM modulator-demodulator.
M = 1024;    % Modulation order
avgPow = 87; % Average constellation power
snrdB = 33;  % Signal-to-Noise Ratio in dB
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minD = avgPow2MinD(avgPow,M);

modObj = comm.RectangularQAMModulator('ModulationOrder',M, ...
    'NormalizationMethod','Average power', ...
    'AveragePower',avgPow);

% Check 1 - Verify that the two constellations are same by 
% comparing symbols.
constellationSO = modObj((0:M-1)');
constellationFcn = qammod((0:M-1)',M);
scaledConstellationFcn = (minD/2) .* constellationFcn;
err = constellationSO - scaledConstellationFcn;
maxConstellationErr = max(abs(err))

maxConstellationErr =
     0

x = randi([0,M-1],100,1);
y1 = modObj(x);

% Reset global rng stream for repeatable noise samples, then add noise
reset(RandStream.getGlobalStream);
y1Rec = awgn(y1,snrdB,'measured','db');

% Compute noise variance to use when demodulating.
nv = mean(abs(y1).^2) / 10^(snrdB/10);

demodObj = comm.RectangularQAMDemodulator('ModulationOrder',M, ...
    'NormalizationMethod','Average power', ...
    'AveragePower',avgPow, ...
    'BitOutput',true, ...
    'DecisionMethod','Approximate log-likelihood ratio', ...
    'Variance',nv);

z1 = demodObj(y1Rec);

% With proper scaling, the demodulated output from the function 
% is the same as that from the System object.
y2 = qammod(x,M);
% Scale function output so that it matches System object output.
y2Scaled = (minD/2) .* y2;

% Reset global rng stream for repeatable noise samples, then add noise.
reset(RandStream.getGlobalStream);
y2Rec = awgn(y2Scaled,snrdB,'measured','db');
% Compute noise variance to use when demodulating.
nv1 = mean(abs(y2Scaled).^2) / 10^(snrdB/10);

% Scale the received signal for the constellation used by function
y2RecScaled = (2/minD) .* y2Rec;
% Scale the noise variance appropriately.
z2 = qamdemod(y2RecScaled,M,'OutputType','approxllr', ...
    'NoiseVariance',nv1 * (2/minD)^2);

% Check 2 - Compare deomodulated output from System object and function is minimal.
maxOutputErr = max(abs(z1-z2))

maxOutputErr =
   1.3642e-12

Peak Power Normalization for LLR

Output shown here compares computation of peak power normalization for LLR by using the qammod
and qamdemod functions and the pkPow2MinD utility function.
% QAM alternative for "Peak power" normalization method for
% LLR output when using functions.
%
% Modulation order must be supported by QAM modulator-demodulator.
M = 1024;  % Modulation order
pkPow = 1; % Peak constellation power
snrdB=6;   % SNR in dB

minD = pkPow2MinD(pkPow,M);

modObj = comm.RectangularQAMModulator('ModulationOrder',M, ...
    'NormalizationMethod','Peak power', ...
    'PeakPower',pkPow);
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% Check 1 - Verify that the two constellations are same by 
% comparing symbols.
constellationSO = modObj((0:M-1)');
constellationFcn = qammod((0:M-1)',M);
scaledConstellationFcn = (minD/2) .* constellationFcn;
err = constellationSO - scaledConstellationFcn;
maxConstellationErr = max(abs(err))

maxConstellationErr =
     0

x = randi([0,M-1],100,1);
% Modulate and demodulate using the System objects
y1 = modObj(x);;

% Reset global rng stream for repeatable noise samples, then add noise
reset(RandStream.getGlobalStream);
y1Rec = awgn(y1,snrdB,'measured','db');

% Compute noise variance to use when demodulating.
nv = mean(abs(y1).^2) / 10^(snrdB/10);

demodObj = comm.RectangularQAMDemodulator('ModulationOrder',M, ...
    'NormalizationMethod','Peak power', ...
    'PeakPower',pkPow, ...
    'BitOutput',true, ...
    'DecisionMethod','Log-likelihood ratio', ...
    'Variance',nv);
    
    z1 = demodObj(y1Rec);

% Modulate and demodulate using the functions
y2 = qammod(x,M);
% Scale function output so that it matches System object output.
y2Scaled = (minD/2) .* y2;

% Reset global rng stream for repeatable noise samples, then add noise.
reset(RandStream.getGlobalStream);
y2Rec = awgn(y2Scaled,snrdB,'measured','db');

% Compute noise variance to use when demodulating.
nv1 = mean(abs(y2Scaled).^2) / 10^(snrdB/10);

% Create inputs required by utility function to compute LLR
nBits = log2(M);
bitwiseMapping = (int2bit((0:M-1),nBits))';
% c0 contains indices of mapping which has 0 at various bit positions
[c0, ~] = find(bitwiseMapping==0);
c0 = reshape(int32(c0),M/2,nBits);
% c1 contains indices of mapping which has 1 at various bit positions
[c1, ~] = find(bitwiseMapping==1);
c1 = reshape(int32(c1),M/2,nBits);

z2 = comm.internal.utilities.computeLLRsim(y2Rec,M,nBits, ...
    scaledConstellationFcn,c0,c1,nv1);

% Check 2 - Compare deomodulated output from System object and function is minimal.
maxOutputErr = max(abs(z1-z2))

maxOutputErr =
   3.5527e-15

Average Power Normalization for LLR

This example compares computation of average power normalization for LLR by using the qammod
and qamdemod functions and the avgPow2MinD utility function.
% QAM alternative for "Average power" normalization method for
% LLR output when using functions.
%
% Modulation order must be supported by QAM modulator-demodulator.
M = 1024;    % Modulation order
avgPow = 117; % Average constellation power
snrdB = 8;  % Signal-to-Noise Ratio in dB

minD = avgPow2MinD(avgPow,M);

modObj = comm.RectangularQAMModulator('ModulationOrder',M, ...
    'NormalizationMethod','Average power', ...
    'AveragePower',avgPow);
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% Check 1 - Verify that the two constellations are same by 
% comparing symbols.
constellationSO = modObj((0:M-1)');
constellationFcn = qammod((0:M-1)',M);
scaledConstellationFcn = (minD/2) .* constellationFcn;
err = constellationSO - scaledConstellationFcn;
maxConstellationErr = max(abs(err))

maxConstellationErr =
     0

x = randi([0,M-1],100,1);
y1 = modObj(x);

% Reset global rng stream for repeatable noise samples, then add noise
reset(RandStream.getGlobalStream);
y1Rec = awgn(y1,snrdB,'measured','db');

% Compute noise variance to use when demodulating.
nv = mean(abs(y1).^2) / 10^(snrdB/10);

demodObj = comm.RectangularQAMDemodulator('ModulationOrder',M, ...
    'NormalizationMethod','Average power', ...
    'AveragePower',avgPow, ...
    'BitOutput',true, ...
    'DecisionMethod','Log-likelihood ratio', ...
    'Variance',nv);

z1 = demodObj(y1Rec);

% With proper scaling, the demodulated output from the function 
% is the same as that from the System object.
y2 = qammod(x,M);
% Scale function output so that it matches System object output.
y2Scaled = (minD/2) .* y2;

% Reset global rng stream for repeatable noise samples, then add noise.
reset(RandStream.getGlobalStream);
y2Rec = awgn(y2Scaled,snrdB,'measured','db');
% Compute noise variance to use when demodulating.
nv1 = mean(abs(y2Scaled).^2) / 10^(snrdB/10);

% Create inputs required by utility function to compute LLR
nBits = log2(M);
bitwiseMapping = (int2bit((0:M-1),nBits))';
% c0 contains indices of mapping which has 0 at various bit positions
[c0, ~] = find(bitwiseMapping==0);
c0 = reshape(int32(c0),M/2,nBits);
% c1 contains indices of mapping which has 1 at various bit positions
[c1, ~] = find(bitwiseMapping==1);
c1 = reshape(int32(c1),M/2,nBits);

z2 = comm.internal.utilities.computeLLRsim(y2Rec,M,nBits, ...
    scaledConstellationFcn,c0,c1,nv1);

% Check 2 - Compare deomodulated output from System object and function is minimal.
maxOutputErr = max(abs(z1-z2))

maxOutputErr =
   1.3642e-12

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).
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See Also
Functions
qamdemod | genqamdemod

Objects
comm.GeneralQAMDemodulator
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constellation
System object: comm.RectangularQAMDemodulator
Package: comm

(To be removed) Calculate or plot ideal signal constellation

Note comm.RectangularQAMDemodulator will be removed in a future release. Use qamdemod
instead.

Syntax
y = constellation(h)
constellation(h)

Description
y = constellation(h) returns the numerical values of the constellation.

constellation(h) generates a constellation plot for the object.

Examples

Plot QAM Reference Constellations

Plot QAM reference constellation using the qammod and qamdemod functions. Show that the
'PlotConstellation,true' Name,Value pair property works for both qammod and qamdemod
functions. Also show the symbol ordering for Gray and binary code ordering by representing the data
in binary format.

Create symbols for a 16-QAM modulator.

M = 16; % For 16-QAM
refSym = (0:M-1)';

Plot the reference constellation using the qammod function.

qammod(refSym,M,'PlotConstellation',true);
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The default symbol order is Gray code ordering. To highlight the Gray symbol mapping, replot the
reference constellation using binary input type. When you specify 'InputType','bit', the input
signal must contain binary values, and the number of rows must be an integer multiple of log2(M).
Transpose the input vector so that the input symbols map to the column vectors.

biRefSym = de2bi(refSym);
qammod(biRefSym',M,'PlotConstellation',true,'InputType','bit');
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Replot the reference constellation using binary-coded symbol ordering.

biRefSym = de2bi(refSym);
qammod(biRefSym',M,'bin','PlotConstellation',true,'InputType','bit');
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Create symbols for a 64-QAM modulator.

M = 64; % For 64-QAM
refSym = (0:M-1);

Plot the reference constellation using the qamdemod function.

qamdemod(refSym,M,'PlotConstellation',true);

 constellation
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step
System object: comm.RectangularQAMDemodulator
Package: comm

(To be removed) Demodulate using rectangular QAM method

Note comm.RectangularQAMDemodulator will be removed in a future release. Use qamdemod
instead.

Syntax
Y = step(H,X)
Y = step(H,X,VAR)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Y = step(H,X) demodulates the input data, X, with the rectangular QAM demodulator System
object, H, and returns, Y. Input X must be a scalar or a column vector with double or single precision
data type. When ModulationOrder is an even power of two and you set the BitOutput property to
false or, when you set the DecisionMethod to Hard decision and the BitOutput property to
true, the data type of the input can also be signed integer, or signed fixed point (fi objects).
Depending on the BitOutput property value, output Y can be integer or bit valued.

Y = step(H,X,VAR) uses soft decision demodulation and noise variance VAR. This syntax applies
when you set the BitOutput property to true, the DecisionMethod property to Approximate
log-likelihood ratioor Log-likelihood ratio, and the VarianceSource property to
Input port. The data type of input VAR must be double or single precision.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This initialization
locks nontunable properties and input specifications. For more information on changing property
values, see “System Design in MATLAB Using System Objects”.
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comm.RectangularQAMModulator
Package: comm

(To be removed) Modulate using rectangular QAM signal constellation

Note comm.RectangularQAMModulator will be removed in a future release. Use qammod instead.
For more information, see “Compatibility Considerations”.

Description
The RectangularQAMModulator object modulates using M-ary quadrature amplitude modulation
with a constellation on a rectangular lattice. The output is a baseband representation of the
modulated signal. This block accepts a scalar or column vector input signal.

To modulate a signal using quadrature amplitude modulation:

1 Define and set up your rectangular QAM modulator object. See “Construction” on page 3-1212.
2 Call step to modulate the signal according to the properties of

comm.RectangularQAMModulator. The behavior of step is specific to each object in the
toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
H = comm.RectangularQAMModulator creates a modulator object, H. This object modulates the
input using the rectangular quadrature amplitude modulation (QAM) method.

H = comm.RectangularQAMModulator(Name,Value) creates a rectangular QAM modulator
object, H, with each specified property set to the specified value. You can specify additional name-
value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

H = comm.RectangularQAMModulator(M,Name,Value) creates a rectangular QAM modulator
object, H. This object has the ModulationOrder property set to M, and the other specified properties
set to the specified values.

Properties
ModulationOrder

Number of points in signal constellation

Specify the number of points in the signal constellation as scalar value that is a positive integer
power of two. The default is 16.
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PhaseOffset

Phase offset of constellation

Specify the phase offset of the signal constellation, in radians, as a real scalar value. The default is 0.

BitInput

Assume bit inputs

Specify whether the input is bits or integers. The default is false. When you set this property to
true, the step method input requires a column vector of bit values. The length of this vector must
be an integer multiple of log2(ModulationOrder on page 3-0 ). This vector contains bit
representations of integers between 0 and ModulationOrder–1. When you set this property to
false, the step method input must be a column vector of integer symbol values between 0 and
ModulationOrder–1.

SymbolMapping

Constellation encoding

Specify how the object maps an integer or group of log2(ModulationOrder on page 3-0 ) input
bits to the corresponding symbol as Binary | Gray | Custom. The default is Gray. When you set this
property to Gray, the System object uses a Gray-coded signal constellation. When you set this
property to Binary, the object uses a natural binary-coded constellation. When you set this property
to Custom, the object uses the signal constellation defined in the CustomSymbolMapping on page 3-
0  property.

CustomSymbolMapping

Custom constellation encoding

Specify a custom constellation symbol mapping vector. The default is 0:15. This property is a row or
column vector with a size of ModulationOrder on page 3-0 . This vector has unique integer
values in the range [0, ModulationOrder–1]. These values must be of data type double. The first
element of this vector corresponds to the top-leftmost point of the constellation, with subsequent
elements running down column-wise, from left to right. The last element corresponds to the bottom-
rightmost point. This property applies when you set the SymbolMapping on page 3-0  property to
Custom.

NormalizationMethod

Constellation normalization method

Specify the method used to normalize the signal constellation as Minimum distance between
symbols | Average power | Peak power. The default is Minimum distance between symbols.

MinimumDistance
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Minimum distance between symbols

Specify the distance between two nearest constellation points as a positive, real, numeric scalar
value. The default is 2. This property applies when you set the NormalizationMethod on page 3-
0  property to Minimum distance between symbols.

AveragePower

Average power of constellation

Specify the average power of the symbols in the constellation as a positive, real, numeric scalar
value. The default is 1. This property applies when you set the NormalizationMethod on page 3-
0  property to Average power.

PeakPower

Peak power of constellation

Specify the maximum power of the symbols in the constellation as a positive real, numeric scalar
value. The default is 1. This property applies when you set the NormalizationMethod on page 3-
0  property to Peak power.

OutputDataType

Data type of output

Specify the output data type as double | single | Custom. The default is double.

Fixed-Point Properties

CustomOutputDataType

Fixed-point data type of output

Specify the output fixed-point type as a numerictype object with a signedness of Auto. The default is
numerictype([],16). This property applies when you set the OutputDataType on page 3-0
property to Custom.

Methods

constellation (To be removed) Calculate or plot ideal signal constellation
step (To be removed) Modulate using rectangular QAM method

Common to All System Objects
release Allow System object property value changes
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Algorithms
This object implements the algorithm, inputs, and outputs described on the Rectangular QAM
Modulator Baseband block reference page. The object properties correspond to the block parameters.

Version History
Introduced in R2012a

comm.RectangularQAMModulator will be removed in a future release. Use qammod instead.
Not recommended starting in R2018b

Constellation normalization by PeakPower and AveragePower (other than unit average power) as
supported by comm.RectangularQAMModulator and comm.RectangularQAMDemodulator is not
inherently provided by functions. To perform peak power and average power normalization using
qammod and qamdemod functions, you can use these utility functions to scale symbols from peak or
average power normalization to minimum distance normalization.

function minD = pkPow2MinD(pkPow,M)
% Peak power to minimum distance
    nBits = log2(M);
    if (mod(nBits,2)==0)
        % Square QAM
        sf = 0.5*M - sqrt(M) + 0.5;
    else
        % Cross QAM
        mBy32 = M/32;
        if (nBits > 4)
            sf = (13 * mBy32) - (5 * sqrt(mBy32)) + 0.5;
        else
            sf = (20 * mBy32) - (6 * sqrt(mBy32)) + 0.5;
        end
    end
    minD = sqrt(pkPow/sf);
end

function minD = avgPow2MinD(avgPow,M)
% Average power to minimum distance
    nBits = log2(M);
    if (mod(nBits,2)==0)
        % Square QAM
        sf = (M - 1)/6;
    else
        % Cross QAM
        if (nBits > 4)
            sf = ((31 * M / 32) - 1) / 6;
        else
            sf = ((5 * M / 4) - 1) / 6;
        end
    end
    minD = sqrt(avgPow/sf);
end
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Peak Power Normalization for Hard Decision

This example compares computation of peak power normalization for hard decision by using the
qammod and qamdemod functions and the pkPow2MinD utility function.
% QAM alternative for "Peak power" normalization method for
% hard decision output when using functions.
M = 128;
pkPow = 5;
minD = pkPow2MinD(pkPow,M);

modObj = comm.RectangularQAMModulator('ModulationOrder',M, ...
    'NormalizationMethod','Peak power', ...
    'PeakPower',pkPow);
demodObj = comm.RectangularQAMDemodulator('ModulationOrder',M, ...
    'NormalizationMethod','Peak power', ...
    'PeakPower',pkPow);

% Check 1 - Verify that the two constellations are same by 
% comparing symbols.
constellationSO = modObj([0:M-1]');
constellationFcn = qammod([0:M-1]',M);
scaledConstellationFcn = (minD/2) .* constellationFcn;
err = constellationSO - scaledConstellationFcn;
maxConstellationErr = max(abs(err))

maxConstellationErr =
     0

Check 2 - Modulate and demodulate symbols using the System objects.
x = randi([0,M-1],100,1);
y1 = modObj(x);
z1 = demodObj(y1);
objModDemodOutputIsEqual = isequal(x,z1)

objModDemodOutputIsEqual =
  logical
   1

% Check 3 - Demodulate the modulator System object output 
% using the qamdemod function.
y1ScaledForFcn = (2/minD) .* y1;
z2 = qamdemod(y1ScaledForFcn,M);
objModFcnDemodIsEqual = isequal(x,z2)

objModFcnDemodIsEqual =
  logical
   1

%  Check 4 - Demodulate the qammod output using the 
% demodulator System object.
y2 = qammod(x,M);
y2ScaledForSO = (minD/2) .* y2;
z3 = demodObj(y2ScaledForSO);
fcnModObjDemodIsEqual = isequal(x,z3)

fcnModObjDemodIsEqual =
  logical
   1

Average Power Normalization for Hard Decision

This example compares computation of average power normalization for hard decision by using the
qammod and qamdemod functions and the avgPow2MinD utility function..

% QAM alternative for "Average power" normalization method for
% hard decision output when using functions.
M = 64;       % Modulation order
avgPow = 100; % Average constellation power

3 System Objects

3-1216



minD = avgPow2MinD(avgPow,M);

modObj = comm.RectangularQAMModulator('ModulationOrder',M, ...
    'NormalizationMethod','Average power', ...
    'AveragePower',avgPow);
demodObj = comm.RectangularQAMDemodulator('ModulationOrder',M, ...
    'NormalizationMethod','Average power', ...
    'AveragePower',avgPow);

% Check 1 - Verify that the two constellations are same by 
% comparing symbols.
constellationSO = modObj([0:M-1]');
constellationFcn = qammod([0:M-1]',M);
scaledConstellationFcn = (minD/2) .* constellationFcn;
err = constellationSO - scaledConstellationFcn;
maxConstellationErr = max(abs(err))

maxConstellationErr =
     0

Check 2 - Modulate and demodulate symbols using the System objects.
x = randi([0,M-1],100,1);
y1 = modObj(x);
z1 = demodObj(y1);
objModDemodOutputIsEqual = isequal(x,z1)

objModDemodOutputIsEqual =
  logical
   1

% Check 3 - Demodulate the modulator System object output 
% using the qamdemod function.
y1ScaledForFcn = (2/minD) .* y1;
z2 = qamdemod(y1ScaledForFcn,M);
objModFcnDemodIsEqual = isequal(x,z2)

objModFcnDemodIsEqual =
  logical
   1

% Check 4 - Demodulate the qammod output using the 
% demodulator System object.
y2 = qammod(x,M);
y2ScaledForSO = (minD/2) .* y2;
z3 = demodObj(y2ScaledForSO);
fcnModObjDemodIsEqual = isequal(x,z3)

fcnModObjDemodIsEqual =
  logical
   1

Peak Power Normalization for Approximate LLR

Output shown here compares computation of peak power normalization for approximate LLR by using
the qammod and qamdemod functions and the pkPow2MinD utility function.
% QAM alternative for "Peak power" normalization method for
% Approximate LLR output when using functions.
%
% Modulation order must be supported by QAM modulator-demodulator.
M = 256;     % Modulation order
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pkPow = 221; % Peak constellation power
snrdB=16;    % SNR in dB

minD = pkPow2MinD(pkPow,M);

modObj = comm.RectangularQAMModulator('ModulationOrder',M, ...
    'NormalizationMethod','Peak power', ...
    'PeakPower',pkPow);

% Check 1 - Verify that the two constellations are same by 
% comparing symbols.
constellationSO = modObj((0:M-1)');
constellationFcn = qammod((0:M-1)',M);
scaledConstellationFcn = (minD/2) .* constellationFcn;
err = constellationSO - scaledConstellationFcn;
maxConstellationErr = max(abs(err))

maxConstellationErr =
     0

x = randi([0,M-1],100,1);
y1 = modObj(x);;
    

% Reset global rng stream for repeatable noise samples, then add noise
reset(RandStream.getGlobalStream);
y1Rec = awgn(y1,snrdB,'measured','db');

% Compute noise variance to use when demodulating.
nv = mean(abs(y1).^2) / 10^(snrdB/10);

demodObj = comm.RectangularQAMDemodulator('ModulationOrder',M, ...
    'NormalizationMethod','Peak power', ...
    'PeakPower',pkPow, ...
    'BitOutput',true, ...
    'DecisionMethod','Approximate log-likelihood ratio', ...
    'Variance',nv);
    
    z1 = demodObj(y1Rec);

% With proper scaling, the demodulated output from the function 
% is the same as that from the System object.
y2 = qammod(x,M);
% Scale function output so that it matches System object output.
y2Scaled = (minD/2) .* y2;

% Reset global rng stream for repeatable noise samples, then add noise.
reset(RandStream.getGlobalStream);
y2Rec = awgn(y2Scaled,snrdB,'measured','db');

% Compute noise variance to use when demodulating.
nv1 = mean(abs(y2Scaled).^2) / 10^(snrdB/10);

% Scale the received signal for the constellation used by function
y2RecScaled = (2/minD) .* y2Rec;
% Scale the noise variance appropriately.
z2 = qamdemod(y2RecScaled,M,'OutputType','approxllr', ...
    'NoiseVariance',nv1 * (2/minD)^2);

% Check 2 - Compare deomodulated output from System object and function is minimal.
maxOutputErr = max(abs(z1-z2))

maxOutputErr =
   2.8422e-14

Average Power Normalization for Approximate LLR

This example compares computation of average power normalization for approximate LLR by using
the qammod and qamdemod functions and the avgPow2MinD utility function.
% QAM alternative for "Average power" normalization method for
% Approximate LLR output when using functions.
%
% Modulation order must be supported by QAM modulator-demodulator.
M = 1024;    % Modulation order
avgPow = 87; % Average constellation power
snrdB = 33;  % Signal-to-Noise Ratio in dB

minD = avgPow2MinD(avgPow,M);
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modObj = comm.RectangularQAMModulator('ModulationOrder',M, ...
    'NormalizationMethod','Average power', ...
    'AveragePower',avgPow);

% Check 1 - Verify that the two constellations are same by 
% comparing symbols.
constellationSO = modObj((0:M-1)');
constellationFcn = qammod((0:M-1)',M);
scaledConstellationFcn = (minD/2) .* constellationFcn;
err = constellationSO - scaledConstellationFcn;
maxConstellationErr = max(abs(err))

maxConstellationErr =
     0

x = randi([0,M-1],100,1);
y1 = modObj(x);

% Reset global rng stream for repeatable noise samples, then add noise
reset(RandStream.getGlobalStream);
y1Rec = awgn(y1,snrdB,'measured','db');

% Compute noise variance to use when demodulating.
nv = mean(abs(y1).^2) / 10^(snrdB/10);

demodObj = comm.RectangularQAMDemodulator('ModulationOrder',M, ...
    'NormalizationMethod','Average power', ...
    'AveragePower',avgPow, ...
    'BitOutput',true, ...
    'DecisionMethod','Approximate log-likelihood ratio', ...
    'Variance',nv);

z1 = demodObj(y1Rec);

% With proper scaling, the demodulated output from the function 
% is the same as that from the System object.
y2 = qammod(x,M);
% Scale function output so that it matches System object output.
y2Scaled = (minD/2) .* y2;

% Reset global rng stream for repeatable noise samples, then add noise.
reset(RandStream.getGlobalStream);
y2Rec = awgn(y2Scaled,snrdB,'measured','db');
% Compute noise variance to use when demodulating.
nv1 = mean(abs(y2Scaled).^2) / 10^(snrdB/10);

% Scale the received signal for the constellation used by function
y2RecScaled = (2/minD) .* y2Rec;
% Scale the noise variance appropriately.
z2 = qamdemod(y2RecScaled,M,'OutputType','approxllr', ...
    'NoiseVariance',nv1 * (2/minD)^2);

% Check 2 - Compare deomodulated output from System object and function is minimal.
maxOutputErr = max(abs(z1-z2))

maxOutputErr =
   1.3642e-12

Peak Power Normalization for LLR

Output shown here compares computation of peak power normalization for LLR by using the qammod
and qamdemod functions and the pkPow2MinD utility function.
% QAM alternative for "Peak power" normalization method for
% LLR output when using functions.
%
% Modulation order must be supported by QAM modulator-demodulator.
M = 1024;  % Modulation order
pkPow = 1; % Peak constellation power
snrdB=6;   % SNR in dB

minD = pkPow2MinD(pkPow,M);

modObj = comm.RectangularQAMModulator('ModulationOrder',M, ...
    'NormalizationMethod','Peak power', ...
    'PeakPower',pkPow);

% Check 1 - Verify that the two constellations are same by 
% comparing symbols.
constellationSO = modObj((0:M-1)');
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constellationFcn = qammod((0:M-1)',M);
scaledConstellationFcn = (minD/2) .* constellationFcn;
err = constellationSO - scaledConstellationFcn;
maxConstellationErr = max(abs(err))

maxConstellationErr =
     0

x = randi([0,M-1],100,1);
% Modulate and demodulate using the System objects
y1 = modObj(x);;

% Reset global rng stream for repeatable noise samples, then add noise
reset(RandStream.getGlobalStream);
y1Rec = awgn(y1,snrdB,'measured','db');

% Compute noise variance to use when demodulating.
nv = mean(abs(y1).^2) / 10^(snrdB/10);

demodObj = comm.RectangularQAMDemodulator('ModulationOrder',M, ...
    'NormalizationMethod','Peak power', ...
    'PeakPower',pkPow, ...
    'BitOutput',true, ...
    'DecisionMethod','Log-likelihood ratio', ...
    'Variance',nv);
    
    z1 = demodObj(y1Rec);

% Modulate and demodulate using the functions
y2 = qammod(x,M);
% Scale function output so that it matches System object output.
y2Scaled = (minD/2) .* y2;

% Reset global rng stream for repeatable noise samples, then add noise.
reset(RandStream.getGlobalStream);
y2Rec = awgn(y2Scaled,snrdB,'measured','db');

% Compute noise variance to use when demodulating.
nv1 = mean(abs(y2Scaled).^2) / 10^(snrdB/10);

% Create inputs required by utility function to compute LLR
nBits = log2(M);
bitwiseMapping = (int2bit((0:M-1),nBits))';
% c0 contains indices of mapping which has 0 at various bit positions
[c0, ~] = find(bitwiseMapping==0);
c0 = reshape(int32(c0),M/2,nBits);
% c1 contains indices of mapping which has 1 at various bit positions
[c1, ~] = find(bitwiseMapping==1);
c1 = reshape(int32(c1),M/2,nBits);

z2 = comm.internal.utilities.computeLLRsim(y2Rec,M,nBits, ...
    scaledConstellationFcn,c0,c1,nv1);

% Check 2 - Compare deomodulated output from System object and function is minimal.
maxOutputErr = max(abs(z1-z2))

maxOutputErr =
   3.5527e-15

Average Power Normalization for LLR

This example compares computation of average power normalization for LLR by using the qammod
and qamdemod functions and the avgPow2MinD utility function.
% QAM alternative for "Average power" normalization method for
% LLR output when using functions.
%
% Modulation order must be supported by QAM modulator-demodulator.
M = 1024;    % Modulation order
avgPow = 117; % Average constellation power
snrdB = 8;  % Signal-to-Noise Ratio in dB

minD = avgPow2MinD(avgPow,M);

modObj = comm.RectangularQAMModulator('ModulationOrder',M, ...
    'NormalizationMethod','Average power', ...
    'AveragePower',avgPow);

% Check 1 - Verify that the two constellations are same by 
% comparing symbols.
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constellationSO = modObj((0:M-1)');
constellationFcn = qammod((0:M-1)',M);
scaledConstellationFcn = (minD/2) .* constellationFcn;
err = constellationSO - scaledConstellationFcn;
maxConstellationErr = max(abs(err))

maxConstellationErr =
     0

x = randi([0,M-1],100,1);
y1 = modObj(x);

% Reset global rng stream for repeatable noise samples, then add noise
reset(RandStream.getGlobalStream);
y1Rec = awgn(y1,snrdB,'measured','db');

% Compute noise variance to use when demodulating.
nv = mean(abs(y1).^2) / 10^(snrdB/10);

demodObj = comm.RectangularQAMDemodulator('ModulationOrder',M, ...
    'NormalizationMethod','Average power', ...
    'AveragePower',avgPow, ...
    'BitOutput',true, ...
    'DecisionMethod','Log-likelihood ratio', ...
    'Variance',nv);

z1 = demodObj(y1Rec);

% With proper scaling, the demodulated output from the function 
% is the same as that from the System object.
y2 = qammod(x,M);
% Scale function output so that it matches System object output.
y2Scaled = (minD/2) .* y2;

% Reset global rng stream for repeatable noise samples, then add noise.
reset(RandStream.getGlobalStream);
y2Rec = awgn(y2Scaled,snrdB,'measured','db');
% Compute noise variance to use when demodulating.
nv1 = mean(abs(y2Scaled).^2) / 10^(snrdB/10);

% Create inputs required by utility function to compute LLR
nBits = log2(M);
bitwiseMapping = (int2bit((0:M-1),nBits))';
% c0 contains indices of mapping which has 0 at various bit positions
[c0, ~] = find(bitwiseMapping==0);
c0 = reshape(int32(c0),M/2,nBits);
% c1 contains indices of mapping which has 1 at various bit positions
[c1, ~] = find(bitwiseMapping==1);
c1 = reshape(int32(c1),M/2,nBits);

z2 = comm.internal.utilities.computeLLRsim(y2Rec,M,nBits, ...
    scaledConstellationFcn,c0,c1,nv1);

% Check 2 - Compare deomodulated output from System object and function is minimal.
maxOutputErr = max(abs(z1-z2))

maxOutputErr =
   1.3642e-12

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Functions
qammod | genqammod
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Objects
comm.GeneralQAMModulator
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constellation
System object: comm.RectangularQAMModulator
Package: comm

(To be removed) Calculate or plot ideal signal constellation

Note comm.RectangularQAMModulator will be removed in a future release. Use qammod instead.

Syntax
y = constellation(h)
constellation(h)

Description
y = constellation(h) returns the numerical values of the constellation.

constellation(h) generates a constellation plot for the object.

Examples

Plot QAM Reference Constellations

Plot QAM reference constellation using the qammod and qamdemod functions. Show that the
'PlotConstellation,true' Name,Value pair property works for both qammod and qamdemod
functions. Also show the symbol ordering for Gray and binary code ordering by representing the data
in binary format.

Create symbols for a 16-QAM modulator.

M = 16; % For 16-QAM
refSym = (0:M-1)';

Plot the reference constellation using the qammod function.

qammod(refSym,M,'PlotConstellation',true);

 constellation
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The default symbol order is Gray code ordering. To highlight the Gray symbol mapping, replot the
reference constellation using binary input type. When you specify 'InputType','bit', the input
signal must contain binary values, and the number of rows must be an integer multiple of log2(M).
Transpose the input vector so that the input symbols map to the column vectors.

biRefSym = de2bi(refSym);
qammod(biRefSym',M,'PlotConstellation',true,'InputType','bit');
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Replot the reference constellation using binary-coded symbol ordering.

biRefSym = de2bi(refSym);
qammod(biRefSym',M,'bin','PlotConstellation',true,'InputType','bit');
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Create symbols for a 64-QAM modulator.

M = 64; % For 64-QAM
refSym = (0:M-1);

Plot the reference constellation using the qamdemod function.

qamdemod(refSym,M,'PlotConstellation',true);
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step
System object: comm.RectangularQAMModulator
Package: comm

(To be removed) Modulate using rectangular QAM method

Note comm.RectangularQAMModulator will be removed in a future release. Use qammod instead.

Syntax
Y = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Y = step(H,X) modulates input data, X, with the rectangular QAM modulator object, H. It returns
the baseband modulated output, Y. Depending on the value of the BitInput property, input X can be
an integer or bit valued column vector with numeric, logical, or fixed-point data types.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This initialization
locks nontunable properties and input specifications. For more information on changing property
values, see “System Design in MATLAB Using System Objects”.
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comm.RectangularQAMTCMDemodulator
Package: comm

Demodulate convolutionally encoded data mapped to rectangular QAM signal constellation

Description
The RectangularQAMTCMDemodulator object uses the Viterbi algorithm to decode a trellis-coded
modulation (TCM) signal that was previously modulated using a rectangular QAM signal
constellation.

To demodulate convolutionally encoded data mapped to a rectangular QAM signal constellation:

1 Define and set up your rectangular QAM TCM demodulator object. See “Construction” on page 3-
1229.

2 Call step to demodulate the signal according to the properties of
comm.RectangularQAMTCMDemodulator. The behavior of step is specific to each object in the
toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
H = comm.RectangularQAMTCMDemodulator creates a trellis-coded, rectangular, quadrature
amplitude (QAM TCM) demodulator System object, H. This object demodulates convolutionally
encoded data that has been mapped to a rectangular QAM constellation.

H = comm.RectangularQAMTCMDemodulator(Name,Value) creates a rectangular, QAM TCM,
demodulator object, H, with each specified property set to the specified value. You can specify
additional name-value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

H = comm.RectangularQAMTCMDemodulator(TRELLIS,Name,Value) creates a rectangular
QAM TCM demodulator object, H. This object has the TrellisStructure property set to TRELLIS, and
the other specified properties set to the specified values.

Properties
TrellisStructure

Trellis structure of convolutional code

Specify trellis as a MATLAB structure that contains the trellis description of the convolutional code.
Use the istrellis function to check whether a structure is a valid trellis. The default is the result of
poly2trellis([3 1 1], [ 5 2 0 0; 0 0 1 0; 0 0 0 1]).
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TerminationMethod

Termination method of encoded frame

Specify the termination method as Continuous | Truncated | Terminated. The default is
Continuous.

When you set this property to Continuous, the object saves the internal state metric at the end of
each frame. The next frame uses the same state metric. The object treats each traceback path
independently. If the input signal contains only one symbol, you should use Continuous mode.

When you set this property to Truncated, the object treats each input vector independently. The
traceback path starts at the state with the best metric and always ends in the all-zeros state.

When you set this property to Terminated, the object treats each input vector independently, and
the traceback path always starts and ends in the all-zeros state.

TracebackDepth

Traceback depth for Viterbi decoder

Specify the scalar, integer number of trellis branches to construct each traceback path. The default is
21. The Traceback depth parameter influences the decoding accuracy and delay. The decoding delay
is the number of zero symbols that precede the first decoded symbol in the output.

When you set the TerminationMethod property to Continuous, the decoding delay consists of
TracebackDepth zero symbols or TracebackDepth×K zero bits for a rate K/N convolutional code.

When you set the TerminationMethod property to Truncated or Terminated, no output delay
occurs and the traceback depth must be less than or equal to the number of symbols in each input
vector.

ResetInputPort

Enable demodulator reset input

Set this property to true to enable an additional input to the step method. The default is false.
When this additional reset input is a nonzero value, the internal states of the encoder reset to initial
conditions. This property applies when you set the TerminationMethod property to Continuous.

ModulationOrder

Number of points in signal constellation

Specify the number of points in the signal constellation used to map the convolutionally encoded data
as a positive, integer scalar value. The number of points must be 4, 8, 16, 32, or 64. The default is
16. The ModulationOrder property value must equal the number of possible input symbols to the
convolutional decoder of the rectangular QAM TCM demodulator object. The ModulationOrder
must equal 2N for a rate K/N convolutional code.

OutputDataType
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Data type of output

Specify output data type as logical | double. The default is double.

Methods
step Demodulate convolutionally encoded data mapped to rectangular QAM constellation

Common to All System Objects
release Allow System object property value changes
reset Reset internal states of System object

Examples

Modulate and Demodulate Using Rectangular 16-QAM TCM

Modulate and demodulate data using 16-QAM TCM in an AWGN channel. Estimate the BER.

Create QAM TCM modulator and demodulator System objects.

rqamtcmod = comm.RectangularQAMTCMModulator;
rqamtcdemod = comm.RectangularQAMTCMDemodulator(TracebackDepth=16);

Create an AWGN channel object.

awgnchan = comm.AWGNChannel(EbNo=5);

Determine the delay through the QAM TCM demodulator. The demodulator uses the Viterbi algorithm
to decode the TCM signal that was modulated using rectangular QAM. The error rate calculation
must align the received samples with the transmitted sample to accurately calculate the bit error
rate. Calculate the delay in the system with the number of bits per symbol and the decoder traceback
depth in the TCM demodulator.

bitsPerSymbol = log2(rqamtcdemod.TrellisStructure.numInputSymbols);
delay = rqamtcdemod.TracebackDepth*bitsPerSymbol;

Create an error rate calculator object with the ReceiveDelay property set to delay.

errRate = comm.ErrorRate(ReceiveDelay=delay);

Generate binary data and modulate with 16-QAM TCM. Pass the signal through an AWGN channel
and demodulate. Calculate the error statistics. The loop runs until either 100 bit errors are
encountered or 1e7 total bits are transmitted.

% Initialize the error results vector.
errStats = [0 0 0];

while errStats(2) < 100 && errStats(3) < 1e7
    % Transmit frames of 200 3-bit symbols
    txData = randi([0 1],600,1);
    % Modulate
    txSig = rqamtcmod(txData);
    % Pass through AWGN channel
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    rxSig = awgnchan(txSig);
    % Demodulate
    rxData = rqamtcdemod(rxSig);
    % Collect error statistics
    errStats = errRate(txData,rxData);
end

Display the error data.

fprintf('Error rate = %4.2e\nNumber of errors = %d\n', ...
    errStats(1),errStats(2))

Error rate = 1.94e-03
Number of errors = 100

Algorithms
This object implements the algorithm, inputs, and outputs described on the Rectangular QAM TCM
Decoder block reference page. The object properties correspond to the block parameters.

Version History
Introduced in R2012a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.RectangularQAMTCMModulator | comm.GeneralQAMTCMDemodulator |
comm.ViterbiDecoder
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step
System object: comm.RectangularQAMTCMDemodulator
Package: comm

Demodulate convolutionally encoded data mapped to rectangular QAM constellation

Syntax
Y = step(H,X)
Y = step(H,X,R)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Y = step(H,X) demodulates the rectangular QAM modulated input data, X, and uses the Viterbi
algorithm to decode the resulting demodulated, convolutionally encoded bits. X must be a complex,
double or single precision column vector. The step method outputs a demodulated, binary data
column vector, Y. When the convolutional encoder represents a rate K/N code, the length of the
output vector is K*L, where L is the length of the input vector, X.

Y = step(H,X,R) resets the decoder to the all-zeros state when you input a reset signal, R that is
non-zero. R must be a double precision or logical, scalar integer. This syntax applies when you set the
ResetInputPort property to true.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This initialization
locks nontunable properties and input specifications. For more information on changing property
values, see “System Design in MATLAB Using System Objects”.
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comm.RectangularQAMTCMModulator
Package: comm

Convolutionally encode binary data and map using rectangular QAM signal constellation

Description
The RectangularQAMTCMModulator object implements trellis-coded modulation (TCM) by
convolutionally encoding the binary input signal and mapping the result to a rectangular QAM signal
constellation.

To convolutionally encode binary data and map the result using a rectangular QAM constellation:

1 Define and set up your rectangular QAM TCM modulator object. See “Construction” on page 3-
1234.

2 Call step to modulate the signal according to the properties of
comm.RectangularQAMTCMModulator. The behavior of step is specific to each object in the
toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
H = comm.RectangularQAMTCMModulator creates a trellis-coded, rectangular, quadrature
amplitude (QAM TCM) System object, H. This object convolutionally encodes a binary input signal and
maps the result to a rectangular QAM constellation.

H = comm.RectangularQAMTCMModulator(Name,Value) creates a rectangular QAM TCM
modulator object, H, with each specified property set to the specified value. You can specify additional
name-value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

H = comm.RectangularQAMTCMModulator(TRELLIS,Name,Value) creates a rectangular QAM
TCM modulator object, H. This object has the TrellisStructure property set to TRELLIS and the
other specified properties set to the specified values.

Properties
TrellisStructure

Trellis structure of convolutional code

Specify trellis as a MATLAB structure that contains the trellis description of the convolutional code.
Use the istrellis function to check whether a structure is a valid trellis. The default is the result of
poly2trellis([3 1 1], [ 5 2 0 0; 0 0 1 0; 0 0 0 1]).
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TerminationMethod

Termination method of encoded frame

Specify the termination method as Continuous | Truncated | Terminated. The default is
Continuous.

When you set this property to Continuous, the object retains the encoder states at the end of each
input vector for use with the next input vector.

When you set this property to Truncated, the object treats each input vector independently. The
encoder is reset to the all-zeros state at the start of each input vector.

When you set this property to Terminated, the object treats each input vector independently. For
each input vector, the object uses extra bits to set the encoder to the all-zeros state at the end of the
vector. For a rate K/N code, the step method outputs the vector with a length given by
y = N × (L + S) K, where S = constraintLength–1 (or, in the case of multiple constraint lengths, S =
sum(constraintLength(i)–1)). L is the length of the input to the step method.

ResetInputPort

Enable modulator reset input

Set this property to true to enable an additional input to the step method. The default is false. When
you set the reset input to the step method to a nonzero value, the object resets the encoder to the all-
zeros state. This property applies when you set the TerminationMethod on page 3-0  property to
Continuous.

ModulationOrder

Number of points in signal constellation

Specify the number of points in the signal constellation used to map the convolutionally encoded data
as a positive integer scalar value equal to 4, 8, 16, 32, or 64. The default is 16. The value of the
ModulationOrder on page 3-0  property must equal the number of possible output symbols from
the convolutional encoder of the QAM TCM modulator. Thus, the value for the ModulationOrder
property must equal 2N for a rate K/N convolutional code.

OutputDataType

Data type of output

Specify the output data type as one of double | single. The default is double.

Methods

step Convolutionally encode binary data and map using rectangular QAM constellation
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Common to All System Objects
release Allow System object property value changes
reset Reset internal states of System object

Examples

Modulate Data Using Rectangular QAM TCM

Modulate data using rectangular 16-QAM TCM modulation and display the scatter plot.

Generate random binary data. The length of the data vector must be an integer multiple of the
number of input streams into the encoder, log2(8) = 3.

data = randi([0 1],3000,1);

Create a modulator System object™ and use its step function to modulate the data.

hMod = comm.RectangularQAMTCMModulator;
modData = step(hMod,data);

Plot the modulated data.

scatterplot(modData)
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Algorithms
This object implements the algorithm, inputs, and outputs described on the Rectangular QAM TCM
Encoder block reference page. The object properties correspond to the block parameters.

Version History
Introduced in R2012a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.RectangularQAMTCMDemodulator | comm.GeneralQAMTCMModulator |
comm.ConvolutionalEncoder
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step
System object: comm.RectangularQAMTCMModulator
Package: comm

Convolutionally encode binary data and map using rectangular QAM constellation

Syntax
Y = step(H,X)
Y = step(H,X,R)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Y = step(H,X) convolutionally encodes and modulates the input data numeric or logical column
vector X, and returns the encoded and modulated data, Y. X must be of data type numeric, logical, or
unsigned fixed point of word length 1 (fi object). When the convolutional encoder represents a rate
K/N code, the length of the input vector, X, must be K×L, for some positive integer L. The step
method outputs a complex column vector, Y, of length L.

Y = step(H,X,R) resets the encoder of the rectangular QAM TCM modulator object to the all-zeros
state when you input a non-zero reset signal, R. R must be a double precision or logical, scalar
integer. This syntax applies when you set the ResetInputPort property to true.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This initialization
locks nontunable properties and input specifications. For more information on changing property
values, see “System Design in MATLAB Using System Objects”.
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comm.RicianChannel
Package: comm

Filter input signal through multipath Rician fading channel

Description
The comm.RicianChannel System object filters an input signal through a multipath Rician fading
channel. For more information on fading model processing, see the Methodology for Simulating
Multipath Fading Channels section.

To filter an input signal through a multipath Rician fading channel:

1 Create the comm.RicianChannel object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation
Syntax
ricianchan = comm.RicianChannel
ricianchan = comm.RicianChannel(Name,Value)

Description

ricianchan = comm.RicianChannel creates a frequency-selective or frequency-flat multipath
Rician fading channel System object. This object filters a real or complex input signal through the
multipath channel to obtain a channel-impaired signal.

ricianchan = comm.RicianChannel(Name,Value) sets properties using one or more name-
value arguments. For example, 'SampleRate',2 sets the input signal sample rate to 2.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

SampleRate — Input signal sample rate
1 (default) | positive scalar

Input signal sample rate in hertz, specified as a positive scalar.
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Data Types: double

PathDelays — Discrete path delay
0 (default) | scalar | row vector

Discrete path delay in seconds, specified as a scalar or row vector.

• When you set PathDelays to a scalar, the channel is frequency flat.
• When you set PathDelays to a vector, the channel is frequency selective.

The PathDelays and AveragePathGains properties must be the same length.
Data Types: double

AveragePathGains — Average gains of discrete paths
0 (default) | scalar | row vector

Average gains of the discrete paths in decibels, specified as a scalar or row vector. The
AveragePathGains and PathDelays properties must be the same length.
Data Types: double

NormalizePathGains — Normalize average path gains
trueor 1 (default) | false or 0

Normalize average path gains, specified as one of these logical values:

• 1 (true) — The fading processes are normalized so that the total power of the path gains,
averaged over time, is 0 dB.

• 0 (false) — The total power of the path gains is not normalized.

The AveragePathGains property specifies the average powers of the path gains.
Data Types: logical

KFactor — K-factor of Rician fading channel
3 (default) | positive scalar | 1-by-NP vector of nonnegative values

K-factor of Rician fading channel, specified as a positive scalar or a 1-by-NP vector of nonnegative
values. NP is the number of discrete path delays specified by the PathDelays property.

• When you set KFactor to a scalar, the first discrete path is a Rician fading process with a Rician
K-factor of KFactor. Any remaining discrete paths are independent Rayleigh fading processes.

• When you set KFactor to a vector, the discrete path corresponding to a positive element of the
KFactor vector is a Rician fading process with a Rician K-factor specified by that element. The
discrete path corresponding to any zero-valued elements of the KFactor vector are Rayleigh
fading processes. At least one element must be nonzero.

Data Types: double

DirectPathDopplerShift — Doppler shifts for line-of-sight components
0 (default) | scalar | row vector
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Doppler shifts for the line-of-sight components of the multipath Rician fading channel, specified as a
scalar or row vector. Units are in hertz. This property must be the same size as the KFactor property.

• When you set DirectPathDopplerShift to a scalar, the value represents the line-of-sight
component Doppler shift of the first discrete path. This path exhibits a Rician fading process.

• When you set DirectPathDopplerShift to a row vector, the discrete path corresponding to a
positive element of the KFactor vector is a Rician fading process. The corresponding element of
DirectPathDopplerShift specifies the line-of-sight component for the Doppler shift of that
discrete path.

Data Types: double

DirectPathInitialPhase — Initial phases for line-of-sight components
0 (default) | scalar | row vector

Initial phase for the line-of-sight components of a multipath Rician fading channel, specified as a
scalar or row vector. Units are in radians. This property must be the same size as the KFactor
property.

• When you set DirectPathInitialPhase to a scalar, the value represents the line-of-sight
component initial phase of the first discrete path. This path exhibits a Rician fading process.

• When you set DirectPathInitialPhase to a row vector, the discrete path corresponding to a
positive element of the KFactor vector is a Rician fading process. The corresponding element of
DirectPathInitialPhase specifies the line-of-sight component initial phase of that discrete
path.

Data Types: double

MaximumDopplerShift — Maximum Doppler shift for all channel paths
0.001 (default) | nonnegative scalar

Maximum Doppler shift for all channel paths, specified as a nonnegative scalar. Units are in hertz.

The maximum Doppler shift limit applies to each channel path. When you set this property to 0, the
channel remains static for the entire input. You can use the reset object function to generate a new
channel realization. The MaximumDopplerShift property value must be smaller than
SampleRate/10/fc for each path. fc is the cutoff frequency factor of the path. For most Doppler
spectrum types, the value of fc is 1. For Gaussian and bi-Gaussian Doppler spectrum types, the value
of fc is dependent on the Doppler spectrum structure fields. For more details about how fc is defined,
see the “Cutoff Frequency Factor” on page 3-1256 section.
Data Types: double

DopplerSpectrum — Doppler spectrum shape for all channel paths
doppler('Jakes') (default) | Doppler spectrum structure | 1-by-NP cell array of Doppler spectrum
structures

Doppler spectrum shape for all channel paths, specified as a Doppler spectrum structure or a 1-by-NP
cell array of Doppler spectrum structures. These Doppler spectrum structures must be outputs of the
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form returned from the doppler function. NP is the number of discrete delay paths specified by the
PathDelays property. The MaximumDopplerShift property defines the maximum Doppler shift
value that the DopplerSpectrum property permits when you specify the Doppler spectrum.

• When you set DopplerSpectrum to a single Doppler spectrum structure, all paths have the same
specified Doppler spectrum.

• When you set DopplerSpectrum to a cell array of Doppler spectrum structures, each path has
the Doppler spectrum specified by the corresponding structure in the cell array.

Specify options for the spectrum type by using the specType input to the doppler function. If you
set the FadingTechnique property to 'Sum of sinusoids', you must set DopplerSpectrum to
doppler('Jakes').

Dependencies

To enable this property, set the MaximumDopplerShift property to a positive scalar.
Data Types: struct | cell

ChannelFiltering — Channel filtering
trueor 1 (default) | false or 0

Channel filtering, specified as one of these logical values:

• 1 (true) — The channel accepts an input signal and produces a filtered output signal.
• 0 (false) — The object does not accept an input signal, produces no filtered output signal, and

outputs only channel path gains. You must specify the duration of the fading process by using the
NumSamples property.

Data Types: logical

PathGainsOutputPort — Output channel path gains
false or 0 (default) | trueor 1

Output channel path gains, specified as a logical 0 (false) or 1 (true). Set this property to true to
output the channel path gains of the underlying fading process.

Dependencies

To enable this property, set the ChannelFiltering property to true.
Data Types: logical

NumSamples — Number of samples
100 (default) | nonnegative integer

Number of samples used for the duration of the fading process, specified as a nonnegative integer.

Tunable: Yes

Dependencies

To enable this property, set the ChannelFiltering property to false.
Data Types: double
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OutputDataType — Path gain output data type
'double' (default) | 'single'

Path gain output data type, specified as 'double' or 'single'.
Dependencies

To enable this property, set the ChannelFiltering property to false.
Data Types: char | string

FadingTechnique — Channel model fading technique
'Filtered Gaussian noise' (default) | 'Sum of sinusoids'

Channel model fading technique, specified as 'Filtered Gaussian noise' or 'Sum of
sinusoids'.
Data Types: char | string

NumSinusoids — Number of sinusoids
48 (default) | positive integer

Number of sinusoids used to model the fading process, specified as a positive integer.
Dependencies

To enable this property, set the FadingTechnique property to 'Sum of sinusoids'.
Data Types: double

InitialTimeSource — Source to control start time of fading process
'Property' (default) | 'Input port'

Source to control the start time of the fading process, specified as 'Property' or 'Input port'.

• When you set InitialTimeSource to 'Property', set the initial time offset by using the
InitialTime property.

• When you set InitialTimeSource to 'Input port', specify the start time of the fading
process by using the inittime input argument. The input value can change in consecutive calls
to the object.

Dependencies

To enable this property, set the FadingTechnique property to 'Sum of sinusoids'.
Data Types: char | string

InitialTime — Initial time offset
0 (default) | nonnegative scalar

Initial time offset for the fading model in seconds, specified as a nonnegative scalar.

When mod(InitialTime/SampleRate) is nonzero, the initial time offset is rounded up to the nearest
sample position.
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Dependencies

To enable this property, set the FadingTechnique property to 'Sum of sinusoids' and the
InitialTimeSource property to 'Property'.
Data Types: double

RandomStream — Source of random number stream
'Global stream' (default) | 'mt19937ar with seed'

Source of the random number stream, specified as 'Global stream' or 'mt19937ar with
seed'.

• When you specify 'Global stream', the object uses the current global random number stream
for random number generation. In this case, the reset object function resets only the filters.

• When you specify 'mt19937ar with seed', the object uses the mt19937ar algorithm for
random number generation. In this case, the reset object function resets the filters and
reinitializes the random number stream to the value of the Seed property.

Data Types: char | string

Seed — Initial seed of mt19937ar random number stream
73 (default) | nonnegative integer

Initial seed of the mt19937ar random number stream generator algorithm, specified as a nonnegative
integer. When you call the reset object function, it reinitializes the mt19937ar random number
stream to the Seed value.

Dependencies

To enable this property, set the RandomStream property to 'mt19937ar with seed'.
Data Types: double

Visualization — Channel visualization
'Off' (default) | 'Impulse response' | 'Frequency response' | 'Impulse and frequency
responses' | 'Doppler spectrum'

Channel visualization, specified as 'Off', 'Impulse response', 'Frequency response',
'Impulse and frequency responses', or 'Doppler spectrum'. For more information, see the
Channel Visualization topic.

Dependencies

To enable this property, set the FadingTechnique property to 'Filtered Gaussian noise'.
Data Types: char | string

PathsForDopplerDisplay — Path used for displaying Doppler spectrum
1 (default) | positive integer
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Path used for displaying the Doppler spectrum, specified as a positive integer in the range [1, NP]. NP
is the number of discrete delay paths specified by the PathDelays property. Use this property to
select the discrete path used in constructing a Doppler spectrum plot.

Dependencies

To enable this property, set the Visualization property to 'Doppler spectrum'.
Data Types: double

SamplesToDisplay — Percentage of samples to display
'25%' (default) | '10%' | '50%' | '100%'

Percentage of samples to display, specified as '25%', '10%', '50%', or '100%'. Increasing the
percentage improves display accuracy at the expense of simulation speed.

Dependencies

To enable this property, set the Visualization property to 'Impulse response', 'Frequency
response', or 'Impulse and frequency responses'.
Data Types: char | string

Usage

Syntax
y = ricianchan(x)
y = ricianchan(x,inittime)
[y,pathgains] = ricianchan( ___ )

pathgains = ricianchan()
pathgains = ricianchan(inittime)

Description

y = ricianchan(x) filters input signal x through a multipath Rician fading channel and returns
the result in y.

To enable this syntax, set the ChannelFiltering property to true.

y = ricianchan(x,inittime) specifies a start time for the fading process.

To enable this syntax, set the FadingTechnique property to 'Sum of sinusoids' and the
InitialTimeSource property to 'Input port'.

[y,pathgains] = ricianchan( ___ ) also returns the channel path gains of the underlying
multipath Rician fading process in pathgains using any of the input argument combinations in the
previous syntaxes.

To enable this syntax, set the PathGainsOutputPort property to true.

pathgains = ricianchan() returns the channel path gains of the underlying fading process. In
this case, the channel requires no input signal and acts as a source of path gains.
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To enable this syntax, set the ChannelFiltering property to false.

pathgains = ricianchan(inittime) returns the channel path gains of the underlying fading
process beginning at the specified initial time. In this case, the channel requires no input signal and
acts as a source of path gains.

To enable this syntax, set the FadingTechnique property to 'Sum of sinusoids', the
InitialTimeSource property to 'Input port', and the ChannelFiltering property to false.

Input Arguments

x — Input signal
NS-by-1 vector

Input signal, specified as an NS-by-1 vector, where NS is the number of samples.
Data Types: single | double
Complex Number Support: Yes

inittime — Initial time offset
0 | nonnegative scalar

Initial time offset in seconds, specified as a nonnegative scalar.

When mod(inittime/SampleRate) is nonzero, the initial time offset is rounded up to the nearest
sample position.
Data Types: single | double

Output Arguments

y — Output signal
NS-by-1 vector

Output signal, returned as an NS-by-1 vector of complex values with the same data precision as input
signal x. NS is the number of samples.

pathgains — Output path gains
NS-by-NP matrix

Output path gains, returned as an NS-by-NP matrix. NS is the number of samples. NP is the number of
discrete delay paths specified by the PathDelays property. pathgains contains complex values.

When you set the ChannelFiltering property to false, the data type of this output has the same
precision as the input signal x. When you set the ChannelFiltering property to true, the data
type of this output is specified by the OutputDataType property.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)
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Specific to comm.RicianChannel
info Characteristic information about fading channel object

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Produce Same Rician Channel Outputs Using Two Random Number Generation Methods

Produce the same multipath Rician fading channel response by using two different methods for
random number generation. The multipath Rician fading channel System object includes two methods
for random number generation. You can use the current global stream or the mt19937ar algorithm
with a specified seed. By interacting with the global stream, the System object can produce the same
outputs from the two methods.

Create a PSK modulator System object to modulate randomly generated data.

pskModulator = comm.PSKModulator;
insig = randi([0,pskModulator.ModulationOrder-1],1024,1);
channelInput = pskModulator(insig);

Create a multipath Rician fading channel System object, specifying the random number generation
method as the my19937ar algorithm and the random number seed as 73.

ricianchan = comm.RicianChannel( ...
    'SampleRate',1e6, ...
    'PathDelays',[0.0 0.5 1.2]*1e-6, ...
    'AveragePathGains',[0.1 0.5 0.2], ...
    'KFactor',2.8, ...
    'DirectPathDopplerShift',5.0, ...
    'DirectPathInitialPhase',0.5, ...
    'MaximumDopplerShift',50, ...
    'DopplerSpectrum',doppler('Bell', 8), ...
    'RandomStream','mt19937ar with seed', ...
    'Seed',73, ...
    'PathGainsOutputPort',true);

Filter the modulated data by using the multipath Rician fading channel System object.

[RicianChanOut1,RicianPathGains1] = ricianchan(channelInput);

Set the System object to use the global stream for random number generation.

release(ricianchan);
ricianchan.RandomStream = 'Global stream';

Set the global stream to have the same seed that you specified when creating the multipath Rician
fading channel System object.

rng(73)
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Filter the modulated data by using the multipath Rician fading channel System object again.

[RicianChanOut2,RicianPathGains2] = ricianchan(channelInput);

Verify that the channel and path gain outputs are the same for each of the two methods.

isequal(RicianChanOut1,RicianChanOut2)

ans = logical
   1

isequal(RicianPathGains1,RicianPathGains2)

ans = logical
   1

Display Impulse and Frequency Responses of Multipath Rician Fading Channel

Display the impulse and frequency responses of a frequency-selective multipath Rician fading channel
that is configured to disable channel filtering.

Define simulation variables. Specify path delays and gains by using the ITU pedestrian B channel
configuration.

fs = 3.84e6;                                  % Sample rate in Hz
pathDelays = [0 200 800 1200 2300 3700]*1e-9; % in seconds
avgPathGains = [0 -0.9 -4.9 -8 -7.8 -23.9];   % dB
kfact = 10;                                   % Rician K-factor
fD = 50;                                      % Max Doppler shift in Hz

Create a multipath Rician fading channel System object to visualize the impulse response and
frequency response plots.

ricianChan = comm.RicianChannel('SampleRate',fs, ...
    'PathDelays',pathDelays, ...
    'AveragePathGains',avgPathGains, ...
    'KFactor',kfact, ...
    'MaximumDopplerShift',fD, ...
    'ChannelFiltering',false, ...
    'Visualization','Impulse and frequency responses');

Visualize the channel response by running the multipath Rician fading channel System object with no
input signal. The impulse response plot enables you to identify the individual paths and their
corresponding filter coefficients. The frequency response plot shows the frequency-selective nature of
the ITU pedestrian B channel.

ricianChan();
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Model Rician Channel Using Sum-of-Sinusoids Technique

Show that the channel state is maintained for discontinuous transmissions by using multipath Rician
fading channel System objects configured to use the sum-of-sinusoids fading technique. Observe
discontinuous channel response segments overlaid on a continuous channel response.

Set the channel properties.
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fs = 1000;               % Sample rate in Hz
pathDelays = [0 2.5e-3]; % In seconds
pathPower = [0 -6];      % In dB
fD = 5;                  % Maximum Doppler shift in Hz
ns = 1000;               % Number of samples
nsdel = 100;             % Number of samples for delayed paths

Define a continuous time span and three discontinuous time segments over which to plot and view the
channel response. View a 1000-sample continuous channel response that starts at time 0 and three
100-sample channel responses that start at times 0.1, 0.4, and 0.7 seconds, respectively.

to0 = 0.0;
to1 = 0.1;
to2 = 0.5;
to3 = 0.8;
t0 = (to0:ns-1)/fs;      % Transmission 0
t1 = to1+(0:nsdel-1)/fs; % Transmission 1
t2 = to2+(0:nsdel-1)/fs; % Transmission 2
t3 = to3+(0:nsdel-1)/fs; % Transmission 3

Create a frequency-flat multipath Rician fading System object, specifying a 1000 Hz sampling rate,
the sum-of-sinusoids fading technique, disabled channel filtering, and the number of samples to view.
Specify a seed value so that results can be repeated. Use the default InitialTime property setting
so that the fading channel is simulated from time 0.

ricianchan1 = comm.RicianChannel('SampleRate',fs, ...
    'MaximumDopplerShift',fD, ...
    'RandomStream','mt19937ar with seed', ...
    'Seed',17, ...
    'FadingTechnique','Sum of sinusoids', ...
    'ChannelFiltering',false, ...
    'NumSamples',ns);

Create a clone of the multipath Rician fading channel System object. Set the number of samples for
the delayed paths. Set the source for the initial time so that you can specify the fading channel offset
time as an input argument when using the System object.

ricianchan2 = clone(ricianchan1);
ricianchan2.InitialTimeSource = 'Input port';
ricianchan2.NumSamples = nsdel;

Save the path gain output for the continuous channel response by using the ricianchan1 object and
for the discontinuous delayed channel responses by using the ricianchan2 object with the initial
time offsets provided as input arguments.

pg0 = ricianchan1();
pg1 = ricianchan2(to1);
pg2 = ricianchan2(to2);
pg3 = ricianchan2(to3);

Compare the number of samples processed by the two channels by using the info object function.
The ricianchan1 object processed 1000 samples, while the ricianhan2 object processed only 300
samples.

G = info(ricianchan1);
H = info(ricianchan2);
[G.NumSamplesProcessed H.NumSamplesProcessed]
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ans = 1×2

        1000         300

Convert the path gains into decibels.

pathGain0 = 20*log10(abs(pg0));
pathGain1 = 20*log10(abs(pg1));
pathGain2 = 20*log10(abs(pg2));
pathGain3 = 20*log10(abs(pg3));

Plot the path gains for the continuous and discontinuous cases. The gains for the three segments
match the gain for the continuous case. Because the channel characteristics are maintained even
when data is not transmitted, the alignment of the two plots shows that the sum-of-sinusoids
technique is suited to the simulation of packetized data.

plot(t0,pathGain0,'r--')
hold on
plot(t1,pathGain1,'b')
plot(t2,pathGain2,'b')
plot(t3,pathGain3,'b')
grid
xlabel('Time (s)')
ylabel('Path Gain (dB)')
legend('Continuous','Discontinuous','location','nw')
title('Continuous and Discontinuous Transmission Path Gains')

3 System Objects

3-1252



Reproduce Multipath Rican Fading Channel Response

Reproduce the multipath Rician fading channel output by using the ChannelFilterCoefficients
property returned by the info object function of the comm.RicianChannel System object.

Create a multipath Rician fading channel System object, defining two paths. Generate data to pass
through the channel.

ricianchan = comm.RicianChannel( ...
    'SampleRate',1000, ...
    'PathDelays',[0 1e-3], ...
    'AveragePathGains',[0 -2], ...
    'PathGainsOutputPort',true)

ricianchan = 
  comm.RicianChannel with properties:

                SampleRate: 1000
                PathDelays: [0 1.0000e-03]
          AveragePathGains: [0 -2]
        NormalizePathGains: true
                   KFactor: 3
    DirectPathDopplerShift: 0
    DirectPathInitialPhase: 0
       MaximumDopplerShift: 1.0000e-03
           DopplerSpectrum: [1x1 struct]
          ChannelFiltering: true
       PathGainsOutputPort: true

  Show all properties

data = randi([0 1],600,1);

Pass data through the channel. Assign the ChannelFilterCoefficients property value to the
variable coeff.

[chanout1,pg] = ricianchan(data);
chaninfo = info(ricianchan)

chaninfo = struct with fields:
           ChannelFilterDelay: 0
    ChannelFilterCoefficients: [2x2 double]
          NumSamplesProcessed: 600

coeff = chaninfo.ChannelFilterCoefficients;

Calculate the fractional delayed input signal at the path delay locations stored in coeff.

Np = length(ricianchan.PathDelays);
fracdelaydata = zeros(size(data,1),Np);
for ii = 1:Np
    fracdelaydata(:,ii) = filter(coeff(ii,:),1,data);
end

Apply the path gains and sum the results for all paths.
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chanout2 = sum(pg .* fracdelaydata,2);

Compare the output of the multipath Rician fading channel System object to the output reproduced
using the path gains and the ChannelFilterCoefficients property of the multipath Rician fading
channel System object.

isequal(chanout1,chanout2)

ans = logical
   1

Compare PDF of Empirical and Theoretical Rician Channel

Compute and plot the empirical and theoretical probability density function (PDF) for a Rician
channel with one path.

Initialize parameters and create a Rician channel System object that does not apply channel filtering.

Ns = 1.92e6;
Rs = 1.92e6;
dopplerShift = 2000;
KFactor = -3;                  % In dB
KFactorLin = 10.^(KFactor/10); % Linear units

chan = comm.RicianChannel( ...
    'SampleRate',Rs, ...
    'PathDelays',0, ...
    'KFactor',KFactorLin, ...
    'AveragePathGains',0, ...
    'MaximumDopplerShift',dopplerShift, ...
    'ChannelFiltering',false, ...
    'NumSamples',Ns, ...
    'FadingTechnique','Sum of sinusoids');

Compute and plot the empirical and theoretical PDF for the Rician channel.

figure;
hold on;

% Empirical PDF plot
gain = chan();
pd = fitdist(abs(gain),'Kernel','BandWidth',.01);
r = 0:.1:3;
y = pdf(pd,r);
plot(r,y)

% Theoretical PDF plot
s = sqrt(KFactorLin)/sqrt(KFactorLin+1);
sigma = sqrt(1/2)/sqrt(KFactorLin+1);
exp_pdf_amplitude = pdf('Rician',r,s,sigma);
plot(r,exp_pdf_amplitude')
legend('Empirical','Theoretical')
title('Empirical and Theoretical PDF Curves')

3 System Objects

3-1254



Compare CDF of Empirical and Theoretical Rician Channel

Compute and plot the empirical and theoretical cumulative distribution function (CDF) for a Rician
channel with one path.

Initialize parameters and create a Rician channel System object that does not perform channel
filtering.

Ns = 1.92e6;
Rs = 1.92e6;
dopplerShift = 2000;
KFactor = -3;                  % In dB
KFactorLin = 10.^(KFactor/10); % Linear units

chan = comm.RicianChannel( ...
    'SampleRate',Rs, ...
    'PathDelays',0, ...
    'KFactor',KFactorLin, ...
    'AveragePathGains',0, ...
    'MaximumDopplerShift',dopplerShift, ...
    'ChannelFiltering',false, ...
    'NumSamples',Ns, ...
    'FadingTechnique','Sum of sinusoids');

 comm.RicianChannel

3-1255



Compute and plot the empirical and theoretical CDF for the Rician channel. Compute the empirical
CDF by using the path gains.

% Empirical CDF plot
g = chan();
ecdf(abs(g));
hold on;

% Theoretical CDF plot
r = 0:.1:3;
s = sqrt(KFactorLin)/sqrt(KFactorLin+1);
sigma = sqrt(1/2)/sqrt(KFactorLin+1);
exp_cdf_amplitude = cdf('Rician',r,s,sigma);
plot(r,exp_cdf_amplitude')
legend('Emp','Theor')
title('Empirical and Theoretical CDF Curves')

More About
Cutoff Frequency Factor

The cutoff frequency factor, fc, is dependent on the type of Doppler spectrum.

• For any Doppler spectrum type other than Gaussian and bi-Gaussian, fc equals 1.
• For a doppler('Gaussian') spectrum type, fc equals NormalizedStandardDeviation

× 2log2.
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• For a doppler('BiGaussian') spectrum type:

• If the PowerGains(1) and NormalizedCenterFrequencies(2) field values are both 0,
then fc equals NormalizedStandardDeviation(1) × 2log2.

• If the PowerGains(2) and NormalizedCenterFrequencies(1) field values are both 0,
then fc equals NormalizedStandardDeviation(2) × 2log2.

• If the NormalizedCenterFrequencies field value is [0,0] and the
NormalizedStandardDeviation field has two identical elements, then fc equals
NormalizedStandardDeviation(1) × 2log2.

• In all other cases, fc equals 1.

Version History
Introduced in R2013b

Updates to channel visualization display

The channel visualization feature now presents:

• Configuration settings in the bottom toolbar on the plot window.
• Plots side-by-side in one window when you select the Impulse and frequency response

channel visualization option.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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Usage notes and limitations:

• To generate C code, set the DopplerSpectrum property to a single Doppler spectrum structure.
• Code generation is available only when you set the Visualization property to 'Off'.
• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
comm.AWGNChannel | comm.MIMOChannel | comm.RayleighChannel |
comm.RayTracingChannel | comm.ChannelFilter | comm.WINNER2Channel

Functions
doppler

Blocks
MIMO Fading Channel | SISO Fading Channel

Topics
Methodology for Simulating Multipath Fading Channels
Channel Visualization

3 System Objects

3-1258



comm.RSDecoder
Package: comm

Decode data using Reed-Solomon decoder

Description
The RSDecoder object recovers a message vector from a Reed-Solomon codeword vector. For proper
decoding, the property values for this object should match the property values in the corresponding
RS Encoder object.

To decode data using a Reed-Solomon decoding scheme:

1 Define and set up your Reed-Solomon decoder object. See “Construction” on page 3-1259.
2 Call step to decode data according to the properties of comm.RSDecoder. The behavior of step

is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
dec = comm.RSDecoder creates a block decoder System object, dec. This object performs Reed-
Solomon (RS) decoding.

dec = comm.RSDecoder(N,K) creates an RS decoder object, dec with the CodewordLength
property set to N and the MessageLength property set to K.

dec = comm.RSDecoder(N,K,GP) creates an RS decoder object, dec with the CodewordLength
property set to N, the MessageLength property set to K, and the GeneratorPolynomial property
set to GP.

dec = comm.RSDecoder(N,K,GP,S) creates an RS decoder object, dec with the
CodewordLength property set to N, the MessageLength property set to K, the
GeneratorPolynomial property set to GP, and the ShortMessageLength property set to S.

dec = comm.RSDecoder(N,K,GP,S,Name,Value) creates an RS decoder object, dec with the
CodewordLength property set to N, the MessageLength property set to K, the
GeneratorPolynomial property set to GP, and each specified property Name set to the specified
Value.

dec = comm.RSDecoder(Name,Value) creates an RS decoder object, dec, with each specified
property name set to the specified value. You can specify additional name-value pair arguments in any
order as (Name1,Value1,...,NameN,ValueN).

 comm.RSDecoder

3-1259



Properties

Note The input and output signal lengths are listed in “Input and Output Signal Lengths in BCH and
RS System Objects” on page 3-87 on the comm.BCHDecoder reference page.

BitInput

Assume that input is bits

Specify whether the input comprises bits or integers. The default is false.

• When you set this property to false, the input data value to run the object must be a numeric,
column vector of integers. Running the object outputs an encoded data output vector. The output
result is a column vector of integers. Each symbol that forms the input message and output
codewords is an integer in the range [0, 2M – 1]. These integers correspond to an element of the
finite Galois field gf(2M). M is the degree of the primitive polynomial that you specify with the
PrimitivePolynomialSource and PrimitivePolynomial properties.

• When you set this property to true, the input value must be a numeric, column vector of bits. The
encoded data output result is a column vector of bits.

CodewordLength

Codeword length

Specify the codeword length of the RS code in symbols as a double-precision, positive, integer scalar
value. The default is 7.

For a full-length RS code, the value of this property must be 2M – 1, where M is an integer such that 3
≤ M ≤ 16.

MessageLength

Message length

Specify the message length in symbols as a double-precision positive integer scalar value. The default
is 3.

ShortMessageLengthSource

Short message length source

Specify the source of the shortened message as Auto or Property.

• When you set this property to Auto, the RS code is defined by the CodewordLength,
MessageLength, GeneratorPolynomial, and PrimitivePolynomial properties.

When you set this property to Property, you must specify the ShortMessageLength property,
which is used with the other properties to define the RS code. The default is Auto.
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ShortMessageLength

Shortened message length

Specify the length of the shortened message in symbols as a double-precision positive integer scalar
whose value must be less than or equal to MessageLength. The default is 3.

When ShortMessageLength < MessageLength, the RS code is shortened.

GeneratorPolynomialSource

Source of generator polynomial

Specify the source of the generator polynomial as Auto or Property. The default is Auto.

• When you set this property to Auto, the object automatically chooses the generator polynomial.
The object calculates the generator polynomial based on the value of the PrimitivePolynomial
property.

• When you set this property to Property, you must specify a generator polynomial using the
GeneratorPolynomial property.

GeneratorPolynomial

Generator polynomial

Specify the generator polynomial for the RS code as a double-precision integer row vector or as a
Galois field row vector. The Galois field row vector entries must be in the range [0, 2M – 1] and
represent a generator polynomial in descending order of powers. Each coefficient is an element of the
Galois field gf(2M), represented in integer format. The length of the generator polynomial must be
CodewordLength – MessageLength + 1. The default is the result of rsgenpoly(7,3,[],
[],'double'), which corresponds to [1 3 1 2 3].

When you use this object to generate code, you must set the generator polynomial to a double-
precision integer row vector.

This property applies when you set GeneratorPolynomialSource to Property.

CheckGeneratorPolynomial

Enable generator polynomial checking

Set this property to true to perform a generator polynomial check. The default is true.

This check verifies that XCodewordLength + 1 is divisible by the generator polynomial specified in the
GeneratorPolynomial property. For codes with generator polynomials of high degree, disabling
the check speeds up processing. As a best practice, perform the check at least once before setting
this property to false.

A valid generator polynomial is given by (X – αB)×(X – α(B + 1))×...×(X-α(B + CodewordLength – MessageLength –
1)), where α is a root of the primitive polynomial and B is an integer. If the value of B is 1, then you
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can set this property to false. Otherwise, always set this property to true. For more information
about B, see the rsgenpoly function reference page.

This property applies when you set GeneratorPolynomialSource to Property.

PrimitivePolynomialSource

Source of primitive polynomial

Specify the source of the primitive polynomial as Auto or Property. The default is Auto.

• When you set this property to Auto, the object uses a primitive polynomial of degree M =
ceil(log2(CodewordLength + 1)).

• When you set this property to Property, you must specify a polynomial using
PrimitivePolynomial.

PrimitivePolynomial

Primitive polynomial

Specify the primitive polynomial that defines the finite field gf(2M) corresponding to the integers that
form messages and codewords. The default is the result of int2bit(primpoly(3),4)', which is [1 0
1 1] or the polynomial x3 + x + 1. Specify this property as a double-precision, binary, row vector that
represents a primitive polynomial over gf(2) of degree M in descending order of powers.

This property applies when you set PrimitivePolynomialSource to Property.

PuncturePatternSource

Source of puncture pattern

Specify the source of the puncture pattern as None or Property. The default is None.

• When you set this property to None, the object does not apply puncturing to the code.
• When you set this property to Property, the object punctures the code based on a puncture

pattern vector specified in PuncturePattern.

PuncturePattern

Puncture pattern vector

Specify the pattern used to puncture the encoded data as a double-precision, binary column vector of
length (CodewordLength – MessageLength). The default is [ones(2,1); zeros(2,1)]. Zeros in
the puncture pattern vector indicate the position of the parity symbols that are punctured or excluded
from each codeword.

This property applies when you set PuncturePatternSource to Property.

ErasuresInputPort
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Enable erasures input

Set this property to true to specify a vector of erasures as an input when running the object. The
default is false. The erasures input must be a double-precision or logical binary column vector that
indicates which symbols of the input codewords to erase. The length of the erasures vector is
explained in “Input and Output Signal Lengths in BCH and RS System Objects” on page 3-87.

When you set this property to false, the object assumes no erasures.

NumCorrectedErrorsOutputPort

Enable number of corrected errors output

Set this property to true to obtain the number of corrected errors as an output when running the
object. The default is true. A nonnegative value in the i-th element of the error output vector,
denotes the number of corrected errors in the i-th input codeword. A value of -1 in the i-th element of
the error output vector indicates that a decoding error occurred for that codeword. A decoding error
occurs when an input codeword has more errors than the error correction capability of the RS code.

OutputDataType

Data type of output

Specify the output data type as Same as input, double, or logical. The default is Same as
input.

This property applies when you set BitInput to true.

Methods
step Decode data using a Reed-Solomon decoder

Common to All System Objects
release Allow System object property value changes

Examples

Transmit an RS-Encoded, 8-DPSK-Modulated Symbol Stream

Transmit an RS-encoded, 8-DPSK-modulated symbol stream through an AWGN channel. Then,
demodulate, decode, and count errors.

    enc = comm.RSEncoder;
    mod = comm.DPSKModulator('BitInput',false);
    chan = comm.AWGNChannel(...
                'NoiseMethod','Signal to noise ratio (SNR)','SNR',10);
    demod = comm.DPSKDemodulator('BitOutput',false);
    hDdecec = comm.RSDecoder;
    errorRate = comm.ErrorRate('ComputationDelay',3);
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    for counter = 1:20
      data = randi([0 7], 30, 1);
      encodedData = step(enc, data);
      modSignal = step(mod, encodedData);
      receivedSignal = step(chan, modSignal);
      demodSignal = step(demod, receivedSignal);
      receivedSymbols = step(hDdecec, demodSignal);
      errorStats = step(errorRate, data, receivedSymbols);            
    end      
      
  fprintf('Error rate = %f\nNumber of errors = %d\n', ...
      errorStats(1), errorStats(2))

Error rate = 0.115578
Number of errors = 69

Estimate BER of QPSK in AWGN with Reed-Solomon Coding

Transmit Reed-Solomon encoded data using QPSK over an AWGN channel. Demodulate and decode
the received signal and collect error statistics. Compute theoretical bit error rate (BER) for coded and
noncoded data. Plot the BER results to compare performance.

Define the example parameters.

rng(1993);     % Seed random number generator for repeatable results
M = 4;         % Modulation order
bps = log2(M); % Bits per symbol
N = 7;         % RS codeword length
K = 5;         % RS message length

Create AWGN channel and error rate objects.

awgnChannel = comm.AWGNChannel( ...
    BitsPerSymbol=bps);
errorRate = comm.ErrorRate;

Create a (7,5) Reed-Solomon encoder and decoder pair which accepts bit inputs.

rsEncoder = comm.RSEncoder( ...
    BitInput=true, ...
    CodewordLength=N, ...
    MessageLength=K);
rsDecoder = comm.RSDecoder( ...
    BitInput=true, ...
    CodewordLength=N, ...
    MessageLength=K);

Set the range of Eb/N0 values and account for RS coding gain. Initialize the error statistics matrix.

ebnoVec = (3:0.5:8)';
ebnoVecCodingGain = ...
    ebnoVec + 10*log10(K/N); % Account for RS coding gain
errorStats = zeros(length(ebnoVec),3);
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Estimate the bit error rate for each Eb/N0 value. The simulation runs until either 100 errors or 107

bits is encountered. The main simulation loop processing includes encoding, modulation,
demodulation, and decoding.

for i = 1:length(ebnoVec)
    awgnChannel.EbNo = ebnoVecCodingGain(i);
    reset(errorRate)
    while errorStats(i,2) < 100 && errorStats(i,3) < 1e7
        data = randi([0 1],1500,1);
        encData = rsEncoder(data);
        modData = pskmod(encData,M,InputType='bit');
        rxSig = awgnChannel(modData);
        rxData = pskdemod(rxSig,M,OutputType='bit');
        decData = rsDecoder(rxData);
        errorStats(i,:) = errorRate(data,decData);
    end
end

Fit a curve to the BER data using berfit. Generate an estimate of QPSK performance with and
without coding using the bercoding and berawgn functions.

berCurveFit = berfit(ebnoVecCodingGain,errorStats(:,1));
berwCoding = bercoding(ebnoVec,'RS','hard',N,K,'psk',M,'nondiff');
berNoCoding = berawgn(ebnoVec,'psk',M,'nondiff');

Plot the RS coded BER data, curve fit of the BER data, theoretical performance with RS coding, and
theoretical performance without RS coding. The (7,5) RS code improves the Eb/N0 required to
achieve a 10−2 bit error rate by approximately 1.2 dB.

semilogy(ebnoVecCodingGain,errorStats(:,1),'b*', ...
    ebnoVecCodingGain,berCurveFit,'c-', ...
    ebnoVecCodingGain,berwCoding,'r', ...
    ebnoVec,berNoCoding)
ylabel('BER')
xlabel('Eb/No (dB)')
legend( ...
    'RS coded BER','Curve Fit', ...
    'Theory with coding','Theory no coding')
grid
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Transmit a Shortened RS-Encoded, 256-QAM-Modulated Symbol Stream

Transmit a shortened RS-encoded, 256-QAM-modulated symbol stream through an AWGN channel.
Then demodulate, decode, and count errors.

Set the parameters for the Reed-Solomon code, where N is the codeword length, K is the nominal
message length, and S is the shortened message length. Set the modulation order, M, and the number
of frames, L.

N = 255;
K = 239;
S = 188;
M = 256;
L = 50;

Create an AWGN channel System object and an error rate System object.

awgnChan = comm.AWGNChannel('NoiseMethod','Signal to noise ratio (Eb/No)', ...
    'EbNo',15,'BitsPerSymbol',log2(M));
errorRate = comm.ErrorRate('ComputationDelay',3);

Create the Reed-Solomon generator polynomial from the DVB-T standard.

gp = rsgenpoly(N,K,[],0);
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Create a Reed-Solomon encoder and decoder pair using the shortened message length, S, and the
DVB-T generator polynomial, gp.

enc = comm.RSEncoder(N,K,gp,S);
dec = comm.RSDecoder(N,K,gp,S);

Generate random symbol frames whose length equals one message block. Encode, modulate, apply
AWGN, demodulate, decode, and collect statistics.

for counter = 1:L
    data = randi([0 1],S,log2(M));
    encodedData = step(enc,bi2de(data));
    modSignal = qammod(encodedData,M,'UnitAveragePower',true);
    rxSignal = awgnChan(modSignal);
    demodSignal = qamdemod(rxSignal,M,'UnitAveragePower',true);
    rxBits = dec(demodSignal);
    dataOut = de2bi(rxBits);
    errorStats = errorRate(data(:),dataOut(:));
end

Display the error rate and number of errors.

fprintf('Error rate = %5.2e\nNumber of errors = %d\n', ...
    errorStats(1), errorStats(2))

Error rate = 2.01e-02
Number of errors = 1509

Reed-Solomon Coding with Erasures

This example shows how to configure the comm.RSEncoder and comm.RSDecoder System objects to
perform Reed-Solomon (RS) block coding with erasures when simulating a communications system.
RS decoders can correct both errors and erasures. A receiver that identifies the most unreliable
symbols in a given codeword can generate erasures. When a receiver erases a symbol, it replaces
that symbol with a zero. The receiver then passes a flag to the decoder, indicating that the symbol is
an erasure, not a valid code symbol. In addition, an encoder can generate punctures for which
specific parity symbols are always removed from its output. The decoder, which knows the puncture
pattern, inserts zeros in the puncture positions and treats those symbols as erasures. The decoder
treats encoder-generated punctures and receiver-generated erasures the exact same way when it
decodes a symbol. Puncturing also has the added benefit of making the code rate more flexible, at the
expense of some error correction capability. Shortened codes achieve the same code rate flexibility
without degrading the error correction performance, given the same demodulator input energy per
bit to noise power spectral density ratio (Eb/N0). Note that puncturing is the removal of parity
symbols from a codeword, and shortening is the removal of message symbols from a codeword.

This example shows the simulation of a communication system consisting of a random source, an RS
encoder, a 64-QAM modulator, an AWGN channel, a 64-QAM demodulator, and an RS decoder. It
includes analysis of RS coding with erasures by comparing the channel bit error rate (BER)
performance versus the coded BER performance. This example obtains Channel BER by comparing
inputs for the QAM modulator to outputs from the QAM demodulator and obtains Coded BER by
comparing inputs for the RS encoder to outputs from the RS decoder.
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Initialization

The helperRSCodingConfig.m helper function initializes simulation parameters, and configures the
comm.AWGNChannel and comm.ErrorRate System objects used to simulate the communications
system. The uncoded Eb/N0 ratio is set EbNoUncoded = 15 dB. Criteria to stop the simulation stop
are defined to stop the simulation if 500 errors occur or a maximum 5e6 bits are transmitted.

helperRSCodingConfig;

Configure RS Encoder/Decoder

This example uses a (63,53) RS code operating with a 64-QAM modulation scheme. This code can
correct (63-53)/2 = 5 errors, or it can alternatively correct (63-53) = 10 erasures. For each codeword
at the output of the 64-QAM demodulator, the receiver determines the six least reliable symbols using
the helperRSCodingGetErasures.m helper function. The indices that point to the location of these
unreliable symbols are passed as an input to the RS decoder. The RS decoder treats these symbols as
erasures resulting in an error correction capability of (10-6)/2 = 2 errors per codeword.

Create a comm.RSEncoder System object and set the BitInput property to false to specify that the
encoder inputs and outputs are integer symbols.

N = 63;  % Codeword length
K = 53;  % Message length
rsEncoder = comm.RSEncoder(N,K,'BitInput',false);
numErasures = 6;

Create a comm.RSDecoder System object matching the configuration of the comm.RSEncoder
object.

rsDecoder = comm.RSDecoder(N,K,'BitInput',false);

Set the ErasuresInputPort property to true to specify erasures as an input to the decoder object.

rsDecoder.ErasuresInputPort = true;

Set the NumCorrectedErrorsOutputPort property to true so that the decoder outputs the number
of corrected errors. A non negative value in the error output denotes the number of corrected errors
in the input codeword. A value of –1 in the error output indicates a decoding error. A decoding error
occurs when the input codeword has more errors than the error correction capability of the RS code.

rsDecoder.NumCorrectedErrorsOutputPort = true;

Run Stream Processing Loop

Simulate the communications system for an uncoded Eb/N0 ratio of 15 dB. The uncoded Eb/N0 is the
ratio that would be measured at the input of the channel if there was no coding in the system.

The signal going into the AWGN channel is the encoded signal, so you must convert the uncoded
Eb/N0 values so that they correspond to the energy ratio at the encoder output. This ratio is the
coded Eb/N0 ratio. If you input K symbols to the encoder and obtain N output symbols, then the
energy relation is given by the K/N rate. Set the EbNo property of the AWGN channel object to the
computed coded Eb/N0 value.

EbNoCoded = EbNoUncoded + 10*log10(K/N);
channel.EbNo = EbNoCoded;
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Loop until the simulation reaches the target number of errors or the maximum number of
transmissions.

chanErrorStats = zeros(3,1);
codedErrorStats = zeros(3,1);
correctedErrors = 0;
while (codedErrorStats(2) < targetErrors) && ...
        (codedErrorStats(3) < maxNumTransmissions)

The data symbols transmit one message word at a time. Each message word has K symbols in the [0
N] range.

    data = randi([0 N],K,1);

Encode the message word. The encoded word, encData, is (N-numPunc) symbols long.

    encData = rsEncoder(data);

Modulate encoded data and add noise. Then demodulate channel output.

    modData = qammod(encData,M);
    chanOutput = channel(modData);
    demodData = qamdemod(chanOutput,M);

Use the helperRSCodingGetErasures.m helper function to find the 6 least reliable symbols and
generate an erasures vector. The length of the erasures vector must be equal to the number of
symbols in the demodulated codeword. A one in the ith element of the vector erases the ith symbol in
the codeword. Zeros in the vector indicate no erasures.

    erasuresVec = helperRSCodingGetErasures(chanOutput,numErasures);

Decode the data. Log the number of errors corrected by the RS decoder.

    [estData,errs] = rsDecoder(demodData,erasuresVec);
    if (errs >= 0)
        correctedErrors = correctedErrors + errs;
    end

When computing the channel and coded BERs, convert integers to bits.

    chanErrorStats(:,1) = ...
        chanBERCalc(reshape(de2bi(encData,log2(M))',[],1),reshape(de2bi(demodData,log2(M))',[],1));   
    codedErrorStats(:,1) = ...
        codedBERCalc(reshape(de2bi(data,log2(M))',[],1),reshape(de2bi(estData,log2(M))',[],1));
end

The error rate measurement objects, chanBERCalc and codedBERCalc, output 3-by-1 vectors
containing BER measurement updates, the number of errors, and the total number of bit
transmissions. Display the channel BER, the coded BER and the total number of errors corrected by
the RS decoder.

chanBitErrorRate = chanErrorStats(1)

chanBitErrorRate = 0.0017

codedBitErrorRate = codedErrorStats(1)

codedBitErrorRate = 0
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totalCorrectedErrors = correctedErrors

totalCorrectedErrors = 882

You can add a for loop around the processing loop above to run simulations for a set of Eb/N0 values.
Simulations were run offline for uncoded Eb/N0 values in 4:15 dB, target number of errors equal to
5000, and maximum number of transmissions equal to 50e6. The results from the simulation are
shown. The channel BER is worse than the theoretical 64-QAM BER because Eb/N0 is reduced by the
code rate.

Summary

This example utilized several System objects to simulate a 64-QAM communications system over an
AWGN channel with RS block coding. It showed how to configure the RS decoder to decode symbols
with erasures. System performance was measured using channel and coded BER curves obtained
using error rate measurement System objects.

Helper functions used in this example:

• helperRSCodingConfig.m
• helperRSCodingGetErasures.m
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Reed-Solomon Coding with Erasures and Punctures

This example shows how to configure the comm.RSEncoder and comm.RSDecoder System objects to
perform Reed-Solomon (RS) block coding with erasures and puncture codes when simulating a
communications system. An encoder can generate punctures to remove specific parity symbols from
its output. Given the puncture pattern, the decoder inserts zeros in the puncture positions and treats
those symbols as erasures. The decoder treats encoder-generated punctures and receiver-generated
erasures in exactly the same way when it decodes. Puncturing has the added benefit of making the
code rate more flexible, at the expense of some error correction capability.

This example shows the simulation of a communication system consisting of a random source, an RS
encoder, a 64-QAM modulator, an AWGN channel, a 64-QAM demodulator, and an RS decoder. It
includes analysis of RS coding with erasures and puncturing by comparing the channel bit error rate
(BER) performance versus the coded BER performance. This example obtains Channel BER by
comparing inputs for the QAM modulator to outputs from the QAM demodulator. This example
obtains Coded BER by comparing inputs for the RS encoder to outputs from the RS decoder.

Initialization

The helperRSCodingConfig.m helper function initializes simulation parameters, and configures the
comm.AWGNChannel and comm.ErrorRate System objects used to simulate the communications
system. The uncoded Eb/N0 ratio, EbNoUncoded is set to 15 dB. Criteria to stop the simulation stop
are defined to stop the simulation if 500 errors occur or a maximum 5 × 106 bits are transmitted.

helperRSCodingConfig;

Configure RS Encoder/Decoder

This example uses the same (63,53) RS code operating with a 64-QAM modulation scheme that is
configured for erasures and code puncturing. The RS algorithm decodes receiver-generated erasures
and corrects encoder-generated punctures. For each codeword, the sum of the punctures and
erasures cannot exceed twice the error-correcting capability of the code.

Create a comm.RSEncoder System object and set the BitInput property to false to specify that the
encoder inputs and outputs are integer symbols.

N = 63;  % Codeword length
K = 53;  % Message length
rsEncoder = comm.RSEncoder(N,K,'BitInput',false);
numErasures = 6;

Create a comm.RSDecoder System object matching the configuration of the comm.RSEncoder
object. Then set the ErasuresInputPort property to true to specify erasures as an input to the
decoder object.

rsDecoder = comm.RSDecoder(N,K,'BitInput',false);
rsDecoder.ErasuresInputPort = true;

To enable code puncturing, set the PuncturePatternSource property to 'Property' and set the
PuncturePattern property to the desired puncture pattern vector. The same puncture vector must
be specified in both the encoder and decoder. This example punctures two symbols from each
codeword. Values of 1 in the puncture pattern vector indicate nonpunctured symbols, and values of 0
indicate punctured symbols.

numPuncs = 2;
rsEnc.PuncturePatternSource = 'Property';
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rsEnc.PuncturePattern = [ones(N-K-numPuncs,1); zeros(numPuncs,1)];

rsDec.PuncturePatternSource = 'Property';
rsDec.PuncturePattern = rsEnc.PuncturePattern;

Run Stream Processing Loop

Simulate the communications system for an uncoded Eb/N0 ratio of 15 dB. The uncoded Eb/N0 is the
ratio that would be measured at the input of the channel if there was no coding in the system.

The signal going into the AWGN channel is the encoded signal, so you must convert the uncoded
Eb/N0 values so that they correspond to the energy ratio at the encoder output. This ratio is the
coded Eb/N0 ratio. If you input K symbols to the encoder and obtain N output symbols, then the
energy relation is given by the K/N rate. Since the length of the codewords generated by the RS
encoder is reduced by the number of punctures specified in the puncture pattern vector, the value of
the coded Eb/N0 ratio needs to be adjusted to account for these punctures. In this example, The
number of output symbols is (N - numPuncs) and the uncoded Eb/N0 ratio relates to the coded Eb/N0
as shown below. Set the EbNo property of the AWGN channel object to the computed coded Eb/N0
value.

EbNoCoded = EbNoUncoded + 10*log10(K/(N - numPuncs));
channel.EbNo = EbNoCoded;

Loop until the simulation reaches the target number of errors or the maximum number of
transmissions.

chanErrorStats = zeros(3,1);
codedErrorStats = zeros(3,1);
correctedErrors = 0;
while (codedErrorStats(2) < targetErrors) && ...
        (codedErrorStats(3) < maxNumTransmissions)

The data symbols transmit one message word at a time. Each message word has K symbols in the [0
N] range.

    data = randi([0 N],K,1);

Encode the message word. The encoded word, encData, is (N – numPunc) symbols long.

    encData = rsEncoder(data);

Modulate encoded data and add noise. Then demodulate channel output.

    modData = qammod(encData,M);
    chanOutput = channel(modData);
    demodData = qamdemod(chanOutput,M);

Use the helperRSCodingGetErasures.m helper function to find the 6 least reliable symbols and
generate an erasures vector. The length of the erasures vector must be equal to the number of
symbols in the demodulated codeword. A one in the ith element of the vector erases the ith symbol in
the codeword. Zeros in the vector indicate no erasures.

    erasuresVec = helperRSCodingGetErasures(chanOutput,numErasures);

Decode the data. Log the number of errors corrected by the RS decoder.
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    [estData,errs] = rsDecoder(demodData,erasuresVec);
    if (errs >= 0)
        correctedErrors = correctedErrors+errs;
    end

When computing the channel and coded BERs, convert integers to bits.

    chanErrorStats(:,1) = ...
        chanBERCalc(reshape(de2bi(encData,log2(M))',[],1),reshape(de2bi(demodData,log2(M))',[],1));   
    codedErrorStats(:,1) = ...
        codedBERCalc(reshape(de2bi(data,log2(M))',[],1),reshape(de2bi(estData,log2(M))',[],1));
end

The error rate measurement objects, chanBERCalc and codedBERCalc, output 3-by-1 vectors
containing BER measurement updates, the number of errors, and the total number of bit
transmissions. Display the channel BER, the coded BER and the total number of errors corrected by
the RS decoder.

chanBitErrorRate = chanErrorStats(1)

chanBitErrorRate = 0.0015

codedBitErrorRate = codedErrorStats(1)

codedBitErrorRate = 0

totalCorrectedErrors = correctedErrors

totalCorrectedErrors = 632

You can add a for loop around the processing loop above to run simulations for a set of Eb/N0 values.
Simulations were run offline for uncoded Eb/N0 values in 4:15 dB, target number of errors equal to
5000, and maximum number of transmissions equal to 50 × 106. This figure compares results
achieved for

• RS coding with only erasures
• RS coding with erasures and puncturing
• Theoretical BER for 64-QAM

The coded Eb/N0 is slightly higher than the channel Eb/N0, so the channel BER is slightly better in
the punctured case. On the other hand, the coded BER is worse in the punctured case, because the
two punctures reduce the error correcting capability of the code by one, leaving it able to correct
only (10 – 6 – 2) / 2 = 1 error per codeword.

 comm.RSDecoder

3-1273



Summary

This example utilized functions and System objects to simulate a 64-QAM communications system
over an AWGN channel with RS block coding. It showed how to configure the RS encoder/decoder
System objects to obtain punctured codes. System performance was measured using channel and
coded BER curves obtained using error rate measurement System objects.

Helper functions used in this example:

• helperRSCodingConfig.m
• helperRSCodingGetErasures.m

Reed-Solomon Coding with Erasures, Punctures, and Shortening

This example shows how to configure the comm.RSEncoder and comm.RSDecoder System objects to
perform Reed-Solomon (RS) block coding to shorten the (63,53) code to a (28,18) code. The
simulation of a communication system consisting of a random source, an RS encoder, a 64-QAM
modulator, an AWGN channel, a 64-QAM demodulator, and an RS decoder is presented.

The effects of RS coding with erasures, puncturing, and shortening are analyzed by comparing the
channel bit error rate (BER) performance versus the coded BER performance. This example obtains
Channel BER by comparing inputs for the QAM modulator to outputs from the QAM demodulator and
obtains Coded BER by comparing inputs for the RS encoder to outputs from the RS decoder.
Puncturing is the removal of parity symbols from a codeword, and shortening is the removal of
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message symbols from a codeword. Puncturing has the benefit of making the code rate more flexible,
at the expense of some error correction capability. Shortened codes achieve the same code rate
flexibility without degrading the error correction performance for the same demodulator input Eb/N0.

Initialization

The helperRSCodingConfig.m helper function initializes simulation parameters, and configures the
comm.AWGNChannel and comm.ErrorRate System objects used to simulate the communications
system. The uncodedEb/N0 ratio is set EbNoUncoded = 15 dB. Criteria to stop the simulation stop are
defined to stop the simulation if 500 errors occur or a maximum 5 × 106 bits are transmitted.

helperRSCodingConfig;

Configure RS Encoder/Decoder

This example uses a (63,53) RS code operating with a 64-QAM modulation scheme. The RS coding
operation includes erasures, puncturing, and code shortening. This example shows how to shorten
the (63,53) code to a (28,18) code.

To shorten a (63,53) code by 10 symbols to a (53,43) code, you can simply enter 53 and 43 for the
CodewordLength and MessageLength properties, respectively (since 2 log2 53 + 1 − 1 = 63).
However, to shorten it by 35 symbols to a (28,18) code, you must explicitly specify that the symbols
belong to the Galois field GF(26). Otherwise, the RS blocks will assume that the code is shortened
from a (31,21) code (since 2 log2 28 + 1 − 1 = 31).

Create a pair of comm.RSEncoder and comm.RSDecoder System objects so that they perform block
coding with a (28,18) code shortened from a (63,53) code that is configured to input and output
integer symbols. Configure the decoder to accept an erasure input and two punctures. For each
codeword at the output of the 64-QAM demodulator, the receiver determines the six least reliable
symbols using the helperRSCodingGetErasures.m helper function. The indices that point to the
location of these unreliable symbols are passed as an input to the RS decoder.

N = 63;  % Codeword length
K = 53;  % Message length
S = 18;  % Shortenened message length
numErasures = 6;
numPuncs = 2; 
rsEncoder = comm.RSEncoder(N, K, 'BitInput', false);
rsDecoder = comm.RSDecoder(N, K, 'BitInput', false, 'ErasuresInputPort', true);
rsEncoder.PuncturePatternSource = 'Property';
rsEncoder.PuncturePattern = [ones(N-K-numPuncs,1); zeros(numPuncs,1)];
rsDecoder.PuncturePatternSource = 'Property';
rsDecoder.PuncturePattern = rsEncoder.PuncturePattern;

Set the shortened codeword length and message length values.

rsEncoder.ShortMessageLength = S;
rsDecoder.ShortMessageLength = S;

Specify the field of GF 26  in the RS encoder/decoder System objects, by setting the
PrimitivePolynomialSource property to 'Property' and the PrimitivePolynomial property
to a 6th degree primitive polynomial.

primPolyDegree = 6;
rsEncoder.PrimitivePolynomialSource = 'Property';
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rsEncoder.PrimitivePolynomial = de2bi(primpoly(primPolyDegree,'nodisplay'),'left-msb');

rsDecoder.PrimitivePolynomialSource = 'Property';
rsDecoder.PrimitivePolynomial = de2bi(primpoly(primPolyDegree,'nodisplay'),'left-msb');

Run Stream Processing Loop

Simulate the communications system for an uncoded Eb/N0 ratio of 15 dB. The uncoded Eb/N0 is the
ratio that would be measured at the input of the channel if there was no coding in the system.

The signal going into the AWGN channel is the encoded signal, so you must convert the uncoded
Eb/N0 values so that they correspond to the energy ratio at the encoder output. This ratio is the
coded Eb/N0 ratio. If you input K symbols to the encoder and obtain N output symbols, then the
energy relation is given by the K/N rate. The value of the coded Eb/N0 ratio needs to be adjusted to
account for shortened and punctured codewords. The number of output symbols is (N - numPuncs - S)
and the uncoded Eb/N0 ratio relates to the coded Eb/N0 as shown below. Set the EbNo property of the
AWGN channel object to the computed coded Eb/N0 value.

EbNoCoded = EbNoUncoded + 10*log10(S/(N - numPuncs - K + S));
channel.EbNo = EbNoCoded;

Loop until the simulation reaches the target number of errors or the maximum number of
transmissions.

chanErrorStats = zeros(3,1);
codedErrorStats = zeros(3,1);
correctedErrors = 0;
while (codedErrorStats(2) < targetErrors) && ...
        (codedErrorStats(3) < maxNumTransmissions)

The data symbols transmit one message word at a time. Each message word has K-S symbols in the [0
(2^primPolyDegree)-1] range.

    data = randi([0 2^primPolyDegree-1],S,1);

Encode the shortened message word. The encoded word encData is (N-numPuncs-S) symbols long.

    encData = rsEncoder(data);

Modulate encoded data and add noise. Then demodulate channel output.

    modData = qammod(encData,M);
    chanOutput = channel(modData);
    demodData = qamdemod(chanOutput,M);

Use the helperRSCodingGetErasures.m helper function to find the 6 least reliable symbols and
generate an erasures vector. The length of the erasures vector must be equal to the number of
symbols in the demodulated codeword. A one in the ith element of the vector erases the ith symbol in
the codeword. Zeros in the vector indicate no erasures.

    erasuresVec = helperRSCodingGetErasures(chanOutput,numErasures);    

Decode the data. Log the number of errors corrected by the RS decoder.

    [estData,errs] = rsDecoder(demodData,erasuresVec);
    if (errs >= 0)
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        correctedErrors = correctedErrors + errs;
    end

When computing the channel and coded BERs, convert integers to bits.

    chanErrorStats(:,1) = ...
        chanBERCalc(reshape(de2bi(encData,log2(M))',[],1), ...
        reshape(de2bi(demodData,log2(M))',[],1));   
    codedErrorStats(:,1) = ...
        codedBERCalc(reshape(de2bi(data,log2(M))',[],1), ...
        reshape(de2bi(estData,log2(M))',[],1));
end

The error rate measurement objects, chanBERCalc and codedBERCalc, output 3-by-1 vectors
containing BER measurement updates, the number of errors, and the total number of bit
transmissions. Display the channel BER, the coded BER, and the total number of errors corrected by
the RS decoder.

chanBitErrorRate = chanErrorStats(1)

chanBitErrorRate = 0.0036

codedBitErrorRate = codedErrorStats(1)

codedBitErrorRate = 9.6599e-05

totalCorrectedErrors = correctedErrors

totalCorrectedErrors = 1436

You can add a for loop around the processing loop above to run simulations for a set of Eb/N0 values.
Simulations were run offline for uncoded Eb/N0 values in 4:15 dB, target number of errors equal to
5000, and maximum number of transmissions equal to 50 × 106. This figure compares results
achieved for

• RS coding with only erasures
• RS coding with erasures and puncturing
• RS coding with erasures, puncturing, and shotening
• Theoretical BER for 64-QAM

The BER out of the 64-QAM Demodulator is worse with shortening than it is without shortening. This
is because the code rate of the shortened code is much lower than the code rate of the non-shortened
code and therefore the coded Eb/N0 into the demodulator is worse with shortening. A shortened code
has the same error correcting capability as non-shortened code for the same Eb/N0, but the reduction
in Eb/N0 manifests in the form of a higher BER out of the RS Decoder with shortening than without.

The coded Eb/N0 is slightly higher than the channel Eb/N0, so the channel BER is slightly better than
the coded BER in the shortened case. The degraded coded Eb/N0 occurs because the code rate of the
shortened code is lower than that of the nonshortened code. Shortening results in degraded coded
BER, most noticably at lower Eb/N0 values.
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Summary

This example utilized several System objects to simulate a 64-QAM communications system over an
AWGN channel with a shortened RS block code. It showed how to configure the RS decoder to
shorten a (63,53) code to a (28,18) code. System performance was measured using channel and
coded BER curves obtained using error rate measurement System objects.

Helper functions used in this example:

• helperRSCodingConfig.m
• helperRSCodingGetErasures.m

Algorithms
This object implements the algorithm, inputs, and outputs described in “Algorithms for BCH and RS
Errors-only Decoding”.

Version History
Introduced in R2012a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.RSEncoder | comm.BCHDecoder | rsdec | rsgenpoly | primpoly

Topics
“Reed-Solomon Codes”
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step
System object: comm.RSDecoder
Package: comm

Decode data using a Reed-Solomon decoder

Syntax
[Y,ERR] = step(H,X)
Y = step(H,X)
Y = step(H,X,ERASURES)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

[Y,ERR] = step(H,X) decodes the encoded input data, X, into the output vector Y and returns the
number of corrected symbols in output vector ERR. The value of the BitInput property determines
whether X is a vector of integers or bits with a numeric, logical, or fixed-point data type. The input
and output length of the step function equal the values listed in the table in “Input and Output Signal
Lengths in BCH and RS System Objects” on page 3-87. This syntax applies when you set the
NumCorrectedErrorsOutputPort property to true. A value of -1 in the i-th element of the error
output vector indicates that a decoding error occurred for that codeword.

Y = step(H,X) decodes the encoded data, X, into the output vector Y. This syntax applies when you
set the NumCorrectedErrorsOutputPort property to false.

Y = step(H,X,ERASURES) uses the binary column input vector, ERASURES, to erase the symbols of
the input codewords. The elements in ERASURES must be of data type double or logical. Values of 1 in
the ERASURES vector correspond to erased symbols, and values of 0 correspond to non-erased
symbols. This syntax applies when you set the ErasuresInputPort property to true.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This initialization
locks nontunable properties and input specifications. For more information on changing property
values, see “System Design in MATLAB Using System Objects”.
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comm.RSEncoder
Package: comm

Encode data using Reed-Solomon encoder

Description
The RSEncoder object creates a Reed-Solomon code with message and codeword lengths you specify.

To encode data using a Reed-Solomon encoding scheme:

1 Define and set up your Reed-Solomon encoder object. See “Construction” on page 3-1281.
2 Call step to encode data according to the properties of comm.RSEncoder. The behavior of step

is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
enc = comm.RSEncoder creates a block encoder System object, enc. This object performs Reed-
Solomon (RS) encoding.

enc = comm.RSEncoder(N,K) creates an RS encoder object, enc, with the CodewordLength
property set to N and the MessageLength property set to K.

enc = comm.RSEncoder(N,K,GP) creates an RS encoder object, enc, with the CodewordLength
property set to N, the MessageLength property set to K, and the GeneratorPolynomial property
set to GP.

enc = comm.RSEncoder(N,K,GP,S) creates an RS encoder object, enc, with the
CodewordLength property set to N, the MessageLength property set to K, the
GeneratorPolynomial property set to GP, and the ShortMessageLength property set to S.

enc = comm.RSEncoder(N,K,GP,S,Name,Value) creates an RS encoder object, enc, with the
CodewordLength property set to N, the MessageLength property set to K, the
GeneratorPolynomial property set to GP, the ShortMessageLength property set to S, and each
specified property Name set to the specified Value.

enc = comm.RSEncoder(Name,Value) creates an RS encoder object, enc, with each specified
property name set to the specified value. You can specify additional name-value pair arguments in any
order as (Name1,Value1,...,NameN,ValueN).

Properties

Note The input and output signal lengths are listed in “Input and Output Signal Lengths in BCH and
RS System Objects” on page 3-87 on the comm.BCHDecoder reference page.
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BitInput

Assume that input is bits

Specify whether the input comprises bits or integers. The default is false.

When you set this property to false, the input data value when running the object must be a
numeric, column vector of integers. Each symbol that forms the input message and output codewords
is an integer in the range [0, 2M–1]. These integers correspond to an element of the finite Galois field
gf(2M), where M is the degree of the primitive polynomial that you specify with the
PrimitivePolynomialSource and PrimitivePolynomial properties.

When you set this property to true, the input value must be a numeric, column vector of bits. The
encoded data output result is a column vector of bits.

CodewordLength

Codeword length

Specify the codeword length of the RS code as a double-precision positive integer scalar value. The
default is 7.

For a full-length RS code, the value of this property must be 2M–1, where M is an integer in the range
[3, 16].

MessageLength

Message length

Specify the message length as a double-precision positive integer scalar value. The default is 3.

ShortMessageLengthSource

Short message length source

Specify the source of the shortened message as Auto or Property. The default is Auto.

• When you set this property to Auto, the RS code is defined by the CodewordLength,
MessageLength, GeneratorPolynomial, and PrimitivePolynomial properties.

• When you set this property to Property, you must specify the ShortMessageLength property to
be used with the other properties to define the RS code.

ShortMessageLength

Shortened message length

Specify the length of the shortened message as a double-precision positive integer scalar whose value
must be less than or equal to MessageLength. The default is 3.

When ShortMessageLength < MessageLength, the RS code is shortened.
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GeneratorPolynomialSource

Source of generator polynomial

Specify the source of the generator polynomial as Auto or Property. The default is Auto.

• When you set this property to Auto, the object chooses the generator polynomial automatically.
The object calculates the generator polynomial based on the value of the PrimitivePolynomial
property.

• When you set this property to Property, you must specify a generator polynomial using the
GeneratorPolynomial property.

GeneratorPolynomial

Generator polynomial

Specify the generator polynomial for the RS code as a double-precision integer row vector or as a
Galois row vector. The Galois field row vector entries must be in the range [0, 2M–1] and represent a
generator polynomial in descending order of powers. Each coefficient is an element of the Galois field
gf(2M), represented in integer format. The length of the generator polynomial must be
CodewordLength – MessageLength + 1. The default is the result of rsgenpoly(7,3,[],
[],'double'), which corresponds to [1 3 1 2 3].

This property applies when you set GeneratorPolynomialSource to Property.

CheckGeneratorPolynomial

Enable generator polynomial checking

Set this property to true to perform a generator polynomial check. The default is true.

This check verifies that XCodewordLength + 1 is divisible by the generator polynomial specified in the
GeneratorPolynomial property. For codes with generator polynomials of high degree, disabling
the check speeds up processing. As a best practice, perform the check at least once before setting
this property to false.

This property applies when GeneratorPolynomialSource is set to Property.

PrimitivePolynomialSource

Source of primitive polynomial

Specify the source of the primitive polynomial as Auto or Property. The default is Auto.

• When you set this property to Auto, the object uses a primitive polynomial of degree M =
ceil(log2(CodewordLength+1)).

• When you set this property to Property, you must specify a polynomial using the
PrimitivePolynomial property.

PrimitivePolynomial
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Primitive polynomial

Specify the primitive polynomial that defines the finite field gf(2M) corresponding to the integers that
form messages and codewords. Specify this property as a double-precision, binary row vector that
represents a primitive polynomial over gf(2) of degree M in descending order of powers.

If CodewordLength is less than 2M–1, the object uses a shortened RS code. The default is the result
of int2bit(primpoly(3),4)', which is [1 0 1 1] or the polynomial x3+x+1.

This property applies when you set PrimitivePolynomialSource to Property.

PuncturePatternSource

Source of puncture pattern

Specify the source of the puncture pattern as None or Property. The default is None.

• When you set this property to None, the object does not apply puncturing to the code.
• When you set this property to Property, the object punctures the code based on a puncture

pattern vector specified in the PuncturePattern property.

PuncturePattern

Puncture pattern vector

Specify the pattern used to puncture the encoded data as a double-precision, binary column vector
with a length of (CodewordLength – MessageLength). The default is [ones(2,1); zeros(2,1)].
Zeros in the puncture pattern vector indicate the position of the parity symbols that are punctured or
excluded from each codeword.

This property applies when you set the PuncturePatternSource property to Property.

OutputDataType

Data type of output

Specify the output data type as Same as input, double, or logical. The default is Same as
input.

This property applies when you set the BitInput property to true.

Methods
step Encode data using a Reed-Solomon encoder

Common to All System Objects
release Allow System object property value changes

Examples
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Transmit an RS-Encoded, 8-DPSK-Modulated Symbol Stream

Transmit an RS-encoded, 8-DPSK-modulated symbol stream through an AWGN channel. Then,
demodulate, decode, and count errors.

    enc = comm.RSEncoder;
    mod = comm.DPSKModulator('BitInput',false);
    chan = comm.AWGNChannel(...
                'NoiseMethod','Signal to noise ratio (SNR)','SNR',10);
    demod = comm.DPSKDemodulator('BitOutput',false);
    hDdecec = comm.RSDecoder;
    errorRate = comm.ErrorRate('ComputationDelay',3);

    for counter = 1:20
      data = randi([0 7], 30, 1);
      encodedData = step(enc, data);
      modSignal = step(mod, encodedData);
      receivedSignal = step(chan, modSignal);
      demodSignal = step(demod, receivedSignal);
      receivedSymbols = step(hDdecec, demodSignal);
      errorStats = step(errorRate, data, receivedSymbols);            
    end      
      
  fprintf('Error rate = %f\nNumber of errors = %d\n', ...
      errorStats(1), errorStats(2))

Error rate = 0.115578
Number of errors = 69

Estimate BER of QPSK in AWGN with Reed-Solomon Coding

Transmit Reed-Solomon encoded data using QPSK over an AWGN channel. Demodulate and decode
the received signal and collect error statistics. Compute theoretical bit error rate (BER) for coded and
noncoded data. Plot the BER results to compare performance.

Define the example parameters.

rng(1993);     % Seed random number generator for repeatable results
M = 4;         % Modulation order
bps = log2(M); % Bits per symbol
N = 7;         % RS codeword length
K = 5;         % RS message length

Create AWGN channel and error rate objects.

awgnChannel = comm.AWGNChannel( ...
    BitsPerSymbol=bps);
errorRate = comm.ErrorRate;

Create a (7,5) Reed-Solomon encoder and decoder pair which accepts bit inputs.

rsEncoder = comm.RSEncoder( ...
    BitInput=true, ...
    CodewordLength=N, ...
    MessageLength=K);
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rsDecoder = comm.RSDecoder( ...
    BitInput=true, ...
    CodewordLength=N, ...
    MessageLength=K);

Set the range of Eb/N0 values and account for RS coding gain. Initialize the error statistics matrix.

ebnoVec = (3:0.5:8)';
ebnoVecCodingGain = ...
    ebnoVec + 10*log10(K/N); % Account for RS coding gain
errorStats = zeros(length(ebnoVec),3);

Estimate the bit error rate for each Eb/N0 value. The simulation runs until either 100 errors or 107

bits is encountered. The main simulation loop processing includes encoding, modulation,
demodulation, and decoding.

for i = 1:length(ebnoVec)
    awgnChannel.EbNo = ebnoVecCodingGain(i);
    reset(errorRate)
    while errorStats(i,2) < 100 && errorStats(i,3) < 1e7
        data = randi([0 1],1500,1);
        encData = rsEncoder(data);
        modData = pskmod(encData,M,InputType='bit');
        rxSig = awgnChannel(modData);
        rxData = pskdemod(rxSig,M,OutputType='bit');
        decData = rsDecoder(rxData);
        errorStats(i,:) = errorRate(data,decData);
    end
end

Fit a curve to the BER data using berfit. Generate an estimate of QPSK performance with and
without coding using the bercoding and berawgn functions.

berCurveFit = berfit(ebnoVecCodingGain,errorStats(:,1));
berwCoding = bercoding(ebnoVec,'RS','hard',N,K,'psk',M,'nondiff');
berNoCoding = berawgn(ebnoVec,'psk',M,'nondiff');

Plot the RS coded BER data, curve fit of the BER data, theoretical performance with RS coding, and
theoretical performance without RS coding. The (7,5) RS code improves the Eb/N0 required to
achieve a 10−2 bit error rate by approximately 1.2 dB.

semilogy(ebnoVecCodingGain,errorStats(:,1),'b*', ...
    ebnoVecCodingGain,berCurveFit,'c-', ...
    ebnoVecCodingGain,berwCoding,'r', ...
    ebnoVec,berNoCoding)
ylabel('BER')
xlabel('Eb/No (dB)')
legend( ...
    'RS coded BER','Curve Fit', ...
    'Theory with coding','Theory no coding')
grid
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Transmit a Shortened RS-Encoded, 256-QAM-Modulated Symbol Stream

Transmit a shortened RS-encoded, 256-QAM-modulated symbol stream through an AWGN channel.
Then demodulate, decode, and count errors.

Set the parameters for the Reed-Solomon code, where N is the codeword length, K is the nominal
message length, and S is the shortened message length. Set the modulation order, M, and the number
of frames, L.

N = 255;
K = 239;
S = 188;
M = 256;
L = 50;

Create an AWGN channel System object and an error rate System object.

awgnChan = comm.AWGNChannel('NoiseMethod','Signal to noise ratio (Eb/No)', ...
    'EbNo',15,'BitsPerSymbol',log2(M));
errorRate = comm.ErrorRate('ComputationDelay',3);

Create the Reed-Solomon generator polynomial from the DVB-T standard.

gp = rsgenpoly(N,K,[],0);
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Create a Reed-Solomon encoder and decoder pair using the shortened message length, S, and the
DVB-T generator polynomial, gp.

enc = comm.RSEncoder(N,K,gp,S);
dec = comm.RSDecoder(N,K,gp,S);

Generate random symbol frames whose length equals one message block. Encode, modulate, apply
AWGN, demodulate, decode, and collect statistics.

for counter = 1:L
    data = randi([0 1],S,log2(M));
    encodedData = step(enc,bi2de(data));
    modSignal = qammod(encodedData,M,'UnitAveragePower',true);
    rxSignal = awgnChan(modSignal);
    demodSignal = qamdemod(rxSignal,M,'UnitAveragePower',true);
    rxBits = dec(demodSignal);
    dataOut = de2bi(rxBits);
    errorStats = errorRate(data(:),dataOut(:));
end

Display the error rate and number of errors.

fprintf('Error rate = %5.2e\nNumber of errors = %d\n', ...
    errorStats(1), errorStats(2))

Error rate = 2.01e-02
Number of errors = 1509

Reed-Solomon Coding with Erasures

This example shows how to configure the comm.RSEncoder and comm.RSDecoder System objects to
perform Reed-Solomon (RS) block coding with erasures when simulating a communications system.
RS decoders can correct both errors and erasures. A receiver that identifies the most unreliable
symbols in a given codeword can generate erasures. When a receiver erases a symbol, it replaces
that symbol with a zero. The receiver then passes a flag to the decoder, indicating that the symbol is
an erasure, not a valid code symbol. In addition, an encoder can generate punctures for which
specific parity symbols are always removed from its output. The decoder, which knows the puncture
pattern, inserts zeros in the puncture positions and treats those symbols as erasures. The decoder
treats encoder-generated punctures and receiver-generated erasures the exact same way when it
decodes a symbol. Puncturing also has the added benefit of making the code rate more flexible, at the
expense of some error correction capability. Shortened codes achieve the same code rate flexibility
without degrading the error correction performance, given the same demodulator input energy per
bit to noise power spectral density ratio (Eb/N0). Note that puncturing is the removal of parity
symbols from a codeword, and shortening is the removal of message symbols from a codeword.

This example shows the simulation of a communication system consisting of a random source, an RS
encoder, a 64-QAM modulator, an AWGN channel, a 64-QAM demodulator, and an RS decoder. It
includes analysis of RS coding with erasures by comparing the channel bit error rate (BER)
performance versus the coded BER performance. This example obtains Channel BER by comparing
inputs for the QAM modulator to outputs from the QAM demodulator and obtains Coded BER by
comparing inputs for the RS encoder to outputs from the RS decoder.
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Initialization

The helperRSCodingConfig.m helper function initializes simulation parameters, and configures the
comm.AWGNChannel and comm.ErrorRate System objects used to simulate the communications
system. The uncoded Eb/N0 ratio is set EbNoUncoded = 15 dB. Criteria to stop the simulation stop
are defined to stop the simulation if 500 errors occur or a maximum 5e6 bits are transmitted.

helperRSCodingConfig;

Configure RS Encoder/Decoder

This example uses a (63,53) RS code operating with a 64-QAM modulation scheme. This code can
correct (63-53)/2 = 5 errors, or it can alternatively correct (63-53) = 10 erasures. For each codeword
at the output of the 64-QAM demodulator, the receiver determines the six least reliable symbols using
the helperRSCodingGetErasures.m helper function. The indices that point to the location of these
unreliable symbols are passed as an input to the RS decoder. The RS decoder treats these symbols as
erasures resulting in an error correction capability of (10-6)/2 = 2 errors per codeword.

Create a comm.RSEncoder System object and set the BitInput property to false to specify that the
encoder inputs and outputs are integer symbols.

N = 63;  % Codeword length
K = 53;  % Message length
rsEncoder = comm.RSEncoder(N,K,'BitInput',false);
numErasures = 6;

Create a comm.RSDecoder System object matching the configuration of the comm.RSEncoder
object.

rsDecoder = comm.RSDecoder(N,K,'BitInput',false);

Set the ErasuresInputPort property to true to specify erasures as an input to the decoder object.

rsDecoder.ErasuresInputPort = true;

Set the NumCorrectedErrorsOutputPort property to true so that the decoder outputs the number
of corrected errors. A non negative value in the error output denotes the number of corrected errors
in the input codeword. A value of –1 in the error output indicates a decoding error. A decoding error
occurs when the input codeword has more errors than the error correction capability of the RS code.

rsDecoder.NumCorrectedErrorsOutputPort = true;

Run Stream Processing Loop

Simulate the communications system for an uncoded Eb/N0 ratio of 15 dB. The uncoded Eb/N0 is the
ratio that would be measured at the input of the channel if there was no coding in the system.

The signal going into the AWGN channel is the encoded signal, so you must convert the uncoded
Eb/N0 values so that they correspond to the energy ratio at the encoder output. This ratio is the
coded Eb/N0 ratio. If you input K symbols to the encoder and obtain N output symbols, then the
energy relation is given by the K/N rate. Set the EbNo property of the AWGN channel object to the
computed coded Eb/N0 value.

EbNoCoded = EbNoUncoded + 10*log10(K/N);
channel.EbNo = EbNoCoded;
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Loop until the simulation reaches the target number of errors or the maximum number of
transmissions.

chanErrorStats = zeros(3,1);
codedErrorStats = zeros(3,1);
correctedErrors = 0;
while (codedErrorStats(2) < targetErrors) && ...
        (codedErrorStats(3) < maxNumTransmissions)

The data symbols transmit one message word at a time. Each message word has K symbols in the [0
N] range.

    data = randi([0 N],K,1);

Encode the message word. The encoded word, encData, is (N-numPunc) symbols long.

    encData = rsEncoder(data);

Modulate encoded data and add noise. Then demodulate channel output.

    modData = qammod(encData,M);
    chanOutput = channel(modData);
    demodData = qamdemod(chanOutput,M);

Use the helperRSCodingGetErasures.m helper function to find the 6 least reliable symbols and
generate an erasures vector. The length of the erasures vector must be equal to the number of
symbols in the demodulated codeword. A one in the ith element of the vector erases the ith symbol in
the codeword. Zeros in the vector indicate no erasures.

    erasuresVec = helperRSCodingGetErasures(chanOutput,numErasures);

Decode the data. Log the number of errors corrected by the RS decoder.

    [estData,errs] = rsDecoder(demodData,erasuresVec);
    if (errs >= 0)
        correctedErrors = correctedErrors + errs;
    end

When computing the channel and coded BERs, convert integers to bits.

    chanErrorStats(:,1) = ...
        chanBERCalc(reshape(de2bi(encData,log2(M))',[],1),reshape(de2bi(demodData,log2(M))',[],1));   
    codedErrorStats(:,1) = ...
        codedBERCalc(reshape(de2bi(data,log2(M))',[],1),reshape(de2bi(estData,log2(M))',[],1));
end

The error rate measurement objects, chanBERCalc and codedBERCalc, output 3-by-1 vectors
containing BER measurement updates, the number of errors, and the total number of bit
transmissions. Display the channel BER, the coded BER and the total number of errors corrected by
the RS decoder.

chanBitErrorRate = chanErrorStats(1)

chanBitErrorRate = 0.0017

codedBitErrorRate = codedErrorStats(1)

codedBitErrorRate = 0
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totalCorrectedErrors = correctedErrors

totalCorrectedErrors = 882

You can add a for loop around the processing loop above to run simulations for a set of Eb/N0 values.
Simulations were run offline for uncoded Eb/N0 values in 4:15 dB, target number of errors equal to
5000, and maximum number of transmissions equal to 50e6. The results from the simulation are
shown. The channel BER is worse than the theoretical 64-QAM BER because Eb/N0 is reduced by the
code rate.

Summary

This example utilized several System objects to simulate a 64-QAM communications system over an
AWGN channel with RS block coding. It showed how to configure the RS decoder to decode symbols
with erasures. System performance was measured using channel and coded BER curves obtained
using error rate measurement System objects.

Helper functions used in this example:

• helperRSCodingConfig.m
• helperRSCodingGetErasures.m
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Reed-Solomon Coding with Erasures and Punctures

This example shows how to configure the comm.RSEncoder and comm.RSDecoder System objects to
perform Reed-Solomon (RS) block coding with erasures and puncture codes when simulating a
communications system. An encoder can generate punctures to remove specific parity symbols from
its output. Given the puncture pattern, the decoder inserts zeros in the puncture positions and treats
those symbols as erasures. The decoder treats encoder-generated punctures and receiver-generated
erasures in exactly the same way when it decodes. Puncturing has the added benefit of making the
code rate more flexible, at the expense of some error correction capability.

This example shows the simulation of a communication system consisting of a random source, an RS
encoder, a 64-QAM modulator, an AWGN channel, a 64-QAM demodulator, and an RS decoder. It
includes analysis of RS coding with erasures and puncturing by comparing the channel bit error rate
(BER) performance versus the coded BER performance. This example obtains Channel BER by
comparing inputs for the QAM modulator to outputs from the QAM demodulator. This example
obtains Coded BER by comparing inputs for the RS encoder to outputs from the RS decoder.

Initialization

The helperRSCodingConfig.m helper function initializes simulation parameters, and configures the
comm.AWGNChannel and comm.ErrorRate System objects used to simulate the communications
system. The uncoded Eb/N0 ratio, EbNoUncoded is set to 15 dB. Criteria to stop the simulation stop
are defined to stop the simulation if 500 errors occur or a maximum 5 × 106 bits are transmitted.

helperRSCodingConfig;

Configure RS Encoder/Decoder

This example uses the same (63,53) RS code operating with a 64-QAM modulation scheme that is
configured for erasures and code puncturing. The RS algorithm decodes receiver-generated erasures
and corrects encoder-generated punctures. For each codeword, the sum of the punctures and
erasures cannot exceed twice the error-correcting capability of the code.

Create a comm.RSEncoder System object and set the BitInput property to false to specify that the
encoder inputs and outputs are integer symbols.

N = 63;  % Codeword length
K = 53;  % Message length
rsEncoder = comm.RSEncoder(N,K,'BitInput',false);
numErasures = 6;

Create a comm.RSDecoder System object matching the configuration of the comm.RSEncoder
object. Then set the ErasuresInputPort property to true to specify erasures as an input to the
decoder object.

rsDecoder = comm.RSDecoder(N,K,'BitInput',false);
rsDecoder.ErasuresInputPort = true;

To enable code puncturing, set the PuncturePatternSource property to 'Property' and set the
PuncturePattern property to the desired puncture pattern vector. The same puncture vector must
be specified in both the encoder and decoder. This example punctures two symbols from each
codeword. Values of 1 in the puncture pattern vector indicate nonpunctured symbols, and values of 0
indicate punctured symbols.

numPuncs = 2;
rsEnc.PuncturePatternSource = 'Property';
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rsEnc.PuncturePattern = [ones(N-K-numPuncs,1); zeros(numPuncs,1)];

rsDec.PuncturePatternSource = 'Property';
rsDec.PuncturePattern = rsEnc.PuncturePattern;

Run Stream Processing Loop

Simulate the communications system for an uncoded Eb/N0 ratio of 15 dB. The uncoded Eb/N0 is the
ratio that would be measured at the input of the channel if there was no coding in the system.

The signal going into the AWGN channel is the encoded signal, so you must convert the uncoded
Eb/N0 values so that they correspond to the energy ratio at the encoder output. This ratio is the
coded Eb/N0 ratio. If you input K symbols to the encoder and obtain N output symbols, then the
energy relation is given by the K/N rate. Since the length of the codewords generated by the RS
encoder is reduced by the number of punctures specified in the puncture pattern vector, the value of
the coded Eb/N0 ratio needs to be adjusted to account for these punctures. In this example, The
number of output symbols is (N - numPuncs) and the uncoded Eb/N0 ratio relates to the coded Eb/N0
as shown below. Set the EbNo property of the AWGN channel object to the computed coded Eb/N0
value.

EbNoCoded = EbNoUncoded + 10*log10(K/(N - numPuncs));
channel.EbNo = EbNoCoded;

Loop until the simulation reaches the target number of errors or the maximum number of
transmissions.

chanErrorStats = zeros(3,1);
codedErrorStats = zeros(3,1);
correctedErrors = 0;
while (codedErrorStats(2) < targetErrors) && ...
        (codedErrorStats(3) < maxNumTransmissions)

The data symbols transmit one message word at a time. Each message word has K symbols in the [0
N] range.

    data = randi([0 N],K,1);

Encode the message word. The encoded word, encData, is (N – numPunc) symbols long.

    encData = rsEncoder(data);

Modulate encoded data and add noise. Then demodulate channel output.

    modData = qammod(encData,M);
    chanOutput = channel(modData);
    demodData = qamdemod(chanOutput,M);

Use the helperRSCodingGetErasures.m helper function to find the 6 least reliable symbols and
generate an erasures vector. The length of the erasures vector must be equal to the number of
symbols in the demodulated codeword. A one in the ith element of the vector erases the ith symbol in
the codeword. Zeros in the vector indicate no erasures.

    erasuresVec = helperRSCodingGetErasures(chanOutput,numErasures);

Decode the data. Log the number of errors corrected by the RS decoder.
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    [estData,errs] = rsDecoder(demodData,erasuresVec);
    if (errs >= 0)
        correctedErrors = correctedErrors+errs;
    end

When computing the channel and coded BERs, convert integers to bits.

    chanErrorStats(:,1) = ...
        chanBERCalc(reshape(de2bi(encData,log2(M))',[],1),reshape(de2bi(demodData,log2(M))',[],1));   
    codedErrorStats(:,1) = ...
        codedBERCalc(reshape(de2bi(data,log2(M))',[],1),reshape(de2bi(estData,log2(M))',[],1));
end

The error rate measurement objects, chanBERCalc and codedBERCalc, output 3-by-1 vectors
containing BER measurement updates, the number of errors, and the total number of bit
transmissions. Display the channel BER, the coded BER and the total number of errors corrected by
the RS decoder.

chanBitErrorRate = chanErrorStats(1)

chanBitErrorRate = 0.0015

codedBitErrorRate = codedErrorStats(1)

codedBitErrorRate = 0

totalCorrectedErrors = correctedErrors

totalCorrectedErrors = 632

You can add a for loop around the processing loop above to run simulations for a set of Eb/N0 values.
Simulations were run offline for uncoded Eb/N0 values in 4:15 dB, target number of errors equal to
5000, and maximum number of transmissions equal to 50 × 106. This figure compares results
achieved for

• RS coding with only erasures
• RS coding with erasures and puncturing
• Theoretical BER for 64-QAM

The coded Eb/N0 is slightly higher than the channel Eb/N0, so the channel BER is slightly better in
the punctured case. On the other hand, the coded BER is worse in the punctured case, because the
two punctures reduce the error correcting capability of the code by one, leaving it able to correct
only (10 – 6 – 2) / 2 = 1 error per codeword.
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Summary

This example utilized functions and System objects to simulate a 64-QAM communications system
over an AWGN channel with RS block coding. It showed how to configure the RS encoder/decoder
System objects to obtain punctured codes. System performance was measured using channel and
coded BER curves obtained using error rate measurement System objects.

Helper functions used in this example:

• helperRSCodingConfig.m
• helperRSCodingGetErasures.m

Reed-Solomon Coding with Erasures, Punctures, and Shortening

This example shows how to configure the comm.RSEncoder and comm.RSDecoder System objects to
perform Reed-Solomon (RS) block coding to shorten the (63,53) code to a (28,18) code. The
simulation of a communication system consisting of a random source, an RS encoder, a 64-QAM
modulator, an AWGN channel, a 64-QAM demodulator, and an RS decoder is presented.

The effects of RS coding with erasures, puncturing, and shortening are analyzed by comparing the
channel bit error rate (BER) performance versus the coded BER performance. This example obtains
Channel BER by comparing inputs for the QAM modulator to outputs from the QAM demodulator and
obtains Coded BER by comparing inputs for the RS encoder to outputs from the RS decoder.
Puncturing is the removal of parity symbols from a codeword, and shortening is the removal of
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message symbols from a codeword. Puncturing has the benefit of making the code rate more flexible,
at the expense of some error correction capability. Shortened codes achieve the same code rate
flexibility without degrading the error correction performance for the same demodulator input Eb/N0.

Initialization

The helperRSCodingConfig.m helper function initializes simulation parameters, and configures the
comm.AWGNChannel and comm.ErrorRate System objects used to simulate the communications
system. The uncodedEb/N0 ratio is set EbNoUncoded = 15 dB. Criteria to stop the simulation stop are
defined to stop the simulation if 500 errors occur or a maximum 5 × 106 bits are transmitted.

helperRSCodingConfig;

Configure RS Encoder/Decoder

This example uses a (63,53) RS code operating with a 64-QAM modulation scheme. The RS coding
operation includes erasures, puncturing, and code shortening. This example shows how to shorten
the (63,53) code to a (28,18) code.

To shorten a (63,53) code by 10 symbols to a (53,43) code, you can simply enter 53 and 43 for the
CodewordLength and MessageLength properties, respectively (since 2 log2 53 + 1 − 1 = 63).
However, to shorten it by 35 symbols to a (28,18) code, you must explicitly specify that the symbols
belong to the Galois field GF(26). Otherwise, the RS blocks will assume that the code is shortened
from a (31,21) code (since 2 log2 28 + 1 − 1 = 31).

Create a pair of comm.RSEncoder and comm.RSDecoder System objects so that they perform block
coding with a (28,18) code shortened from a (63,53) code that is configured to input and output
integer symbols. Configure the decoder to accept an erasure input and two punctures. For each
codeword at the output of the 64-QAM demodulator, the receiver determines the six least reliable
symbols using the helperRSCodingGetErasures.m helper function. The indices that point to the
location of these unreliable symbols are passed as an input to the RS decoder.

N = 63;  % Codeword length
K = 53;  % Message length
S = 18;  % Shortenened message length
numErasures = 6;
numPuncs = 2; 
rsEncoder = comm.RSEncoder(N, K, 'BitInput', false);
rsDecoder = comm.RSDecoder(N, K, 'BitInput', false, 'ErasuresInputPort', true);
rsEncoder.PuncturePatternSource = 'Property';
rsEncoder.PuncturePattern = [ones(N-K-numPuncs,1); zeros(numPuncs,1)];
rsDecoder.PuncturePatternSource = 'Property';
rsDecoder.PuncturePattern = rsEncoder.PuncturePattern;

Set the shortened codeword length and message length values.

rsEncoder.ShortMessageLength = S;
rsDecoder.ShortMessageLength = S;

Specify the field of GF 26  in the RS encoder/decoder System objects, by setting the
PrimitivePolynomialSource property to 'Property' and the PrimitivePolynomial property
to a 6th degree primitive polynomial.

primPolyDegree = 6;
rsEncoder.PrimitivePolynomialSource = 'Property';
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rsEncoder.PrimitivePolynomial = de2bi(primpoly(primPolyDegree,'nodisplay'),'left-msb');

rsDecoder.PrimitivePolynomialSource = 'Property';
rsDecoder.PrimitivePolynomial = de2bi(primpoly(primPolyDegree,'nodisplay'),'left-msb');

Run Stream Processing Loop

Simulate the communications system for an uncoded Eb/N0 ratio of 15 dB. The uncoded Eb/N0 is the
ratio that would be measured at the input of the channel if there was no coding in the system.

The signal going into the AWGN channel is the encoded signal, so you must convert the uncoded
Eb/N0 values so that they correspond to the energy ratio at the encoder output. This ratio is the
coded Eb/N0 ratio. If you input K symbols to the encoder and obtain N output symbols, then the
energy relation is given by the K/N rate. The value of the coded Eb/N0 ratio needs to be adjusted to
account for shortened and punctured codewords. The number of output symbols is (N - numPuncs - S)
and the uncoded Eb/N0 ratio relates to the coded Eb/N0 as shown below. Set the EbNo property of the
AWGN channel object to the computed coded Eb/N0 value.

EbNoCoded = EbNoUncoded + 10*log10(S/(N - numPuncs - K + S));
channel.EbNo = EbNoCoded;

Loop until the simulation reaches the target number of errors or the maximum number of
transmissions.

chanErrorStats = zeros(3,1);
codedErrorStats = zeros(3,1);
correctedErrors = 0;
while (codedErrorStats(2) < targetErrors) && ...
        (codedErrorStats(3) < maxNumTransmissions)

The data symbols transmit one message word at a time. Each message word has K-S symbols in the [0
(2^primPolyDegree)-1] range.

    data = randi([0 2^primPolyDegree-1],S,1);

Encode the shortened message word. The encoded word encData is (N-numPuncs-S) symbols long.

    encData = rsEncoder(data);

Modulate encoded data and add noise. Then demodulate channel output.

    modData = qammod(encData,M);
    chanOutput = channel(modData);
    demodData = qamdemod(chanOutput,M);

Use the helperRSCodingGetErasures.m helper function to find the 6 least reliable symbols and
generate an erasures vector. The length of the erasures vector must be equal to the number of
symbols in the demodulated codeword. A one in the ith element of the vector erases the ith symbol in
the codeword. Zeros in the vector indicate no erasures.

    erasuresVec = helperRSCodingGetErasures(chanOutput,numErasures);    

Decode the data. Log the number of errors corrected by the RS decoder.

    [estData,errs] = rsDecoder(demodData,erasuresVec);
    if (errs >= 0)
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        correctedErrors = correctedErrors + errs;
    end

When computing the channel and coded BERs, convert integers to bits.

    chanErrorStats(:,1) = ...
        chanBERCalc(reshape(de2bi(encData,log2(M))',[],1), ...
        reshape(de2bi(demodData,log2(M))',[],1));   
    codedErrorStats(:,1) = ...
        codedBERCalc(reshape(de2bi(data,log2(M))',[],1), ...
        reshape(de2bi(estData,log2(M))',[],1));
end

The error rate measurement objects, chanBERCalc and codedBERCalc, output 3-by-1 vectors
containing BER measurement updates, the number of errors, and the total number of bit
transmissions. Display the channel BER, the coded BER, and the total number of errors corrected by
the RS decoder.

chanBitErrorRate = chanErrorStats(1)

chanBitErrorRate = 0.0036

codedBitErrorRate = codedErrorStats(1)

codedBitErrorRate = 9.6599e-05

totalCorrectedErrors = correctedErrors

totalCorrectedErrors = 1436

You can add a for loop around the processing loop above to run simulations for a set of Eb/N0 values.
Simulations were run offline for uncoded Eb/N0 values in 4:15 dB, target number of errors equal to
5000, and maximum number of transmissions equal to 50 × 106. This figure compares results
achieved for

• RS coding with only erasures
• RS coding with erasures and puncturing
• RS coding with erasures, puncturing, and shotening
• Theoretical BER for 64-QAM

The BER out of the 64-QAM Demodulator is worse with shortening than it is without shortening. This
is because the code rate of the shortened code is much lower than the code rate of the non-shortened
code and therefore the coded Eb/N0 into the demodulator is worse with shortening. A shortened code
has the same error correcting capability as non-shortened code for the same Eb/N0, but the reduction
in Eb/N0 manifests in the form of a higher BER out of the RS Decoder with shortening than without.

The coded Eb/N0 is slightly higher than the channel Eb/N0, so the channel BER is slightly better than
the coded BER in the shortened case. The degraded coded Eb/N0 occurs because the code rate of the
shortened code is lower than that of the nonshortened code. Shortening results in degraded coded
BER, most noticably at lower Eb/N0 values.
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Summary

This example utilized several System objects to simulate a 64-QAM communications system over an
AWGN channel with a shortened RS block code. It showed how to configure the RS decoder to
shorten a (63,53) code to a (28,18) code. System performance was measured using channel and
coded BER curves obtained using error rate measurement System objects.

Helper functions used in this example:

• helperRSCodingConfig.m
• helperRSCodingGetErasures.m

Algorithms
This object implements the algorithm, inputs, and outputs described in “Algorithms for BCH and RS
Errors-only Decoding”.

Version History
Introduced in R2012a
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References
[1] Clark, George C., and J. Bibb Cain. Error-Correction Coding for Digital Communications.

Applications of Communications Theory. New York: Plenum Press, 1981.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.RSDecoder | comm.BCHEncoder | rsenc | rsgenpoly | primpoly

Topics
“Reed-Solomon Codes”
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step
System object: comm.RSEncoder
Package: comm

Encode data using a Reed-Solomon encoder

Syntax
Y = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Y = step(H,X) encodes the numeric column input data vector, X, and returns the encoded data, Y.
The value of the BitInput property determines whether X is a vector of integers or bits with a
numeric, logical, or fixed-point data type. The input and output length of the step function equal the
values listed in the table in “Input and Output Signal Lengths in BCH and RS System Objects” on
page 3-87.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This initialization
locks nontunable properties and input specifications. For more information on changing property
values, see “System Design in MATLAB Using System Objects”.
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comm.SampleRateOffset
Package: comm

Apply sample rate offset to signal

Description
The comm.SampleRateOffset System object applies a sample rate offset to the input signal.
Applying a sample rate offset is equivalent to changing the ADC clock rate.

To apply a sample rate offset to a signal:

1 Create the comm.SampleRateOffset object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
sro = comm.SampleRateOffset
sro = comm.SampleRateOffset(offset)
sro = comm.SampleRateOffset(Offset=offset)

Description

sro = comm.SampleRateOffset creates a sample rate offset System object.

sro = comm.SampleRateOffset(offset) sets the Offset property to the value of the offset
input argument.

sro = comm.SampleRateOffset(Offset=offset) sets the Offset property to the value
specified by offset.

Properties
Offset — Sample rate offset
10 (default) | scalar

Sample rate offset in parts per million (ppm), specified as a scalar greater than –1e6.
Data Types: double
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Usage

Syntax
y = sro(x)

Description

y = sro(x) applies the sample rate offset configured by sro to the input signal and returns the
resulting signal.

Input Arguments

x — Input signal
scalar | vector | matrix

Input signal, specified as a scalar, an NS element column vector, or an NS-by-NC matrix. NS is the
number of time samples. NC is the number of channels. For matrix input signals, the sample rate
offset is applied independently to each column.
Data Types: double | single
Complex Number Support: Yes

Output Arguments

y — Output signal
scalar | vector | matrix

Output signal, returned as a scalar, vector or matrix with the same data type as input signal x.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Apply Sample Rate Offset to 16-QAM Signal

Set parameters and an input signal.

M = 16;                    % Modulation order
offset = 50;               % Parts per million
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data = (0:M-1)';           % Input signal
refconst = qammod(data,M); % Reference constellation points

Create sample rate offset and constellation diagram System objects.

sro = comm.SampleRateOffset(offset);
constdiagram = comm.ConstellationDiagram( ...
    'ReferenceConstellation',refconst, ...
    'XLimits',[-5 5], ...
    'YLimits',[-5 5], ...
    'Title','Signal with Offset Sample Rate');

Apply 16-QAM modulation to random data, and then apply a sample rate offset to the modulated
signal. Plot the reference constellation and the signal with offset sample rate offset.

modData = qammod(repmat(data,100,1),M);
impairedData = sro(modData);
constdiagram(impairedData)
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Apply Sample Rate Offset to Sine Wave

Apply sample rate offsets to a 30 kHz single tone sine wave. Confirm the offset by computing the
frequency difference between the transmitted tone and the received tone after applying positive and
negative sample rate offsets.

Generate a single tone at 30 kHz.

f = 30e3;
samplerate = 100e3;
src = dsp.SineWave('Frequency',f, ...
    'SampleRate',samplerate, ...
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    'SamplesPerFrame',10000, ...
    'ComplexOutput',true);
txsig = src();

Verify the frequency of the tone.

freqtx = samplerate * ...
    (mean(angle(txsig(2:end) ./ txsig(1:end-1)))/(2*pi))

freqtx = 3.0000e+04

Apply a sample rate offset of 20 ppm to the transmission tone (txsig). Increasing the sample rate
offset is equivalent to increasing the ADC clock rate.

sro = comm.SampleRateOffset(20);
rxsig = sro(txsig);

Find the frequency of the received tone (rxsig) after offsetting the sample rate. To skip samples with
transient effects, ignore the first 100 samples.

freqrx = samplerate * ...
    (mean(angle(rxsig(101:end) ./ rxsig(100:end-1)))/(2*pi))

freqrx = 2.9999e+04

Increasing the ADC clock rate, decreases the frequency of the received tone. To show that the
frequency of the received tone decreases by approximately 20 ppm, compare the frequency of the
transmitted tone to the frequency of the received tone.

freqchangeppm = (freqrx-freqtx)/freqtx*1e6

freqchangeppm = -19.9365

Apply a sample rate offset of -30 ppm to the transmission tone (txsig). Decreasing the sample rate
offset is equivalent to decreasing the ADC clock rate.

sro = comm.SampleRateOffset(-30);
rxsig = sro(txsig);

Find the frequency of the received tone (rxsig) after offsetting the sample rate. To skip samples with
transient effects, ignore the first 100 samples.

freqrx = samplerate * ...
    (mean(angle(rxsig(101:end) ./ rxsig(100:end-1)))/(2*pi))

freqrx = 3.0001e+04

Decreasing the ADC clock rate, increases the frequency of the received tone. To show that the
frequency of the received tone increases by approximately 30 ppm, compare the frequency of the
transmitted tone to the frequency of the received tone.

freqchangeppm = (freqrx-freqtx)/freqtx*1e6

freqchangeppm = 30.0736
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Display Impact of Sample Rate Offset on Received QPSK Signal

Display the effects of a sample rate offset in the receiver on a QPSK signal.

Transmit frames containing a fixed preamble and random payload. In the receiver, use the preamble
to find the beginning of a frame, and then demodulate the payload and measure the EVM. With a
constant nonzero sample rate offset, the EVM varies from frame to frame with a consistent
periodicity.

Initialize configuration parameters and create pulse-shaping filter objects for the transmitter and
receiver.

numFrames = 200;
numSymbolsPerFrame = 4096;
preambleLength = 64;
payloadLength = numSymbolsPerFrame - preambleLength; 
modulationOrder = 4;

rolloff = 0.2;
filterSpan = 10;
samplesPerSymbol = 8;
txFilter = comm.RaisedCosineTransmitFilter(RolloffFactor=rolloff, ...
    FilterSpanInSymbols=filterSpan, ...
    OutputSamplesPerSymbol=samplesPerSymbol);
rxFilter = comm.RaisedCosineReceiveFilter(RolloffFactor=rolloff, ...
    FilterSpanInSymbols=filterSpan, ...
    InputSamplesPerSymbol=samplesPerSymbol,DecimationFactor=1);

Use a Gold sequence for the preamble. Map the Gold sequence to 0.7071 + 0.7071i and -0.7071
-0.7071i in the QPSK constellation.

goldSeq = comm.GoldSequence(SamplesPerFrame=preambleLength);
preamble = goldSeq();
preamble(preamble==1)=2; 
preambleModOut = pskmod(preamble,modulationOrder,pi/modulationOrder);

Generate a time-domain reference signal for the preamble.

preambleRefDelayed = rxFilter( ...
    txFilter([preambleModOut;zeros(filterSpan,1)]));
preambleRef = preambleRefDelayed( ...
    filterSpan*samplesPerSymbol+(1:samplesPerSymbol*preambleLength));

Generate a random payload and transmit signal.

txPayload = pskmod( ...
    randi([0 modulationOrder-1],payloadLength,numFrames), ...
    modulationOrder, ...
    pi/modulationOrder);
txFrames = reshape([repmat(preambleModOut,1,numFrames);txPayload],[],1);
txSig = txFilter([txFrames;zeros(payloadLength,1)]);

Apply a 0.8 ppm sample rate offset to the received signal.

simulatedSRO = 0.8;
sro = comm.SampleRateOffset(simulatedSRO);
rxSig = rxFilter(sro(txSig));
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Use a matched filter to find the preamble.

matchedFilterResponse = conj(flipud(preambleRef));
matchedFilterOutMag = abs(filter(matchedFilterResponse,1,rxSig));

Find the peak locations and plot the first ten peaks.

threshold = max(matchedFilterOutMag)*0.7;
[~, peakLocations] = findpeaks(matchedFilterOutMag, ...
    MinPeakHeight=threshold, ...
    MinPeakDistance=preambleLength*samplesPerSymbol);
plot(matchedFilterOutMag)
title('Matched Filter Output (Magnitude)')
xlabel('Sample')
axis([0 numSymbolsPerFrame*samplesPerSymbol*10 ...
    -0.15*max(matchedFilterOutMag) 1.25*max(matchedFilterOutMag)]);
grid on

Locate the frames and examine the received data by plotting the computed EVM value and the
received signal constellation. Estimate the sample rate offset. For a more accurate estimate, you can
increase the number of transmitted frames.

frameDelay = peakLocations - length(preambleRef);
constDiag = comm.ConstellationDiagram(Title='Received Payload', ...
    Position=[20 70 600 600]);
evm = comm.EVM;
evmScope = timescope(TimeUnits='none',TimeSpan=length(frameDelay), ...
    YLabel='EVM (%)',YLimits=[0 15],TimeAxisLabels='none', ...
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    Position=[650 120 800 500]);
for i = 1:length(frameDelay)
    rxFrame = rxSig(frameDelay(i) + ...
        (1:samplesPerSymbol:numSymbolsPerFrame*samplesPerSymbol));
    evmScope(evm(txPayload(:,i),rxFrame(preambleLength+1:end)));
    constDiag(rxFrame(preambleLength+1:end));
    pause(0.1)
end

 comm.SampleRateOffset

3-1309



peakSpacings = diff(peakLocations);
nominalPeakSpacing = numSymbolsPerFrame*samplesPerSymbol;
estimatedSRO = (mean(peakSpacings)/nominalPeakSpacing-1)*1e6

estimatedSRO = 0.7668

Version History
Introduced in R2021b
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
comm.PhaseFrequencyOffset | comm.PhaseNoise | comm.ThermalNoise |
comm.MemorylessNonlinearity | comm.SymbolSynchronizer

Blocks
Sample Rate Offset
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comm.Scrambler
Package: comm

Scramble input signal

Description
The comm.Scrambler object applies multiplicative scrambling to input data.

This schematic shows the multiplicative scrambler operation. The adders operate modulo N, where N
is the value specified by the Calculation base property.

At each time step, the input causes the contents of the registers to shift sequentially. Using the
Polynomial property, you specify the on or off state for each switch in the scrambler.

Note To apply additive scrambling to input data, you can use the comm.PNSequence System object
and the xor function. For an example, see “Additive Scrambling of Input Data” on page 3-1034.

To scramble an input signal:

1 Create the comm.Scrambler object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation
Syntax
scrambler = comm.Scrambler
scrambler = comm.Scrambler(base,poly,cond)
scrambler = comm.Scrambler( ___ ,Name,Value)

Description

scrambler = comm.Scrambler creates a scrambler System object. This object scrambles the input
data by using a linear feedback shift register that you specify with the Polynomial property.
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scrambler = comm.Scrambler(base,poly,cond) creates the scrambler object with the
CalculationBase property set to base, the Polynomial property set to poly, and the InitialConditions
property set to cond.
Example: comm.Scrambler(8,'1 + x^-2 + x^-3 + x^-5 + x^-7',[0 3 2 2 5 1 7]) sets
the calculation base to 8, and the scrambler polynomial and initial conditions as specified.

scrambler = comm.Scrambler( ___ ,Name,Value) sets properties using one or more name-
value pairs and either of the previous syntaxes. Enclose each property name in single quotes.
Example: comm.Scrambler('CalculationBase',2)

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

CalculationBase — Range of input data

4 (default) | nonnegative integer

Range of input data used in the scrambler for modulo operations, specified as a nonnegative integer.
The input and output of this object are integers from 0 to CalculationBase – 1.
Data Types: double

Polynomial — Connections for linear feedback shift registers

'1 + x^-1 + x^-2 + x^-4' (default) | character vector | integer vector | binary vector

Connections for linear feedback shift registers in the scrambler, specified as a character vector,
integer vector, or binary vector. The Polynomial property defines if each switch in the scrambler is
on or off. Specify the polynomial as:

• A character vector, such as '1 + x^-6 + x^-8'. For more details on specifying polynomials in
this way, see “Representation of Polynomials in Communications Toolbox”.

• An integer vector, such as [0 -6 -8], listing the scrambler coefficients in order of descending
powers of x-1, where p(x-1) = 1 + p1x-1 + p2x-2 + ...

• A binary vector, such as [1 0 0 0 0 0 1 0 1], listing the powers of x that appear in the
polynomial that have a coefficient of 1. In this case, the order of the scramble polynomial is one
less than the binary vector length.

Example: '1 + x^-6 + x^-8', [0 -6 -8], and [1 0 0 0 0 0 1 0 1] all represent this
polynomial:

p(x-1) = 1 + x-6 + x-8

Data Types: double | char

InitialConditionsSource — Initial conditions source
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'Property' (default) | 'Input port'

• 'Property' – Specify scrambler initial conditions by using the InitialConditions property.
• 'Input port' – Specify scrambler initial conditions by using an additional input argument,

initcond, when calling the object.

Data Types: char

InitialConditions — Initial conditions of scrambler registers

[0 1 2 3] (default) | nonnegative integer vector

Initial conditions of scrambler registers when the simulation starts, specified as a nonnegative
integer vector. The length of InitialConditions must equal the order of the Polynomial property.
The vector element values must be integers from 0 to CalculationBase – 1.
Dependencies

This property is available when InitialConditionsSource is set to 'Property'.

ResetInputPort — Scrambler state reset port

false (default) | true

Scrambler state reset port, specified as false or true. If ResetInputPort is true, you can reset
the scrambler object by using an additional input argument, reset, when calling the object.
Dependencies

This property is available when InitialConditionsSource is set to 'Property'.

Usage

Syntax
scrambledOut = scrambler(signal)
scrambledOut = scrambler(signal,initcond)
scrambledOut = scrambler(signal,reset)

Description

scrambledOut = scrambler(signal) scrambles the input signal. The output is the same data
type and length as the input vector.

scrambledOut = scrambler(signal,initcond) provides an additional input with values
specifying the initial conditions of the linear feedback shift register.

This syntax applies when you set the InitialConditionsSource property of the object to 'Input
port'.

scrambledOut = scrambler(signal,reset) provides an additional input indicating whether to
reset the state of the scrambler.

This syntax applies when you set InitialConditionsSource to 'Property' and ResetInputPort to
true.
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Input Arguments

signal — Input signal
column vector

Input signal, specified as a column vector.
Example: scrambledOut = scrambler([0 1 1 0 1])
Data Types: double | logical

initcond — Initial register conditions
nonnegative integer column vector

Initial scrambler register conditions when the simulation starts, specified as a nonnegative integer
column vector. The length of initcond must equal the order of the Polynomial property. The vector
element values must be integers from 0 to CalculationBase – 1.
Example: scrambledOut = scrambler(signal,[0 1 1 0]) corresponds to possible initial
register states for a scrambler with a polynomial order of 4 and a calculation base of 2 or higher.
Data Types: double

reset — Reset initial state of scrambler
scalar

Reset the initial state of the scrambler when the simulation starts, specified as a scalar. When the
value of reset is nonzero, the object is reset before it is called.
Example: scrambledOut = scrambler(signal,0) scrambles the input signal without resetting
the scrambler states.
Data Types: double

Output Arguments

out — Scrambled output
column vector

Scrambled output, returned as a column vector with the same data type and length as signal.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples
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Scramble and Descramble Data

Scramble and descramble 8-ary data using comm.Scrambler and comm.Descrambler System
objects™ having a calculation base of 8.

Create scrambler and descrambler objects, specifying the calculation base, polynomial, and initial
conditions using input arguments. The scrambler and descrambler polynomials are specified with
different but equivalent data formats.

N = 8;
scrambler = comm.Scrambler(N,'1 + x^-2 + x^-3 + x^-5 + x^-7', ...
    [0 3 2 2 5 1 7]);
descrambler = comm.Descrambler(N,[1 0 1 1 0 1 0 1], ...
    [0 3 2 2 5 1 7]);

Scramble and descramble random integers. Display the original data, scrambled data, and
descrambled data sequences.

data = randi([0 N-1],5,1);
scrData = scrambler(data);
deScrData = descrambler(scrData);
[data scrData deScrData]

ans = 5×3

     6     7     6
     7     5     7
     1     7     1
     7     0     7
     5     3     5

Verify that the descrambled data matches the original data.

isequal(data,deScrData)

ans = logical
   1

Scramble and Descramble Data with Changing Initial Conditions

Scramble and descramble quaternary data while changing the initial conditions between function
calls.

Create scrambler and descrambler System objects having a calculation base of 4. Set the
InitialConditionsSource property to 'Input port' so you can set the initial conditions as an
argument to the object.

N = 4;
scrambler = comm.Scrambler( ...
    N,'1 + z^-3', ...
    'InitialConditionsSource','Input port');
descrambler = comm.Descrambler( ...
    N,'1 + z^-3', ...
    'InitialConditionsSource','Input port');
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Preallocate memory for the error vector which will be used to store errors output by the symerr
function.

errVec = zeros(10,1);

Scramble and descramble random integers while changing the initial conditions, initCond, each
time the loop executes. Use the symerr function to determine if the scrambling and descrambling
operations result in symbol errors.

for k = 1:10
    initCond = randperm(3)';
    data = randi([0 N-1],5,1);
    scrData = scrambler(data,initCond);
    deScrData = descrambler(scrData,initCond);
    errVec(k) = symerr(data,deScrData);
end

Examine errVec to verify that the output from the descrambler matches the original data.

errVec

errVec = 10×1

     0
     0
     0
     0
     0
     0
     0
     0
     0
     0

Additive Scrambling of Input Data

Digital communications systems commonly use additive scrambling to randomize input data to aid in
timing synchronization and power spectral requirements. The comm.Scrambler System object™
implements multiplicative scrambling but does not support additive scrambling. To perform additive
scrambling you can use the comm.PNSequence System object. This example implements the additive
scrambling specified in IEEE 802.11™ by scrambling input data with an output sequence generated
by the comm.PNSequence System object. For a Simulink® model that implements a similar workflow,
see the “Additive Scrambling of Input Data in Simulink” example.

This figure shows an additive scrambler, that uses the generator polynomial x7 + x4 + 1, as specified
in figure 17-7 of IEEE 802.11 Section 17.3.5.5 [1] on page 3-1319.
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Comparing the shift register specified in 802.11 with the shift register implementated using a
comm.PNSequence System object, note that the two shift register schematics are mirror images of
each other. Therefore, when configuring the comm.PNSequence System object to implement an
additive scrambler, you must reverse values for the generator polynomial, the initial states, and the
mask output. To take the output of the register from the leading end, specify a shift value of 7.

For more information about the 802.11 scrambler, see [1] on page 3-1319 and the wlanScramble
(WLAN Toolbox) reference page.

Define variables for the generator polynomial, shift value for the output, an initial shift register state,
a frame of input data, and a variable containing the 127-bit scrambler sequence specified in section
17.3.5.5 of the IEEE 802.11 standard. Create a PN sequence object that initializes the registers by
using an input argument.

genPoly = 'x^7 + x^3 + 1';   % Generator polynomial
shift = 7;                   % Shift value for output
spf = 127;                   % Samples per frame
initState = [1 1 1 1 1 1 1]; % Initial shift register state
dataIn = randi([0 1],spf,1);
ieee802_11_scram_seq = logical([ ...
    0 0 0 0 1 1 1 0 1 1 1 1 0 0 1 0 1 1 0 0 1 ...
    0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 0 0 0 ...
    1 0 1 1 1 0 1 0 1 1 0 1 1 0 0 0 0 0 1 1 0 ...
    0 1 1 0 1 0 1 0 0 1 1 1 0 0 1 1 1 1 0 1 1 ...
    0 1 0 0 0 0 1 0 1 0 1 0 1 1 1 1 1 0 1 0 0 ...
    1 0 1 0 0 0 1 1 0 1 1 1 0 0 0 1 1 1 1 1 1 1])';

pnSeq = comm.PNSequence( ...
    Polynomial=genPoly, ...
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    InitialConditionsSource="Input Port", ...
    Mask=shift, ...
    SamplesPerFrame=spf, ...
    OutputDataType="logical");
pnsequence = pnSeq(initState);

Compare the PN sequence object output to the IEEE 802.11 127-bit scrambler sequence to confirm
the generated PN sequence matches the 802.11 specified sequence.

isequal(ieee802_11_scram_seq,pnsequence)

ans = logical
   1

Scramble input data according to the 802.11 specified additive scrambler by modulo-adding input
data with the PN sequence output.

scrambledOut = xor(dataIn,pnSeq(initState));

Descramble the scrambled data by applying the same scrambler and initial conditions to the
scrambled data.

descrambledData = xor(scrambledOut,pnSeq(initState));

Verify that the descrambled data matches the input data.

isequal(dataIn,descrambledData)

ans = logical
   1

Reference

[1] IEEE Std 802.11™-2020 (Revision of IEEE Std 802.11™-2016). "Part 11: Wireless LAN Medium
Access Control (MAC) and Physical Layer (PHY) Specifications." IEEE Standard for Information
technology — Telecommunications and information exchange between systems. Local and
metropolitan area networks — Specific requirements.

Version History
Introduced in R2012a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).
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See Also
Objects
comm.Descrambler | comm.PNSequence

Blocks
Scrambler
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comm.SphereDecoder
Package: comm

Decode input using sphere decoder

Description
The Sphere Decoder System object decodes the symbols sent over NT antennas using the sphere
decoding algorithm.

To decode input symbols using a sphere decoder:

1 Define and set up your sphere decoder object. See “Construction” on page 3-1321.
2 Call step to decode input symbols according to the properties of comm.SphereDecoder. The

behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
H = comm.SphereDecoder creates a System object, H. This object uses the sphere decoding
algorithm to find the maximum-likelihood solution for a set of received symbols over a MIMO channel
with NT transmit antennas and NR receive antennas.

H = comm.SphereDecoder(Name,Value) creates a sphere decoder object, H, with the specified
property name set to the specified value. Name must appear inside single quotes (''). You can specify
several name-value pair arguments in any order as Name1,Value1,…,NameN,ValueN.

H = comm.SphereDecoder(CONSTELLATION,BITTABLE) creates a sphere decoder object, H, with
the Constellation property set to CONSTELLATION, and the BitTable property set to BITTABLE.

Properties
Constellation

Signal constellation per transmit antenna

Specify the constellation as a complex column vector containing the constellation points to which the
transmitted bits are mapped. The default setting is a QPSK constellation with an average power of 1.
The length of the vector must be a power of two. The object assumes that each transmit antenna uses
the same constellation.

BitTable
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Bit mapping used for each constellation point.

Specify the bit mapping for the symbols that the Constellation property specifies as a numerical
matrix. The default is [0 0; 0 1; 1 0; 1 1], which matches the default Constellation
property value.

The matrix size must be [ConstellationLength bitsPerSymbol]. ConstellationLength
represents the length of the Constellation property. bitsPerSymbol represents the number of
bits that each symbol encodes.

InitialRadius

Initial search radius of the decoding algorithm.

Specify the initial search radius for the decoding algorithm as either Infinity | ZF Solution. The
default is Infinity.

When you set this property to Infinity, the object sets the initial search radius to Inf.

When you set this property to ZF Solution, the object sets the initial search radius to the zero-
forcing solution. This calculation uses the pseudo-inverse of the input channel when decoding. Large
constellations and/or antenna counts can benefit from the initial reduction in the search radius. In
most cases, however, the extra computation of the ZF Solution will not provide a benefit.

DecisionType

Specify the decoding decision method as either Soft | Hard. The default is Soft.

When you set this property to Soft, the decoder outputs log-likelihood ratios (LLRs), or soft bits.

When you set this property to Hard, the decoder converts the soft LLRs to bits. The hard-decision
output logical array follows the mapping of a zero for a negative LLR and one for all other values.

Methods

step Decode received symbols using sphere decoding algorithm

Common to All System Objects
release Allow System object property value changes

Examples

Decode Using a Sphere Decoder

Modulate a set of bits using 16-QAM constellation. Transmit the signal as two parallel streams over a
MIMO channel. Decode using a sphere decoder with perfect channel knowledge.

Specify the modulation order, the number of transmitted bits, the Eb/No ratio, and the symbol
mapping.
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bps = 4; % Bits per symbol
M = 2^bps; % Modulation order
nBits = 1e3*bps;
ebno = 10;
symMap = [11 10 14 15 9 8 12 13 1 0 4 5 3 2 6 7];

Generate and display the symbol mapping of the 16-QAM modulator by using the qammod function
and the custom symbol map.

sym = qammod(symMap(1:M)',M,symMap, ...
    'UnitAveragePower',true,'PlotConstellation',true);

Convert the decimal value of the symbol map to binary bits using the left bit as the most significant
bit (msb). The M-by-bps matrix bitTable is used by the sphere decoder.

bitTable = int2bit(symMap,bps)';

Create a 2x2 MIMO Channel System object with PathGainsOutputPort set to true to use the path
gains as a channel estimate. To ensure the repeatability of results, set the object to use the global
random number stream.

mimo = comm.MIMOChannel( ...
    'PathGainsOutputPort',true, ...
    'RandomStream','Global stream');

Create an AWGN Channel System object.

awgnChan = comm.AWGNChannel('EbNo',ebno,'BitsPerSymbol',bps);
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Create a Sphere Decoder System object that processes bits using hard-decision decoding. Configure
using the custom bit table and symbol map.

sphDec = comm.SphereDecoder('Constellation',sym, ...
    'BitTable',bitTable,'DecisionType','Hard');

Create an error rate System object.

berRate = comm.ErrorRate;

Set the global random number generator seed.

rng(37)

Generate a random data stream.

data = randi([0 1],nBits,1);

Modulate the data and reshape it into two streams to be used with the 2x2 MIMO channel.

modData = qammod(data,M,symMap, ...
    'InputType','bit','UnitAveragePower',true);
modData = reshape(modData,[],2);

Pass the modulated data through the MIMO fading channel and add AWGN.

[fadedSig,pathGains] = mimo(modData);
rxSig = awgnChan(fadedSig);

Decode the received signal using pathGains as a perfect channel estimate.

decodedData = sphDec(rxSig,squeeze(pathGains));

Convert the decoded hard-decision data, which is a logical matrix, into a double column vector to
enable the calculation of error statistics. Calculate and display the bit error rate and the number of
errors.

dataOut = double(decodedData(:));
errorStats = berRate(data,dataOut);
errorStats(1:2)

ans = 2×1

    0.0380
  152.0000

Algorithm
This object implements a soft-output max-log a posteriori probability (APP) MIMO detector by means
of a soft-output Schnorr-Euchner sphere decoder (SESD), implemented as single tree search (STS)
tree traversal. The algorithm assumes the same constellation and bit table on all of the transmit
antennas. Given as inputs, the received symbol vector and the estimated channel matrix, the
algorithm outputs the log-likelihood ratios (LLRs) of the transmitted bits.

The algorithm assumes a MIMO system model with NT transmit antennas and NR receive antennas
where NT symbols are simultaneously sent, expressed as:
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y = Hs + n.

where y is the received symbols, H is the MIMO channel matrix, s is the transmitted symbol vector,
and n is the thermal noise.

The MIMO detector seeks the maximum-likelihood (ML) solution, s ML, such that:

s ML = argmin
s ∈ o

y − Hs 2

where O is the complex-valued constellation from which the NT elements of s are chosen.

Soft detection also computes a log-likelihood ratio (LLR) for each bit that serves as a measure of the
reliability of the estimate for each bit. The LLR is calculated as using the max-log approximation:

L x j, b = min
s ∈ x j, b

(0)
y − Hs 2

⨉
λML

− min
s ∈ x j, b

(1)
y − Hs 2

⨉
λj, b

ML

where

• L(xj,b) is the LLR estimate for each bit.
• x j, b is each sent bit, the bth bit of the jth symbol.

• x j, b
(0)  and x j, b

(1)  are the disjoint sets of vector symbols that have the bth bit in the label of the jth
scalar symbol equal to 0 and 1, respectively. The two λ symbols denotes the distance calculated as
norm squared., specifically:

• λML is the distance s ML.

• λ j, b
ML is the distance to the counter-hypothesis, which denotes the binary complement of the bth

bit in the binary label of the jth entry of s ML, specifically the minimum of the symbol set x
j, b

x j, b
ML

,

which contains all of the possible vectors for which the bth bit of the jth entry is flipped
compared to the same entry of s ML.
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Based on whether x
j, b

x j, b
ML

 is 0 or 1, the LLR estimate for bit x j, b is computed as follows:

L(x j, b) =
λML− λ j, b

ML, x j, b
ML = 0

λ j, b
ML− λML, x j, b

ML = 1
The design of a decoder strives to efficiently find s ML, λML, and λ j, b

ML.

This search can be converted into a tree search by means of the sphere decoding algorithms. To this
end, the channel matrix is decomposed into H = QR by means of a QR decomposition. Left-
multiplying y by QH, the problem can be reformulated as:

λML = arg min
s ∈ o

y − Rs 2

λ j, b
ML =

s ∈ x
j, b

x j, b
ML

argmin y − Rs 2

Using this reformulated problem statement, the triangular structure of R can be exploited to arrange
a tree structure such that each of the leaf nodes corresponds to a possible s vector and the partial
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distances to the nodes in the tree can be calculated cumulatively adding to the partial distance of the
parent node.

In the STS algorithm, the λML and λ j, b
ML metrics are searched concurrently. The goal is to have a list

containing the metric λML, along with the corresponding bit sequence xML and the metrics x
j, b

x j, b
ML

 of
all counter-hypotheses. The sub-tree originating from a given node is searched only if the result can
lead to an update of either λML or λ j, b

ML.

The STS algorithm flow can be summarized as:

1 If when reaching a leaf node, a new ML hypothesis is found d x < λML , all λ j, b
ML for which

x j, b = x j, b
ML are set to λML which now turns into a valued counter-hypothesis. Then, λML is set to

the current distance, d(x).
2 If d(x) ≥ λML, only the counter-hypotheses have to be checked. For all j and b for which

d x < λML  and x j, b = x j, b
ML, the decoder updates λ j, b

ML to be d(x).

3 A sub-tree is pruned if the partial distance of the node is bigger than the current λ j, b
ML which may

be affected when traversing the subtree.
4 The STS concludes once all of the tree nodes have been visited once or pruned.

Limitations
• The output LLR values are not scaled by the noise variance. For coded links employing iterative

coding (LDPC or turbo) or MIMO OFDM with Viterbi decoding, the output LLR values should be
scaled by the channel state information to achieve better performance.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.MIMOChannel | comm.OSTBCCombiner | Sphere Decoder
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step
System object: comm.SphereDecoder
Package: comm

Decode received symbols using sphere decoding algorithm

Syntax
Y = step(H, RXSYMBOLS, CHAN)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Y = step(H, RXSYMBOLS, CHAN) decodes the received symbols, RXSYMBOLS, using the sphere
decoding algorithm. The algorithm can be employed to decode Ns channel realizations in one call,
where in each channel realization, Nr symbols are received.

The inputs are:

RXSYMBOLS: a [Ns Nr] complex double matrix containing the received symbols.

CHAN: a [Ns Nt Nr] or [1 Nt Nr] complex double matrix representing the fading channel coefficients
of the flat-fading MIMO channel. For the [Ns Nt Nr] case, the object applies each channel matrix to
each Nr symbol set. For the block fading case, i.e., when the size of CHAN is [1 Nt Nr], the same
channel is applied to all of the received symbols.

The output Y, which depends on the setting of the DecisionType property, is a double matrix
containing the Log-Likelihood Ratios (LLRs) of the decoded bits or the bits themselves. For both
cases, the size of the output is [Ns*bitsPerSymbol Nt], where bitsPerSymbol represents the
number of bits per transmitted symbol, as determined by the BitTable property.

Note obj specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This initialization
locks nontunable properties and input specifications. For more information on changing property
values, see “System Design in MATLAB Using System Objects”.
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comm.SymbolSynchronizer
Package: comm

Correct symbol timing clock skew

Description
The comm.SymbolSynchronizer System object corrects symbol timing clock skew between a
single-carrier transmitter and receiver for PAM, PSK, QAM, and OQPSK modulation schemes. For
more information, see “Symbol Synchronization Overview” on page 3-1348.

Note The input signal operates on a sample-rate basis and the output signal operates on a symbol-
rate basis.

To correct symbol timing clock skew:

1 Create the comm.SymbolSynchronizer object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation
Syntax
symbolSync = comm.SymbolSynchronizer
symbolSync = comm.SymbolSynchronizer(Name,Value)

Description

symbolSync = comm.SymbolSynchronizer creates a symbol synchronizer System object for
correcting the clock skew between a single-carrier transmitter and receiver.

symbolSync = comm.SymbolSynchronizer(Name,Value) sets properties using one or more
name-value pairs. For example, comm.SymbolSynchronizer('Modulation','OQPSK')
configures the symbol synchronizer System object for an OQPSK-modulated input signal. Enclose
each property name in quotes.

Tunable DampingFactor, NormalizedLoopBandwidth, and DetectorGain properties enable you
to optimize synchronizer performance in your simulation loop without releasing the object.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.
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For more information on changing property values, see System Design in MATLAB Using System
Objects.

Modulation — Modulation type
'PAM/PSK/QAM' (default) | 'OQPSK'

Modulation type, specified as 'PAM/PSK/QAM' or 'OQPSK'.

Tunable: No
Data Types: char | string

TimingErrorDetector — Timing error detector method
Zero-Crossing (decision-directed) (default) | Gardner (non-data-aided) | Early-Late
(non-data-aided) | Mueller-Muller (decision-directed)

Timing error detector method, specified as Zero-Crossing (decision-directed), Gardner
(non-data-aided), Early-Late (non-data-aided), or Mueller-Muller (decision-
directed). This property assigns the timing error detection scheme used in the synchronizer. For
more information, see “Timing Error Detection (TED)” on page 3-1349.

Tunable: No
Data Types: char | string

SamplesPerSymbol — Samples per symbol
2 (default) | integer greater than 1

Samples per symbol, specified as an integer greater than 1. For more information, see Nsps in “Loop
Filter” on page 3-1352.

Tunable: No
Data Types: double

DampingFactor — Damping factor of loop filter
1 (default) | positive scalar

Damping factor of the loop filter, specified as a positive scalar. For more information, see ζ in “Loop
Filter” on page 3-1352.

Tunable: Yes
Data Types: double | single

NormalizedLoopBandwidth — Normalized bandwidth of loop filter
0.01 (default) | scalar in the range (0, 1)

Normalized bandwidth of the loop filter, specified as a scalar in the range (0, 1). The loop bandwidth
is normalized to the sample rate of the input signal. For more information, see BnTs in “Loop Filter”
on page 3-1352.
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Note To ensure the symbol synchronizer locks, set the NormalizedLoopBandwidth property to a
value less than 0.1.

Tunable: Yes
Data Types: double | single

DetectorGain — Phase detector gain
2.7 (default) | positive scalar

Phase detector gain, specified as a positive scalar. For more information, see Kp in “Loop Filter” on
page 3-1352.

Tunable: Yes
Data Types: double | single

Usage

Note For versions earlier than R2016b, use the step function to run the System object™ algorithm.
The arguments to step are the object you created, followed by the arguments shown in this section.

For example, y = step(obj,x) and y = obj(x) perform equivalent operations.

Syntax
symbols = symbolSync(samples)

Description

symbols = symbolSync(samples) corrects symbol timing clock skew between a single-carrier
transmitter and receiver based on the input samples and outputs synchronized symbols.

• The input operates on a sample-rate basis and the output signal operates on a symbol-rate basis.
• You can tune the DampingFactor, NormalizedLoopBandwidth, and DetectorGain properties

to improve the synchronizer performance.

Input Arguments

samples — Input samples
scalar (default) | column vector

Input samples, specified as a scalar or column vector of a PAM-, PSK-, QAM-, or OQPSK-modulated
single-carrier signal.
Data Types: double | single
Complex Number Support: Yes

Output Arguments

symbols — Synchronized symbols
column vector
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Synchronized symbols, returned as a variable-sized column vector. The output symbols inherit the
data type from the input samples. For an input with dimensions Nsamp-by-1, this output has
dimensions Nsym-by-1. Nsym is approximately equal to Nsamp divided by Nsps, where Nsps is equal to the
SamplesPerSymbol property value. The output length is truncated if it exceeds the maximum output

size of 
Nsamp
Nsps

× 1.1 .

timingErr — Estimated timing error
scalar in the range [0, 1] | column vector of elements in the range [0, 1]

Estimated timing error for each input sample, returned as a scalar in the range [0, 1] or column
vector of elements in the range [0, 1]. The estimated timing error is normalized to the input sample
rate. timingErr has the same data type and size as input samples.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to comm.SymbolSynchronizer
clone Create duplicate System object
isLocked Determine if System object is in use

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Correct Symbol Timing Error of QPSK-Modulated Signal

Correct a fixed symbol timing error on a noisy QPSK-modulated signal. Check the bit error rate (BER)
of the synchronized received signal.

Initialize simulation parameters.

M = 4;         % Modulation order for QPSK
nSym = 5000;   % Number of symbols in a packet
sps = 4;       % Samples per symbol
timingErr = 2; % Samples of timing error
snr = 15;      % Signal-to-noise ratio (dB)

Create root raised cosine (RRC) transmit and receive filter System objects.

txfilter = comm.RaisedCosineTransmitFilter( ...
    'OutputSamplesPerSymbol',sps);
rxfilter = comm.RaisedCosineReceiveFilter( ...
    'InputSamplesPerSymbol',sps,'DecimationFactor',2);
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Create a symbol synchronizer System object to correct the timing error.

symbolSync = comm.SymbolSynchronizer;

Generate random M-ary symbols and apply QPSK modulation.

data = randi([0 M-1],nSym,1);
modSig = pskmod(data,M,pi/4);

Create a delay object to introduce a fixed timing error of 2 samples. Because the transmit RRC filter
outputs 4 samples per symbol, 1 sample is equivalent to a 1/4 symbol through the fixed delay and
channel.

fixedDelay = dsp.Delay(timingErr);
fixedDelaySym = ceil(fixedDelay.Length/sps); % Round fixed delay to nearest integer in symbols

Filter the modulated signal through a transmit RRC filter by using the txfilter object. Apply a
signal timing error by using the fixedDelay object.

txSig = txfilter(modSig);
delaySig = fixedDelay(txSig);

Pass the delayed signal through an AWGN channel with a 15 dB signal-to-noise ratio.

rxSig = awgn(delaySig,snr,'measured');

Filter the modulated signal through a receive RRC filter by using the rxfilter object. Display the
scatter plot. Due to the timing error, the received signal does not align with the expected QPSK
reference constellation.

rxSample = rxfilter(rxSig);  
scatterplot(rxSample(1001:end),2)
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Correct the symbol timing error by using the symbolSync object. Display the scatter plot. The
synchronized signal now aligns with the expected QPSK constellation.

rxSync = symbolSync(rxSample);
scatterplot(rxSync(1001:end),2)
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Demodulate the QPSK signal.

recData = pskdemod(rxSync,M,pi/4);

Compute, in symbols, the total system delay due to the fixed delay and the transmit and receive RRC
filters.

sysDelay = dsp.Delay(fixedDelaySym + txfilter.FilterSpanInSymbols/2 + ...
    rxfilter.FilterSpanInSymbols/2);

Compute the BER, taking into account the system delay.

[numErr,ber] = biterr(sysDelay(data),recData)

numErr = 10

ber = 1.0000e-03

Correct Symbol Timing Error of BPSK-Modulated Signal

Correct a fixed symbol timing error on a noisy BPSK transmission signal. Check the bit error rate
(BER) of the synchronized received signal.

Initialize simulation parameters.
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M = 2;         % Modulation order for BPSK
nSym = 20000;  % Number of symbols in a packet
sps = 4;       % Samples per symbol
timingErr = 2; % Samples of timing error
snr = 15;      % Signal-to-noise ratio (dB)

Create root raised cosine (RRC) transmit and receive filter System objects.

txfilter = comm.RaisedCosineTransmitFilter(...
    'OutputSamplesPerSymbol',sps);
rxfilter = comm.RaisedCosineReceiveFilter(...
    'InputSamplesPerSymbol',sps,'DecimationFactor',1);

Create a symbol synchronizer System object™ to correct the timing error.

symbolSync = comm.SymbolSynchronizer(...
    'SamplesPerSymbol',sps, ...
    'NormalizedLoopBandwidth',0.01, ...
    'DampingFactor',1.0, ...
    'TimingErrorDetector','Early-Late (non-data-aided)');

Generate random data symbols and apply BPSK modulation.

data = randi([0 M-1],nSym,1);
modSig = pskmod(data,M);

Create a delay object to introduce a fixed timing error of 2 samples. Because the transmit RRC filter
outputs 4 samples per symbol, 1 sample is equivalent to a 1/4 symbol through the fixed delay and
channel.

fixedDelay = dsp.Delay(timingErr);
fixedDelaySym = ceil(fixedDelay.Length/sps); % Round fixed delay to nearest integer in symbols

Filter the modulated signal through a transmit RRC filter by using the txfilter object. Apply a
signal timing error by using the fixedDelay object.

txSig = txfilter(modSig);
delayedSig = fixedDelay(txSig);

Pass the delayed signal through an AWGN channel.

rxSig = awgn(delayedSig,snr,'measured');

Filter the modulated signal through a receive RRC filter by using the rxfilter object. Display the
scatter plot. Due to the timing error, the received signal does not align with the expected BPSK
reference constellation.

rxSample = rxfilter(rxSig);
scatterplot(rxSample(10000:end),2)
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Correct the symbol timing error by using the symbolSync object. Display the scatter plot. The
synchronized signal now aligns with the expected BPSK constellation.

rxSync = symbolSync(rxSample);
scatterplot(rxSync(10000:end),2)
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Demodulate the BPSK signal.

recData = pskdemod(rxSync,M);

Compute, in symbols, the total system delay due to the fixed delay and the transmit and receive RRC
filters.

sysDelay = dsp.Delay(fixedDelaySym + txfilter.FilterSpanInSymbols/2 + ...
    rxfilter.FilterSpanInSymbols/2);

Compute the BER, taking into account the system delay.

[numErr1,ber1] = biterr(sysDelay(data),recData)

numErr1 = 8

ber1 = 4.0000e-04

Correct Symbol Timing and Doppler Offsets

Correct symbol timing and frequency offset errors by using the comm.SymbolSynchronizer and
comm.CarrierSynchronizer System objects.

Configuration

Initialize simulation parameters.
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M = 16;       % Modulation order
nSym = 2000;  % Number of symbols in a packet
sps = 2;      % Samples per symbol
spsFilt = 8;  % Samples per symbol for filters and channel
spsSync = 2;  % Samples per symbol for synchronizers
lenFilt = 10; % RRC filter length

Create a matched pair of root raised cosine (RRC) filter System objects for transmitter and receiver.

txfilter = comm.RaisedCosineTransmitFilter( ...
    FilterSpanInSymbols=lenFilt, ...
    OutputSamplesPerSymbol=spsFilt, ...
    Gain=sqrt(spsFilt));
rxfilter = comm.RaisedCosineReceiveFilter( ...
    FilterSpanInSymbols=lenFilt, ...
    InputSamplesPerSymbol=spsFilt, ...
    DecimationFactor=spsFilt/2, ...
    Gain=sqrt(1/spsFilt));

Create a phase-frequency offset System object to introduce a 100 Hz Doppler shift.

doppler = comm.PhaseFrequencyOffset( ...
    FrequencyOffset=100, ...
    PhaseOffset=45, ...
    SampleRate=1e6);

Create a variable delay System object to introduce timing offsets.

varDelay = dsp.VariableFractionalDelay;

Create carrier and symbol synchronizer System objects to correct for Doppler shift and timing offset,
respectively.

carrierSync = comm.CarrierSynchronizer( ...
    SamplesPerSymbol=spsSync);
symbolSync = comm.SymbolSynchronizer( ...
    TimingErrorDetector='Early-Late (non-data-aided)', ...
    SamplesPerSymbol=spsSync);

Create constellation diagram System objects to view the results.

refConst = qammod(0:M-1,M,UnitAveragePower=true);
cdReceive = comm.ConstellationDiagram( ...
    ReferenceConstellation=refConst, ...
    SamplesPerSymbol=spsFilt,Title='Received Signal');
cdDoppler = comm.ConstellationDiagram( ...
    ReferenceConstellation=refConst, ...
    SamplesPerSymbol=spsSync, ...
    Title='Frequency Corrected Signal');
cdTiming = comm.ConstellationDiagram( ...
    ReferenceConstellation=refConst, ...
    SamplesPerSymbol=spsSync, ...
    Title='Frequency and Timing Synchronized Signal');

Main Processing Loop

The main processing loop:
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• Generates random symbols and applies QAM modulation.
• Filters the modulated signal.
• Applies frequency and timing offsets.
• Passes the transmitted signal through an AWGN channel.
• Filters the received signal.
• Corrects the Doppler shift.
• Corrects the timing offset.

for k = 1:15
    data = randi([0 M-1],nSym,1);
    modSig = qammod(data,M,UnitAveragePower=true);         
    txSig = txfilter(modSig);            
    
    txDoppler = doppler(txSig);          
    txDelay = varDelay(txDoppler,k/15);  
    
    rxSig = awgn(txDelay,25);            
    
    rxFiltSig = rxfilter(rxSig);         
    rxCorr = carrierSync(rxFiltSig); 
    rxData = symbolSync(rxCorr);  
end

Visualization

Plot the constellation diagrams of the received signal, frequency corrected signal, and frequency and
timing synchronized signal. Specific constellation points cannot be identified in the received signal
and can be only partially identified in the frequency corrected signal. However, the timing and
frequency synchronized signal aligns with the expected QAM constellation points.

cdReceive(rxSig)
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cdDoppler(rxCorr)
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cdTiming(rxData)
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Timing Error for Noisy 8-PSK Signal

Correct a monotonically increasing symbol timing error on a noisy 8-PSK signal. Display the
normalized timing error.

Initialize simulation parameters.

M = 8;            % Modulation order
nSym = 5000;      % Number of symbol in a packet
sps = 2;          % Samples per symbol
nSamp = sps*nSym; % Number of samples in a packet

Create root raised cosine (RRC) transmit and receive filter System objects.
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txfilter = comm.RaisedCosineTransmitFilter( ...
    'OutputSamplesPerSymbol',sps);
rxfilter = comm.RaisedCosineReceiveFilter( ...
    'InputSamplesPerSymbol',sps, ...
    'DecimationFactor',1);

Create a variable fractional delay System object™ to introduce a monotonically increasing timing
error.

varDelay = dsp.VariableFractionalDelay;

Create a symbol synchronizer System object to correct the timing error.

symbolSync = comm.SymbolSynchronizer(...
    'TimingErrorDetector','Mueller-Muller (decision-directed)', ...
    'SamplesPerSymbol',sps);

Generate random 8-ary symbols and apply 8-PSK modulation.

data = randi([0 M-1],nSym,1);
modSig = pskmod(data,M,pi/8);

Filter the modulated signal through a raised cosine transmit filter and apply a monotonically
increasing timing delay.

vdelay = (0:1/nSamp:1-1/nSamp)';
txSig = txfilter(modSig);      
delaySig = varDelay(txSig,vdelay);

Pass the delayed signal through an AWGN channel with a 15 dB signal-to-noise ratio.

rxSig = awgn(delaySig,15,'measured');

Filter the modulated signal through a receive RRC filter. Display the scatter plot. Due to the timing
error, the received signal does not align with the expected 8-PSK reference constellation.

rxSample = rxfilter(rxSig);  
scatterplot(rxSample,sps)
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Correct the symbol timing error by using the symbolSync object. Display the scatter plot. The
synchronized signal now aligns with the expected 8-PSK constellation.

[rxSym,tError] = symbolSync(rxSample);
scatterplot(rxSym(1001:end))
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Plot the timing error estimate. Over time, the normalized timing error increases to 1 sample.

figure
plot(vdelay,tError)
xlabel('Time (s)')
ylabel('Timing Error (samples)')
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More About
Symbol Synchronization Overview

The symbol timing synchronizer algorithm is based on a phased lock loop (PLL) algorithm that
consists of four components:

• Timing error detector (TED)
• Interpolator
• Interpolation controller
• Loop filter

For OQPSK modulation, the in-phase and quadrature signal components are first aligned (as in QPSK
modulation) using a state buffer to cache the last half symbol of the previous input. After initial
alignment, the remaining synchronization process is the same as for QPSK modulation.

This block diagram shows an example of a timing synchronizer. In the figure, the symbol timing PLL
operates on x(t), the received sample signal after matched filtering. The symbol timing PLL outputs
the symbol signal, x(kTs + τ ), after correcting for the clock skew between the transmitter and
receiver.
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Timing Error Detection (TED)

The symbol timing synchronizer supports non-data-aided TED and decision-directed TED methods.
This table shows the timing estimate expressions for the TED method options.

TED
Method

Expression

Zero-
crossing
(decision-
directed)

e(k) = x (k− 1/2)Ts + τ a 0(k− 1) − a 0(k) + y (k− 1/2)Ts + τ a 1(k− 1) − a 1(k)

Gardner
(non-data-
aided)

e(k) = x (k− 1/2)Ts + τ x (k− 1)Ts + τ − x(kTs + τ )
+ y (k− 1/2)Ts + τ y (k− 1)Ts + τ − y(kTs + τ )

Early-late
(non-data-
aided)

e(k) = x(kTs + τ ) x (k + 1/2)Ts + τ − x (k− 1/2)Ts + τ + y(kTs + τ
) y (k + 1/2)Ts + τ − y (k− 1/2)Ts + τ

Mueller-
Muller
(decision-
directed)

e(k) = a 0(k− 1)x(kTs + τ ) − a 0(k)x (k− 1)Ts + τ + a 1(k− 1)y(kTs + τ ) − a 1(k)y (k− 1)Ts + τ

The non-data-aided TED (Gardner and early-late) methods use received samples without any
knowledge of the transmitted signal or the results of the channel estimation. Non-data-aided TED is
used to estimate the timing error for signals with modulation schemes that have constellation points
aligned with the in-phase or quadrature axis. Examples of signals suitable for the Gardner or early-
late methods include QPSK-modulated signals with a zero phase offset that has points at {1+0i, 0+1i,
-1+0i, 0−1i} and BPSK-modulated signals with a zero phase offset.

The early-late method is similar to the Gardner method but the Gardner method performs better in
systems with high SNR values because it has lower self noise than the early-late method.

• Gardner method — The Gardner method is a non-data-aided feedback method that is
independent of carrier phase recovery. It is used for baseband systems and modulated carrier
systems. More specifically, this method is used for systems that use a linear modulation type with
Nyquist pulses that have an excess bandwidth between approximately 40% and 100%. Examples
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include systems that use PAM, PSK, QAM, or OQPSK modulation and that shape the signal using
raised cosine filters whose rolloff factor is between 0.4 and 1. In the presence of noise, the
performance of this timing recovery method improves as the excess bandwidth increases (or
rolloff factor increases in the case of a raised cosine filter). The Gardner method is similar to the
early-late gate method.

• Early-late method — The early-late method is a non-data-aided feedback method. It is used for
systems that use a linear modulation type such as PAM, PSK, QAM, or OQPSK modulation. For
example, systems using a raised cosine filter with Nyquist pulses. In the presence of noise, the
performance of this timing recovery method improves as the excess bandwidth of the pulse
increases (or rolloff factor increases in the case of a raised cosine filter).

The decision-directed TED (zero-crossing and Mueller-Muller) methods use the sign function to
estimate the in-phase and quadrature components of received samples, which results in lower
computational complexity than the non-data-aided TED methods.

• Zero-crossing method — The zero-crossing method is a decision-directed technique that
requires 2 samples per symbol at the input to the synchronizer. It is used in low-SNR conditions
for all values of excess bandwidth and in moderate-SNR conditions for moderate excess bandwidth
factors in the approximate range [0.4, 0.6].

• Mueller-Muller method — The Mueller-Muller method is a decision-directed feedback method
that requires prior recovery of the carrier phase. When the input signal has Nyquist pulses (for
example, when using a raised cosine filter), the Mueller-Muller method has no self noise. For
narrowband signaling in the presence of noise, the performance of the Mueller-Muller method
improves as the excess bandwidth factor of the pulse decreases.

Because the decision-directed methods (zero-crossing and Mueller-Muller) estimate timing error
based on the sign of the in-phase and quadrature components of signals passed to the synchronizer,
they are not recommended for constellations that have points with either a zero in-phase or a
quadrature component. x(kTs + τ ) and y(kTs + τ ) are the in-phase and quadrature components of the
input signals to the timing error detector, where τ  is the estimated timing error. The Mueller-Muller
method coefficients a 0(k) and a 1(k) are the estimates of x(kTs + τ ) and y(kTs + τ ). The timing
estimates are made by applying the sign function to the in-phase and quadrature components and
are used for only the decision-directed TED methods.

Interpolator

The time delay is estimated from the fixed-rate samples of the matched filter, which are asynchronous
with the symbol rate. Because the resulting samples are not aligned with the symbol boundaries, an
interpolator is used to "move" the samples. Because the time delay is unknown, the interpolator must
be adaptive. Moreover, because the interpolant is a linear combination of the available samples, it can
be thought of as the output of a filter.
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The interpolator uses a piecewise parabolic interpolator with a Farrow structure and coefficient α set
to 1/2 (see Rice, Michael, Digital Communications: A Discrete-Time Approach).

Interpolation Control

Interpolation control provides the interpolator with the basepoint index and fractional interval. The
basepoint index is the sample index nearest to the interpolant. The fractional interval is the ratio of
the time between the interpolant and its basepoint index and the interpolation interval.
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Interpolation is performed for every sample, and a strobe signal is used to determine if the
interpolant is output. The synchronizer uses a modulo-1 counter interpolation control to provide the
strobe and the fractional interval for use with the interpolator.

Loop Filter

The synchronizer uses a proportional-plus integrator (PI) loop filter. The proportional gain, K1, and
the integrator gain, K2, are calculated by

K1 = −4ζθ
1 + 2ζθ + θ2 Kp

and

K2 = −4θ2

1 + 2ζθ + θ2 Kp
.

The interim term, θ, is given by

θ =

BnTs
Nsps

ζ + 1
4ζ

,

where:

• Nsps is the number of samples per symbol.
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• ζ is the damping factor.
• BnTs is the normalized loop bandwidth.
• Kp is the detector gain.

Version History
Introduced in R2015a

References
[1] Rice, Michael. Digital Communications: A Discrete-Time Approach. Upper Saddle River, NJ:

Prentice Hall, 2008.

[2] Mengali, Umberto and Aldo N. D’Andrea. Synchronization Techniques for Digital Receivers. New
York: Plenum Press, 1997.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
comm.CarrierSynchronizer

Blocks
Symbol Synchronizer
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comm.ThermalNoise
Package: comm

Add thermal noise to signal

Description
The comm.ThermalNoise System object object simulates the effects of thermal noise on a complex
baseband signal. For more information, see “Algorithms” on page 3-1360.

To add thermal noise to a complex baseband signal:

1 Create the comm.ThermalNoise object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
noise = comm.ThermalNoise
noise = comm.ThermalNoise(Name=Value)

Description

noise = comm.ThermalNoise creates a receiver thermal noise System object. This object adds
thermal noise to the complex baseband input signal.

noise = comm.ThermalNoise(Name=Value) sets properties using one or more name-value
arguments. For example, SampleRate=2 sets the input signal sample rate to 2.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

NoiseMethod — Method used to set noise power
'Noise temperature' (default) | 'Noise figure' | 'Noise factor'

Method used to set the noise power, specified as 'Noise temperature', 'Noise figure', or
'Noise factor'.

3 System Objects

3-1354



NoiseTemperature — Receiver noise temperature
290 (default) | nonnegative scalar

Receiver noise temperature, specified in kelvins as a nonnegative scalar. Noise temperature is
typically used to characterize receivers because the input noise temperature can vary and is often
less than 290 K.

Tunable: Yes

Dependencies

To enable this property, set the NoiseMethod property to 'Noise temperature'.
Data Types: double

NoiseFigure — Noise figure
3.01 (default) | nonnegative scalar

Noise figure in dB, specified as a nonnegative scalar. Noise figure describes the performance of a
receiver and does not include the effect of the antenna. It is defined only for an input noise
temperature of 290 K. The noise figure is the dB equivalent of the noise factor.

Tunable: Yes

Dependencies

To enable this property, set the NoiseMethod property to 'Noise figure'.
Data Types: double

NoiseFactor — Noise factor
2 (default) | scalar ≥ 1

Noise factor, specified as a scalar greater than or equal to 1. Noise factor describes the performance
of a receiver and does not include the effect of the antenna. It is defined only for an input noise
temperature of 290 K. The noise factor is the linear equivalent of the noise figure.

Tunable: Yes

Dependencies

To enable this property, set the NoiseMethod property to 'Noise factor'.
Data Types: double

ReferenceLoad — Reference load
1 (default) | positive scalar

Reference load in ohms, specified as a positive scalar. The reference load value is used to compute
the voltage levels based on the signal and noise power levels.

Tunable: Yes
Data Types: double
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SampleRate — Sample rate
1 (default) | positive scalar

Sample rate in Hz, specified as a positive scalar. The object computes the variance of the noise added
to the input signal as kT×SampleRate. The value k is Boltzmann's constant and T is the noise
temperature specified explicitly or implicitly via one of the noise methods.
Data Types: double

Add290KAntennaNoise — Option to add 290 K antenna noise
false or 0 (default) | true or 1

Option to add 290 K antenna noise to the input signal, specified as a logical 0 (false) or 1 (true). To
add 290 K antenna noise, set this property to true. The total noise applied to the input signal is the
sum of the circuit noise and the antenna noise.

Dependencies

To enable this property, set the NoiseMethod property to 'Noise factor' or 'Noise figure'.

Usage

Syntax
outsignal = noise(insignal)

Description

outsignal = noise(insignal) adds thermal noise to the complex baseband input signal
insignal and returns the result in outsignal.

Input Arguments

insignal — Input signal
scalar | column vector

Baseband signal, specified as a scalar or column vector of complex values.
Data Types: single | double
Complex Number Support: Yes

Output Arguments

outsignal — Output signal
scalar | column vector

Output signal, returned as a scalar or column vector of complex values with the same length and data
type as the input signal.
Data Types: single | double
Complex Number Support: Yes
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Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Add Thermal Noise to QPSK Signal

Create a thermal noise object with a noise temperature of 290 K and a sample rate of 5 MHz.

thNoise = comm.ThermalNoise('NoiseTemperature',290,'SampleRate',5e6);

Generate QPSK modulated data with an output power of 20 dBm.

data = randi([0 3],1000,1);
modData = (10^((20-30)/20)) * pskmod(data,4,pi/4);

Attenuate the signal by the free space path loss assuming a 1000 m link distance and a carrier
frequency of 2 GHz.

d = 1000;                    % m  
f = 2e9;                     % Hz
c = 3e8;                     % m/s 
fsl = (4*pi*d*f/c)^2;
rxData = modData/sqrt(fsl);

Add thermal noise to the signal. Plot the noisy constellation.

noisyData = thNoise(rxData);
scatterplot(noisyData)
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Add Antenna and Receiver Thermal Noise to 16-QAM Signal

Create a thermal noise object with a 5 dB noise figure and a 10 MHz sample rate. Include 290 K
antenna noise.

thermalNoise = comm.ThermalNoise('NoiseMethod','Noise figure', ...
    'NoiseFigure',5, ...
    'SampleRate',10e6, ...
    'Add290KAntennaNoise',true);

Generate QPSK modulated data with an output power of 1 W.

data = randi([0 15],1000,1);
modSig = qammod(data,16,'UnitAveragePower',true);

Attenuate the signal by the free space path loss assuming a 1 km link distance and a 5 GHz carrier
frequency.

d = 1000;                   % m
f = 5e9;                    % Hz
c = 3e8;                    % m/s
fsl = (4*pi*d*f/c)^2;
rxSig = modSig/sqrt(fsl);

Add thermal noise to the signal and plot its constellation.
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noisySig = thermalNoise(rxSig);
scatterplot(noisySig)

Estimate the SNR.

mer = comm.MER;
snrEst1 = mer(rxSig,noisySig)

snrEst1 = 22.6611

Decrease the noise figure to 0 dB and plot the resultant received signal. The signal is not completely
noiseless because antenna noise is included.

thermalNoise.NoiseFigure = 0;
noisySig = thermalNoise(rxSig);
scatterplot(noisySig)
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Estimate the SNR. The SNR is 5 dB higher than in the first case, which is expected given the 5 dB
decrease in the noise figure.

snrEst2 = mer(rxSig,noisySig)

snrEst2 = 27.8658

snrEst2 - snrEst1

ans = 5.2047

Algorithms
Wireless receiver performance is often expressed as a noise factor or figure. The noise factor is
defined as the ratio of the input signal-to-noise ratio, Si/Ni to the output signal-to-noise ratio, So/No,
such that

F =
Si/Ni
So/No

.

Given the receiver gain G and receiver noise power Nckt, the noise factor can be expressed as

F =
Si/Ni

GSi/ Nckt + GNi

=
Nckt + GNi

GNi
.
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The IEEE defines the noise factor assuming that noise temperature at the input is T0, where T0 = 290
K. The noise factor is then

F =
Nckt + GNi

GNi

=
GkBTckt + GkBT0

GkBT0

=
Tckt + T0

T0
.

Tckt is the equivalent input noise temperature of the receiver and is expressed as

Tckt = T0(F − 1) .

The overall noise temperature of an antenna and receiver Tsys is

Tsys = Tant + Tckt ,

where Tant is the antenna noise temperature.

The noise figure NF is the dB equivalent of the noise factor and can be expressed as

NF = 10log10(F) .

The noise power can be expressed as

N = kTB = V2/R,

where V is the noise voltage expressed as

V2 = kTBR,

and R is the reference load.

Version History
Introduced in R2012a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
comm.AWGNChannel | Receiver Thermal Noise
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comm.TurboDecoder
Package: comm

Decode input signal using parallel concatenated decoding scheme

Description
The comm.TurboDecoder System object uses a parallel concatenated decoding scheme to decode a
coded input signal. The input signal is typically the soft-decision output from the baseband
demodulation operation. For more information, see “Parallel Concatenated Convolutional Decoding
Scheme” on page 3-1373.

To decode an input signal using a parallel concatenated decoding scheme:

1 Create the comm.TurboDecoder object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
turbodec = comm.TurboDecoder
turbodec = comm.TurboDecoder(trellis,interlvrindices,numiter)
turbodec = comm.TurboDecoder( ___ ,Name,Value)

Description

turbodec = comm.TurboDecoder creates a turbo decoder System object. This object uses the a-
posteriori probability (APP) constituent decoder to iteratively decode the parallel-concatenated
convolutionally encoded input data.

turbodec = comm.TurboDecoder(trellis,interlvrindices,numiter) creates a turbo
decoder System object with the TrellisStructure, InterleaverIndices, and numiter,
respectively. The trellis input must be specified as described by the TrellisStructure property.
The interlvrindices input must be specified as described by the InterleaverIndices property.
The numiter input must be specified as described by the NumIterations property.

turbodec = comm.TurboDecoder( ___ ,Name,Value) sets properties using one or more name-
value pairs in addition to any input argument combination from previous syntaxes. Enclose each
property name in quotes. For example,
comm.TurboDecoder('InterleaverIndicesSource','Input port') configures a turbo
decoder System object with the interleaver indices to be supplied as an input argument to the System
object when it is called.
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Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

TrellisStructure — Trellis description of constituent convolutional code
poly2trellis(4,[13 15],13) (default) | structure

Trellis description of the constituent convolutional code, specified as a structure that contains the
trellis description for a rate K ∕ N code. K is the number of input bit streams, and N is the number of
output bit streams.

Note K must be 1 for the turbo coder. For more information, see “Coding Rate” on page 3-1374.

You can either use the poly2trellis function to create the trellis structure or create it manually.
For more about this structure, see “Trellis Description of a Convolutional Code” and the istrellis
function.

The trellis structure contains these fields.

numInputSymbols — Number of symbols input to encoder
2K

Number of symbols input to the encoder, specified as an integer equal to 2K, where K is the number of
input bit streams.
Data Types: double

numOutputSymbols — Number of symbols output from encoder
2N

Number of symbols output from the encoder, specified as an integer equal to 2N, where N is the
number of output bit streams.
Data Types: double

numStates — Number of states in encoder
power of 2

Number of states in the encoder, specified as a power of 2.
Data Types: double

nextStates — Next states
matrix of integers

Next states for all combinations of current states and current inputs, specified as a matrix of integers.
The matrix size must be numStates by 2K.
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Data Types: double

outputs — Outputs
matrix of octal numbers

Outputs for all combinations of current states and current inputs, specified as a matrix of octal
numbers. The matrix size must be numStates by 2K.
Data Types: double

Data Types: struct

InterleaverIndicesSource — Source of interleaver indices
'Property' (default) | 'Input port'

Source of interleaver indices, specified as 'Property' or 'Input port'.

• When you set this property to 'Input port', the object executes using the input argument
interlvrindices when you call the object. The vector length and values for the interleaver
indices and coded input signal can change with each call to the object.

• When you set this property to 'Property', the object executes using the interleaver indices that
you specified with the InterleaverIndices property when configuring the object.

Data Types: char | string

InterleaverIndices — Interleaver indices
(64:-1:1).' (default) | column vector of integers

Interleaver indices that define the mapping used to permute the codeword bits input to the decoder,
specified as a column vector of integers. The vector must be of length L. Each element of the vector
must be an integer in the range [1, L] and must be unique. L is the length decoded output message,
decmsg. Each element of the vector must be an integer in the range [1, L] and must be unique.
Dependencies

To enable this property, set the InterleaverIndicesSource property to 'Property'.
Data Types: double

InputIndicesSource — Source of input indices
'Auto' (default) | 'Property' | 'Input port'

Source of input indices, specified as 'Auto', 'Property', or 'Input port'.

• When you set this property to 'Auto', the object computes input indices that assume the second
systematic stream is punctured and all tail bits are included in the input.

• When you set this property to 'Property', the object uses the input indices that you specify for
the InputIndices property.

• When this property is set to 'Input port', the object executes using the input indices specified
by the input argument inindices. The vector length and values for the input indices and the
coded input signal can change with each call to the object.

Data Types: char | string
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InputIndices — Input indices
getTurboIOIndices(64,2,3) (default) | column vector of integers

Input indices for the bit ordering and puncturing used on the fully encoded data, specified as a
column vector of integers. The length of this property must equal the length of the input data vector
codeword.
Dependencies

To enable this property, set the InputIndicesSource property to 'Property'.
Data Types: double

Algorithm — Decoding algorithm
'True APP' (default) | 'Max*' | 'Max'

Decoding algorithm, specified as 'True APP', 'Max*', or 'Max'. When you set this property to
'True APP', the object implements true APP decoding. When you set this property to 'Max*' or
'Max', the object uses approximations to increase the speed of the computations. For more
information, see “APP Decoder” on page 3-1374.
Data Types: char | string

NumScalingBits — Number of scaling bits
3 (default) | integer in the range [0, 8]

Number of scaling bits, specified as an integer in the range [0, 8]. This property sets the number of
bits the constituent decoders use to scale the input data to avoid losing precision during
computations. The constituent decoders multiply the input by 2 NumScalingBits and divide the pre-output
by the same factor. For more information, see “APP Decoder” on page 3-1374.
Dependencies

This enable this property, set the Algorithm property to 'Max*'.
Data Types: double

NumIterations — Number of decoding iterations
6 (default) | positive integer

Number of decoding iterations, specified as a positive integer. This property sets the number of
decoding iterations used for each call to the object. The object iterates and provides updates to the
log-likelihood ratios (LLR) of the uncoded output bits. The output of the object is the hard-decision
output of the final LLR update.
Data Types: double

Usage

Syntax
decmsg = turbodec(codeword)
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decmsg = turbodec(codeword,interlvrindices)
decmsg = turbodec(codeword,interlvrindices,inindices)

Description

decmsg = turbodec(codeword) decodes the input codeword using the parallel concatenated
convolutional decoding scheme that is specified by the trellis structure and interleaver indices.
turbodec returns the binary decoded data. For more information, see “Parallel Concatenated
Convolutional Decoding Scheme” on page 3-1373.

decmsg = turbodec(codeword,interlvrindices) additionally specifies the interleaver indices.
To enable this syntax, set the InterleaverIndicesSource property to 'Input port'. The interleaver
indices define the mapping used to permute the input at the decoder.

decmsg = turbodec(codeword,interlvrindices,inindices) additionally specifies the bit
ordering and puncturing used on the fully encoded data. To enable this syntax, set the
InputIndicesSource property to 'Input port'. The input indices vector values must be relative to
the fully encoded data, including the tail bits for the coding scheme for all streams.

Input Arguments

codeword — Parallel concatenated codeword
column vector

Parallel concatenated codeword, specified as a column vector of length M, where M is the length of
the parallel concatenated codeword.
Data Types: double | single

interlvrindices — Interleaver indices
column vector of integers

Interleaver indices, specified as a column vector of integers. The vector must be of length L, where L
is the length of the decoded output message, decmsg. Each element of the vector must be an integer
in the range [1, L] and must be unique. The interleaver indices define the mapping used to permute
the input bits at the decoder.

Tunable: Yes

Dependencies

To enable this property, set the InterleaverIndicesSource property to 'Input port'.
Data Types: double

inindices — Input indices
column vector of integers

Input indices for the bit ordering and puncturing used on the fully encoded data, specified as a
column vector of integers. The length of the inindices vector must equal the length of the input
data vector codeword. Element values in the inindices vector must be relative to the fully encoded
data, including the tail bits for the coding scheme for all streams.

Dependencies

To enable this argument, set the InputIndicesSource property to 'Input port'.
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Data Types: double

Output Arguments

decmsg — Decoded message
binary column vector

Decoded message, returned as a binary column vector of length L, where L is the length of the
decoded output message. This output signal is the same as data type of the codeword input.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Define Output and Input Indices for Full-Length and Punctured Turbo Coding

Define output indices by using the OutputIndices property for turbo encoding and define the input
indices by using the InputIndices property for turbo decoding. Show full-length punctured
encoding and decoding for a rate 1/2 code and 10-bit block length.

Initialize Parameters

Define parameters to initialize the encoder.

blkLen = 10;
trellis = poly2trellis(4,[13 15],13);
n = log2(trellis.numOutputSymbols);
mLen = log2(trellis.numStates);

Full-Length Encoding and Decoding

Initialize variables and turbo encoding and decoding System objects for full-length coding. Turbo
encode and decode the message. Display the turbo coding rate. Check the length of the coded output
versus the length of the output indices vector.

fullOut = (1:(mLen+blkLen)*2*n)';
outLen = length(fullOut);
netRate = blkLen/outLen;
data = randi([0 1],blkLen,1);
intIndices  = randperm(blkLen);

turboEnc = comm.TurboEncoder('TrellisStructure',trellis);
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turboEnc.InterleaverIndices = intIndices;
turboEnc.OutputIndicesSource = 'Property';
turboEnc.OutputIndices = fullOut;

turboDec = comm.TurboDecoder('TrellisStructure',trellis);
turboDec.InterleaverIndices = intIndices;
turboDec.InputIndicesSource = 'Property';
turboDec.InputIndices = fullOut;

encMsg = turboEnc(data);      % Encode

disp(['Turbo coding rate: ' num2str(netRate)])

Turbo coding rate: 0.19231

encOutLen = length(encMsg)    % Display encoded length

encOutLen = 52

isequal(encOutLen,outLen)     % Check lengths

ans = logical
   1

rxMsg = turboDec(2*encMsg-1); % Decode

isequal(data, rxMsg)          % Compare bits with decoded bits

ans = logical
   1

Punctured Encoding and Decoding

Specify the output indices for puncturing of the second systematic stream by using the
getTurboIOIndices function. Initialize variables and turbo encoding and decoding System objects
for punctured coding. Turbo encode and decode the message. Display the turbo coding rate. Check
the length of the coded output versus the length of the output indices vector.

puncOut = getTurboIOIndices(blkLen,n,mLen);
outLen = length(puncOut);
netRate = blkLen/outLen;
data = randi([0 1],blkLen,1);
intIndices  = randperm(blkLen);

turboEnc = comm.TurboEncoder('TrellisStructure',trellis);
turboEnc.InterleaverIndices = intIndices;
turboEnc.OutputIndicesSource = 'Property';
turboEnc.OutputIndices = puncOut;

turboDec = comm.TurboDecoder('TrellisStructure',trellis);
turboDec.InterleaverIndices = intIndices;
turboDec.InputIndicesSource = 'Property';
turboDec.InputIndices = puncOut;

encMsg = turboEnc(data);   % Encode

disp(['Turbo coding rate: ' num2str(netRate)])
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Turbo coding rate: 0.25641

encOutLen = length(encMsg) % Display encoded length

encOutLen = 39

isequal(encOutLen, outLen) % Check lengths

ans = logical
   1

rxMsg = turboDec(2*encMsg-1); % Decode

isequal(data, rxMsg)          % Compare bits with decoded bits

ans = logical
   1

Compare Full and Punctured Outputs

The output of the encoder interlaces the individual bit streams. The third bit of every 4-bit tuple is
removed from the full-length code to produce the punctured code. This third output bit stream
corresponds to the second systematic bit stream. Display the indices of the full-length code and the
indices of the punctured code to show that the third bit of every 4-bit tuple is punctured.

fullOut'

ans = 1×52

     1     2     3     4     5     6     7     8     9    10    11    12    13    14    15    16    17    18    19    20    21    22    23    24    25    26    27    28    29    30    31    32    33    34    35    36    37    38    39    40    41    42    43    44    45    46    47    48    49    50

puncOut'

ans = 1×39

     1     2     4     5     6     8     9    10    12    13    14    16    17    18    20    21    22    24    25    26    28    29    30    32    33    34    36    37    38    40    41    42    44    45    46    48    49    50    52

Transmit and Receive Turbo-Encoded Data over BPSK-Modulated AWGN Channel

Simulate the transmission and reception of BPSK data over an AWGN channel by using turbo
encoding and decoding.

Specify simulation parameters, and then compute the effective coding rate and noise variance. For
BPSK modulation, ES/N0 equals Eb/N0 because the number of bits per symbol (bps) is 1. To ease
reuse of this code for other modulation schemes, calculations in this example include the bps terms.
Define the packet length, trellis structure, and number of iterations. Calculate the noise variance
using ES/N0 and the code rate. Set the random number generator to its default state to ensure that
the results are repeatable.

modOrd = 2; % Modulation order
bps = log2(modOrd); % Bits per symbol
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EbNo = 1; % Energy per bit to noise power spectral density ratio in dB
EsNo = EbNo + 10*log10(bps); % Energy per symbol to noise power spectral density ratio in dB

L = 256; % Input packet length in bits
trellis = poly2trellis(4,[13 15 17],13);
numiter = 4;
n = log2(trellis.numOutputSymbols);
numTails = log2(trellis.numStates)*n;
M = L*(2*n - 1) + 2*numTails; % Output codeword packet length
rate = L/M; % Coding rate

snrdB = EsNo + 10*log10(rate); % Signal to noise ratio in dB
noiseVar = 1./(10.^(snrdB/10)); % Noise variance

rng default

Generate random interleaver indices.

intrlvrIndices = randperm(L);

Create a turbo encoder and decoder pair. Use the defined trellis structure and random interleaver
indices. Configure the decoder to run a maximum of four iterations.

turboenc = comm.TurboEncoder(trellis,intrlvrIndices);
turbodec = comm.TurboDecoder(trellis,intrlvrIndices,numiter);

Create a BPSK modulator and demodulator pair, where the demodulator outputs soft bits determined
using an LLR method.

bpskmod = comm.BPSKModulator;
bpskdemod = comm.BPSKDemodulator('DecisionMethod','Log-likelihood ratio', ...
    'Variance',noiseVar);

Create an AWGN channel object and an error rate object.

awgnchan = comm.AWGNChannel('NoiseMethod','Variance','Variance',noiseVar);
errrate = comm.ErrorRate;

The main processing loop performs these steps.

1 Generate binary data.
2 Turbo encode the data.
3 Modulate the encoded data.
4 Pass the modulated signal through an AWGN channel.
5 Demodulate the noisy signal by using LLR to output soft bits.
6 Turbo decode the demodulated data. Because the bit mapping from the demodulator is opposite

of the mapping expected by the turbo decoder, the decoder input must use the inverse of the
demodulated signal.

7 Calculate the error statistics.

for frmIdx = 1:100
    data = randi([0 1],L,1);
    encodedData = turboenc(data);
    modSignal = bpskmod(encodedData);
    receivedSignal = awgnchan(modSignal);
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    demodSignal = bpskdemod(receivedSignal);
    receivedBits = turbodec(-demodSignal);
    errorStats = errrate(data,receivedBits);
end

Display the error data.

fprintf('Bit error rate = %5.2e\nNumber of errors = %d\nTotal bits = %d\n', errorStats)

Bit error rate = 2.34e-04
Number of errors = 6
Total bits = 25600

Perform Turbo Coding on 16-QAM Signal in AWGN Channel

Simulate an end-to-end communication link by using a 16-QAM signal and turbo codes in an AWGN
channel. Inside a frame processing loop, packet sizes are randomly selected to be 500, 1000, or 1500
bits. Because the packet size varies, the interleaver indices are provided to the turbo encoder and
decoder as an input argument of their associated System object. Compare turbo coded bit error rate
results to uncoded bit error rate results.

Initialize Simulation

Set the modulation order and range of Eb/N0 values. Compute the number of bits per symbol and the
energy per symbol to noise ratio (ES/N0) based on the modulation order and Eb/N0. To get repeatable
results, seed the random number.

modOrder = 16;               % Modulation order
bps = log2(modOrder);        % Bits per symbol
EbNo = (2:0.5:4);            % Energy per bit to noise power spectral density ratio in dB
EsNo = EbNo + 10*log10(bps); % Energy per symbol to noise power spectral density ratio in dB
rng(1963);

Create a turbo encoder and decoder pair. Because the packet length varies for each frame, specify
that the interleaver indices be supplied by an input argument of the System object when executed.
Specify that the decoder perform four iterations.

turboEnc = comm.TurboEncoder('InterleaverIndicesSource','Input port');
turboDec = comm.TurboDecoder('InterleaverIndicesSource','Input port','NumIterations',4);
trellis = poly2trellis(4,[13 15 17],13);
n = log2(turboEnc.TrellisStructure.numOutputSymbols);
numTails = log2(turboEnc.TrellisStructure.numStates)*n;

Create an error rate object.

errRate = comm.ErrorRate;

Main Processing Loop

The frame processing loop performs these steps.

1 Select a random packet length, and generate random binary data.
2 Compute the output codeword length and coding rate.
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3 Compute the signal to noise ratio (SNR) and noise variance.
4 Generate interleaver indices.
5 Turbo encode the data.
6 Apply 16-QAM modulation, and normalize the average signal power.
7 Pass the modulated signal through an AWGN channel.
8 Demodulate the noisy signal by using an LLR method, output soft bits, and normalize the average

signal power.
9 Turbo decode the data. Because the bit mapping order from the demodulator is opposite the

mapping order expected by the turbo decoder, the decoder input must use the inverse of the
demodulated signal.

10 Calculate the error statistics.

ber = zeros(1,length(EbNo));
for k = 1:length(EbNo)
    % numFrames = 100;
    errorStats = zeros(1,3);
    %for pktIdx = 1:numFrames
    L = 500*randi([1 3],1,1);         % Packet length in bits
    M = L*(2*n - 1) + 2*numTails;     % Output codeword packet length
    rate = L/M;                       % Coding rate for current packet
    snrdB = EsNo(k) + 10*log10(rate); % Signal to noise ratio in dB
    noiseVar = 1./(10.^(snrdB/10));   % Noise variance
    
    while errorStats(2) < 100 && errorStats(3) < 1e7
        data = randi([0 1],L,1);
        intrlvrIndices = randperm(L);
        encodedData = turboEnc(data,intrlvrIndices);
        modSignal = qammod(encodedData,modOrder, ...
            'InputType','bit','UnitAveragePower',true);
        rxSignal = awgn(modSignal,snrdB);
        demodSignal = qamdemod(rxSignal,modOrder,'OutputType','llr', ...
            'UnitAveragePower',true,'NoiseVariance',noiseVar);
        rxBits = turboDec(-demodSignal,intrlvrIndices); % Demodulated signal is negated
        errorStats = errRate(data,rxBits);
    end
    % Save the BER data and reset the bit error rate object
    ber(k) = errorStats(1);
    reset(errRate)
end

Plot Results

Plot the bit error rate and compare it to the uncoded bit error rate.

semilogy(EbNo,ber,'-o')
grid
xlabel('Eb/No (dB)')
ylabel('Bit Error Rate')
uncodedBER = berawgn(EbNo,'qam',modOrder); % Estimate of uncoded BER
hold on
semilogy(EbNo,uncodedBER)
legend('Turbo','Uncoded','location','sw')
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More About
Parallel Concatenated Convolutional Decoding Scheme

The turbo decoder uses a parallel concatenated convolutional decoding scheme to decode a coded
input signal. The parallel concatenated decoding scheme uses an iterative “APP Decoder” on page 3-
1374 with two constituent decoders, an interleaver, and a deinterleaver. This figure shows the
decoding scheme. Typically, the decoder input data comes from the demodulator output.

The two constituent decoders use the same trellis structure and decoding algorithm. The soft-input
soft-output APP decoders (SISO 1 and SISO 2) output an updated sequence of log-likelihoods of the
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encoder input bits, π(u;O). The sequence is based on the received sequence of log-likelihoods of the
channel (coded) bits, π(c;I), and code parameters.

The decoder iteratively updates these likelihoods for a fixed number of decoding iterations and then
outputs the decision bits. The interleaver used in the decoder is identical to the interleaver used in
the encoder. The deinterleaver performs the inverse permutation with respect to the interleaver. The
decoder does not assume knowledge of the tail bits and excludes these bits from the iterations.

For more information, see “Coding Rate” on page 3-1374.

APP Decoder

The comm.TurboDecoder System object implements the soft-input soft-output APP decoding
algorithm according to [1] and [2].

The 'True APP' option of the Algorithm property implements APP decoding as per equations 20–
23 in section V of [1]. To gain speed, the 'Max*' and 'Max' values of the Algorithm property
approximate expressions like log∑

i
exp(ai) by other quantities. The 'Max' option uses max(ai) as the

approximation. The 'Max*' option uses max(ai) plus a correction term given by the expression
ln(1 + exp( − ai− 1− ai )).

Setting the Algorithm property to 'Max*' enables the NumScalingBits property of this System
object. This property denotes the number of bits by which this System object scales the data it
processes (multiplies the input by 2NumScalingBits and divides the pre-output by the same factor). Use
this property to avoid losing precision during computations.

Coding Rate

In general, the coding rate of a constituent convolutional code is represented as a rate K ∕ N code. K
is the number of input bit streams. N is the number of output bit streams.

Note K must be 1 to use the comm.TurboEncoder and comm.TurboDecoder System objects.
Alternatively, the “High Rate Convolutional Codes for Turbo Coding” example performs turbo coding
for K greater than 1 by using the comm.ConvolutionalEncoder and comm.APPDecoder System
objects.

The decoder accepts an M-element column vector input signal and returns an L-element column
vector containing the decoded binary output message. L is the interleaver block length. M is the
length of the parallel concatenated codeword.

For a given input trellis, when you set the InputIndicesSource property to 'Auto', M and L are
related by L = (M – 2 × numTails) ∕ (2 × N – 1) , where:

• numTails = log2(trellis.numStates) × N
• N = log2(trellis.numOutputSymbols). For a rate 1 ∕ 2 trellis, N = 2.

For more information about trellis structures, see the poly2trellis function. For more information
about the constituent decoders, see “Parallel Concatenated Convolutional Decoding Scheme” on page
3-1373.
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Version History
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
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comm.TurboEncoder | comm.ConvolutionalEncoder | comm.APPDecoder |
comm.ViterbiDecoder | comm.gpu.TurboDecoder

Functions
poly2trellis | istrellis | vitdec | getTurboIOIndices

Blocks
Turbo Decoder
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comm.TurboEncoder
Package: comm

Encode input signal using parallel concatenated encoding scheme

Description
The comm.TurboEncoder System object applies a parallel concatenated encoding scheme to a
binary input message. This coding scheme uses two convolutional encoders and appends the
termination bits at the end of the encoded data bit stream. For more information, see “Parallel
Concatenated Convolutional Encoding Scheme” on page 3-1387.

To encode a binary input message using a parallel concatenated encoding scheme:

1 Create the comm.TurboEncoder object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
turboenc = comm.TurboEncoder
turboenc = comm.TurboEncoder(Name,Value)
turboenc = comm.TurboEncoder(trellis,interlvrindices)

Description

turboenc = comm.TurboEncoder creates a turbo encoder System object. This object performs
turbo encoding using the default object configuration.

turboenc = comm.TurboEncoder(Name,Value) sets properties using one or more name-value
pairs. For example, comm.TurboEncoder('InterleaverIndicesSource','Input port')
configures a turbo encoder System object with the interleaver indices to be supplied as an input
argument to the System object when it is called. Enclose each property name in quotes.

turboenc = comm.TurboEncoder(trellis,interlvrindices) creates a turbo encoder System
object with the TrellisStructure and InterleaverIndices properties set to trellis and
interlvrindices, respectively. The trellis input must be specified as described by the
TrellisStructure property. The interlvrindices input must be specified as described by the
InterleaverIndices property.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.
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If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

TrellisStructure — Trellis description of constituent convolutional code
poly2trellis(4,[13 15],13) (default) | structure

Trellis description of the constituent convolutional code, specified as a structure that contains the
trellis description for a rate K ∕ N code. K is the number of input bit streams, and N is the number of
output bit streams.

Note K must be 1 for the turbo coder. For more information, see “Coding Rate” on page 3-1388.

You can either use the poly2trellis function to create the trellis structure or create it manually.
For more about this structure, see “Trellis Description of a Convolutional Code” and the istrellis
function.

The trellis structure contains these fields.

numInputSymbols — Number of symbols input to encoder
2K

Number of symbols input to the encoder, specified as an integer equal to 2K, where K is the number of
input bit streams.
Data Types: double

numOutputSymbols — Number of symbols output from encoder
2N

Number of symbols output from the encoder, specified as an integer equal to 2N, where N is the
number of output bit streams.
Data Types: double

numStates — Number of states in encoder
power of 2

Number of states in the encoder, specified as a power of 2.
Data Types: double

nextStates — Next states
matrix of integers

Next states for all combinations of current states and current inputs, specified as a matrix of integers.
The matrix size must be numStates by 2K.
Data Types: double

outputs — Outputs
matrix of octal numbers
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Outputs for all combinations of current states and current inputs, specified as a matrix of octal
numbers. The matrix size must be numStates by 2K.
Data Types: double

Data Types: struct

InterleaverIndicesSource — Source of interleaver indices
'Property' (default) | 'Input port'

Source of interleaver indices, specified as 'Property' or 'Input port'.

• When you set this property to 'Property', the object executes using the interleaver indices that
you specified with the InterleaverIndices property when configuring the object.

• When you set this property to 'Input port', the object executes using the input argument
interlvrindices when you call the object. The vector length and values for the interleaver
indices and binary input message can change with each call to the object.

Data Types: char | string

InterleaverIndices — Interleaver indices
(64:-1:1).' (default) | column vector of integers

Interleaver indices, specified as a column vector of integers. The vector must be of length L, where L
is the length of the binary input message. Each element of the vector must be an integer in the range
[1, L] and must be unique. The interleaver indices define the mapping used to permute the input bits
at the encoder.

Tunable: Yes
Dependencies

To enable this property, set the InterleaverIndicesSource property to 'Property'.
Data Types: double

OutputIndicesSource — Source of output indices
'Auto' (default) | 'Property' | 'Input port'

Source of output indices, specified as 'Auto', 'Property', or 'Input port'.

• When you set this property to 'Auto', the object computes output indices that puncture the
second systematic stream and include all tail bits.

• When you set this property to 'Property', the object uses the output indices that you specify for
the OutputIndices property.

• When you set this property to 'Input port', the object executes using the output indices
specified by the input argument outindices. The vector length and values for the output indices,
and the coded output signal can change with each call to the object.

Data Types: char | string

OutputIndices — Output indices
getTurboIOIndices(64,2,3) (default) | column vector of integers
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Output indices for the bit ordering and puncturing used on the fully encoded data, specified as a
column vector of integers. The number of bits output from the encoder equals the length of this
property. The maximum length must not exceed the fully encoded length of (L+mLen) × N × 2, where
L is the input block length, mLen is the memory length, and N is the number of encoded streams for
the constituent coder.

Dependencies

To enable this property, set the OutputIndicesSource property to 'Property'.
Data Types: double

Usage

Syntax
codeword = turboenc(message)
codeword = turboenc(message,interlvrindices)
codeword = turboenc(message,interlvrindices,outindices)

Description

codeword = turboenc(message) encodes the input message using the parallel concatenated
convolutional encoding scheme specified by the trellis structure and interleaver indices. turboenc
returns the binary encoded codeword. message and codeword are column vectors of numeric,
logical, or unsigned fixed-point values with word length 1 (fi object). For more information, see
“Parallel Concatenated Convolutional Encoding Scheme” on page 3-1387.

codeword = turboenc(message,interlvrindices) additionally specifies the interleaver
indices. interlvrindices must be a column vector containing integers in the range [1, L] with no
repeated values. L is the length of the binary input message, message. This syntax applies when the
InterleaverIndicesSource property is set to 'Input port'. The interleaver indices define the
mapping used to permute the input bits at the encoder.

codeword = turboenc(message,interlvrindices,outindices) additionally specifies the bit
ordering and puncturing used when encoding the message data. To enable this syntax, set the
OutputIndicesSource property to 'Input port'. The output indices vector values must be relative
to the fully encoded data for the coding scheme, including the tail bits for all streams.

Input Arguments

message — Input message
binary column vector

Input message, specified as a binary column vector of length L, where L is the length of the uncoded
input message.
Data Types: double | int8 | fi(data,0,1)

interlvrindices — Interleaver indices
column vector of integers
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Interleaver indices, specified as a column vector of integers. The vector must be of length L, where L
is the length of the binary input message. Each element of the vector must be an integer in the range
[1, L] and must be unique. The interleaver indices define the mapping used to permute the input bits
at the encoder.

Dependencies

To enable this argument, set the InterleaverIndicesSource property to 'Input port'.
Data Types: double

outindices — Output indices
column vector of integers

Output indices for the bit ordering and puncturing used on the fully encoded data, specified as a
column vector of integers. Element values in the outindices vector must be relative to the fully
encoded data for the coding scheme, including the tail bits for all streams.

Dependencies

To enable this argument, set the OutputIndicesSource property to 'Input port'.
Data Types: double

Output Arguments

codeword — Parallel concatenated codeword
binary column vector

Parallel concatenated codeword, returned as a binary column vector of length M, where M is the
number of bits in the parallel concatenated codeword. This output inherits its data type from the
message input.
Data Types: double | int8 | fi(data,0,1)

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Perform Rate 1/3 Turbo Code Encoding

Encode an input message by using a rate 1/3 turbo encoder configuration with the default trellis
structure, poly2trellis(4,[13 15],13), as represented in this figure.
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For an input message with 64 bits, the codeword output from the encoder is 204 bits. The first 192
bits output correspond to the three 64 bit streams, interlaced as Xk, Zk, and Zk′ . The systematic bit
stream, Xk, and parity bit stream, Zk, are from the first encoder and the parity bit stream, Zk′ , is from
the second encoder. When the switches are in the lower position, signals follow the dashed lines and
the last 12 bits correspond to the tail bits from the two encoders. The first group of six bits (three
systematic bits and three parity bits) are the output tail bits from the first constituent encoder. The
second group of six bits (three systematic bits and three parity bits) are the output tail bits from the
second constituent encoder.

Create a turbo encoder using the default settings. Generate a frame of binary message data, and then
encode the message data.

rng default
turboenc = comm.TurboEncoder;
frameLen = 64; % Frame length
data = randi([0 1],frameLen,1);
encData = turboenc(data);
codewordLen = length(encData);

Compute the coding rate. Due to the tail bits, the encoder output code rate is slightly less than 1/3.

codingrate = frameLen/codewordLen
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codingrate = 0.3137

Define Output Indices for Full-Length and Punctured Turbo Coding

Define output indices by using the OutputIndices property. Show full-length encoded output and
punctured encoded output for a rate 1/2 code and 10-bit block length.

Initialize Parameters

Define parameters to initialize the encoder.

blkLen = 10;
trellis = poly2trellis(4,[13 15],13);
n = log2(trellis.numOutputSymbols);
mLen = log2(trellis.numStates);

Full-Length Encoded Output

Initialize variables and a turbo encoder System object for full-length coding. Display the turbo coding
rate. Check the length of the coded output versus the length of the output indices vector.

fullOut = (1:(mLen+blkLen)*2*n)';
outLen = length(fullOut);
netRate = blkLen/outLen;
data = randi([0 1],blkLen,1);
intIndices  = randperm(blkLen);

turboEnc = comm.TurboEncoder('TrellisStructure',trellis);
turboEnc.InterleaverIndices = intIndices;
turboEnc.OutputIndicesSource = 'Property';
turboEnc.OutputIndices = fullOut;

encMsg = turboEnc(data);   % Encode

disp(['Turbo coding rate: ' num2str(netRate)])

Turbo coding rate: 0.19231

encOutLen = length(encMsg) % Display encoded length

encOutLen = 52

isequal(encOutLen,outLen)  % Check lengths

ans = logical
   1

Punctured Encoded Output

Specify the output indices for puncturing of the second systematic stream by using the
getTurboIOIndices function. Initialize variables and a turbo encoder System object for punctured
coding. Display the turbo coding rate. Check the length of the coded output versus the length of the
output indices vector.

puncOut = getTurboIOIndices(blkLen,n,mLen);
outLen = length(puncOut);
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netRate = blkLen/outLen;
data = randi([0 1],blkLen,1);
intIndices  = randperm(blkLen);

turboEnc = comm.TurboEncoder('TrellisStructure',trellis);
turboEnc.InterleaverIndices = intIndices;
turboEnc.OutputIndicesSource = 'Property';
turboEnc.OutputIndices = puncOut;

encMsg = turboEnc(data);   % Encode

disp(['Turbo coding rate: ' num2str(netRate)])

Turbo coding rate: 0.25641

encOutLen = length(encMsg) % Display encoded length

encOutLen = 39

isequal(encOutLen, outLen) % Check lengths

ans = logical
   1

Compare Full and Punctured Outputs

The output of the encoder interlaces the individual bit streams. The third bit of every 4-bit tuple is
removed from the full-length code to produce the punctured code. This third output bit stream
corresponds to the second systematic bit stream. Display the indices of the full-length code and the
indices of the punctured code to show that the third bit of every 4-bit tuple is punctured.

fullOut'

ans = 1×52

     1     2     3     4     5     6     7     8     9    10    11    12    13    14    15    16    17    18    19    20    21    22    23    24    25    26    27    28    29    30    31    32    33    34    35    36    37    38    39    40    41    42    43    44    45    46    47    48    49    50

puncOut'

ans = 1×39

     1     2     4     5     6     8     9    10    12    13    14    16    17    18    20    21    22    24    25    26    28    29    30    32    33    34    36    37    38    40    41    42    44    45    46    48    49    50    52

Transmit and Receive Turbo-Encoded Data over BPSK-Modulated AWGN Channel

Simulate the transmission and reception of BPSK data over an AWGN channel by using turbo
encoding and decoding.

Specify simulation parameters, and then compute the effective coding rate and noise variance. For
BPSK modulation, ES/N0 equals Eb/N0 because the number of bits per symbol (bps) is 1. To ease
reuse of this code for other modulation schemes, calculations in this example include the bps terms.
Define the packet length, trellis structure, and number of iterations. Calculate the noise variance
using ES/N0 and the code rate. Set the random number generator to its default state to ensure that
the results are repeatable.
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modOrd = 2; % Modulation order
bps = log2(modOrd); % Bits per symbol
EbNo = 1; % Energy per bit to noise power spectral density ratio in dB
EsNo = EbNo + 10*log10(bps); % Energy per symbol to noise power spectral density ratio in dB

L = 256; % Input packet length in bits
trellis = poly2trellis(4,[13 15 17],13);
numiter = 4;
n = log2(trellis.numOutputSymbols);
numTails = log2(trellis.numStates)*n;
M = L*(2*n - 1) + 2*numTails; % Output codeword packet length
rate = L/M; % Coding rate

snrdB = EsNo + 10*log10(rate); % Signal to noise ratio in dB
noiseVar = 1./(10.^(snrdB/10)); % Noise variance

rng default

Generate random interleaver indices.

intrlvrIndices = randperm(L);

Create a turbo encoder and decoder pair. Use the defined trellis structure and random interleaver
indices. Configure the decoder to run a maximum of four iterations.

turboenc = comm.TurboEncoder(trellis,intrlvrIndices);
turbodec = comm.TurboDecoder(trellis,intrlvrIndices,numiter);

Create a BPSK modulator and demodulator pair, where the demodulator outputs soft bits determined
using an LLR method.

bpskmod = comm.BPSKModulator;
bpskdemod = comm.BPSKDemodulator('DecisionMethod','Log-likelihood ratio', ...
    'Variance',noiseVar);

Create an AWGN channel object and an error rate object.

awgnchan = comm.AWGNChannel('NoiseMethod','Variance','Variance',noiseVar);
errrate = comm.ErrorRate;

The main processing loop performs these steps.

1 Generate binary data.
2 Turbo encode the data.
3 Modulate the encoded data.
4 Pass the modulated signal through an AWGN channel.
5 Demodulate the noisy signal by using LLR to output soft bits.
6 Turbo decode the demodulated data. Because the bit mapping from the demodulator is opposite

of the mapping expected by the turbo decoder, the decoder input must use the inverse of the
demodulated signal.

7 Calculate the error statistics.

for frmIdx = 1:100
    data = randi([0 1],L,1);
    encodedData = turboenc(data);
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    modSignal = bpskmod(encodedData);
    receivedSignal = awgnchan(modSignal);
    demodSignal = bpskdemod(receivedSignal);
    receivedBits = turbodec(-demodSignal);
    errorStats = errrate(data,receivedBits);
end

Display the error data.

fprintf('Bit error rate = %5.2e\nNumber of errors = %d\nTotal bits = %d\n', errorStats)

Bit error rate = 2.34e-04
Number of errors = 6
Total bits = 25600

Perform Turbo Coding on 16-QAM Signal in AWGN Channel

Simulate an end-to-end communication link by using a 16-QAM signal and turbo codes in an AWGN
channel. Inside a frame processing loop, packet sizes are randomly selected to be 500, 1000, or 1500
bits. Because the packet size varies, the interleaver indices are provided to the turbo encoder and
decoder as an input argument of their associated System object. Compare turbo coded bit error rate
results to uncoded bit error rate results.

Initialize Simulation

Set the modulation order and range of Eb/N0 values. Compute the number of bits per symbol and the
energy per symbol to noise ratio (ES/N0) based on the modulation order and Eb/N0. To get repeatable
results, seed the random number.

modOrder = 16;               % Modulation order
bps = log2(modOrder);        % Bits per symbol
EbNo = (2:0.5:4);            % Energy per bit to noise power spectral density ratio in dB
EsNo = EbNo + 10*log10(bps); % Energy per symbol to noise power spectral density ratio in dB
rng(1963);

Create a turbo encoder and decoder pair. Because the packet length varies for each frame, specify
that the interleaver indices be supplied by an input argument of the System object when executed.
Specify that the decoder perform four iterations.

turboEnc = comm.TurboEncoder('InterleaverIndicesSource','Input port');
turboDec = comm.TurboDecoder('InterleaverIndicesSource','Input port','NumIterations',4);
trellis = poly2trellis(4,[13 15 17],13);
n = log2(turboEnc.TrellisStructure.numOutputSymbols);
numTails = log2(turboEnc.TrellisStructure.numStates)*n;

Create an error rate object.

errRate = comm.ErrorRate;

Main Processing Loop

The frame processing loop performs these steps.

1 Select a random packet length, and generate random binary data.
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2 Compute the output codeword length and coding rate.
3 Compute the signal to noise ratio (SNR) and noise variance.
4 Generate interleaver indices.
5 Turbo encode the data.
6 Apply 16-QAM modulation, and normalize the average signal power.
7 Pass the modulated signal through an AWGN channel.
8 Demodulate the noisy signal by using an LLR method, output soft bits, and normalize the average

signal power.
9 Turbo decode the data. Because the bit mapping order from the demodulator is opposite the

mapping order expected by the turbo decoder, the decoder input must use the inverse of the
demodulated signal.

10 Calculate the error statistics.

ber = zeros(1,length(EbNo));
for k = 1:length(EbNo)
    % numFrames = 100;
    errorStats = zeros(1,3);
    %for pktIdx = 1:numFrames
    L = 500*randi([1 3],1,1);         % Packet length in bits
    M = L*(2*n - 1) + 2*numTails;     % Output codeword packet length
    rate = L/M;                       % Coding rate for current packet
    snrdB = EsNo(k) + 10*log10(rate); % Signal to noise ratio in dB
    noiseVar = 1./(10.^(snrdB/10));   % Noise variance
    
    while errorStats(2) < 100 && errorStats(3) < 1e7
        data = randi([0 1],L,1);
        intrlvrIndices = randperm(L);
        encodedData = turboEnc(data,intrlvrIndices);
        modSignal = qammod(encodedData,modOrder, ...
            'InputType','bit','UnitAveragePower',true);
        rxSignal = awgn(modSignal,snrdB);
        demodSignal = qamdemod(rxSignal,modOrder,'OutputType','llr', ...
            'UnitAveragePower',true,'NoiseVariance',noiseVar);
        rxBits = turboDec(-demodSignal,intrlvrIndices); % Demodulated signal is negated
        errorStats = errRate(data,rxBits);
    end
    % Save the BER data and reset the bit error rate object
    ber(k) = errorStats(1);
    reset(errRate)
end

Plot Results

Plot the bit error rate and compare it to the uncoded bit error rate.

semilogy(EbNo,ber,'-o')
grid
xlabel('Eb/No (dB)')
ylabel('Bit Error Rate')
uncodedBER = berawgn(EbNo,'qam',modOrder); % Estimate of uncoded BER
hold on
semilogy(EbNo,uncodedBER)
legend('Turbo','Uncoded','location','sw')
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More About
Parallel Concatenated Convolutional Encoding Scheme

The turbo encoder uses a parallel concatenated convolutional encoding scheme to encode a binary
input signal. The coding scheme uses two constituent encoders and one internal interleaver as shown
in this figure. Each constituent encoder is terminated independently by tail bits.
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The OutputIndicesSource property specifies the source for the output indices used for symbol
puncturing and repetition.

• When you set the OutputIndicesSource property to 'Auto', the object computes the output
indices. In this case, the constituent encoders a have rate 1 ∕ N code, and the number of bits
output from the turbo encoder is L × (2 × N – 1) + (2 × numTails). L is the input vector length,
and numTails is given by log2(TrellisStructure.numStates) × N. The tail bits due to the
termination are appended at the end after the encoded input bits.

The coding scheme uses two identical constituent encoders and one internal interleaver. Each
constituent encoder is terminated independently by tail bits. The output of the turbo encoder
consists of the systematic (X) and parity (Z) bit streams of the first encoder and only the parity (Z’)
bit streams of the second encoder. Tail bits are appended at the end for all streams.

• When you set the OutputIndicesSource property to 'Input port' or 'Property', you
specify the output indices with the outindices input argument or the OutputIndices property,
respectively. In this case, the object runs using the output indices you specify. The output indices
are specified relative to the fully encoded output for all streams.

The output of the turbo encoder consists of the systematic (X and X’) and parity (Z and Z’) bit
streams of first and second constituent encoders. The number of bits output equals the vector
length of the output indices you provide.

For more information, see “Coding Rate” on page 3-1388 and “Tail bits” on page 3-1389.

Coding Rate

In general, the coding rate of a constituent convolutional code is represented as a rate K ∕ N code. K
is the number of input bit streams. N is the number of output bit streams.

Note K must be 1 to use the comm.TurboEncoder and comm.TurboDecoder System objects.
Alternatively, the “High Rate Convolutional Codes for Turbo Coding” example performs turbo coding
for K greater than 1 by using the comm.ConvolutionalEncoder and comm.APPDecoder System
objects.
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The encoder accepts an L-element column vector input signal and returns an M-element column
vector output signal. The effective code rate of the turbo encoder is L ∕ M. L is the length of the
binary input message, and M is the number of bits output in the parallel concatenated codeword.

• When you set the OutputIndicesSource property to 'Auto', systematic bits from the second
encoder (X’, shown in the figure found in “Parallel Concatenated Convolutional Encoding Scheme”
on page 3-1387) are not output to the parallel concatenated codeword. For a given trellis, M and L
are related by M = L × (2 × N – 1) + 2 × numTails, where numTails is the number of tail bits. For
more information, see “Tail bits” on page 3-1389.

• When you set the OutputIndicesSource property to 'Input port' or 'Property', M equals
the length of the output indices vector specified by the outindices input argument or the
OutputIndices property, respectively.

Tail bits

The turbo encoder treats each input independently. For each input message, extra bits are used to set
the encoder states to an all-zeros state. Each constituent encoder is terminated independently by tail
bits. The turbo encoder output consists of the interlaced systematic and parity streams, with the tail
bits multiplexed to the end of the encoded data streams.

The number of tail bits, numTails, output by each constituent encoder depends on values in the trellis
structure used by each coder.

• numTails = log2(trellis.numStates) × N
• N = log2(trellis.numOutputSymbols). For a rate 1 ∕ 2 trellis, N = 2.

For more information about trellis structures, see poly2trellis. For more information about the
constituent encoders, see “Parallel Concatenated Convolutional Encoding Scheme” on page 3-1387.

Version History
Introduced in R2012a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
comm.TurboDecoder | comm.ConvolutionalEncoder | comm.APPDecoder

Functions
getTurboIOIndices | poly2trellis | istrellis | convenc

Blocks
Turbo Encoder
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comm.ViterbiDecoder
Package: comm

Decode convolutionally encoded data using Viterbi algorithm

Description
The comm.ViterbiDecoder System object decodes convolutionally encoded input symbols to
produce binary output symbols by using the Viterbi algorithm the convolutional encoding scheme
specified by a trellis structure. For more information, see the “Trellis Description of a Convolutional
Code” topic.

To decode convolutionally encoded data using the Viterbi algorithm:

1 Create the comm.ViterbiDecoder object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
viterbidecoder = comm.ViterbiDecoder
viterbidecoder = comm.ViterbiDecoder(trellis)
viterbidecoder = comm.ViterbiDecoder( ___ ,Name,Value)

Description

viterbidecoder = comm.ViterbiDecoder creates a Viterbi decoder System object. This object
uses the Viterbi algorithm to decode convolutionally encoded input data.

viterbidecoder = comm.ViterbiDecoder(trellis) sets the TrellisStructure property set to
trellis.

viterbidecoder = comm.ViterbiDecoder( ___ ,Name,Value) sets “Properties” on page 3-
1391 using one or more name-value arguments in addition to any argument combinations in previous
syntaxes. For example, viterbidecoder =
comm.ViterbiDecoder('TerminationMethod','Continuous') specifies the termination
method as continuous to save the internal state metric at the end of each frame for use with the next
frame.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.
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For more information on changing property values, see System Design in MATLAB Using System
Objects.

TrellisStructure — Trellis structure of convolutional code
poly2trellis(7, [171 133]) (default) | structure

Trellis description of the convolutional code, specified as a structure that contains the trellis
description for a rate K ∕ N code. K is the number of input bit streams, and N is the number of output
bit streams.

You can either use the poly2trellis function to create the trellis structure or create it manually.
For more about this structure, see “Trellis Description of a Convolutional Code” and the istrellis
function.

The trellis structure contains these fields.

numInputSymbols — Number of symbols input to encoder
2K

Number of symbols input to the encoder, specified as an integer equal to 2K, where K is the number of
input bit streams.
Data Types: double

numOutputSymbols — Number of symbols output from encoder
2N

Number of symbols output from the encoder, specified as an integer equal to 2N, where N is the
number of output bit streams.
Data Types: double

numStates — Number of states in encoder
power of 2

Number of states in the encoder, specified as a power of 2.
Data Types: double

nextStates — Next states
matrix of integers

Next states for all combinations of current states and current inputs, specified as a matrix of integers.
The matrix size must be numStates by 2K.
Data Types: double

outputs — Outputs
matrix of octal numbers

Outputs for all combinations of current states and current inputs, specified as a matrix of octal
numbers. The matrix size must be numStates by 2K.
Data Types: double

Data Types: struct
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InputFormat — Input format to decoder
'Unquantized' (default) | 'Hard' | 'Soft'

Input format to the decoder, specified as 'Unquantized', 'Hard', or 'Soft'.

• 'Unquantized' — The input data must be a real-valued vector of double- or single-precision soft
values that are unquantized. The object maps positive values to logical 1s and negative values to
logical 0s

• 'Hard' — The input must be a vector of hard decision values, which are 0s or 1s. The data type of
the inputs must be double precision, single precision, logical, or numeric.

• 'Soft' — The input requires a vector of quantized soft values that are represented as integers
between 0 and 2SoftInputWordLength – 1. The data type of the inputs must be double precision, single
precision, logical, or numeric. Alternatively, you can specify the data type as an unsigned and
unscaled fixed-point object using the (fi) with a word length equal to the word length that you
specify for the SoftInputWordLength property. 0 is considered as most confident 0 and
2SoftInputWordLength – 1 as the most confident 1.

SoftInputWordLength — Soft input word length
4 (default) | integer

Soft input word length that represents the number of bits for each quantized soft input value,
specified as an integer.

Dependencies

To enable this property, set the InputFormat property to 'Soft'.
Data Types: double

InvalidQuantizedInputAction — Option to take action for invalid quantized input
'Ignore' (default) | 'Error'

Option to take action for invalid quantized input (that is, when input values are out of range),
specified as 'Ignore' or 'Error'. Set this property to 'Error' so that the object generates an
error when the quantized input values are out of range.

Dependencies

To enable this property, set the InputFormat property to 'Soft' or 'Hard'.

TracebackDepth — Traceback depth
34 (default) | integer

Traceback depth, specified as an integer. For more information, see “Traceback and Decoding Delay”
on page 3-1399 and “Traceback Depth Estimates” on page 3-1399.
Data Types: double

TerminationMethod — Termination method of encoded frame
'Continuous' (default) | 'Truncated' | 'Terminated'
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Termination method of the encoded frame, specified as one of these values.

• 'Continuous' — The System object saves the internal state metric at the end of each frame for
use with the next frame. The object treats each traceback path independently. This mode results in
an output decoding delay of TracebackDepth×K zero bits for a rate K/N convolutional code. K is
the number of input symbols, and N is the number of output symbols.

• 'Truncated' — The System object treats each frame independently. The traceback path starts at
the state with the best metric and ends in the all-zeros state. There is no output delay for this
mode.

• 'Terminated' — The System object treats each frame independently. The traceback path always
starts and ends in the all-zeros state. There is no output delay for this mode.

ResetInputPort — Option to enable decoder reset input
false or 0 (default) | true or 1

Option to enable the decoder reset input, specified as a logical 1(true) or 0 (false). Set this
property to 1 (true) to the object. When this additional reset input is a nonzero value, the internal
states of the decoder reset to their initial conditions.

Dependencies

To enable this property, set the TerminationMethod property to 'Continuous'.
Data Types: logical

DelayedResetAction — Option to delay output reset
false or 0 (default) | true or 1

Option to delay the output reset, specified as one of these logical values.

• 1 (true) — The reset of the internal states of the decoder occurs after the object computes the
decoded data.

• 0 (false) — The reset of the internal states of the decoder occurs before the object computes the
decoded data.

Dependencies

To enable this property, set the ResetInputPort property to true.
Data Types: logical

PuncturePatternSource — Source of puncture pattern
'None' (default) | 'Property'

Source of the puncture pattern, specified as one of these values.

• 'None' — The object does not apply puncturing.
• 'Property' — The object decodes the punctured codewords based on a puncture pattern vector

that you specify in the PuncturePattern property.

PuncturePattern — Puncture pattern vector
[1;1;0;1;0;1] (default) | column vector
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Puncture pattern vector to puncture the decoded data, specified as a column vector. The vector must
contain 1s and 0s, where 0 indicates the position of the punctured bits. This puncture pattern must
match the puncture pattern used by the convolutional encoder.

Dependencies

To enable this property, set the PuncturePatternSource property to 'Property'.
Data Types: double

ErasuresInputPort — Option to enable the specification of erasures in the input symbols
false or 0 (default) | true or 1

Option to enable the specification of erasures in the input symbols, specified as one of these numeric
or logical values.

• 1 (true) — When you call the System object, it specifies a vector of erasures when calling it. This
vector indicates which symbols of the input codewords to erase. Values of 1 indicate erased bits.
The decoder does not update the branch metric for the erasures in the incoming data stream. The
erasures input must be a double precision or logical column vector. The length of the erasure
vector must equal the length of the input data.

• 0 (false) — The System object assumes no erasures.

Data Types: logical

OutputDataType — Data type of output
"Full precision" (default) | "Smallest unsigned integer" | "double" | "single" |
"int8" | ...

Data type of the output, specified as a "Full precision", "Smallest unsigned integer",
"double", "single", "int8", "uint8", "int16", "uint16", "int32", "uint32", "logical".

When the input signal is an integer data type, you must have a Fixed-Point Designer user license to
use this property in "Smallest unsigned integer" or "Full precision" mode.

StateMetricDataType — Data type of state metric
'Full precision' (default) | 'Custom'

Data type of the state metric, specified as 'Full precision' or 'Custom'

When you set this property to 'Full precision', the object sets the state metric fixed-point type
to numerictype([],16).

• When you set the InputFormat property to 'Hard', the input data must be a column vector. This
vector comprises unsigned, fixed-point numbers (fi objects) of word length 1 to enable fixed-point
Viterbi decoding. Based on this input (either a 0 or 1), the object calculates the internal branch
metrics using an unsigned integer of word length L. In this case, L is the number of output bits as
specified by the trellis structure.
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• When you set the InputFormat property to 'Soft', the input data must be a column vector. This
vector comprises unsigned, fixed point numbers (fi objects) of word length N. In this case, N is
the number of soft-decision bits specified by the SoftInputWordLength property.

When you call the System object, the data inputs must be integers in the range from 0 to 2N–1. The
object calculates the internal branch metrics using an unsigned integer of word length L = (N + Nout
– 1). In this case, Nout is the number of output bits as specified by the trellis structure.

Dependencies

To enable this property, set the InputFormat property to 'Hard' or 'Soft'.

CustomStateMetricDataType — Fixed-point data type of state metric
numerictype([],16) (default) | unscaled numerictype object

Fixed-point data type of the state metric, specified as an unscaled numerictype object with a
signedness of Auto.

Dependencies

To enable this property, set the StateMetricDataType property to 'Custom'.
Data Types: numeric

Usage

Syntax
decmsg = viterbidecoder(codeword)
decmsg = viterbidecoder(codeword,erasures)
decmsg = viterbidecoder(codeword,resetstate)

Description

decmsg = viterbidecoder(codeword) decodes the convolutionally encoded input data,
codeword, by using the Viterbi algorithm. decmsg is the decoded data.

decmsg = viterbidecoder(codeword,erasures) specifies symbols of the input codewords for
the object to erase. To enable this syntax, set the ErasuresInputPort property to 1 (true).

decmsg = viterbidecoder(codeword,resetstate) specifies the input to reset the internal
states of the decoder. To enable this syntax, set the TerminationMethod property to
'Continuous' and the ResetInputPort property to 1 (true).

Input Arguments

codeword — Convolutionally encoded message
numeric-valued column vector

Convolutionally encoded message, specified as a numeric-valued column vector. The data type and
element value in codeword depend on how you set the InputFormat property.

When you set the InputFormat property to 'Unquantized', input values outside of the range [–
1012, 1012] are clipped to –1012 and 1012, respectively.
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If the convolutional code uses an alphabet of 2N possible output symbols, the length of this input
vector must be L × N for some positive integer L.
Data Types: double

erasures — Erasure symbols in codeword
binary-valued vector

Erasure symbols in the codeword, specified as a binary-valued vector. The elements in erasures
must be of data type double or logical. Values of 1 in the erasures vector correspond to erased
symbols, and values of 0 correspond to nonerased symbols. The length of the codeword must equal
the length of erasures.
Dependencies

To enable this argument, set the ErasuresInputPort property to 1 (true).

resetstate — Reset for internal states of decoder
false or 0 (default) | true or 1

Reset for internal states of the decoder, specified as a numeric or logical 1 (true) or 0 (false).
Dependencies

To enable this argument, set the TerminationMethod property to 'Continuous' and the
ResetInputPort property to true.
Data Types: double | logical

Output Arguments

decmsg — Decoded message
binary-valued column vector

Decoded message, returned as a binary-valued column vector. This output vector has the same data
type as the OutputDataTypeproperty.

If the decoded data uses an alphabet of 2K possible output symbols, the length of this output vector is
L × K.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples
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Encode and Decode 8-DPSK Modulated Data

Transmit a convolutionally encoded 8 differential phase shift keying (DPSK) modulated bit stream
through an additive white Gaussian noise (AWGN) channel. Then, demodulate and decode the
modulated bit stream using a Viterbi decoder.

Create the necessary System objects.

conEnc = comm.ConvolutionalEncoder;
modDPSK = comm.DPSKModulator('BitInput',true);
chan = comm.AWGNChannel('NoiseMethod','Signal to noise ratio (SNR)','SNR',10);
demodDPSK = comm.DPSKDemodulator('BitOutput',true);
vDec = comm.ViterbiDecoder('InputFormat','Hard');
error = comm.ErrorRate('ComputationDelay',3,'ReceiveDelay',34);

Process the data by following these steps.

1 Generate random bits.
2 Convolutionally encode the data.
3 Apply DPSK modulation.
4 Pass the modulated signal through an AWGN channel.
5 Demodulate the noisy signal.
6 Decode the data using a Viterbi algorithm.
7 Collect error statistics.

for counter = 1:20
    data = randi([0 1],30,1);
    encodedData = conEnc(data);
    modSignal = modDPSK(encodedData);
    receivedSignal = chan(modSignal);
    demodSignal = demodDPSK(receivedSignal);
    receivedBits = vDec(demodSignal);
    errors = error(data,receivedBits);
end

Display the number of errors.

errors(2)

ans = 3

Convolutionally Encode and Viterbi Decode with Puncture Pattern Matrix

Encode and decode a sequence of bits using a convolutional encoder and a Viterbi decoder with a
defined puncture pattern. Verify that the input and output bits are identical.

Define a puncture pattern matrix, and then reshape it into vector form for use with the encoder and
decoder System objects.

pPatternMat = [1 0 1;1 1 0];
pPatternVec = reshape(pPatternMat,6,1);
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Create a convolutional encoder and a Viterbi decoder in which the puncture pattern is defined by
pPatternVec.

conEnc = comm.ConvolutionalEncoder('PuncturePatternSource','Property','PuncturePattern',pPatternVec);
viDec = comm.ViterbiDecoder('InputFormat','Hard','PuncturePatternSource','Property', ...
        'PuncturePattern',pPatternVec);

Create an error rate counter with the appropriate receive delay.

error = comm.ErrorRate('ReceiveDelay',viDec.TracebackDepth);

Encode a sequence of random bits, and then decode the encoded message.

dataIn = randi([0 1],600,1);
dataEncoded = conEnc(dataIn);
dataOut = viDec(dataEncoded);

Verify that no errors exist in the output data.

errStats = error(dataIn,dataOut);
errStats(2)

ans = 0

More About
Traceback and Decoding Delay

The traceback depth influences the decoding delay. The decoding delay is the number of zero symbols
that precede the first decoded symbol in the output.

• For the continuous operating mode, the decoding delay is equal to the number of traceback depth
symbols.

• For the truncated or terminated operating mode, the decoding delay is zero. In this case, the
traceback depth must be less than or equal to the number of symbols in each input.

Traceback Depth Estimates

As a general estimate, a typical traceback depth value is approximately two to three times
(ConstraintLength – 1) / (1 – coderate). The constraint length of the code, ConstraintLength, is equal
to (log2(trellis.numStates) + 1). The coderate is equal to (K / N) × (length(PuncturePattern) /
sum(PuncturePattern).

K is the number of input symbols, N is the number of output symbols, and PuncturePattern is the
puncture pattern vector.

For example, applying this general estimate, results in these approximate traceback depths.

• A rate 1/2 code has a traceback depth of 5(ConstraintLength – 1).
• A rate 2/3 code has a traceback depth of 7.5(ConstraintLength – 1).
• A rate 3/4 code has a traceback depth of 10(ConstraintLength – 1).
• A rate 5/6 code has a traceback depth of 15(ConstraintLength – 1).
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Version History
Introduced in R2012a

Version History
Behavior changed in R2022b

When you set the InputFormat property to 'Unquantized', input values outside of the range [–
1012, 1012] are clipped to –1012 and 1012, respectively.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

double and single data types are supported for simulation, but not for HDL code generation.

To generate HDL code from predefined System objects, see “HDL Code Generation from Viterbi
Decoder System Object” (HDL Coder).
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See Also
Blocks
Convolutional Encoder | Viterbi Decoder

Functions
convenc | poly2trellis | istrellis | distspec | vitdec

Objects
comm.APPDecoder | comm.ConvolutionalEncoder

Topics
“Log-Likelihood Ratio (LLR) Demodulation”
“Convolutional Codes”
“Trellis Description of a Convolutional Code”
“Estimate BER for Hard and Soft Decision Viterbi Decoding”
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comm.WalshCode
Package: comm

Generate bipolar Walsh code

Description
The comm.WalshCode System object generates a bipolar Walsh code from an orthogonal set of
codes.

To generate a Walsh code:

1 Create the comm.WalshCode object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
walshCode = comm.WalshCode
walshCode = comm.WalshCode(Name=Value)

Description

walshCode = comm.WalshCode creates a Walsh code generator System object. This object
generates a Walsh code from a set of orthogonal codes.

walshCode = comm.WalshCode(Name=Value) sets properties using one or more name-value
arguments. For example, Length=11 specifies a Walsh code of length 11.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Length — Length of generated code
64 (default) | power-of-two integer

Length of generated code, specified as a power-of-two integer.
Data Types: double
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Index — Index of desired code
60 (default) | integer in the range [0, N-1]

Index of desired code, from the available set of codes, specified as an integer in the range [0, N-1]. N
is the value of the Length property.

The number of zero crossings in the generated code equals the value of the specified index.
Data Types: double

SamplesPerFrame — Samples per output frame
1 (default) | positive integer

Samples per output frame, specified as a positive integer. If you set this property to M, the object
outputs a frame containing M samples using the Walsh code specified by the Index property. The
object repeats the Walsh code sequence, as needed, to reach M samples. For more information, see
“Algorithms” on page 3-1405 section.
Data Types: double

OutputDataType — Output data type
double (default) | int8

Output data type, specified as double or int8.

Usage

Syntax
y = walshCode

Description

y = walshCode outputs a bipolar Walsh code frame as a column vector. If the frame length exceeds
the Walsh code length, the object fills the frame by repeating the Walsh code. For more information,
see the “Algorithms” on page 3-1405 section.

Output Arguments

y — Walsh code
column vector

Walsh code, returned as a column vector.

The code is in a bipolar format with 0 and 1 mapped to 1 and -1. Set the data type of the output with
the OutputDataType property.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

 comm.WalshCode
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release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Generate Walsh Code Sequence

Generate a Walsh code of length 128. Specify the sequence with 16 samples per frame.

walsh = comm.WalshCode;
walsh.Length = 128;
walsh.SamplesPerFrame = 16;
disp(walsh)

  comm.WalshCode with properties:

             Length: 128
              Index: 60
    SamplesPerFrame: 16
     OutputDataType: 'double'

Display the bipolar Walsh code.

seq = walsh()

seq = 16×1

     1
     1
    -1
    -1
     1
     1
    -1
    -1
     1
     1
      ⋮

Walsh Code Sequence at Desired Index

Generate a Walsh code of length 256. Set the index of the desired code to 64 and the code sequence
to 4 samples per frame.

walsh = comm.WalshCode;
walsh.Length = 256;
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walsh.Index = 64;
walsh.SamplesPerFrame = 4;
disp(walsh)

  comm.WalshCode with properties:

             Length: 256
              Index: 64
    SamplesPerFrame: 4
     OutputDataType: 'double'

Display the bipolar Walsh code.

seq = walsh()

seq = 4×1

     1
     1
    -1
    -1

Algorithms
Walsh codes are defined as a set of N codes, denoted Wj, for j = 0, 1, ... , N - 1, which have the
following properties:

• Wj takes on the values +1 and -1.
• Wj[0] = 1 for all j.
• Wj has exactly j zero crossings, for j = 0, 1, ... , N - 1.
•

W jWk
T =

0 j ≠ k
N j = k

• Each code Wj is either even or odd with respect to its midpoint.

Walsh codes are defined using a Hadamard matrix of order N, where N is a nonnegative power of 2
that you specify in the Length property. The comm.WalshCode System object outputs a row of the
Hadamard matrix. Use the Index property to choose the row of the Hadamard matrix. If you set the
Index property equal to an integer j, the output code has exactly j zero crossings, for j = 0, 1, ... , N -
1.

Note, however, that the indexing in Walsh code is different from the indexing in Hadamard code.

Version History
Introduced in R2012a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
comm.HadamardCode | comm.OVSFCode

Blocks
Walsh Code Generator
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comm.WINNER2Channel
Package: comm

Filter input signal through WINNER II fading channel

Note Download Required: To use , first download the WINNER II Channel Model for
Communications Toolbox add-on.

Description
The comm.WINNER2Channel System object filters an input signal through a WINNER II fading
channel. The object utilizes the basic model defined and provided by the WINNER II Channel Models
[1].

To filter an input signal through a WINNER II fading channel:

1 Create the comm.WINNER2Channel object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
winchannel = comm.WINNER2Channel
winchannel = comm.WINNER2Channel(Name,Value)
winchannel = comm.WINNER2Channel(cfgModel)
winchannel = comm.WINNER2Channel(cfgModel,cfgLayout)

Description

winchannel = comm.WINNER2Channel creates a WINNER II fading channel System object to
model single or multiple links. winchannel generates channel coefficients using the WINNER II
spatial channel model (SCM). It also filters a real or complex input signal through the fading channel
for each link.

winchannel = comm.WINNER2Channel(Name,Value) specifies properties using one or more
name-value arguments. For example, 'NormalizeChannelOutputs','false' specifies to not
normalize the channel outputs.

winchannel = comm.WINNER2Channel(cfgModel) sets the ModelConfig property to
cfgModel.

winchannel = comm.WINNER2Channel(cfgModel,cfgLayout) set the LayoutConfig property
to cfgLayout.

 comm.WINNER2Channel
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Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

ModelConfig — WINNER II model parameter configuration
winner2.wimparset (default) | structure

WINNER II model parameter configuration, specified as a structure. You can either use the
winner2.wimparset function to create the default model configuration structure or create it
manually. The Winner II channel model parameter configuration contains these fields.

NumTimeSamples — Number of time samples
100 (default) | scalar

Number of time samples, specified as a scalar.

Note If the number of samples in the input signal (NS) does not match NumTimeSamples, then
update NumTimeSamples to match NS.

Data Types: double

FixedPdpUsed — Option to use predefined path delays and powers for specific scenarios
'no' (default) | 'yes'

Option to use predefined path delays and powers for specific scenarios, specified as 'no' or 'yes'.

FixedAnglesUsed — Option to use predefined path AoDs and AoAs for specific scenarios
'no' (default) | 'yes'

Option to use predefined path angles of departure (AoDs) and angles of arrival (AoAs) for specific
scenarios, specified as 'no' or 'yes'.

IntraClusterDsUsed — Option to divide each of the two strongest clusters into three
subclusters per link
'yes' (default) | 'no'

Option to divide each of the two strongest clusters into three subclusters per link, specified as 'yes'
or 'no'.

PolarisedArrays — Option to use dual-polarized arrays
'yes' (default) | 'no'

Option to use dual-polarized arrays, specified as 'yes' or 'no'.

UseManualPropCondition — Option to use manually defined propagation conditions
'yes' (default) | 'no'
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Option to use manually defined propagation conditions, specified as 'yes' or 'no'. Set this field to
'yes' to enforce the use of manually defined propagation conditions (LOS or NLOS) of the
PropagConditionVector field. Set this field to 'no' to draw propagation conditions from
predefined LOS probabilities.

CenterFrequency — Carrier frequency
5.25e9 (default) | scalar

Carrier frequency in Hz, specified as a scalar.
Data Types: double

UniformTimeSampling — Option to enforce uniform time sampling
'no' (default) | 'yes'

Option to enforce uniform time sampling, specified as 'no' or 'yes'.

SampleDensity — Number of time samples per half wavelength
2e6 (default) | scalar

Number of time samples per half wavelength, specified as a scalar.
Data Types: double

DelaySamplingInterval — Sampling interval
5e-9 (default) | scalar

Sampling interval, specified as a scalar indicating the input signal sample time in seconds.
DelaySamplingInterval defines the sampling grid to which the path delays are rounded.

• A value of 0 seconds indicates no rounding on path delays. When performing channel filtering, the
object sets DelaySamplingInterval to 0 to obtain the original path delays.

• Ignore any nonzero value of DelaySamplingInterval. Specifically, the path delays values that
are not rounded to be multiples of the DelaySamplingInterval values and are nonzero.

Data Types: double

ShadowingModelUsed — Option to use shadow fading
'no' (default) | 'yes'

Option to use shadow fading, specified as 'no' or 'yes'.

PathLossModelUsed — Option to use path loss model
'no' (default) | 'yes'

Option to use path loss model, specified as 'no' or 'yes'.

PathLossModel — Path loss model
'pathloss' (default) | character vector

Path loss model, specified as a character vector representing a valid function name. Path loss model
uses the internal pathloss function from the “WINNER II Channel” add-on to model the path loss.

Dependencies

To enable this property, set the PathLossModelUsed field to 'yes'.
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Data Types: char

PathLossOption — Wall material
'CR_light' (default) | 'CR_heavy' | 'RR_light' | 'RR_heavy'

Wall material, specified as 'CR_light', 'CR_heavy', 'RR_light', or 'RR_heavy'. This field
indicates the wall material for the A1 scenario NLOS path loss calculation.

Dependencies

To enable this property, set the PathLossModelUsed field to 'yes'.
Data Types: char

RandomSeed — Seed for random number generators
[] (default) | scalar

Seed for random number generators, specified as a scalar or empty brackets. Empty brackets, [],
indicate the use of global random stream.
Data Types: double

Data Types: struct

LayoutConfig — WINNER II layout parameter configuration
winner2.layoutparset (default) | structure

WINNER II layout parameter configuration, specified as a structure. You can either use the
winner2.layoutparset function to create the default layout configuration structure or create it
manually. The Winner II channel layout parameter configuration contains these fields.

Stations — Active stations
row vector of structures (default)

Active stations, specified as a row vector of structures describing the antenna arrays for active
stations. Stations is created from the arrays input. The row ordering specifies base station (BS)
sectors first, followed by mobile stations (MS). The assignment of BS sector and MS positions is
random. The BS sectors have no velocity. Each MS has a velocity of about 1.42 m/s with a randomly
assigned direction.
Data Types: struct

NofSect — Number of sectors
vector (default)

Number of sectors, specified as a vector indicating the number of sectors in each BS.
Data Types: double

Pairing — BS to MS pairing
2-by-NL matrix (default)

BS to MS pairing, specified as a 2-by-NL matrix, where NL specifies the number of links to be
modeled. For BS and MS row ordering, see the Stations field.
Data Types: double
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ScenarioVector — Spatial scenario
1 (default) | 1-by-NL vector | scalar

Spatial scenario, specified as a 1-by-NL vector of scenario numbers. The default is 1, which specifies
scenario A1.

The scenario numbers map as {1=A1, 2=A2, 3=B1, 4=B2, 5=B3, 6=B4, 10=C1, 11=C2, 12=C3,
13=C4, 14=D1, 15=D2a}.

For more information, see Section 2.3 of WINNER II Channel Models [1].

PropagConditionVector — Propagation conditions
1 (default) | 1-by-NL vector | scalar

Propagation conditions, specified as a 1-by-NL vector. For each link, specify LOS as 1 and NLOS as 0.
Data Types: double

StreetWidth — Street width
20 (default) | 1-by-NL vector | scalar

Street width, specified as a 1-by-NL vector of identical values that specify the average width (in
meters) of the streets. Use StreetWidth for the path loss model of the B1 and B2 scenarios. For the
scenario number mapping, see the ScenarioVector field.

Dependencies

To enable this property, set the PathLossModelUsed field to 'yes'.
Data Types: double

Dist1 — Distances from BS to last LOS point
NaN (default) | 1-by-NL vector

Distances from the BS to the last LOS point, specified as a 1-by-NL vector. Use the Dist1 field for the
path loss model of the B1 and B2 scenarios. The default value of NaN indicates that the distance is
randomly determined in the path loss function. For the scenario number mapping, see the
ScenarioVector field.

For more information, see Figure 4-3 of WINNER II Channel Models [1].

Dependencies

To enable this property, set the PathLossModelUsed field to 'yes'.
Data Types: double

NumFloors — Floor numbers
1 (default) | 1-by-NL vector | scalar

Floor numbers where the indoor BS or MS is located, specified as a 1-by-NL vector. Use the
NumFloors field for the path loss model of the A2 and B4 scenarios only. For the scenario number
mapping, see the ScenarioVector field.

Dependencies

To enable this property, set the PathLossModelUsed field to 'yes'.
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Data Types: double

NumPenetratedFloors — Number of floors penetrated
0 (default) | 1-by-NL vector | scalar

Number of floors penetrated between the BS and the MS, specified as a 1-by-NL vector. Use the
NumPenetratedFloors field for the NLOS path loss model of the A1 scenario. For the scenario
number mapping, see the ScenarioVector field.

For more information, see Table 4-4 of WINNER II Channel Models [1].

Dependencies

To enable this property, set the PathLossModelUsed field to 'yes'.
Data Types: double

Data Types: struct

NormalizeChannelOutputs — Option to normalize channel outputs
'true' (default) | 'false'

Option to normalize channel outputs, specified as 'true' or 'false'. Set this property to 'true'
to normalize the channel outputs by the number of receive antennas at the MS for each link.

For more information, see “Channel Power” on page 3-1416.
Data Types: char | string

Usage

Syntax
outsignal = winchannel(insignal)
[outsignal,pathgains] = winchannel(insignal)

Description

outsignal = winchannel(insignal) filters the input signal through a WINNER II fading
channel and returns the resulting signal.

[outsignal,pathgains] = winchannel(insignal) also returns the channel path gains of the
underlying fading process.

Input Arguments

insignal — Input signal
NL-by-1 cell array | NS-by-NT matrix

Input signal, specified as an NL-by-1 cell array or an NS-by-NT matrix. NL is the number of links, as
specified by the LayoutConfig property of the winchannel object. The ith element of the
insignal argument must be an NS-by-NT(i) matrix of data type double.

• NS is the number of samples to be generated and must be the same value for all elements of the
insignal argument.
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• NT is the number of transmit antennas at the BS for the ith link, as specified by the
LayoutConfig property of the winchannel object.

Output Arguments

outsignal — Output signal
NL-by-1 cell array (default)

Output signal, returned as an NL-by-1 cell array. If the channel has only one link or if all links have
the same number of transmit antennas, the insignal argument must be an NS-by-NT matrix, and the
ith element of the outsignal argument is an NS-by-NR(i) matrix. NR(i) is the number of receive
antennas at the MS for the ith link, as specified by the LayoutConfig property of the winchannel
object.

pathgains — Channel path gains
NL-by-1 cell array (default)

Channel path gains, returned as an NL-by-1 cell array.

The ith element of the pathgains argument is an NR(i)-by-NT(i)-by-NP(i)-by-NS array of complex
values of data type double. NP(i) is the number of paths for the ith link, as specified by the
LayoutConfig property of the winchannel object.

NR, NT, and NP are link-specific. NS is the same for all of the links.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Note When you use the reset object function, if the ModelConfig.RandomSeed property of object
is empty, reset resets the filters only. Otherwise, reset resets the filters and reinitializes the
random number stream to the value of the ModelConfig.RandomSeed field.

Examples

Simulate WINNER II Channel with Two Mobile Stations

Simulate a system that has two MSs connected to one BS. One MS is 8 meters away from the BS, and
the other is 20 meters away from the BS. Send the impulse signals through the two links. The
spectrum of the received signals at the MS shows frequency selectivity.

Specify a random number generator seed for repeatability.

 comm.WINNER2Channel
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rng(100);

Initialize the frame length and sample rate.

frmLen = 1024;

Configure the winner II channel layout parameters.

BSAA = winner2.AntennaArray("UCA",8,0.02);   % UCA-8 antenna array for BS
MSAA1 = winner2.AntennaArray("ULA",2,0.01);  % ULA-2 antenna array for MS
MSAA2 = winner2.AntennaArray("ULA",4,0.005); % ULA-4 antenna array for MS
MSIdx = [2 3]; 
BSIdx = {1};
NL = 2;
maxRange = 100;
rndSeed = 101;
cfgLayout = winner2.layoutparset(MSIdx,BSIdx,NL, ...
   [BSAA,MSAA1,MSAA2],maxRange,rndSeed);

Adjust BS and MS positions.

cfgLayout.Stations(1).Pos(1:2) = [10, 10];
cfgLayout.Stations(2).Pos(1:2) = [18, 10];  % 8 meters away from BS
cfgLayout.Stations(3).Pos(1:2) = [22, 26];  % 20 meters away from BS

Specify the NLOS for both links.

cfgLayout.Pairing = [1 1; 2 3];
cfgLayout.PropagConditionVector = [0 0];

Configure the winner II channel model parameters.

cfgModel = winner2.wimparset;
cfgModel.NumTimeSamples = frmLen;     % Frame length
cfgModel.IntraClusterDsUsed = "no";   % No cluster splitting
cfgModel.SampleDensity = 2e5;         % For lower sample rate
cfgModel.PathLossModelUsed = "yes";   % Turn on path loss
cfgModel.ShadowingModelUsed = "yes";  % Turn on shadowing

Create a WINNER II fading channel System object.

winChannel = comm.WINNER2Channel(cfgModel,cfgLayout);

Get system information.

chanInfo = info(winChannel)

chanInfo = struct with fields:
               NumLinks: 2
          NumBSElements: [8 8]
          NumMSElements: [2 4]
               NumPaths: [16 16]
             SampleRate: [1.0000e+07 1.0000e+07]
     ChannelFilterDelay: [7 7]
    NumSamplesProcessed: 0

Get the number of transmitters and sample rate of the system.
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numTx = chanInfo.NumBSElements(1);
Rs = chanInfo.SampleRate(1);

Create a spectrum analyzer System object.

sa = spectrumAnalyzer( ...
    SampleRate=Rs, ...
    YLimits=[-170, -100], ...
    ShowLegend=true, ...
    ChannelNames=["MS 1 (8 meters away)","MS 2 (20 meters away)"]);

Pass impulse signals through the two links and show the spectra of the received signals at the two
MSs.

for i = 1:10
    x = [ones(1,numTx); 
    zeros(frmLen-1,numTx)];
    y = winChannel(x);
    sa([y{1}(:,1),y{2}(:,1)]);
end
release(sa)
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More About
WINNER II Sampling Rate

The signal sample rate (RS) for generating channel coefficients and performing channel filtering is
calculated per link using the mobile station speed (VMS), half wavelength distance, and sample
density. The sample rate for each link is available as a field in the output of the info object function.

RS = VMS / (C / Fcenter / 2 / NSD)

• For the MS speed: VMS,

• When you set theModelConfig.UniformTimeSampling field to 'no', VMS is the speed of the
MS for the corresponding link, derived from the LayoutConfig.Stations(i).Velocity
field.

• When you set the ModelConfig.UniformTimeSampling field to 'yes', VMS is the maximum
speed of the MS for all links.

• C is the speed of light (2.99792458e8 m/s).
• Fcenter is the ModelConfig.CenterFrequency field.
• NSD is the ModelConfig.SampleDensity field.

Channel Power

These conditions apply to the channel power of the comm.WINNER2Channel System object:

• When path loss and shadowing are off, path gains are normalized. Specifically, path gains are
normalized when you set the ModelConfig.ShadowingModelUsed and
ModelConfig.PathLossModelUsed fields to 'no'.

• When you set the NormalizeChannelOutputs property to 'true', the average gain of the
channel is 0 dB.

Version History
Introduced in R2016b

References
[1] Kyosti, Pekka, Juha Meinila, et al. WINNER II Channel Models. D1.1.2 V1.2. IST-4–027756

WINNER II, September 2007.

See Also
Objects
comm.AWGNChannel | comm.MIMOChannel | comm.RicianChannel | comm.RayleighChannel

Functions
winner2.AntennaArray | winner2.layoutparset | winner2.wimparset | winner2.wim |
winner2.dipole
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rxsite
Create RF receiver site

Description
Use the rxsite object to create a radio frequency receiver site.

A receiver consists of an RF circuit and an antenna, where the antenna intercepts radio waves and
converts them to a current that is decoded by the RF circuit (e.g. demodulated) into a signal. Key
characteristics of a receiver include its sensitivity and its antenna radiation pattern.

Creation

Syntax
rx = rxsite
rx = rxsite(coordsys)
rx = rxsite(Name,Value)

Description

rx = rxsite creates a radio frequency receiver site.

rx = rxsite(coordsys) creates a receiver site with coordinate system set to 'geographic' or
'cartesian'.

rx = rxsite(Name,Value) sets properties using one or more name-value pairs. For example, rx
= rxsite('Name','RX Site') creates a receiver site with name RX Site. Enclose each property
name in quotes.

Create a 1-by-N array of receiver sites by specifying a property value as an array of N columns. Other
property values must be specified with either 1 or N columns. The Name, Latitude, and Longitude
properties may be specified as either a row vector or column vector with N elements. The
CoordinateSystem property must be a string scalar or a character vector.

Properties
Name — Site name
character vector | string | row or column vector

Site name, specified as a character vector or as a row or column vector or as a string.
Example: 'Name','Site 3'
Example: rx.Name = 'Site 3'
Example: If you want to assign multiple values then - names = ["Fenway Park","Faneuil
Hall","Bunker Hill Monument"]; rx = rxsite('Name',names)
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Data Types: char | string

CoordinateSystem — Coordinate system of site location
'geographic' (default) | 'cartesian'

Coordinate system of the site location, specified as 'geographic' or 'cartesian'. If this property
is 'geographic', the site location is defined using the properties Latitude, Longitude, and
AntennaHeight. If this property is 'cartesian', the site location is defined using
AntennaPosition.
Example: 'CoordinateSystem','cartesian'
Example: tx.CoordinateSystem = 'cartesian'

Latitude — Site latitude coordinates
42.3021 (default) | numeric scalar | row or column vector

Site latitude coordinates, specified as a numeric scalar or a row or column vector in the range of
range -90 to 90. Coordinates are defined using Earth ellipsoid model WGS-84. Latitude is the north/
south angle.
Example: 'Latitude',45.098
Example: rx.Latitude = 45.098
Example: If you want to assign multiple values then - latitude = [42.3467,42.3598,42.3763];
rx = rxsite('Latitude',latitude)

Dependencies

To use this property, CoordinateSystem must be set to 'geographic'.

Longitude — Site longitude coordinates
-71.3764 (default) | numeric scalar | row or column vector

Site longitude coordinates, specified as a numeric scalar or a row or column vector. Coordinates are
defined using Earth ellipsoid model WGS-84. Longitude is the east/west angle.
Example: 'Longitude',-68.890
Example: rx.Longitude = -68.890
Example: If you want to assign multiple values then - longitude =
[-71.0972,-71.0545,-71.0611]; rx = rxsite('Longitude',longitude)

Dependencies

To use this property, CoordinateSystem must be set to 'geographic'.

Antenna — Antenna element or array
'isotropic' (default) | object | row vector

Antenna element or array specified as one of these:

• 'isotropic' to model an antenna that radiates uniformly in all directions.
• An arrayConfig object.
• If you have Antenna Toolbox™, an antenna element from the “Antenna Catalog” (Antenna Toolbox).
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• If you have Phased Array System Toolbox, any antenna object in “Antennas, Microphones, and
Sonar Transducers” (Phased Array System Toolbox) or any array object in “Array Geometries and
Analysis” (Phased Array System Toolbox).

Example: 'Antenna',cfgArray, where cfgArray is an arrayConfig object
Example: rx.Antenna = arrayConfig('Size',[8 1]); specifies an 8-element ULA along z-axis

AntennaAngle — Angle of antenna local X-axis
0 (default) | numeric scalar | 2-by-1 vector | 2-by-N matrix

Angle of antenna local Cartesian coordinate system X-axis, specified as a numeric scalar representing
azimuth angle in degrees or a 2-by-1 vector representing both azimuth and elevation angles with each
element unit in degrees.

The azimuth angle is measured counterclockwise to the antenna X-axis, either from the east ( for
geographical sites) or from the global X-axis around the global Z-axis (for Cartesian sites).

The elevation angle is measured from the horizontal plane or X-Y plane to the antenna X-axis in the
range -90 to 90 degrees.
Example: 'AntennaAngle',25
Example: tx.AntennaAngle = [25,-80]

AntennaHeight — Antenna height above surface
1 (default) | non-negative numeric scalar | row vector

Antenna height from the ground or building surface, specified as a non-negative numeric scalar in
meters. Maximum value for this property is 6,371,000 m.

If the site coincides with the building, the height is measured from the top of the building to the
center of the antenna. Otherwise,the height is measured from ground elevation to the center of the
antenna.
Example: 'AntennaHeight',25
Example: rx.AntennaHeight = 15
Dependencies

To use this property, CoordinateSystem must be set to 'geographic'.
Data Types: 

AntennaPosition — Position of antenna center
[0;0;0] (default) | 3-by-1 vector

Position of the antenna center, specified as a 3-by-1 vector representing [x;y;z] Cartesian coordinates
with each element in meters.
Example: 'AntennaPosition',[0;2;4]
Example: tx.AntennaPosition = [0;2;4]
Dependencies

To use this property, choose CoordinateSystem must be set to 'cartesian'.
Data Types: 
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SystemLoss — System loss
0 (default) | nonnegative numeric scalar | row vector

System loss, specified as a non-negative numeric scalar or a row vector in dB.

System loss includes transmission line loss and any other miscellaneous system losses.
Example: 'SystemLoss',10
Example: rx.SystemLoss = 10
Data Types: 

ReceiverSensitivity — Minimum received power to detect signal
-100 (default) | numeric scalar | row vector

Minimum received power to detect the signal, specified as a numeric scalar or a row vector in dBm.
Example: 'ReceiverSensitivity',-80
Example: rx.ReceiverSensitivity = -80
Data Types: double

Object Functions
show Show site in Site Viewer
hide Hide site from Site Viewer
distance Distance between sites
angle Angle between sites
elevation Elevation of site
location Coordinates at distance and angle from site
sigstrength Received signal strength
los Display or compute line-of-sight (LOS) visibility status
link Display or compute communication link status
pattern Display antenna radiation pattern in Site Viewer

Examples

Default Receiver Site

Create and show the default receiver site.

rx = rxsite

rx = 
  rxsite with properties:

                   Name: 'Site 2'
               Latitude: 42.3021
              Longitude: -71.3764
                Antenna: 'isotropic'
           AntennaAngle: 0
          AntennaHeight: 1
             SystemLoss: 0
    ReceiverSensitivity: -100
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show(rx)

Version History
Introduced in R2019b

See Also
arrayConfig | txsite | siteviewer
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siteviewer
Create Site Viewer

Description
Display transmitter sites, receiver sites, and RF propagation visualizations by using a siteviewer
object. By default, Site Viewer displays a 3-D view of the globe. When you display sites on the globe,
they are referenced to geographic coordinates. You can customize the globe using custom terrain,
high-zoom-level or custom basemaps, and buildings.

You can also import and view 3-D models represented by standard tessellation language (STL) files or
triangulation objects. When you display sites on a 3-D model, they are referenced to Cartesian
coordinates.

Site Viewer requires hardware graphics support for WebGL™.

Creation

Syntax
viewer = siteviewer
viewer = siteviewer(Name,Value)

Description

viewer = siteviewer creates a Site Viewer.

viewer = siteviewer(Name,Value) specifies Site Viewer properties using name-value
arguments. For example, import and view a 3-D model file by using the SceneModel name-value
argument.

Properties
Site Viewer

Name — Caption to display on map viewer window
'Site Viewer' (default) | character vector | string scalar

Caption to display on map viewer window, specified as a character vector or a string scalar.
Data Types: char | string

Position — Size and location of map viewer window in pixels
four-element integer-valued vector

Size and location of map viewer window in pixels, specified as a four-element integer-valued vector in
the form [left bottom width height]. The default value depends on the screen resolution such
that the window lies in the center of the screen with a width of 800 pixels and a height of 600 pixels.
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Data Types: double

CoordinateSystem — Coordinate reference system
'geographic' (default) | 'cartesian'

This property is read-only.

Coordinate reference system, specified as 'geographic' or 'cartesian'. The value of
CoordinateSystem depends on how you create the Site Viewer.

• By default, the value of CoordinateSystem is 'geographic'and visualizations are referenced
to the WGS84 reference ellipsoid.

• When you create the Site Viewer by specifying the SceneModel argument, the value of
CoordinateSystem is 'cartesian' and coordinates are referenced to Cartesian coordinates.

When CoordinateSystem is 'geographic', you can view the latitude and longitude coordinates
for a location by right-clicking the map and selecting Show Location. To remove the location, right-
click and select Remove Location.
Data Types: char | string

Geographic Coordinate System

Basemap — Map imagery used to visualize sites
'satellite' (default) | 'openstreetmap' | 'streets' | 'streets-light' | 'streets-dark'
| 'topographic' | ...

Map imagery used to visualize sites, specified as one of the basemap names in this table or as a
custom basemap defined using the addCustomBasemap function.

'satellite' (default)

Full global basemap
composed of high-
resolution satellite
imagery.

Hosted by Esri.

'openstreetmap'

Street map provided by
OpenStreetMap.
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'streets'

General-purpose road
map that emphasizes
accurate, legible styling
of roads and transit
networks.

Hosted by Esri.

'streets-light'

Map designed to
provide geographic
context while
highlighting user data
on a light background.

Hosted by Esri.

'streets-dark'

Map designed to
provide geographic
context while
highlighting user data
on a dark background.

Hosted by Esri.

'topographic'

General-purpose map
with styling to depict
topographic features.

Hosted by Esri.

'landcover'

Map that combines
satellite-derived land
cover data, shaded
relief, and ocean-bottom
relief. The light, natural
palette is suitable for
thematic and reference
maps.

Created using Natural
Earth.

'colorterrain'

Shaded relief map
blended with a land
cover palette. Humid
lowlands are green and
arid lowlands are
brown.

Created using Natural
Earth.
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'grayterrain'

Terrain map in shades
of gray. Shaded relief
emphasizes both high
mountains and micro-
terrain found in
lowlands.

Created using Natural
Earth.

'bluegreen'

Two-tone, land-ocean
map with light green
land areas and light
blue water areas.

Created using Natural
Earth.

'grayland'

Two-tone, land-ocean
map with gray land
areas and white water
areas.

Created using Natural
Earth.

'darkwater'

Two-tone, land-ocean
map with light gray land
areas and dark gray
water areas. This
basemap is installed
with MATLAB.

Created using Natural
Earth.

The basemaps hosted by Esri update periodically. As a result, you might see differences in your
visualizations over time.

Alignment of boundaries and region labels are a presentation of the feature provided by the data
vendors and do not imply endorsement by MathWorks®.

This property applies only when CoordinateSystem is 'geographic'.
Data Types: char | string

Terrain — Data on which to visualize sites and perform terrain calculations
'gmted2010' (default) | 'none' | character vector | scalar

Data on which to visualize sites and perform terrain calculations, specified as a character vector or a
scalar previously added using addCustomTerrain or one of the following options:

• 'none' — Terrain elevation is 0 everywhere.
• 'gmted2010' — USGS GMTED2010 terrain data. This option requires an internet connection.

This property applies only when CoordinateSystem is 'geographic'.

This property is read-only after you create the Site Viewer.

For limitations, see “Limitations” on page 3-1438.
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Data Types: char | string

Buildings — Name of OpenStreetMap (.osm) file to use as buildings data
string scalar | character vector

Name of the OpenStreetMap (.osm) file to use as buildings data, specified as a string scalar or a
character vector. The file must be in the current directory, in a directory on the MATLAB path. You
can also use a full or relative path to the file to specify the data. By default, this value is empty.

This property applies only when CoordinateSystem is 'geographic'.

This property is read-only after you create the Site Viewer.

For limitations, see “Limitations” on page 3-1438.
Data Types: char | string

Cartesian Coordinate System

SceneModel — Name of 3-D model file or triangulation
character vector | string scalar | triangulation object

Name of the 3-D model file or triangulation, specified as a string scalar, a character vector, or a
triangulation object.

When SceneModel is the name of a 3-D model file, you must specify an STL file with extension .stl.
The form of SceneModel depends on the location of your file.

• If the file is in your current folder or in a folder on the MATLAB path, then specify the name of the
file, such as 'myFile.stl'.

• If the file is not in the current folder or in a folder on the MATLAB path, then specify the full or
relative path name, such as 'C:\myfolder\myFile.stl' or 'dataDir\myFile.stl'.

This property applies only when CoordinateSystem is 'cartesian'.

This property is read-only after you create the Site Viewer.
Data Types: char | string

Transparency — Transparency of model
scalar in the range [0,1]

Transparency of the model, specified as a scalar in the range [0,1], where 0 is transparent and 1 is
opaque. The default is 0.1 when ShowEdges is 1 (true), and 1 otherwise.

This property applies only when CoordinateSystem is 'cartesian'.
Data Types: double

ShowOrigin — Option to show origin
true or 1 (default) | false or 0

Option to show the origin of the model, specified as numeric or logical 1 (true) or 0 (false). The x-
axis appears in red, the y-axis appears in green, and the z-axis appears in blue. The z-axis of the
scene points up.

This property applies only when CoordinateSystem is 'cartesian'.
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Data Types: logical

ShowEdges — Option to show edges of model
true or 1 (default) | false or 0

Option to show the edges of the model using black lines, specified as numeric or logical 1 (true) or 0
(false). Site Viewer defines edges as two adjacent facets with normals that differ by more than two
degrees.

This property applies only when CoordinateSystem is 'cartesian'.

This property is read-only after you create the Site Viewer.
Data Types: logical

Object Functions
clearMap Clear plots
close Close Site Viewer

Examples

Default Site Viewer Map Display

Create a default Site Viewer.

viewer = siteviewer;
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Pan by left-clicking and dragging, zoom by right-clicking and dragging or by using the scroll wheel,
and rotate the visualization by clicking the middle button and dragging or by pressing Ctrl and left-
clicking or dragging. View the coordinates for a location by right-clicking and selecting Show
location.

For this example, navigate to a region containing New England and view the coordinates for a
location near Cape Cod.

A gray marker appears at the location you selected. Remove the marker by right-clicking the location
and selecting Remove location.

Site Viewer with 3-D Model

Import and view an STL file. The file models a small conference room with one table and four chairs.

viewer = siteviewer("SceneModel","conferenceroom.stl");

Pan by left-clicking, zoom by right-clicking or by using the scroll wheel, and rotate the visualization
by clicking the middle button and dragging or by pressing Ctrl and left-clicking and dragging.
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View Transmitter Site On Site Viewer

Launch a Site Viewer with streets basemap.

viewer = siteviewer("Basemap","streets");
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View a transmitter site on this map.

tx = txsite;
show(tx)
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Compare Coverage Maps

Launch two Site Viewer windows. One Site Viewer window uses the terrain model and the other
window does not use the terrain model.

viewer1 = siteviewer("Terrain","gmted2010","Name","Site Viewer (Using Terrain)");
viewer2 = siteviewer("Terrain","none","Name","Site Viewer (No Terrain)");

Create a transmitter site.

tx = txsite;

Generate a coverage map on each window. The map with terrain uses the Longley-Rice propagation
model by default.

coverage(tx,"Map",viewer1)
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The map without terrain uses the free-space model by default.

coverage(tx,"Map",viewer2)
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Site Viewer with Buildings

Launch Site Viewer with a basemap and buildings file for Manhattan. For more information about the
osm file, see [1] on page 3-1435.

viewer = siteviewer("Basemap","openstreetmap",...
       "Buildings","manhattan.osm");
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Show a transmitter site on a building.

tx = txsite("Latitude",40.7107,...
       "Longitude",-74.0114,...
       "AntennaHeight",50);
show(tx) 
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Appendix

[1] The osm file is downloaded from https://www.openstreetmap.org, which provides access to crowd-
sourced map data all over the world. The data is licensed under the Open Data Commons Open
Database License (ODbL), https://opendatacommons.org/licenses/odbl/.

Add and Remove a Custom Basemap

Add a custom basemap to view locations on an OpenTopoMap® basemap, then remove the custom
basemap from siteviewer.

Initialize simulation variables to:

• Define the name that you will use to specify your custom basemap.
• Specify the website that provides the map data. The first character of the URL indicates which

server to use to get the data. For load balancing, the provider has three servers that you can use:
a, b, or c.

• Create an attribution to display on the map that gives credit to the provider of the map data. Web
map providers might define specific requirements for the attribution.

• Define a display name for the custom map.

name = 'opentopomap';
url = 'a.tile.opentopomap.org';
copyright = char(uint8(169));

 siteviewer

3-1435

https://www.openstreetmap.org/
https://opendatacommons.org/licenses/odbl/


attribution = copyright + "OpenStreetMap contributors";
displayName = 'Open Topo Map';

Use addCustomBasemap to load the custom basemap, and then create a siteviewer object that
loads the custom basemap.

addCustomBasemap(name,url,'Attribution',attribution','DisplayName',displayName)
viewer = siteviewer('Basemap',name);

After a custom basemap is added to siteviewer, the custom map is available for future calls to
siteviewer. Note the 'Open Topo Map' icon in the Imagery tab.

siteviewer;
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Use removeCustomBasemap to remove the custom basemap from future calls to siteviewer. Note
the 'Open Topo Map' icon is no longer available in the Imagery tab.

removeCustomBasemap(name)
siteviewer;

 siteviewer

3-1437



Limitations
Terrain

• Default terrain access requires an internet connection. If no internet connection exists, then Site
Viewer automatically uses 'none' in the property Terrain.

• Custom DTED terrain files for use with addCustomTerrain must be acquired outside of MATLAB
for example by using USGS EarthExplorer.

• When using custom terrain, analysis is restricted to the terrain region. For example, an error
occurs if you are trying to show a transmitter or receiver site outside of the region.

Buildings

• OpenStreetMap files obtained from https://www.openstreetmap.org represent crowd-sourced map
data, and the completeness and accuracy of the buildings data may vary depending on the map
location.

• When downloading data from https://www.openstreetmap.org, select an export area larger than
the desired area to ensure that all expected building features are fully captured. Building features
at the edge of the selected export area may be missing.

• Building geometry and features are interpreted from the file according to the recommendations of
OpenStreetMap for 3-D buildings.
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MATLAB Online

• In MATLAB Online™, if you refresh the URL, then the Site Viewer window remains open but the
visualizations disappear.

More About
Site Viewer Navigation

You can interactively navigate Site Viewer by using your mouse.

• Pan by left-clicking and dragging.
• Zoom by scrolling or by right-clicking and dragging.
• Tilt and rotate by holding Ctrl and dragging or by middle-clicking and dragging.

When CoordinateSystem is 'geographic', you can restore the default view by selecting 
Restore View from the toolbar.

Dimension Picker

When CoordinateSystem is 'geographic', you can choose between three view options by using
the Dimension Picker in the toolbar.

•
 3-D View — A smooth globe. This is the default view.

•
 2-D View — A flat map in the Mercator projection.

•
 Columbus View — A flat map in the Mercator projection that supports tilt and rotation.

Some interactions are not supported for 2-D View and Columbus View.

Version History
Introduced in R2019b

See Also
Functions
addCustomTerrain | addCustomBasemap | removeCustomTerrain | removeCustomBasemap

Objects
txsite | rxsite

Topics
“RF Propagation and Visualization”
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txsite
Create RF transmitter site

Description
Use the txsite object to create a radio frequency transmitter site.

A transmitter consists of an RF circuit and an antenna, where the RF circuit excites the antenna with
a signal and power. Key characteristics of a transmitter include its output power, operating frequency,
and antenna radiation pattern.

Creation

Syntax
tx = txsite
tx = txsite(coordsys)
tx = txsite( ___ ,Name,Value)

Description

tx = txsite creates a radio frequency transmitter site.

tx = txsite(coordsys) creates a transmitter site with the specified coordinate system. You can
specify either 'geographic' or 'cartesian' coordinate system.

tx = txsite( ___ ,Name,Value) sets properties using one or more name-value pairs. For
example, tx = txsite('Name','TX Site') creates a transmitter site with the name TX Site.
Enclose each property name in quotes.

You can create multiple transmitter sites by using Name, Latitude, and Longitude properties. For
example: names = ["Fenway Park","Faneuil Hall","Bunker Hill Monument"]; lats =
[42.3467,42.3598,42.3763]; lons = [-71.0972,-71.0545,-71.0611];. The
CoordinateSystem property must be a string scalar or a character vector.

Properties
Name — Site name
character vector | string | row or column vector

Site name, specified as a character vector or string or as a row or column vector of N elements.
Specifying name as a row or column vector creates multiple sites.
Example: 'Name','Site 2'
Example: tx.Name = 'Fenway Park'
Example: names = ["Fenway Park","Faneuil Hall","Bunker Hill Monument"]; tx =
txsite('Name',names)
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Data Types: char | string

CoordinateSystem — Coordinate system used to site location
'geographic' (default) | 'cartesian'

Coordinate system used to the site location, specified as 'geographic' or 'cartesian'. If you
specify 'geographic', the site location is defined using the Latitude, Longitude, and
AntennaHeight properties. If you specify 'cartesian', the site location is defined using the
AntennaPosition property.
Example: 'CoordinateSystem','cartesian'
Example: tx.CoordinateSystem = 'cartesian'

Latitude — Site latitude coordinates
42.3001 (default) | numeric scalar in the range [-90 90] | row or column vector

Site latitude coordinates, specified as a numeric scalar in the range of -90 to 90, or as a row or
column vector of N elements in the range [-90 90]. Specifying latitude as a row or column vector
creates multiple sites. The coordinates are defined using the world geodesic system of 1984
(WGS-84) reference ellipsoid. Latitude specifies north-south position.
Example: 'Latitude',45.098
Example: tx.Latitude = 45.098
Example: latitude = [42.3467,42.3598,42.3763]; tx = txsite('Latitude',latitude)

Dependencies

To enable this property, set CoordinateSystem to 'geographic'.

Longitude — Site longitude coordinates
-71.3504 (default) | numeric scalar in the range [-180 180] | row or column vector

Site longitude coordinates, specified as a numeric scalar in the range [-180 180]or as a row or
column vector of N elements in the range [-180 180]. Specifying longitude as a row or column
vector creates multiple sites. The coordinates are defined using the world geodesic system of 1984
(WGS-84) reference ellipsoid. Longitude specifies the east-west the position.
Example: 'Longitude',-68.890
Example: tx.Longitude = -71.0972
Example: longitude = [-71.0972,-71.0545,-71.0611]; tx =
txsite('Longitude',longitude)

Dependencies

To enable this property, set the CoordinateSystem to 'geographic'.

Antenna — Antenna element or array
'isotropic' (default) | object | row vector

Antenna element or array specified as one of these options.

• 'isotropic' to model an antenna that radiates uniformly in all directions.
• An arrayConfig object.
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• If you have Antenna Toolbox, an antenna element from the “Antenna Catalog” (Antenna Toolbox).
• If you have Phased Array System Toolbox, any antenna object in “Antennas, Microphones, and

Sonar Transducers” (Phased Array System Toolbox) or any array object in “Array Geometries and
Analysis” (Phased Array System Toolbox).

Example: 'Antenna',cfgArray, where cfgArray is an arrayConfig object
Example: tx.Antenna = arrayConfig('Size',[8 1]); specifies an 8-element ULA along z-axis

AntennaAngle — Antenna X-axis angle
0 (default) | numeric scalar | 2-by-1 vector | 2-by-N matrix

Antenna X-axis angle defined with reference to a local Cartesian coordinate system, specified as a
numeric scalar representing an azimuth angle in degrees or as a 2-by-1 vector or a 2-by-N matrix
representing both azimuth and elevation angles with each element unit in degrees.

The azimuth angle is measured counterclockwise from the east along the antenna X-axis (for
geographical sites) or from the global X-axis around the global Z-axis (for Cartesian sites). Specify the
azimuth angle between -180 to 180. degrees.

The elevation angle is measured from antenna X-axis along the horizontal or XY plane. Specify the
elevation angle between-90 to 90 degrees.
Example: 'AntennaAngle',25
Example: tx.AntennaAngle = [25,-80]

AntennaHeight — Antenna height above surface
10 (default) | nonnegative numeric scalar | row vector

Antenna height from the ground or building surface, specified as a nonnegative numeric scalar in
meters. Maximum value for this property is 6,371,000 m.

If the site location coincides with the building location, the antenna height is measured from the top
of the building to the center of the antenna. Otherwise,the height is measured from ground elevation
to the center of the antenna.
Example: 'AntennaHeight',25
Example: tx.AntennaHeight = 15

Dependencies

To enable this property, set CoordinateSystem to 'geographic'.
Data Types: 

AntennaPosition — Position of antenna center
[0;0;0] (default) | 3-by-1 vector

Position of the antenna center, specified as a 3-by-1 vector representing X-, Y-, and Z-axis Cartesian
coordinates with each element in meters.
Example: 'AntennaPosition',[0;2;4]
Example: tx.AntennaPosition = [0;2;4]
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Dependencies

To enable this property, set CoordinateSystem to 'cartesian'.
Data Types: 

SystemLoss — System loss
0 (default) | nonnegative scalar | row vector

System loss, specified as a nonnegative scalar in dB.

System loss includes transmission line loss and any other miscellaneous system losses.
Example: 'SystemLoss',10
Example: txsite.SystemLoss = 10
Data Types: 

TransmitterFrequency — Transmitter operating frequency
1.9000e+09 (default) | positive scalar | row vector

Transmitter operating frequency, specified as a positive scalar in Hz. in the range [1e3 200e9.
Example: 'TransmitterFrequency',30e9
Example: txsite.TransmitterFrequency = 30e9
Data Types: double

TransmitterPower — Signal power at transmitter output
10 (default) | positive scalar

Signal power at transmitter output, specified as a positive scalar in watts. The transmitter out is
connected to the antenna.
Example: 'TransmitterPower',30
Example: txsite.TransmitterPower = 30
Data Types: double

Object Functions
show Show site in Site Viewer
hide Hide site from Site Viewer
distance Distance between sites
angle Angle between sites
elevation Elevation of site
location Coordinates at distance and angle from site
los Display or compute line-of-sight (LOS) visibility status
coverage Display or compute coverage map
sinr Display or compute signal-to-interference-plus-noise (SINR) ratio
pattern Display antenna radiation pattern in Site Viewer

Examples
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Default Transmitter Site

Create a transmitter site at a latitude of 42.3001 degrees and a longitude of -71.3504 degrees.

tx = txsite("Name","MathWorks Apple Hill", ...
    "Latitude",42.3001,"Longitude",-71.3504)

tx = 
  txsite with properties:

                    Name: 'MathWorks Apple Hill'
        CoordinateSystem: 'geographic'
                Latitude: 42.3001
               Longitude: -71.3504
                 Antenna: 'isotropic'
            AntennaAngle: 0
           AntennaHeight: 10
              SystemLoss: 0
    TransmitterFrequency: 1.9000e+09
        TransmitterPower: 10

View the coverage of the site.

pattern(tx)

Version History
Introduced in R2019b
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See Also
arrayConfig | rxsite | siteviewer
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CloseIn
Close-in propagation model

Description
Model the behavior of electromagnetic radiation from a point of transmission as it travels through
urban macro cell scenarios [1] by using a CloseIn object. Close-in propagation models have no
enforced frequency range.

Creation
Create a CloseIn object by using the propagationModel function.

Properties
ReferenceDistance — Free-space reference distance
1 (default) | scalar

Free-space reference distance, specified as a scalar in meters.

Note The close-in model is valid for distances greater than or equal to the ReferenceDistance.
Path loss is 0 for distances less than ReferenceDistance.

Data Types: double

PathLossExponent — Path loss exponent
2.9 (default) | scalar

Path loss exponent, specified as a scalar.
Data Types: double

Sigma — Standard deviation
5.7 (default) | scalar

Standard deviation of the zero-mean Gaussian random variable, specified as a scalar in decibels (dB).
Data Types: double

NumDataPoints — Number of data points
1869 (default) | integer

Number of data points of the zero-mean Gaussian random variable, specified as an integer.
Data Types: double
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Object Functions
pathloss Path loss of radio wave propagation
range Range of radio wave propagation
add Add propagation models

Examples

Model Coverage Using Close-In Model

Display the coverage area for a transmitter using the close-in propagation model.

pm = propagationModel("close-in");
tx = txsite("Name","Apple Hill","Latitude",42.3001,"Longitude",-71.3604);
coverage(tx,pm)

Version History
Introduced in R2019b

References
[1] Sun, Shu, Theodore S. Rappaport, Timothy A. Thomas, Amitava Ghosh, Huan C. Nguyen, Istvan Z.

Kovacs, Ignacio Rodriguez, Ozge Koymen, and Andrzej Partyka. “Investigation of Prediction
Accuracy, Sensitivity, and Parameter Stability of Large-Scale Propagation Path Loss Models
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for 5G Wireless Communications.” IEEE Transactions on Vehicular Technology 65, no. 5 (May
2016): 2843–60. https://doi.org/10.1109/TVT.2016.2543139.

See Also
Functions
propagationModel | coverage

Objects
FreeSpace | Rain | Gas | Fog | LongleyRice | RayTracing

Topics
“Choose a Propagation Model”
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Fog
Fog propagation model

Description
Model the behavior of electromagnetic radiation from a point of transmission as it travels through fog
or clouds [1] by using a Fog object. Propagation models for fog are valid from 10 to 1000 GHz,
assume line-of-sight (LOS) conditions, and disregard terrain, the curvature of the Earth, and other
obstacles.

Creation
Create a Fog object by using the propagationModel function.

Properties
Temperature — Air temperature
15 (default) | scalar

Air temperature, specified as a scalar in degrees Celsius (C).
Data Types: double

WaterDensity — Liquid water density
0.5 (default) | scalar

Liquid water density, specified as a scalar in grams per cubic meter (g/m3).
Data Types: double

Object Functions
pathloss Path loss of radio wave propagation
range Range of radio wave propagation
add Add propagation models

Examples

Model Coverage in Thick Fog

Display the coverage area for a transmitter in thick fog.

Create a propagation model for fog. Specify the water density as 0.5 grams per cubic meter.

pm = propagationModel("fog","WaterDensity",0.5);

Create a transmitter site. Display the coverage area for the transmitter. Propagation models for fog
require transmitter frequencies between 10 and 1000 GHz.
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tx = txsite("Name","Apple Hill","TransmitterFrequency",1e10, ...
    "Latitude",42.3001,"Longitude",-71.3604);
coverage(tx,pm)

Version History
Introduced in R2019b

References
[1] International Telecommunications Union Radiocommunication Sector. Attenuation due to clouds

and fog. Recommendation P.840-6. ITU-R, approved September 30, 2013. https://
www.itu.int/rec/R-REC-P.840-6-201309-S/en.

[2] Seybold, John S. Introduction to RF Propagation. Hoboken, N.J: Wiley, 2005.

See Also
Functions
propagationModel | coverage | fogpl

Objects
FreeSpace | Rain | Gas | CloseIn | LongleyRice | RayTracing

Topics
“Choose a Propagation Model”
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FreeSpace
Free space propagation model

Description
Model the behavior of electromagnetic radiation from a point of transmission as it travels through
free space by using a FreeSpace object. Free space propagation models have no enforced frequency
range, assume line-of-sight (LOS) conditions, and disregard terrain, the curvature of the Earth, and
other obstacles.

FreeSpace objects have no properties.

Creation
Create a FreeSpace object by using the propagationModel function.

Object Functions
pathloss Path loss of radio wave propagation
range Range of radio wave propagation
add Add propagation models

Examples

Model Coverage in Free Space

Display the coverage area for a transmitter in free space.

pm = propagationModel("freespace");
tx = txsite("Name","Apple Hill","Latitude",42.3001,"Longitude",-71.3604);
coverage(tx,pm)
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Version History
Introduced in R2019b

References
[1] Seybold, John S. Introduction to RF Propagation. Hoboken, N.J: Wiley, 2005.

See Also
Functions
propagationModel | coverage | fspl

Objects
Rain | Gas | Fog | CloseIn | LongleyRice | RayTracing

Topics
“Choose a Propagation Model”
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Gas
Gas propagation model

Description
Model the behavior of electromagnetic radiation from a point of transmission as it travels through gas
[1] by using a Gas object. Propagation models for gas are valid from 1 to 1000 GHz, assume line-of-
sight (LOS) conditions, and disregard terrain, the curvature of the Earth, and other obstacles.

Creation
Create a Gas object by using the propagationModel function.

Properties
Temperature — Air temperature
15 (default) | scalar

Air temperature, specified as a scalar in degrees Celsius (C).
Data Types: double

AirPressure — Dry air pressure
101300 (default) | scalar

Dry air pressure, specified as a scalar in pascals (Pa).
Data Types: double

WaterDensity — Water vapor density
7.5 (default) | scalar

Water vapor density, specified as a scalar in grams per cubic meter (g/m3).
Data Types: double

Object Functions
pathloss Path loss of radio wave propagation
range Range of radio wave propagation
add Add propagation models

Examples

Model Coverage in Hot Air

Display the coverage area for a transmitter in hot air. Specify the air temperature as 35 degrees
Celsius.
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pm = propagationModel("gas","Temperature",35);
tx = txsite("Name","Apple Hill","Latitude",42.3001,"Longitude",-71.3604);
coverage(tx,pm)

Version History
Introduced in R2019b

References
[1] International Telecommunications Union Radiocommunication Sector. Attenuation by atmospheric

gases. Recommendation P.676-11. ITU-R, approved September 30, 2016. https://
www.itu.int/rec/R-REC-P.676-11-201609-S/en.

[2] Seybold, John S. Introduction to RF Propagation. Hoboken, N.J: Wiley, 2005.

See Also
Functions
propagationModel | coverage | gaspl

Objects
FreeSpace | Rain | Fog | CloseIn | LongleyRice | RayTracing

Topics
“Choose a Propagation Model”
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“Urban Link and Coverage Analysis Using Ray Tracing”
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LongleyRice
Longley-Rice propagation model

Description
Model the behavior of electromagnetic radiation from a point of transmission over irregular terrain,
including buildings, by using the Longley-Rice model, also known at the Irregular Terrain Model
(ITM) [1]. Represent the model by using a LongleyRice object.

The Longley-Rice model:

• Is valid from 20 MHz to 20 GHz.
• Calculates path loss from free-space loss, terrain and obstacle diffraction, ground reflection,

atmospheric refraction, and tropospheric scatter.
• Provides path loss estimates by combining physics with empirical data.

Creation
Create a LongleyRice object by using the propagationModel function.

Properties
AntennaPolarization — Polarization of transmitter and receiver antennas
"horizontal" (default) | "vertical"

Polarization of transmitter and receiver antennas, specified as "horizontal" or "vertical". This
object assumes both antennas have the same polarization. The model uses this value to calculate path
loss due to ground reflection.
Data Types: char | string

GroundConductivity — Conductivity of ground
0.005 (default) | scalar

Conductivity of the ground, specified as a scalar in siemens per meter (S/m). The model uses this
value to calculate path loss due to ground reflection. The default value corresponds to average
ground.
Data Types: double

GroundPermittivity — Relative permittivity of ground
15 (default) | scalar

Relative permittivity of the ground, specified as a scalar. Relative permittivity is expressed as a ratio
of absolute material permittivity to the permittivity of vacuum. The model uses this value to calculate
the path loss due to ground reflection. The default value corresponds to average ground.
Data Types: double

3 System Objects

3-1456



AtmosphericRefractivity — Atmospheric refractivity near ground
301 (default) | scalar in N-Units

Atmospheric refractivity near the ground, specified as a scalar in “N-Units” on page 3-1459. The
model uses this value to calculate the path loss due to refraction through the atmosphere and
tropospheric scatter. The default value corresponds to average atmospheric conditions.
Data Types: double

ClimateZone — Radio climate zone
"continental-temperate" (default) | "equatorial" | "continental-subtropical" |
"maritime-subtropical" | "desert" | "maritime-over-land" | "maritime-over-sea"

Radio climate zone, specified as one of these options:

• "continental-temperate"
• "equatorial"
• "continental-subtropical"
• "maritime-subtropical"
• "desert"
• "maritime-over-land"
• "maritime-over-sea"

The model uses this value to calculate the variability due to changing atmospheric conditions. The
default value corresponds to average atmospheric conditions in a particular climate zone.
Data Types: char | string

TimeVariabilityTolerance — Time variability tolerance level
0.5 (default) | scalar in the range [0.001, 0.999]

Time variability tolerance level of the path loss, specified as a scalar in the range [0.001, 0.999]. Time
variability occurs due to changing atmospheric conditions. This value gives the required system
reliability expressed as the fraction of time during which the actual path loss is expected to be less
than or equal to the model prediction.
Data Types: double

SituationVariabilityTolerance — Situation variability tolerance level
0.5 (default) | scalar in the range [0.001, 0.999]

Situation variability tolerance level of the path loss, specified as a scalar in the range [0.001, 0.999].
Situation variability occurs due to uncontrolled or hidden random variables. This value gives the
required system confidence expressed as the fraction of similar situations for which the actual path
loss is expected to be less than or equal to the model prediction.
Data Types: double

Object Functions
pathloss Path loss of radio wave propagation
add Add propagation models
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Examples

Model Coverage Using Longley-Rice Model

Display the coverage area for a transmitter using the Longley-Rice model.

pm = propagationModel("longley-rice");
tx = txsite("Name","Apple Hill","Latitude",42.3001,"Longitude",-71.3604);
coverage(tx,pm,"SignalStrengths",-100:-5)

Increase the time and situation variability tolerance levels from 0.5 (the default) to 0.9. Display the
coverage area for the transmitter using the updated propagation model.

pm.TimeVariabilityTolerance = 0.9;
pm.SituationVariabilityTolerance = 0.9;
coverage(tx,pm,"SignalStrengths",-100:5)
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The coverage area is smaller for the model with higher variability tolerance levels.

More About
N-Units

The refractive index of air, n, is related to the dielectric constants of the gas constituents of an air
mixture. The numerical value of n is only slightly larger than 1. To make the calculation more
convenient, you can use N units, which are given by the formula: N = (n− 1) × 106.

Version History
Introduced in R2019b

References
[1] Hufford, George A., Anita G. Longley, and William A.Kissick. A Guide to the Use of the ITS

Irregular Terrain Model in the Area Prediction Mode. NTIA Report 82-100. National
Telecommunications and Information Administration, April 1, 1982.

[2] Seybold, John S. Introduction to RF Propagation. Hoboken, N.J: Wiley, 2005.

See Also
Functions
propagationModel | coverage
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Objects
FreeSpace | Rain | Gas | Fog | CloseIn | RayTracing

Topics
“Choose a Propagation Model”
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Rain
Rain propagation model

Description
Model the behavior of electromagnetic radiation from a point of transmission as it travels through
rain [1] by using a Rain object. Propagation models for rain are valid from 1 to 1000 GHz, assume
line-of-sight (LOS) conditions, and disregard terrain, the curvature of the Earth, and other obstacles.

Creation
Create a Rain object by using the propagationModel function.

Properties
RainRate — Rain rate
16 (default) | nonnegative scalar

Rain rate, specified as a nonnegative scalar in millimeters per hour (mm/h).
Data Types: double

Tilt — Polarization tilt angle of signal
0 (default) | scalar

Polarization tilt angle of the signal, specified as a scalar in degrees.
Data Types: double

Object Functions
pathloss Path loss of radio wave propagation
range Range of radio wave propagation
add Add propagation models

Examples

Model Coverage in Heavy Rain

Display the coverage area for a transmitter in heavy rain. Specify the rain rate as 50 millimeters per
hour.

pm = propagationModel("rain","RainRate",50);
tx = txsite("Name","Apple Hill","Latitude",42.3001,"Longitude",-71.3604);
coverage(tx,pm)
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Version History
Introduced in R2019b

References
[1] International Telecommunications Union Radiocommunication Sector. Specific attenuation model

for rain for use in prediction methods. Recommendation P.838-3. ITU-R, approved March 8,
2005. https://www.itu.int/rec/R-REC-P.838-3-200503-I/en.

[2] Seybold, John S. Introduction to RF Propagation. Hoboken, N.J: Wiley, 2005.

See Also
Functions
propagationModel | coverage | rainpl

Objects
FreeSpace | Gas | Fog | CloseIn | LongleyRice | RayTracing

Topics
“Choose a Propagation Model”
“Visualize Antenna Coverage Map and Communication Links”
“Urban Link and Coverage Analysis Using Ray Tracing”
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RayTracing
Ray tracing propagation model

Description
Ray tracing models compute propagation paths using 3-D environment geometry [1][2] . Represent a
ray tracing model by using a RayTracing object.

Ray tracing models:

• Are valid from 100 MHz to 100 GHz.
• Compute multiple propagation paths. Other propagation models compute only single propagation

paths.
• Support 3-D outdoor and indoor environments.
• Determine the path loss and phase shift of each ray using electromagnetic analysis, including

tracing the horizontal and vertical polarizations of a signal through the propagation path. The
path loss includes free-space loss and reflection losses. For each reflection, the model calculates
losses on the horizontal and vertical polarizations by using the Fresnel equation, the incident
angle, and the relative permittivity and conductivity of the surface material [3][4] at the specified
frequency.

You can create ray tracing models that use either the shooting and bouncing rays (SBR) method on
page 3-1470 or the image method on page 3-1471.

Creation
Create a RayTracing object by using the propagationModel function.

Properties
Ray Tracing

Method — Ray tracing method
"sbr" (default) | "image"

Ray tracing method, specified as one of these values:

• "sbr" — Use the shooting and bouncing rays (SBR) method on page 3-1470, which supports up to
10 path reflections. The SBR method calculates an approximate number of propagation paths with
exact geometric accuracy. The SBR method is generally faster than the image method. The model
calculates path loss from free-space loss plus reflection losses due to material and antenna
polarizations.

• "image" — Use the image method on page 3-1471, which supports up to 2 path reflections. The
image method calculates an exact number of propagation paths with exact geometric accuracy.
The model calculates path loss from free-space loss plus reflection losses due to material and
antenna polarizations.
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Specify the maximum number of path reflections by using the MaxNumReflections property.

When both the image and SBR methods find the same path, the points along the path are the same
within a tolerance of machine precision for single-precision floating-point values. For more
information about differences between the image and SBR methods, see “Choose a Propagation
Model”.
Data Types: char | string

AngularSeparation — Average number of degrees between launched rays
"medium" (default) | "high" | "low" | numeric scalar in degrees in the range [0.05, 10]

Average number of degrees between launched rays, specified as "high", "medium", "low", or a
numeric scalar in degrees in the range [0.05, 10]. If you specify a numeric value, then the ray tracing
algorithm might use a lower value than the value you specify.

This table describes the behavior of the "high", "medium", and "low" options.

Option Approximate Numeric
Equivalent

Range of Numeric
Values

Number of Launched
Rays

"high" 1.0781 [0.9912, 1.1845] 40,962
"medium" 0.5391 [0.4956, 0.5923] 163,842
"low" 0.2695 [0.2478, 0.2961] 655,362

To improve the accuracy of the number of paths found by the SBR method, decrease the value of
AngularSeparation. Decreasing the value of AngularSeparation can increase the amount of
time MATLAB requires to perform the analysis.

When you first use a given value of AngularSeparation in a MATLAB session, MATLAB caches the
geodesic sphere associated with that value for the duration of the session. As a result, the first use of
that value of AngularSeparation takes longer than subsequent uses within the same session. For
more information about geodesic spheres, see “Shooting and Bouncing Rays Method” on page 3-
1470.

Tips

When creating coverage maps using the coverage function, you can improve the results by choosing
a lower angular separation.

Dependencies

To enable this argument, you must specify the Method property as "sbr".
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
char | string

MaxNumReflections — Maximum number of path reflections
2 (default) | integer in the range [0,10]

Maximum number of path reflections to search for using ray tracing, specified as an integer.
Supported values depend on the value of the Method property.

• When Method is "image", supported values are 0, 1, and 2.
• When Method is "sbr", supported values are in the range [0, 10].
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Data Types: double

CoordinateSystem — Coordinate system of map and site location
"geographic" (default) | "cartesian"

Coordinate system of the site location, specified as "geographic" or "cartesian". If you specify
"geographic", define material types by using the BuildingsMaterial and TerrainMaterial
properties. If you specify "cartesian", define material types by using the SurfaceMaterial
property.
Data Types: string | char

Buildings Material

BuildingsMaterial — Surface material of geographic buildings
"concrete" (default) | "perfect-reflector" | "brick" | "wood" | "glass" | "metal" |
"custom"

Surface material of geographic buildings, specified as one of these values: "perfect-reflector",
"concrete", "brick", "wood", "glass", "metal", or "custom". The model uses the material
type to calculate reflection loss where propagation paths reflect off of building surfaces. For more
information, see “ITU Permittivity and Conductivity Values for Common Materials” on page 3-1472.

When BuildingsMaterial is "custom", specify the material permittivity and conductivity by using
the BuildingsMaterialPermittivity and BuildingsMaterialConductivity properties.
Dependencies

To enable BuildingsMaterial, you must set CoordinateSystem to "geographic".
Data Types: char | string

BuildingsMaterialPermittivity — Relative permittivity of surface materials of buildings
5.31 (default) | nonnegative scalar

Relative permittivity of the surface materials of the buildings, specified as a nonnegative scalar.
Relative permittivity is expressed as a ratio of absolute material permittivity to the permittivity of
vacuum. The model uses this value to calculate path loss due to reflection. The default value
corresponds to concrete at 1.9 GHz.
Dependencies

To enable BuildingsMaterialPermittivity, you must set CoordinateSystem to
"geographic" and BuildingsMaterial to "custom".
Data Types: double

BuildingsMaterialConductivity — Conductivity of surface materials of buildings
0.0548 (default) | nonnegative scalar

Conductivity of the surface materials of the buildings, specified as a nonnegative scalar in siemens
per meter (S/m). The model uses this value to calculate path loss due to reflection. The default value
corresponds to concrete at 1.9 GHz.
Dependencies

To enable BuildingsMaterialConductivity, you must set CoordinateSystem to
"geographic" and BuildingsMaterial to "custom".
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Data Types: double

Terrain Material

TerrainMaterial — Surface material of geographic terrain
"concrete" (default) | "perfect-reflector" | "brick" | "water" | "vegetation" | "loam" |
"custom"

Surface material of the geographic terrain, specified as one of these values: "perfect-reflector",
"concrete", "brick", "water", "vegetation", "loam", or "custom". The model uses the
material type to calculate reflection loss where propagation paths reflect off of terrain surfaces. For
more information, see “ITU Permittivity and Conductivity Values for Common Materials” on page 3-
1472.

When TerrainMaterial is "custom", specify the material permittivity and conductivity by using
the TerrainMaterialPermittivity and TerrainMaterialConductivity properties.
Dependencies

To enable TerrainMaterial, you must set CoordinateSystem to "geographic".
Data Types: char | string

TerrainMaterialPermittivity — Relative permittivity of terrain materials
5.31 (default) | nonnegative scalar

Relative permittivity of the terrain material, specified as a nonnegative scalar. Relative permittivity is
expressed as a ratio of absolute material permittivity to the permittivity of vacuum. The model uses
this value to calculate path loss due to reflection. The default value corresponds to concrete at 1.9
GHz.
Dependencies

To enable TerrainMaterialPermittivity, you must set CoordinateSystem to "geographic"
and TerrainMaterial to "custom".
Data Types: double

TerrainMaterialConductivity — Conductivity of terrain materials
0.0548 (default) | nonnegative scalar

Conductivity of the terrain material, specified as a nonnegative scalar in siemens per meter (S/m).
The model uses this value to calculate path loss due to reflection. The default value corresponds to
concrete at 1.9 GHz.
Dependencies

To enable TerrainMaterialConductivity, you must set CoordinateSystem to "geographic"
and set TerrainMaterial to "custom".
Data Types: double

Surface Material

SurfaceMaterial — Surface material of Cartesian map surface
"plasterboard" (default) | "perfect-reflector" | "ceilingboard" | "chipboard" |
"floorboard" | "concrete" | "brick" | "wood" | "glass" | "metal" | "water" |
"vegetation" | "loam" | "custom"
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Surface material of Cartesian map surface, specified as one of these values:
"plasterboard","perfect-reflector", "ceilingboard", "chipboard", "floorboard",
"concrete", "brick", "wood", "glass", "metal", "water", "vegetation", "loam", or
"custom". The model uses the material type to calculate reflection loss where propagation paths
reflect off of surfaces. For more information, see “ITU Permittivity and Conductivity Values for
Common Materials” on page 3-1472.

When SurfaceMaterial is "custom", specify the material permittivity and conductivity by using
the SurfaceMaterialPermittivity and SurfaceMaterialConductivity properties.

Dependencies

To enable SurfaceMaterial, you must set CoordinateSystem to "cartesian".
Data Types: char | string

SurfaceMaterialPermittivity — Relative permittivity of surface materials
2.94 (default) | nonnegative scalar

Relative permittivity of the surface material, specified as a nonnegative scalar. Relative permittivity is
expressed as a ratio of absolute material permittivity to the permittivity of vacuum. The model uses
this value to calculate path loss due to reflection. The default value corresponds to plaster board at
1.9 GHz.

Dependencies

To enable SurfaceMaterialPermittivity, you must set CoordinateSystem to "cartesian"
and SurfaceMaterial to "custom".
Data Types: double

SurfaceMaterialConductivity — Conductivity of surface materials
0.0183 (default) | nonnegative scalar

Conductivity of the surface material, specified as a nonnegative scalar in siemens per meter (S/m).
The model uses this value to calculate path loss due to reflection. The default value corresponds to
plaster board at 1.9 GHz.

Dependencies

To enable SurfaceMaterialConductivity, you must set CoordinateSystem to "cartesian"
and set SurfaceMaterial to "custom".
Data Types: double

Object Functions
pathloss Path loss of radio wave propagation
add Add propagation models

Examples

Model Propagation Paths Using SBR and Image Methods

Show reflected propagation paths in Chicago by using the SBR and image methods.
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Create a Site Viewer with buildings in Chicago. For more information about the osm file, see [1] on
page 3-1469.

viewer = siteviewer("Buildings","chicago.osm");

Create a transmitter site on a building and a receiver site near another building.

tx = txsite("Latitude",41.8800, ...
    "Longitude",-87.6295, ...
    "TransmitterFrequency",2.5e9);
show(tx)
rx = rxsite("Latitude",41.8813452, ...
    "Longitude",-87.629771, ...
    "AntennaHeight",30);
show(rx)

Create a ray tracing model. Use the image method and calculate paths with up to one reflection.
Then, display the propagation paths.

pm = propagationModel("raytracing","Method","image", ...
    "MaxNumReflections",1);
raytrace(tx,rx,pm)

For this ray tracing model, there is one propagation path from the transmitter to the receiver.

Update the ray tracing model to use the SBR method and to calculate paths with up to two
reflections. Display the propagation paths.

pm.Method = "sbr";
pm.MaxNumReflections = 2;
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clearMap(viewer)
raytrace(tx,rx,pm)

The updated ray tracing model shows three propagation paths from the transmitter to the receiver.

Appendix

[1] The osm file is downloaded from https://www.openstreetmap.org, which provides access to crowd-
sourced map data all over the world. The data is licensed under the Open Data Commons Open
Database License (ODbL), https://opendatacommons.org/licenses/odbl/.

Model Coverage Using Ray Tracing

Create a Site Viewer with buildings in Chicago. For more information about the .osm file, see [1] on
page 3-1470.

viewer = siteviewer("Buildings","chicago.osm");

Create a transmitter site on a building and a receiver site near another building.

tx = txsite("Latitude",41.8800, ...
    "Longitude",-87.6295, ...
    "TransmitterFrequency",2.5e9);
show(tx)

Create a ray tracing model. By default, ray tracing models use the SBR method. Set the maximum
number of reflections to 2. Then, display the coverage map.
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pm = propagationModel("raytracing","Method","sbr", ...
    "MaxNumReflections",2);
coverage(tx,pm,"SignalStrengths",-100:5)

Appendix

[1] The .osm file is downloaded from https://www.openstreetmap.org, which provides access to
crowd-sourced map data all over the world. The data is licensed under the Open Data Commons Open
Database License (ODbL), https://opendatacommons.org/licenses/odbl/.

More About
Shooting and Bouncing Rays Method

The shooting and bouncing rays (SBR) method finds an approximate number of propagation paths
with exact geometric accuracy. You can use this method to find paths with up to 10 path reflections.

The computational complexity of the SBR method increases linearly with the number of reflections.
As a result, the SBR method is generally faster than the image method.

This figure illustrates the SBR method for calculating propagation paths from a transmitter, Tx, to a
receiver, Rx.
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The SBR method launches many rays from a geodesic sphere centered at Tx. The geodesic sphere
enables the model to launch rays that are approximately uniformly spaced.

Then, the method traces every ray from Tx and can model different types of interactions between the
rays and surrounding objects, such as reflections, diffractions, refractions, and scattering. Note that
the current implementation of the SBR method considers only reflections.

• When a ray hits a flat surface, shown as R, the ray reflects based on the law of reflection.
• When a ray hits an edge, shown as D, the ray spawns many diffracted rays based on the law of
diffraction [5][6]. Each diffracted ray has the same angle with the diffracting edge as the incident
ray. The diffraction point then becomes a new launching point and the SBR method traces the
diffracted rays in the same way as the rays launched from Tx. A continuum of diffracted rays forms
a cone around the diffracting edge, which is commonly known as a Keller cone [6]. The current
implementation of the SBR method does not consider edge diffractions.

For each launched ray, the SBR method surrounds Rx with a sphere, called a reception sphere, with a
radius that is proportional to the distance the ray travels and the average number of degrees between
the launched rays. If the ray intersects the sphere, then the model considers the ray a valid path from
Tx to Rx. The SBR method corrects the valid paths so that the paths have exact geometric accuracy.

When you increase the number of rays by decreasing the number of degrees between rays, the
reception sphere becomes smaller. As a result, in some cases, launching more rays results in fewer or
different paths. This situation is more likely to occur with custom 3-D scenarios created from STL
files or triangulation objects than with scenarios that are automatically generated from
OpenStreetMap buildings and terrain data.

The SBR method finds paths using single-precision floating-point computations.

Image Method

The image method finds an exact number of propagation paths with exact geometric accuracy. You
can use this method to find paths with up to 2 path reflections. The computational complexity of the
image method increases exponentially with the number of reflections.
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This figure illustrates the image method for calculating the propagation path of a single reflection ray
for the same transmitter and receiver as the SBR method. The image method locates the image of Tx
with respect to a planar reflection surface, Tx'. Then, the method connects Tx' and Rx with a line
segment. If the line segment intersects the planar reflection surface, shown as R in the figure, then a
valid path from Tx to Rx exists. The method determines paths with multiple reflections by recursively
extending these steps. The image method finds paths using single-precision floating-point
computations.

ITU Permittivity and Conductivity Values for Common Materials

ITU-R P.2040-1 [3] and ITU-R P.527-5 [4] present methods, equations, and values used to calculate
real relative permittivity, conductivity, and complex relative permittivity for common materials.

• For information about the values computed for building materials specified in ITU-R P.2040-1, see
buildingMaterialPermittivity.

• For information about the values computed for terrain materials specified in ITU-R P.527-5, see
earthSurfacePermittivity.

Version History
Introduced in R2019b

Customize spacing of launched rays for ray tracing with SBR method

When performing ray tracing using the SBR method, you can customize the spacing of launched rays
by specifying the AngularSeparation property of the RayTracing object as a numeric value in
degrees. In previous releases, the AngularSeparation property supported only the options
"high", "medium", and "low".

SBR method calculates propagation paths with exact geometric accuracy
Behavior changed in R2022b
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When you find propagation paths using the SBR method, MATLAB corrects the results so that the
geometric accuracy of each path is exact. In previous releases, the paths have approximate geometric
accuracy.

Default modeling method is shooting and bouncing rays method
Behavior changed in R2021b

Starting in R2021b, when you create a propagation model using the syntax
propagationModel("raytracing"), MATLAB returns a RayTracing model with the Method
value set to "sbr" and two reflections (instead of "image" and one reflection, as in previous
releases).

To create ray tracing propagation models that use the image method, use the syntax
propagationModel("raytracing","Method","image").

References
[1] Yun, Zhengqing, and Magdy F. Iskander. “Ray Tracing for Radio Propagation Modeling: Principles

and Applications.” IEEE Access 3 (2015): 1089–1100. https://doi.org/10.1109/
ACCESS.2015.2453991.

[2] Schaubach, K.R., N.J. Davis, and T.S. Rappaport. “A Ray Tracing Method for Predicting Path Loss
and Delay Spread in Microcellular Environments.” In [1992 Proceedings] Vehicular
Technology Society 42nd VTS Conference - Frontiers of Technology, 932–35. Denver, CO,
USA: IEEE, 1992. https://doi.org/10.1109/VETEC.1992.245274.

[3] International Telecommunications Union Radiocommunication Sector. Effects of building materials
and structures on radiowave propagation above about 100MHz. Recommendation P.2040-1.
ITU-R, approved July 29, 2015. https://www.itu.int/rec/R-REC-P.2040-1-201507-I/en.

[4] International Telecommunications Union Radiocommunication Sector. Electrical characteristics of
the surface of the Earth. Recommendation P.527-5. ITU-R, approved August 14, 2019. https://
www.itu.int/rec/R-REC-P.527-5-201908-I/en.

[5] International Telecommunications Union Radiocommunication Sector. Propagation by diffraction.
Recommendation P.526-15. ITU-R, approved October 21, 2019. https://www.itu.int/rec/R-REC-
P.526-15-201910-I/en.

[6] Keller, Joseph B. “Geometrical Theory of Diffraction.” Journal of the Optical Society of America 52,
no. 2 (February 1, 1962): 116. https://doi.org/10.1364/JOSA.52.000116.

See Also
Functions
propagationModel | raytrace | coverage | sigstrength | buildingMaterialPermittivity
| earthSurfacePermittivity

Objects
FreeSpace | Rain | Gas | Fog | CloseIn | LongleyRice

Topics
“Choose a Propagation Model”
“Ray Tracing for Wireless Communications”
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“Indoor MIMO-OFDM Communication Link using Ray Tracing”
“Urban Link and Coverage Analysis Using Ray Tracing”
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propagationData
Create RF propagation data from measurements

Description
Use the propagationData object to import and visualize geolocated propagation data. The
measurement data can be path loss data, signal strength measurements, signal-to-noise-ratio (SNR)
data, or cellular information.

Creation

Syntax
pd = propagationData(filename)
pd = propagationData(table)

pd = propagationData(latitude,longitude,varname,varvalue)
pd = propagationData( ___ ,Name,Value)

Description

pd = propagationData(filename) creates a propagation data object by reading data from a file
specified by filename.

pd = propagationData(table) creates a propagation data container object from a table object
specified by table.

pd = propagationData(latitude,longitude,varname,varvalue) creates a propagation
data container object using latitude and longitude coordinates with data specified using
varname and varvalue.

pd = propagationData( ___ ,Name,Value) sets properties using one or more name-value pairs.
Enclose each property name in quotes.

Input Arguments

filename — Name of file containing propagation data
character vector | string scalar

Name of the file containing propagation data, specified as a character vector or a string scalar. The
file must be in the current directory, in a directory on the MATLAB path, or be specified using a full or
relative path. The file must be compatible with the readtable function. Call the readtable function
if customized parameters are required to import the file and then pass the table object to the
propagationData object.

Propagation data in the file must have one variable corresponding to the latitude values, one variable
corresponding to longitude values, and at least one variable containing numeric data.
Data Types: string | char
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table — Table containing propagation data
table object

Table containing propagation data, specified as a table object.

Propagation data in the file must have one variable corresponding to the latitude values, one variable
corresponding to longitude values, and at least one variable containing numeric data.
Data Types: table

latitude — Latitude coordinate values
vector

Latitude coordinate values, specified as a vector in decimal degrees with reference to Earth's
ellipsoid model WGS-84. The latitude coordinates must be in the range [-90 90].
Data Types: double

longitude — Longitude coordinate values
vector

Longitude coordinate values, specified as a vector in decimal degrees with reference to earth's
ellipsoid. model WGS-84.
Data Types: double

varname — Variable name
character vector | string scalar

Variable name, specified as a character vector or a string scalar. This variable name must correspond
to the variable with numeric data other than latitude or longitude. The variable name and the
corresponding values are stored as a column in the Data property table object.
Data Types: string | char

varvalue — Variable values
numeric vector

Variable values, specified as a numeric vector. The numeric vectors must be the same size as latitude
and longitude. The variable name and corresponding values are stored as a column in the Data
property table object.
Data Types: double

Output Arguments

pd — Propagation data
propagationData object

Propagation data, returned as a propagationData object.

Properties
Name — Propagation data name
'Propagation Data' (default) | character vector | string scalar

Propagation data name, specified as a character vector or string scalar.
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Example: 'Name','propdata'
Example: pd.Name = 'propdata'
Data Types: char | string

Data — Propagation data table
scalar table object

This property is read-only.

Propagation data table, specified as a scalar table object containing a column corresponding to
latitude coordinates, a column corresponding to longitude coordinates, and one or more columns
corresponding to associated propagation data.
Data Types: table

DataVariableName — Name of data variable to plot
character vector | string scalar

Name of the data variable to plot, specified as a character vector or string scalar corresponding to a
variable name in the Data table used to create propagation data container object. The variable name
must correspond to a variable with numeric data and cannot correspond to the latitude or longitude
variables. The default value for this property is the name of the first numeric data variable name in
the Data table that is not a latitude or longitude variable.
Data Types: char | string

Object Functions
plot Display RF propagation data in Site Viewer
contour Display contour map of RF propagation data in Site Viewer
location Coordinates of RF propagation data
getDataVariable Get data variable values
interp Interpolate RF propagation data

Examples

Compute Signal Strength Data in Urban Environment

Launch Site Viewer with basemaps and building files for Manhattan. For more information about the
osm file, see [1] on page 3-1480.

viewer = siteviewer("Basemap","streets_dark",...
        "Buildings","manhattan.osm");
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Show a transmitter site on a building.

tx = txsite("Latitude",40.7107,...
        "Longitude",-74.0114,...
        "AntennaHeight",80);
show(tx)
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Create receiver sites along nearby streets.

latitude = [linspace(40.7088, 40.71416, 50), ...
        linspace(40.71416, 40.715505, 25), ...
        linspace(40.715505, 40.7133, 25), ...
        linspace(40.7133, 40.7143, 25)]';
longitude = [linspace(-74.0108, -74.00627, 50), ...
        linspace(-74.00627 ,-74.0092, 25), ...
        linspace(-74.0092, -74.0110, 25), ...
        linspace(-74.0110, -74.0132, 25)]';
rxs = rxsite("Latitude", latitude, "Longitude", longitude);

Compute signal strength at each receiver location.

signalStrength = sigstrength(rxs, tx)';

Create a propagationData object to hold computed signal strength data.

tbl = table(latitude, longitude, signalStrength);
pd = propagationData(tbl);

Plot the signal strength data on a map as colored points.

legendTitle = "Signal" + newline + "Strength" + newline + "(dB)";
plot(pd, "LegendTitle", legendTitle, "Colormap", parula);
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Appendix

[1] The osm file is downloaded from https://www.openstreetmap.org, which provides access to crowd-
sourced map data all over the world. The data is licensed under the Open Data Commons Open
Database License (ODbL), https://opendatacommons.org/licenses/odbl/.

Capacity Map Using SINR Data

Define names and locations of sites around Boston.

names = ["Fenway Park","Faneuil Hall","Bunker Hill Monument"];
lats = [42.3467,42.3598,42.3763];
lons = [-71.0972,-71.0545,-71.0611];

Create an array of transmitter sites.

txs = txsite("Name",names,...
       "Latitude",lats,...
       "Longitude",lons, ...
       "TransmitterFrequency",2.5e9);
show(txs)
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Create a signal-to-interference-plus-noise-ratio (SINR) map, where signal source for each location is
selected as the transmitter site with the strongest signal.

sv1 = siteviewer("Name","SINR map");
sinr(txs,"MaxRange",5000)
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Return SINR propagation data.

pd = sinr(txs,"MaxRange",5000);
[sinrDb,lats,lons] = getDataVariable(pd,"SINR"); 

Compute capacity using the Shannon-Hartley theorem.

bw = 1e6; % Bandwidth is 1 MHz
sinrRatio = 10.^(sinrDb./10); % Convert from dB to power ratio
capacity = bw*log2(1+sinrRatio)/1e6; % Unit: Mbps

Create new propagation data for the capacity map and display the contour plot.

pdCapacity = propagationData(lats,lons,"Capacity",capacity);
sv2 = siteviewer("Name","Capacity map");
legendTitle = "Capacity" + newline + "(Mbps)";
contour(pdCapacity,"LegendTitle",legendTitle);
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Version History
Introduced in R2020a

See Also
txsite | siteviewer | rxsite | readtable
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comm.Ray
Create RF propagation ray

Description
The comm.Ray object is a container object for the properties of a propagation ray. The object contains
the geometric and electromagnetic information of a radio wave propagating from one point to
another point in the space.

Creation
Typically you create comm.Ray objects by using the raytrace function.

Syntax
ray = comm.Ray
ray = comm.Ray(Name,Value)

Description

ray = comm.Ray creates a ray object that initializes properties for a propagation ray.

ray = comm.Ray(Name,Value) sets properties using one or more name-value pair arguments.
Enclose each property name in quotes. For example,
comm.Ray('CoordinateSystem','Geographic','TransmitterLocation',
[40.730610,-73.935242,0]) specifies the geographic coordinate system and a transmitter
located in New York City.

Properties
PathSpecification — Propagation path specification method
'Locations' (default) | 'Delay and angles'

Propagation path specification method, specified as one of these values.

• 'Locations' — The ray object path between waypoints are conveyed as (x, y, z) coordinate
points by the TransmitterLocation, ReceiverLocation, and, if applicable,
ReflectorLocations properties .

• 'Delay and angles' — The ray object path between waypoints are conveyed by the
PropagationDelay, AngleOfDeparture, and AngleOfArrival properties.

Data Types: char | string

CoordinateSystem — Coordinate system
'Cartesian' (default) | 'Geographic'

Coordinate system, specified as 'Cartesian' or 'Geographic'. When you set the
CoordinateSystem property to 'Geographic', the coordinate system is defined relative to the
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WGS-84 Earth ellipsoid model and the object defines angles relative to the local East-North-Up (ENU)
coordinate system at the transmitter and receiver.
Dependencies

To enable this property, set the PathSpecification property to 'Locations'.
Data Types: char | string

SystemScale — Cartesian coordinate system scale
1 (default) | positive scalar

Cartesian coordinate system scale in meters, specified as a positive scalar.
Dependencies

To enable this property, set the PathSpecification property to 'Locations' and the
CoordinateSystem property to 'Cartesian'.
Data Types: double

TransmitterLocation — Transmitter location
[0;0;0] (default) | three-element numeric column vector

Transmitter location, specified as a three-element numeric column vector of coordinates in one of
these forms.

• [x; y; z] — This form applies when you set the CoordinateSystem property to 'Cartesian'.
The object does not perform range validation for x, y, and z.

• [latitude; longitude; height] — This form applies when you set the CoordinateSystem property
to 'Geographic'. latitude must be in the range [–90, 90]. The object does not perform range
validation for longitude and height. height is referenced to the ellipsoid defined by the World
Geodetic System of 1984 (WGS84).

Dependencies

To enable this property, set the PathSpecification property to 'Locations'.
Data Types: double

ReceiverLocation — Receiver location
[10;10;10] (default) | three-element numeric column vector

Receiver location, specified as a three-element numeric column vector of coordinates in one of these
forms.

• [x; y; z] — This form applies when you set the CoordinateSystem property to 'Cartesian'.
The object does not perform range validation for x, y, and z.

• [latitude; longitude; height] — This form applies when you set the CoordinateSystem property
to 'Geographic'. latitude must be in the range [–90, 90]. The object does not perform range
validation for longitude and height. height is referenced to the ellipsoid defined by the World
Geodetic System of 1984 (WGS84).

Dependencies

To enable this property, set the PathSpecification property to 'Locations'.
Data Types: double
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LineOfSight — Line of sight
true or 1 (default) | false or 0

Line of sight, specified as a logical value of 1 (true) or 0 (false) to indicate whether the ray is a
line-of-sight ray.
Dependencies

To enable this property, set the PathSpecification property to 'Locations'.
Data Types: logical

Interactions — Ray-surface interactions
1-by-NI structure

Ray-surface interactions along the propagation path, specified as a 1-by-NI structure containing these
fields. NI is the number of interactions.

Type — Type of ray-surface interaction
'Reflection' (default) | 'Diffraction'

Type of ray-surface interaction, specified as 'Reflection' or 'Diffraction'.
Data Types: char | string

Location — Location
[10;10;0] (default) | 3-by-1 numeric vector

Location, specified as a 3-by-1 numeric vector containing the coordinates of one interaction point on
the ray.

• When the CoordinateSystem property is set to 'Cartesian', the form is [x; y; z]. The object
does not perform range validation for x, y, and z.

• When the CoordinateSystem property is set to 'Geographic', the form is [latitude; longitude;
height] . The latitude must be in the range [–90, 90]. The object does not perform range validation
for longitude and height. height is referenced to the ellipsoid defined by the World Geodetic
System of 1984 (WGS84).

Data Types: double

Dependencies

To enable this property, set the PathSpecification property to 'Locations' and the
LineOfSight property to 0 (false).
Data Types: struct

PropagationDelay — Propagation delay
5.7775e-08 | nonnegative scalar

Propagation delay in seconds, specified as a nonnegative scalar. The default value is computed using
the default values of the TransmitterLocation and ReceiverLocation properties for a line-of-
sight ray.

• When you set the PathSpecification property to 'Locations', this property is read-only and
the value is derived from TransmitterLocation, ReceiverLocation and, if applicable, the
Interactions.
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• When you set the PathSpecification property to 'Delay and angles', this property is
configurable.

Data Types: double

PropagationDistance — Propagation distance
17.3205 | nonnegative scalar

This property is read-only.

Propagation distance in meters, specified as a nonnegative scalar. The default value is computed
using the default values of the TransmitterLocation and ReceiverLocation properties for a
line-of-sight ray.

• When you set the PathSpecification property to 'Locations', the value is derived from
TransmitterLocation, ReceiverLocation and, if applicable, the Interactions.

• When you set the PathSpecification property to 'Delay and angles', the value is derived
from PropagationDelay.

Data Types: double

AngleOfDeparture — Angle of departure
[45; 35.2644] | numeric vector of the form [az; el]

Angle of departure in degrees of the ray at the transmitter, specified as a numeric vector of the form
[az; el]. The azimuth angle, az, is measured from the positive x-axis counterclockwise and must be in
the range (–180, 180]. The elevation angle, el, is measured from the x-y plane and must be in the
range [–90, 90]. The default value is computed using the default values of the
TransmitterLocation and ReceiverLocation properties for a line-of-sight ray.

• When you set the PathSpecification property to 'Delay and angles', this property is
configurable.

• When you set the PathSpecification property to 'Locations', this property is read-only and
the value is derived from TransmitterLocation, ReceiverLocation and, if applicable, the
Interactions.

• When CoordinateSystem is set to 'Geographic', the angles are defined with reference to the
local East-North-Up (ENU) coordinate system at transmitter.

Data Types: double

AngleOfArrival — Angle of arrival
[-135; -35.2644] | numeric vector of the form [az; el]

Angle of arrival in degrees of the ray at the receiver, specified as a numeric vector of the form [az; el].
The azimuth angle, az, is measured from the positive x-axis counterclockwise and must be in the
range (–180, 180]. The elevation angle, el, is measured from the x-y plane and must be in the range [–
90, 90]. The default value is computed using the default values of the TransmitterLocation and
ReceiverLocation properties for a line-of-sight ray.

• When you set the PathSpecification property to 'Delay and angles', this property is
configurable.

• When you set the PathSpecification property to 'Locations', this property is read-only and
the value is derived from TransmitterLocation, ReceiverLocation and, if applicable, the
Interactions.
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• When CoordinateSystem is set to 'Geographic', the angles are defined with reference to the
local East-North-Up (ENU) coordinate system at receiver.

Data Types: double

NumInteractions — Number of ray-surface interactions
0 (default) | nonnegative integer

This property is read-only.

Number of ray-surface interactions for the ray object from the transmitter to the receiver, specified as
a nonnegative integer. The value is derived from LineOfSight and, if applicable, the
Interactions.

Dependencies

To enable this property, set the PathSpecification property to 'Locations'.
Data Types: double

Frequency — Signal frequency
1.9e+09 (default) | positive scalar

Signal frequency in Hz, specified as a positive scalar.
Data Types: double

PathLossSource — Path loss source
'Free space model' (default) | 'Custom'

Path loss source, specified as 'Free space model' or 'Custom'.
Data Types: char | string

PathLoss — Path loss
62.7941 | nonnegative scalar

Path loss in dB, specified as a nonnegative scalar. The default value is computed using the default
values of the TransmitterLocation and ReceiverLocation properties for a line-of-sight ray.

• When you set the PathLossSource property to 'Free space model', the PathLoss property
is read-only and derived from the PropagationDistance and Frequency properties by using
the free space propagation model.

• When you set the PathLossSource property to 'Custom', you can set the PathLoss property,
independent of the geometric properties.

Data Types: double

PhaseShift — Phase shift
4.8537 | numeric scalar

Phase shift in radians, specified as a numeric scalar. The default value is computed using the default
values of the TransmitterLocation and ReceiverLocation properties for a line-of-sight ray.

• When you set the PathLossSource property to 'Free space model', the PhaseShift
property is read-only and derived from the PropagationDistance and Frequency properties by
using the free space propagation model.
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• When you set the PathLossSource property to 'Custom', you can set the PhaseShift
property, independent of the geometric properties.

Data Types: double

Object Functions
plot (rays) Display RF propagation rays in Site Viewer

Examples

Perform Ray Tracing Between Two Sites in Hong Kong

Perform ray tracing between two sites in Hong Kong, generating a cell array containing comm.Ray
objects. The comm.Ray objects contain the geometric and electromagnetic information for the radio
wave propagation paths from the transmitter site to the receiver site.

Create a Site Viewer map, loading building data for Hong Kong. For more information about the osm
file, see [1] on page 3-1492.

viewer = siteviewer("Buildings","hongkong.osm");

Specify transmitter and receiver sites.

tx = txsite("Latitude",22.2789,"Longitude",114.1625, ...
    "AntennaHeight",10,"TransmitterPower",5, ...
    "TransmitterFrequency",28e9);
rx = rxsite("Latitude",22.2799,"Longitude",114.1617, ...
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    "AntennaHeight",1);
show(tx)
show(rx)

Specify a ray tracing propagation model that uses the SBR method with up to three reflections.

pm = propagationModel("raytracing", ...
    "Method","sbr", ...
    "MaxNumReflections",3);

Perform ray tracing between the sites, generating comm.Ray objects in a cell array. For the specified
transmitter and receiver sites, performing ray tracing results in a 1-by-1 cell array containing three
ray objects in a row vector.

rays = raytrace(tx,rx,pm)

rays = 1×1 cell array
    {1×11 comm.Ray}

Display the properties of the first comm.Ray object. The LineOfSight property value is 1, and the
NumInteractions property value is 0. This combination indicates that the ray defines a line-of-sight
path.

rays{1}(1)

ans = 
  Ray with properties:

      PathSpecification: 'Locations'
       CoordinateSystem: 'Geographic'
    TransmitterLocation: [3×1 double]
       ReceiverLocation: [3×1 double]
            LineOfSight: 1
              Frequency: 2.8000e+10
         PathLossSource: 'Custom'
               PathLoss: 104.2656
             PhaseShift: 4.6360

   Read-only properties:
       PropagationDelay: 4.6442e-07
    PropagationDistance: 139.2294
       AngleOfDeparture: [2×1 double]
         AngleOfArrival: [2×1 double]
        NumInteractions: 0

Display the properties of the second and third comm.Ray objects. The LineOfSight property values
are 0, and the NumInteractions property values are greater than 0. This combination indicates
that the rays define reflected paths.

rays{1}(2)

ans = 
  Ray with properties:

      PathSpecification: 'Locations'
       CoordinateSystem: 'Geographic'
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    TransmitterLocation: [3×1 double]
       ReceiverLocation: [3×1 double]
            LineOfSight: 0
           Interactions: [1×1 struct]
              Frequency: 2.8000e+10
         PathLossSource: 'Custom'
               PathLoss: 106.1294
             PhaseShift: 0.3952

   Read-only properties:
       PropagationDelay: 4.6490e-07
    PropagationDistance: 139.3720
       AngleOfDeparture: [2×1 double]
         AngleOfArrival: [2×1 double]
        NumInteractions: 1

rays{1}(3)

ans = 
  Ray with properties:

      PathSpecification: 'Locations'
       CoordinateSystem: 'Geographic'
    TransmitterLocation: [3×1 double]
       ReceiverLocation: [3×1 double]
            LineOfSight: 0
           Interactions: [1×1 struct]
              Frequency: 2.8000e+10
         PathLossSource: 'Custom'
               PathLoss: 119.9462
             PhaseShift: 0.3965

   Read-only properties:
       PropagationDelay: 1.1327e-06
    PropagationDistance: 339.5692
       AngleOfDeparture: [2×1 double]
         AngleOfArrival: [2×1 double]
        NumInteractions: 1

Visualize ray tracing results.

plot(rays{1})
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Appendix

[1] The osm file is downloaded from https://www.openstreetmap.org, which provides access to crowd-
sourced map data all over the world. The data is licensed under the Open Data Commons Open
Database License (ODbL), https://opendatacommons.org/licenses/odbl/.

Plot Propagation Rays Between Sites in Chicago

Return ray tracing results in comm.Ray objects and plot the ray propagation paths after relaunching
the Site Viewer map.

Create a Site Viewer map, loading building data for Chicago. For more information about the osm file,
see [1] on page 3-1496.

viewer = siteviewer("Buildings","chicago.osm");
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Create a transmitter site on one building and a receiver site on another building. Use the los
function to show the line of sight path between the transmitter and receiver sites.

tx = txsite( ...
    "Latitude",41.8800, ...
    "Longitude",-87.6295, ...
    "TransmitterFrequency",2.5e9);
rx = rxsite( ...
    "Latitude",41.881352, ...
    "Longitude",-87.629771, ...
    "AntennaHeight",30);
los(tx,rx)
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Perform ray tracing for up to two reflections. For the configuration defined, ray tracing returns a cell
array containing the ray objects. Close the Site Viewer map.

pm = propagationModel( ...
    "raytracing", ...
    "Method","sbr", ...
    "MaxNumReflections",2);
rays = raytrace(tx,rx,pm)

rays = 1×1 cell array
    {1×3 comm.Ray}

rays{1}(1,1)

ans = 
  Ray with properties:

      PathSpecification: 'Locations'
       CoordinateSystem: 'Geographic'
    TransmitterLocation: [3×1 double]
       ReceiverLocation: [3×1 double]
            LineOfSight: 0
           Interactions: [1×1 struct]
              Frequency: 2.5000e+09
         PathLossSource: 'Custom'
               PathLoss: 92.7739
             PhaseShift: 1.2933

   Read-only properties:
       PropagationDelay: 5.7088e-07
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    PropagationDistance: 171.1462
       AngleOfDeparture: [2×1 double]
         AngleOfArrival: [2×1 double]
        NumInteractions: 1

rays{1}(1,2)

ans = 
  Ray with properties:

      PathSpecification: 'Locations'
       CoordinateSystem: 'Geographic'
    TransmitterLocation: [3×1 double]
       ReceiverLocation: [3×1 double]
            LineOfSight: 0
           Interactions: [1×2 struct]
              Frequency: 2.5000e+09
         PathLossSource: 'Custom'
               PathLoss: 100.8574
             PhaseShift: 2.9398

   Read-only properties:
       PropagationDelay: 5.9259e-07
    PropagationDistance: 177.6532
       AngleOfDeparture: [2×1 double]
         AngleOfArrival: [2×1 double]
        NumInteractions: 2

rays{1}(1,3)

ans = 
  Ray with properties:

      PathSpecification: 'Locations'
       CoordinateSystem: 'Geographic'
    TransmitterLocation: [3×1 double]
       ReceiverLocation: [3×1 double]
            LineOfSight: 0
           Interactions: [1×2 struct]
              Frequency: 2.5000e+09
         PathLossSource: 'Custom'
               PathLoss: 106.3302
             PhaseShift: 4.6994

   Read-only properties:
       PropagationDelay: 6.3790e-07
    PropagationDistance: 191.2374
       AngleOfDeparture: [2×1 double]
         AngleOfArrival: [2×1 double]
        NumInteractions: 2

close(viewer)

You can plot the rays without performing ray tracing again. Create another Site Viewer map with the
same buildings. Show the transmitter and receiver sites. Using the previously returned cell array of
ray objects, plot the reflected rays between the transmitter site and the receiver site. The plot
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function can plot the path for ray objects collectively or individually. For example, to plot rays for the
only second ray object, specify rays{1}(1,2). This figure plot all paths for all the ray objects.

siteviewer("Buildings","chicago.osm")

ans = 
  siteviewer with properties:

                Name: 'Site Viewer'
            Position: [560 240 800 600]
    CoordinateSystem: "geographic"
             Basemap: 'satellite'
             Terrain: 'gmted2010'
           Buildings: 'chicago.osm'

los(tx,rx)
plot(rays{:},"Type","power", ...
    "TransmitterSite",tx,"ReceiverSite",rx)
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[1] The osm file is downloaded from https://www.openstreetmap.org, which provides access to crowd-
sourced map data all over the world. The data is licensed under the Open Data Commons Open
Database License (ODbL), https://opendatacommons.org/licenses/odbl/.

Version History
Introduced in R2020a

ReflectionLocations and NumReflections properties have been removed
Errors starting in R2021b

The ReflectionLocations and NumReflections properties have been removed. To accommodate
reflections, use the Interactions property to replace the ReflectionLocations property and
use the NumInteractions property to replace the NumReflections property.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
raytrace | raypl | buildingMaterialPermittivity | earthSurfacePermittivity |
propagationModel

Objects
siteviewer | comm.RayTracingChannel | arrayConfig

Topics
“Choose a Propagation Model”
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tdmsDatastore
Datastore for collection of TDMS-files

Description
Use the TDMSDatastore object to access data from a collection of TDMS-files.

Creation

Syntax
tdmsds = tdmsDatastore(location)
tdmsds = tdmsDatastore(__,Name=Value)

Description

tdmsds = tdmsDatastore(location) creates a TDMSDatastore object based on a TDMS-file or
a collection of files in the folder specified by location. Within the folder, all files with the
extension .tdms are included in the datastore.

tdmsds = tdmsDatastore(__,Name=Value) specifies function options and properties of tdmsds
using optional name-value pairs.

Input Arguments

location — Location of TDMS datastore files
string | character vector | cell array

Location of TDMS datastore files, specified as a string, character vector, or cell array identifying
either files or folders. The path can be relative or absolute, and can contain the wildcard characters ?
and *. If location specifies a folder, the datastore includes all files in that folder with the
extension .tdms.
Example: "C:\data\tdms_set1"
Data Types: char | string | cell

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

You can specify file information or object “Properties” on page 3-1499. Allowed options are
IncludeSubfolders, AlternateFileSystemRoots, and the properties
SelectedChannelGroup, SelectedChannels, RowTimes, and ReadSize.
Example: SelectedChannelGroup="Acceleration"
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IncludeSubfolders — Include files in subfolders
false (default) | true

Include files in subfolders, specified as a logical. Specify true to include files in each folder and
recursively in subfolders.
Example: IncludeSubfolders=true
Data Types: logical

AlternateFileSystemRoots — Root paths for different platforms
string array | cell array

Root paths to the TDMS-files for different platforms, specified as an array of strings.
Example: AlternateFileSystemRoots=["Z:\datasets", "/tdms/datasets"]
Data Types: char | string | cell

Properties
Files — Files included in datastore
char | string | cell

This property is read-only.

Files included in the datastore, specified as a character vector or string identifying a relative or
absolute path to a file or folder. The wildcard characters ? and * are supported. All TDMS-files in the
specified folder are included in the datastore. The property value is stored as a string vector of file
names.
Example: "file*.tdms"
Data Types: char | string

ChannelList — All channels present in first TDMS-file
table

This property is read-only.

All channels present in first TDMS-file, returned as a table.

Those channels targeted for reading must have the same name and belong to the same channel group
in each file of the TDMS datastore.
Data Types: table

SelectedChannelGroup — Channel group containing the channels to read from
string | char

Channel group containing the channels to read from, specified as a string or character vector.
Example: "Torque"
Data Types: string | char

SelectedChannels — Names of channels to read
char | string | cell
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Names of channels to read, specified as a character vector, string, or array of either. The channels
must be in the channel group specified by SelectedChannelGroup in each file of the TDMS
datastore.
Example: ["Torque1" "Torque2"]
Data Types: char | string | cell

RowTimes — Times associated with rows of table
datetime | duration | channel name

Times associated with rows of the table, specified as a selected time channel name, a datetime vector,
or a duration vector. Setting this property causes the read and readall functions to output a cell
array of timetables. Each time element labels a row in the output timetable.
Example: duration(seconds([1:1000]/1000))
Data Types: datetime | duration | string

ReadSize — Size of data returned by read
20000 (default) | numeric | "file"

Size of data returned by the read function, specified as "file" or a numeric value. A string value of
"file" causes a read of one TDMS-file at a time; a numeric value specifies the number of records to
read. The readall function ignores this property.

If you change the ReadSize property value after creating the TDMSDatastore object, the datastore
resets.
Example: 5000
Data Types: double | string | char

Object Functions
read Read data in TDMS datastore
readall Read all data in TDMS datastore
preview Read first 8 records from TDMS datastore
hasdata Determine if data is available to read from TDMS datastore
reset Reset TDMS datastore to initial state
combine Combine data from multiple datastores
transform Transform datastore

Examples

Read Data from a TDMS Datastore

Create a TDMS datastore from all the TDMS-files in the folder C:\data\tdms, and read the data into
tables.

Set up the datastore and view its channel list.
td = tdmsDatastore("C:\data\tdms");
td.ChannelList(:,1:4)

ans =
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  6×4 table

    ChannelGroupNumber    ChannelGroupName    ChannelGroupDescription      ChannelName  
    __________________    ________________    _______________________    _______________

            1              "Acceleration"        "CGAcceleration"        "Acceleration1"
            1              "Acceleration"        "CGAcceleration"        "Acceleration2"
            2              "Force"               "CGForce"               "Force1"       
            2              "Force"               "CGForce"               "Force2"       
            3              "Torque"              "CGTorque"              "Torque1"      
            3              "Torque"              "CGTorque"              "Torque2"

Read all available data.
td.SelectedChannelGroup = "Force"
data_set = readall(td)

data_set =

  1×3 cell array

    {9936×2 table}    {9936×2 table}    {9936×2 table}

View the data from the first channel group.

data_set{1}

ans =

  9936×2 table

    Acceleration1    Acceleration2
    _____________    _____________

       -1.9851                0   
       -3.9702                0   
        11.911           1.5521   
        5.9553          -1.5521   
        1.9851          -4.6562   
        5.9553           4.6562   
        3.9702          -1.5521   
        3.9702          -4.6562   
        13.896                0   

          :                :      

       -4.8046          -2.2609   
       -4.8046           6.7826   
       -7.2068           2.2609   
       -7.2068           4.5218   
       -7.2068           6.7826   
       -2.4023           9.0435   
       -2.4023           4.5218   
       -9.6091           2.2609   
       -12.011           4.5218   

    Display all 9936 rows.

Read all available data for the channel group Force.
td.SelectedChannelGroup = "Force";
data_set = readall(td)
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data_set =

  1×1 cell array

    {9936×2 table}

Read 500 entries of data.
td.ReadSize = 500;
data_set = read(td)

data_set =

  1×1 cell array

    {500×2 table}

Limitations
• TDMS functions are supported on Windows platforms only.
• As a special case of a datastore, the TDMSDatastore object does not support the following

functionality:

• Partitioning for parallel computing
• Shuffling

Version History
Introduced in R2022a

See Also
External Websites
The NI TDMS File Format
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info
Package: comm

Characteristic information about baseband file reader

Syntax
S = info(bbr)

Description
S = info(bbr) returns a structure containing characteristic information about the specified
baseband file reader.

Examples

Display Baseband File Reader Characteristic Information

Configure a baseband file reader object to read the baseband_samples_1ghz.bb baseband signal
file. Then read the characteristic information of the baseband file reader by using the info object
function.

bbr = comm.BasebandFileReader('baseband_samples_1ghz.bb');
info(bbr)

ans = struct with fields:
    NumSamplesInData: 10000
            DataType: 'double'
      NumSamplesRead: 0

Release the baseband file reader object and reconfigure the object to read the ais_capture.bb
baseband signal file. Then, read the characteristic information about the reconfigured baseband file
reader object by using the info object function.

release(bbr)
bbr = comm.BasebandFileReader('ais_capture.bb');
info(bbr)

ans = struct with fields:
    NumSamplesInData: 262144
            DataType: 'single'
      NumSamplesRead: 0

Input Arguments
bbr — Baseband file reader
comm.BasebandFileReader System object
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Baseband file reader, specified as a comm.BasebandFileReader System object.

Output Arguments
S — Characteristic information about baseband file reader
structure

Characteristic information about the baseband file reader, returned as a structure containing these
fields.

NumSamplesInData — Total number of baseband data samples
positive integer

Total number of baseband data samples in the file, returned as a positive integer.
Data Types: double

DataType — Data type of baseband signal
'double' | 'single' | 'uint8' | 'uint16' | 'uint32' | 'uint64' | 'int8' | 'int16' |
'int32' | 'int64'

Data type of the baseband signal in the file, returned as 'double', 'single', 'uint8', 'uint16',
'uint32', 'uint64', 'int8', 'int16', 'int32', or 'int64'.

NumSamplesRead — Number of samples read
nonnegative integer

Number of samples read from the file, returned as a nonnegative integer. The returned value does not
exceed the value of the NumSamplesInData property of the baseband file reader when the
CyclicRepetition property in that object is false.
Data Types: double

Version History
Introduced in R2016b

See Also
Objects
comm.BasebandFileReader | comm.BasebandFileWriter

Functions
info

 info
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info
Package: comm

Characteristic information about baseband file writer

Syntax
S = info(bbw)

Description
S = info(bbw) returns a structure containing characteristic information about the specified
baseband file writer.

Note All fields are determined and viewable after the object is run and locked. When the object is
unlocked, only the Filename and NumSamplesWritten fields are available and viewable.

Examples

Write Baseband Signal to File

Create a baseband file writer object specifying a sample rate of 1 kHz and a 0 Hz center frequency.

bbw = comm.BasebandFileWriter('baseband_data.bb',1000,0);

Save the date for today in the Metadata structure.

bbw.Metadata = struct('Date',date);

Generate two channels of QPSK-modulated data.

d = randi([0 3],1000,2);
x = pskmod(d,4,pi/4,'gray');

Write the baseband data to file baseband_data.bb.

bbw(x)

Display information about the baseband file writer. Then, release the object.

info(bbw)

ans = struct with fields:
             Filename: 'C:\TEMP\Bdoc22b_2054784_6060\ibB18F8B\29\tp337054fe\comm-ex66490302\baseband_data.bb'
      SamplesPerFrame: 1000
          NumChannels: 2
             DataType: 'double'
    NumSamplesWritten: 1000

release(bbw)
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Create a baseband file reader object to read the saved data. Display the metadata from the file.

bbr = comm.BasebandFileReader('baseband_data.bb', ...
    'SamplesPerFrame',100);
bbr.Metadata

ans = struct with fields:
    Date: '31-Aug-2022'

Read the data from the file.

z = [];

while ~isDone(bbr)
    y = bbr();
    z = cat(1,z,y);
end

Display information about the baseband file reader. Then, release object.

info(bbr)

ans = struct with fields:
    NumSamplesInData: 1000
            DataType: 'double'
      NumSamplesRead: 1000

release(bbr)

Confirm that the original modulated data x, matches the data z, read from file baseband_data.bb.

isequal(x,z)

ans = logical
   1

Input Arguments
bbw — Baseband file writer
comm.BasebandFileWriter System object

Baseband file writer, specified as a comm.BasebandFileWriter System object.

Output Arguments
S — Characteristic information about baseband file writer
structure

Characteristic information about the baseband file writer, returned as a structure containing these
fields.

Filename — Name of baseband file to write
character vector
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Name of the baseband file to write, returned as a character vector. The filename shows the absolute
path.
Data Types: char

SamplesPerFrame — Number of samples in each frame
positive integer

Number of samples in each frame, returned as a positive integer.

Dependencies

To enable this field, you must first run the baseband file writer object.
Data Types: double

NumChannels — Number of channels in baseband signal
positive integer

Number of channels in the baseband signal written to the file, returned as a positive integer.

Dependencies

To enable this field, you must first run the baseband file writer object.
Data Types: double

DataType — Data type of baseband signal
'double' | 'single' | 'uint8' | 'uint16' | 'uint32' | 'uint64' | 'int8' | 'int16' |
'int32' | 'int64'

Data type of the baseband signal written to the file, returned as 'double', 'single', 'uint8',
'uint16', 'uint32', 'uint64', 'int8', 'int16', 'int32', or 'int64'.

Dependencies

To enable this field, you must first run the baseband file writer object.

NumSamplesWritten — Total number of baseband data samples written
positive integer

Total number of baseband data samples written to the file, returned as a positive integer. This field
returns the smaller of the total number of samples processed by the input baseband file writer object
and the NumSamplesWritten property of that object.
Data Types: double

Version History
Introduced in R2016b

See Also
Objects
comm.BasebandFileReader | comm.BasebandFileWriter
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Functions
info
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getPercentileRelativePower
Package: comm

Relative power value for given percentile using CCDF

Syntax
R = getPercentileRelativePower(ccdf,P)

Description
R = getPercentileRelativePower(ccdf,P) returns the relative power value of a signal for the
specified percentile value P. The input ccdf specifies the complementary cumulative distribution
function (CCDF) curves of the signal of interest. The function returns the power level by which the
signal is above its average power P percent of the time. A percentile of P = 100 corresponds to a
probability of 1.0. For the ith channel in the input signal, the function evaluates the inverse of the
corresponding CCDF curve at probability value P(i)/100.

Before calling the getPercentileRelativePower function, you must obtain the CCDF curves of
the signal of interest by calling the ccdf System object on the signal.

Examples

Obtain CCDF Curves and Relative Power Levels

Generate a unit variance AWGN signal and a dual-tone signal.

n = [0:5e3-1].';
s1 = randn(5e3,1);                    % AWGN signal
s2 = sin(0.01*pi*n) + sin(0.03*pi*n); % Dual-tone signal

Create a CCDF measurement object.

ccdf = comm.CCDF;          

Obtain the CCDF curves of the signals.

ccdf([s1 s2]); 

Plot the resulting curves.

plot(ccdf)   
legend('AWGN','Dual-tone')
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Find the relative power levels of the signals. The AWGN signal is 8.1929 dB above its average power
1 percent of the time. The dual-tone signal is 3.5493 dB above its average power 10 percent of the
time.

RPW = getPercentileRelativePower(ccdf,[1 10])

RPW = 2×1

    8.1923
    3.5493

Input Arguments
ccdf — CCDF measurements
comm.CCDF System object

CCDF measurements, specified as a comm.CCDF System object. The object must contain CCDF
curves. To obtain CCDF curves, call the object on the input signal of interest.

P — Percentile
numeric scalar | numeric row vector

Percentile, specified as one of these options.
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• Numeric scalar in the range [0, 100] — The function evaluates the inverse of each CCDF curve at
probability value P/100.

• Numeric row vector with values in the range [0, 100] — The function evaluates the inverse of the
ith CCDF curve in the input ccdf at probability value P(i)/100.

Output Arguments
R — Relative power value
numeric column vector

Relative power value, returned as a numeric column vector. R(i) is the relative power value returned
for the channel corresponding to ith CCDF curve in the input ccdf. The ccdf.PowerUnits property
specifies whether the relative power value is returned in a dB scale or linear scale.
Data Types: double

Version History
Introduced in R2012a

See Also
Objects
comm.CCDF

Functions
getProbability | plot
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getProbability
Package: comm

Probability of relative power value using CCDF

Syntax
P = getProbability(ccdf,R)

Description
P = getProbability(ccdf,R) returns the probability, as a percentage in the range [0, 100], that
the power level of a signal is above its average power by the specified level R. The input ccdf
specifies the complementary cumulative distribution function (CCDF) curves of the signal of interest.
For the ith channel in the input signal, the function evaluates the corresponding CCDF curve at
relative power value R(i).

Before calling the getProbability function, you must obtain the CCDF curves of the signal of
interest by calling the ccdf System object on the signal.

Examples

Obtain CCDF Curves and Probabilities

Generate a unit variance AWGN signal and a dual-tone signal.

n = [0:5e3-1].';
s1 = randn(5e3,1);                    % AWGN signal
s2 = sin(0.01*pi*n) + sin(0.03*pi*n); % Dual-tone signal

Create a CCDF measurement object.

ccdf = comm.CCDF;

Obtain the CCDF curves of the signals.

ccdf([s1 s2]);

Plot the resulting CCDF curves.

plot(ccdf)                        
legend('AWGN','Dual-tone')
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Find the probability that the AWGN signal power is 5 dB above its average power and the probability
that the dual-tone signal power is 3 dB above its average power.

P = getProbability(ccdf,[5 3])

P = 2×1

    7.9551
   21.1421

Input Arguments
ccdf — CCDF measurements
comm.CCDF System object

CCDF measurements, specified as a comm.CCDF System object. The object must contain CCDF
curves. To obtain CCDF curves, call the object on the input signal of interest.

R — Relative power value
numeric scalar | numeric row vector

Relative power value, specified as one of these options.

• Numeric scalar — The function evaluates each CCDF curve at the relative power value R.
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• Numeric row vector — The function evaluates the ith CCDF curve in the input ccdf at relative
power value R(i).

The ccdf.PowerUnits property specifies whether the relative power value is returned in a dB scale
or linear scale.
Data Types: double

Output Arguments
P — CCDF probability of relative power value
numeric column vector

CCDF probability of the relative power value, returned as a numeric column vector with values in the
range [0, 100]. A value of 100 corresponds to a probability of 1.0. P(i)/100 is the probability value of
the channel corresponding to the ith CCDF curve in the input ccdf.
Data Types: double

Version History
Introduced in R2012a

See Also
Objects
comm.CCDF

Functions
getPercentileRelativePower | plot
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plot
Package: comm

2-D line plots of CCDF curves

Syntax
lines = plot(ccdf)
lines = plot(ccdf,Name,Value)

Description
lines = plot(ccdf) creates 2-D line plots corresponding to the complementary cumulative
distribution function (CCDF) curves of a signal of interest specified by ccdf. The number of curves is
equal to the number of channels in the signal. The function returns a column vector of chart line
objects corresponding to the plots.

Before calling the plot function, you must obtain the CCDF curves of the signal of interest by calling
the ccdf System object on the signal.

lines = plot(ccdf,Name,Value) specifies options using one or more name-value arguments. For
a complete list of name-value arguments, see Line Properties. For example,
plot(ccdf,'LineWidth',2) creates the plots such that the line width of each curve is 2 points.

Examples

Obtain CCDF Curves for 16-QAM and QPSK Signals

Generate 16-QAM and QPSK modulated signals.

qamTxSig = qammod(randi([0 15],20e3,1),16,'UnitAveragePower',true);
qpskTxSig = pskmod(randi([0 3],20e3,1),4,pi/4);

Pass the signals through an AWGN channel.

qamRxSig = awgn(qamTxSig,15);
qpskRxSig = awgn(qpskTxSig,15);

Create a CCDF measurement object enabling outputs for the average power measurements and peak
power measurements.

ccdf = comm.CCDF(...
    'AveragePowerOutputPort',true, ...
    'PeakPowerOutputPort',true);

Obtain the CCDF measurements of the two waveforms.

[ccdfy,ccdfx,avg,peak] = ccdf([qamRxSig qpskRxSig]);

Plot the CCDF curves for both signals.
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plot(ccdf)
legend('16-QAM','QPSK')

Input Arguments
ccdf — CCDF measurements
comm.CCDF System object

CCDF measurements, specified as a comm.CCDF System object. The object must contain CCDF
curves. To obtain the CCDF curves, call the object on the input signal of interest.

Output Arguments
lines — Plotted CCDF curves
column vector of Line objects

Plotted CCDF curves, returned as a column vector of Line objects. The length of this vector is equal
to the number of CCDF curves specified by the input ccdf. These Line objects uniquely identify the
plotted 2-D CCDF curves. Use these objects to query and modify the properties of the curves in the
plots. For a complete list of object properties, see Line Properties.

Version History
Introduced in R2012a
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See Also
Objects
comm.CCDF

Functions
getPercentileRelativePower | getProbability
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info
Package: comm

Characteristic information about fading channel object

Syntax
infostruct = info(obj)

Description
infostruct = info(obj) returns a structure containing characteristic information about the
fading channel System object.

Examples

Get comm.RayleighChannel Info

Use the info object function to get information from a comm.RayleighChannel object.

Create a Rayleigh channel object and some data to pass through the channel.

rayleighchan = comm.RayleighChannel('SampleRate',1000,'PathDelays',[0 0],'AveragePathGains',[0 0])

rayleighchan = 
  comm.RayleighChannel with properties:

             SampleRate: 1000
             PathDelays: [0 0]
       AveragePathGains: [0 0]
     NormalizePathGains: true
    MaximumDopplerShift: 1.0000e-03
        DopplerSpectrum: [1x1 struct]
       ChannelFiltering: true
    PathGainsOutputPort: false

  Show all properties

data = randi([0 1],600,1);

Check the Rayleigh channel object information.

info(rayleighchan)

ans = struct with fields:
           ChannelFilterDelay: 0
    ChannelFilterCoefficients: [2x1 double]
          NumSamplesProcessed: 0

Pass data through the channel and check the object information again.
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rayleighchan(data);
info(rayleighchan)

ans = struct with fields:
           ChannelFilterDelay: 0
    ChannelFilterCoefficients: [2x1 double]
          NumSamplesProcessed: 600

Release the object so you can update attributes. Add a 1.5e-3 second path delay to the second delay
path.

release(rayleighchan)
rayleighchan.PathDelays = [0 1.5e-3]

rayleighchan = 
  comm.RayleighChannel with properties:

             SampleRate: 1000
             PathDelays: [0 0.0015]
       AveragePathGains: [0 0]
     NormalizePathGains: true
    MaximumDopplerShift: 1.0000e-03
        DopplerSpectrum: [1x1 struct]
       ChannelFiltering: true
    PathGainsOutputPort: false

  Show all properties

Pass data through the channel and check the object information again.

rayleighchan(data);
info(rayleighchan)

ans = struct with fields:
           ChannelFilterDelay: 6
    ChannelFilterCoefficients: [2x16 double]
          NumSamplesProcessed: 600

Get comm.RicianChannel Info

Use the info object function to get information from a comm.RicianChannel object.

Create a Rician channel object and some data to pass through the channel.

ricianchan = comm.RicianChannel('SampleRate',500)

ricianchan = 
  comm.RicianChannel with properties:

                SampleRate: 500
                PathDelays: 0
          AveragePathGains: 0
        NormalizePathGains: true
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                   KFactor: 3
    DirectPathDopplerShift: 0
    DirectPathInitialPhase: 0
       MaximumDopplerShift: 1.0000e-03
           DopplerSpectrum: [1x1 struct]
          ChannelFiltering: true
       PathGainsOutputPort: false

  Show all properties

data = randi([0 1],600,1);

Check the Rician channel object information.

info(ricianchan)

ans = struct with fields:
           ChannelFilterDelay: 0
    ChannelFilterCoefficients: 1
          NumSamplesProcessed: 0

Pass data through the channel and check the object information again.

ricianchan(data);
info(ricianchan)

ans = struct with fields:
           ChannelFilterDelay: 0
    ChannelFilterCoefficients: 1
          NumSamplesProcessed: 600

Release the object so you can update attributes. Add a second path delay with a delay of 3.1e-3
second and an average path gain of -3 dB.

release(ricianchan)
ricianchan.PathDelays = [0 3.1e-3];
ricianchan.AveragePathGains = [0 -3]

ricianchan = 
  comm.RicianChannel with properties:

                SampleRate: 500
                PathDelays: [0 0.0031]
          AveragePathGains: [0 -3]
        NormalizePathGains: true
                   KFactor: 3
    DirectPathDopplerShift: 0
    DirectPathInitialPhase: 0
       MaximumDopplerShift: 1.0000e-03
           DopplerSpectrum: [1x1 struct]
          ChannelFiltering: true
       PathGainsOutputPort: false

  Show all properties
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Pass data through the channel and check the object information again.

ricianchan(data);
info(ricianchan)

ans = struct with fields:
           ChannelFilterDelay: 6
    ChannelFilterCoefficients: [2x16 double]
          NumSamplesProcessed: 600

Get comm.MIMOChannel Info

Use the info object function to get information from a comm.MIMOChannel object.

Create a MIMO channel object and some data to pass through the channel.

mimo = comm.MIMOChannel('SampleRate',1000);
data = randi([0 1],600,2);

Check the MIMO channel object information.

info(mimo)

ans = struct with fields:
           ChannelFilterDelay: 0
    ChannelFilterCoefficients: 1
          NumSamplesProcessed: 0

Pass data through the channel and check the object information again.

mimo(data);
info(mimo)

ans = struct with fields:
           ChannelFilterDelay: 0
    ChannelFilterCoefficients: 1
          NumSamplesProcessed: 600

Release the object so you can update attributes. Add a 2.5e-3 second path delay. Recheck the object
information.

release(mimo)
mimo.PathDelays = 2.5e-3;
info(mimo)

ans = struct with fields:
           ChannelFilterDelay: 5
    ChannelFilterCoefficients: [-0.0326 0.0403 -0.0504 0.0646 -0.0861 ... ]
          NumSamplesProcessed: 0
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Model MIMO Channel Using Sum-of-Sinusoids Technique

Show that the channel state is maintained for discontinuous transmissions by using MIMO channel
System objects configured to use the sum-of-sinusoids fading technique. Observe discontinuous
channel response segments overlaid on a continuous channel response.

Set the channel properties.

fs = 1000;               % Sample rate (Hz)
pathDelays = [0 2.5e-3]; % Path delays (s)
pathPower = [0 -6];      % Path power (dB)
fD = 5;                  % Maximum Doppler shift (Hz)
ns = 1000;               % Number of samples
nsdel = 100;             % Number of samples for delayed paths

Define a continuous time span and three discontinuous time segments over which to plot and view the
channel response. View a 1000-sample continuous channel response starting at time 0 and three 100-
sample channel responses starting at times 0.1, 0.4, and 0.7 seconds, respectively.

to0 = 0.0;
to1 = 0.1;
to2 = 0.4;
to3 = 0.7;
t0 = (to0:ns-1)/fs;      % Transmission 0
t1 = to1+(0:nsdel-1)/fs; % Transmission 1
t2 = to2+(0:nsdel-1)/fs; % Transmission 2
t3 = to3+(0:nsdel-1)/fs; % Transmission 3

Create a flat-fading 2-by-2 MIMO channel System object, disabling channel filtering and specifying a
1000 Hz sampling rate, the sum-of-sinusoids fading technique, and the number of samples to view.
Specify a seed value so that results can be repeated. Use the default InitialTime property setting
so that the fading channel is simulated from time 0.

mimoChan1 = comm.MIMOChannel('SampleRate',fs, ...
    'MaximumDopplerShift',fD, ...
    'RandomStream','mt19937ar with seed', ...
    'Seed',17, ...
    'FadingTechnique','Sum of sinusoids', ...
    'ChannelFiltering',false, ...
    'NumSamples',ns);

Create a clone of the MIMO channel System object. Change the number of samples for the delayed
paths and the source for the initial time so that you can specify the fading channel offset time as an
input argument when calling the System object.

mimoChan2 = clone(mimoChan1);
mimoChan2.InitialTimeSource = 'Input port';
mimoChan2.NumSamples = nsdel;

Save the path gain output for the continuous channel response by using the mimoChan1 object and
for the discontinuous delayed channel responses by using the mimoChan2 object with initial time
offsets provided as input arguments.

pg0 = mimoChan1();
pg1 = mimoChan2(to1);
pg2 = mimoChan2(to2);
pg3 = mimoChan2(to3);
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Compare the number of samples processed by the two channels by using the info method. The
results show that mimoChan1 processed 1000 samples and that mimoChan2 processed only 300
samples.

G = info(mimoChan1);
H = info(mimoChan2);
[G.NumSamplesProcessed H.NumSamplesProcessed]

ans = 1×2

        1000         300

Convert the path gains into decibels for the path corresponding to the first transmit and first receive
antenna.

pathGain0 = 20*log10(abs(pg0(:,1,1,1)));
pathGain1 = 20*log10(abs(pg1(:,1,1,1)));
pathGain2 = 20*log10(abs(pg2(:,1,1,1)));
pathGain3 = 20*log10(abs(pg3(:,1,1,1)));

Plot the path gains for the continuous and discontinuous cases. The results show that the gains for
the three segments match the gain for the continuous case. The alignment of the two shows that the
sum-of-sinusoids technique is ideally suited to the simulation of packetized data because the channel
characteristics are maintained even when data is not transmitted.

plot(t0,pathGain0,'r--')
hold on
plot(t1,pathGain1,'b')
plot(t2,pathGain2,'b')
plot(t3,pathGain3,'b')
grid
title('Continuous and Discontinuous Channel Response')
xlabel('Time (sec)')
ylabel('Path Gain (dB)')
legend('Continuous','Discontinuous','location','nw')
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Input Arguments
obj — System object to get information from
System object

System object to get information from, specified as a comm.MIMOChannel,
comm.RayleighChannel, or comm.RicianChannel System object.

Output Arguments
infostruct — Structure containing object information
structure

Structure containing these fields with information about the System object.

ChannelFilterDelay — Channel filter delay
positive integer

Channel filter delay in samples, returned as a positive integer.

ChannelFilterCoefficients — Channel filter coefficients
matrix
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Channel filter coefficients, returned as a matrix. The coefficient matrix is used to convert path gains
to channel filter tap gains for each sample and each pair of transmit and receive antennas.

NumSamplesProcessed — Number of samples processed by the channel object
positive integer

Number of samples processed by the channel object since the last reset, returned as a positive
integer.

LastFrameTime — Last frame ending time
positive scalar

Last frame ending time in seconds, returned as a positive scalar. Use this value to confirm the
simulation time.

Dependencies

This property applies when the FadingTechnique property is 'Sum of sinusoids' and the
InitialTimeSource property is 'Input port'.

Version History
Introduced in R2012a

See Also
Objects
comm.MIMOChannel | comm.RayleighChannel | comm.RicianChannel

4 Object Functions

4-24



coeffs
Package: comm

Coefficients for filters

Syntax
coefInfo = coeffs(rcfilter)
coefInfo = coeffs(rcfilter,'Arithmetic',arithType)

Description
coefInfo = coeffs(rcfilter) obtain the coefficients for the specified filter System object.

coefInfo = coeffs(rcfilter,'Arithmetic',arithType) analyzes the filter System object
based on the arithmetic specified in arithType.

Examples

Obtain Coefficients of Raised Cosine Filters

Create a receive raised cosine filter and obtain its numerator coefficients.

rxfilter = comm.RaisedCosineReceiveFilter('FilterSpanInSymbols',25);
srx = coeffs(rxfilter)

srx = struct with fields:
    Numerator: [9.0942e-04 8.5589e-04 6.1364e-04 2.3196e-04 -2.0735e-04 ... ]

Calculate the expected number of numerator coefficients and confirm the value equals the length of
srx.Numerator.

numcoefs = rxfilter.FilterSpanInSymbols * rxfilter.InputSamplesPerSymbol + 1

numcoefs = 201

isequal (numcoefs,length(srx.Numerator))

ans = logical
   1

Display the first ten coefficients.

srx.Numerator(1:10)

ans = 1×10
10-3 ×

    0.9094    0.8559    0.6136    0.2320   -0.2074   -0.6071   -0.8759   -0.9486   -0.8021   -0.4623
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Display the impulse response of the receive raised cosine filter.

impz(srx.Numerator)

Create a transmit raised cosine filter and obtain its numerator coefficients.

txfilter = comm.RaisedCosineTransmitFilter('RolloffFactor',0.5);
stx = coeffs(txfilter);

Display the first ten filter coefficients.

stx.Numerator(1:10)

ans = 1×10

   -0.0002    0.0011    0.0021    0.0024    0.0018    0.0004   -0.0014   -0.0029   -0.0036   -0.0031

Display the impulse response of the transmit raised cosine filter.

impz(stx.Numerator)
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Input Arguments
rcfilter — Input filter
comm.RaisedCosineReceiveFilter System object | comm.RaisedCosineTransmitFilter
System object

Input filter, specified as one of these of filter System objects.

• comm.RaisedCosineReceiveFilter
• comm.RaisedCosineTransmitFilter

arithType — Arithmetic type
'double' (default) | 'single' | 'Fixed'

Arithmetic used in the filter analysis, specified as 'double', 'single', or 'Fixed'. When you do
not specify the arithmetic type and the filter System object is unlocked, the analysis tool assumes a
double-precision filter. When you do not specify the arithmetic type and the System object is locked,
the function performs the analysis based on the data type of the locked input.

The 'Fixed' value applies to filter System objects with fixed-point properties only.

When you specify this input as 'Fixed' and the filter object has the data type of the coefficients set
to 'Same word length as input', the arithmetic analysis performed depends on whether the
System object is unlocked or locked.
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• If the System object is unlocked, the analysis object function cannot determine the data type of
the coefficients. The function assumes that the data type of the coefficients is signed, has a 16-bit
word length, and is autoscaled. The function performs fixed-point analysis based on this
assumption.

• If the System object is locked –– When the input data type is 'double' or 'single', the analysis
object function cannot determine the data type of the coefficients. The function assumes that the
data type of the coefficients is signed, has a 16-bit word length, and is autoscaled. The function
performs fixed-point analysis based on this assumption.

To check if the System object is locked or unlocked, use the isLocked function.

When you specify this input as 'Fixed' and the filter object has the data type of the coefficients set
to a custom numeric type, the object function performs fixed-point analysis based on the custom
numeric data type.
Data Types: char | string

Output Arguments
coefInfo — Filter coefficient information
structure

Filter coefficient information, returned as a structure containing the filter coefficients in the
Numerator field. When the filter uses fixed-point arithmetic, the function returns additional
information about the filter. This information includes the arithmetic setting and details about the
filter internals.

Version History
Introduced in R2013b

See Also
Functions
info | order | fvtool

Objects
comm.RaisedCosineReceiveFilter | comm.RaisedCosineTransmitFilter

4 Object Functions

4-28



cost
Package: comm

Computational cost of implementing filter System object

Syntax
filtcost = cost(rcfilter)
filtcost = cost(rcfilter,'Arithmetic',arithType)

Description
filtcost = cost(rcfilter) returns a structure of fields that contain information about the
computational cost of implementing the specified filter.

filtcost = cost(rcfilter,'Arithmetic',arithType) specifies the type of arithmetic that
the function uses to evaluate the filter response.

Examples

Compute Cost of RRC Filter

Compute the cost of implementing various root-raised-cosine (RRC) filters that are created by using a
comm.RaisedCosineTransmitFilter System object™. Increasing the filter span or output
samples per symbol increases the cost of implementing the filter.

rrcFilt = comm.RaisedCosineTransmitFilter( ...
    "FilterSpanInSymbols",20, ...
    "OutputSamplesPerSymbol",8);
costFilt = cost(rrcFilt)

costFilt = struct with fields:
                  NumCoefficients: 161
                        NumStates: 20
    MultiplicationsPerInputSample: 161
          AdditionsPerInputSample: 153

rrcFilt = comm.RaisedCosineTransmitFilter( ...
    "FilterSpanInSymbols",200, ...
    "OutputSamplesPerSymbol",8);
costFilt = cost(rrcFilt)

costFilt = struct with fields:
                  NumCoefficients: 1601
                        NumStates: 200
    MultiplicationsPerInputSample: 1601
          AdditionsPerInputSample: 1593

rrcFilt = comm.RaisedCosineTransmitFilter( ...
    "FilterSpanInSymbols",200, ...
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    "OutputSamplesPerSymbol",16);
costFilt = cost(rrcFilt)

costFilt = struct with fields:
                  NumCoefficients: 3201
                        NumStates: 200
    MultiplicationsPerInputSample: 3201
          AdditionsPerInputSample: 3185

Input Arguments
rcfilter — Filter
comm.RaisedCosineReceiveFilter System object | comm.RaisedCosineTransmitFilter
System object

Filter, specified as one of these System objects.

• comm.RaisedCosineReceiveFilter
• comm.RaisedCosineTransmitFilter

arithType — Arithmetic type
'double' (default) | 'single' | 'Fixed'

Arithmetic used in the filter analysis, specified as 'double', 'single', or 'Fixed'. When you do
not specify the arithmetic type and the filter System object is unlocked, the analysis tool assumes a
double-precision filter. When you do not specify the arithmetic type and the System object is locked,
the function performs the analysis based on the data type of the locked input.

The 'Fixed' value applies to filter System objects with fixed-point properties only.

When you specify this input as 'Fixed' and the filter object has the data type of the coefficients set
to 'Same word length as input', the arithmetic analysis performed depends on whether the
System object is unlocked or locked.

• If the System object is unlocked, the analysis object function cannot determine the data type of
the coefficients. The function assumes that the data type of the coefficients is signed, has a 16-bit
word length, and is autoscaled. The function performs fixed-point analysis based on this
assumption.

• If the System object is locked –– When the input data type is 'double' or 'single', the analysis
object function cannot determine the data type of the coefficients. The function assumes that the
data type of the coefficients is signed, has a 16-bit word length, and is autoscaled. The function
performs fixed-point analysis based on this assumption.

To check if the System object is locked or unlocked, use the isLocked function.

When you specify this input as 'Fixed' and the filter object has the data type of the coefficients set
to a custom numeric type, the object function performs fixed-point analysis based on the custom
numeric data type.
Data Types: char | string
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Output Arguments
filtcost — Cost estimate
structure

Cost estimate, returned as a structure containing these fields.

Field Description
NumCoefficients Number of filter coefficients (excluding

coefficients with values 0, 1, or –1)
NumStates Number of filter states
MultiplicationsPerInputSample Number of multiplication operations performed

for each input sample
AdditionsPerInputSample Number of addition operations performed for

each input sample

Data Types: struct

Version History
Introduced in R2013b

See Also
Functions
info | coeffs | order

Objects
comm.RaisedCosineReceiveFilter | comm.RaisedCosineTransmitFilter

Topics
“Analysis Methods for Filter System Objects”
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info
Package: comm

Information about filter System object

Syntax
filtInfo = info(rcfilter)
filtInfo = info(rcfilter,infoType)
filtInfo = info( ___ ,'Arithmetic',arithType)

Description
filtInfo = info(rcfilter) obtains information about the specified filter System object. The
type of information returned by the function depends on the filter type and configuration.

filtInfo = info(rcfilter,infoType) obtains the amount of filter information as specified by
infoType.

filtInfo = info( ___ ,'Arithmetic',arithType) analyzes the filter System object based on
the arithmetic specified in arithType. Specify this option with any of the input combinations from
previous syntaxes.

For more input options, see the info function.

Examples

Obtain Raised Cosine Filter Information

Obtain short-format and long-format information about a raised cosine filter.

txfilter = comm.RaisedCosineTransmitFilter;
info(txfilter)

ans = 10x62 char array
    'Discrete-Time FIR Multirate Filter (real)                     '
    '-----------------------------------------                     '
    'Filter Structure      : Direct-Form FIR Polyphase Interpolator'
    'Interpolation Factor  : 8                                     '
    'Polyphase Length      : 11                                    '
    'Filter Length         : 81                                    '
    'Stable                : Yes                                   '
    'Linear Phase          : Yes (Type 1)                          '
    '                                                              '
    'Arithmetic            : double                                '

info(txfilter,'long')

ans = 17x62 char array
    'Discrete-Time FIR Multirate Filter (real)                     '
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    '-----------------------------------------                     '
    'Filter Structure      : Direct-Form FIR Polyphase Interpolator'
    'Interpolation Factor  : 8                                     '
    'Polyphase Length      : 11                                    '
    'Filter Length         : 81                                    '
    'Stable                : Yes                                   '
    'Linear Phase          : Yes (Type 1)                          '
    '                                                              '
    'Arithmetic            : double                                '
    '                                                              '
    'Implementation Cost                                           '
    'Number of Multipliers            : 81                         '
    'Number of Adders                 : 73                         '
    'Number of States                 : 10                         '
    'Multiplications per Input Sample : 81                         '
    'Additions per Input Sample       : 73                         '

Input Arguments
rcfilter — Input filter
comm.RaisedCosineReceiveFilter System object | comm.RaisedCosineTransmitFilter
System object

Input filter, specified as one of these of filter System objects.

• comm.RaisedCosineReceiveFilter
• comm.RaisedCosineTransmitFilter

infoType — Amount of information to display
'short' (default) | 'long'

Amount of filter information to display, specified as one of these values.

• 'short' –– The function displays the basic filter information. This information is the same as the
information output by info(rcfilter).

• 'long' –– The function returns this information about the filter.

• Specifications such as the filter structure and filter order.
• Information about the design method and options.
• Performance measurements, such as the passband cutoff or stopband attenuation, for the filter

response.
• Cost of implementing the filter in terms of operations required to apply the filter to data.

When the filter uses fixed-point arithmetic, the function returns additional information about the
filter. This information includes the arithmetic setting and details about the filter internals.

Data Types: char | string

arithType — Arithmetic type
'double' (default) | 'single' | 'Fixed'

Arithmetic used in the filter analysis, specified as 'double', 'single', or 'Fixed'. When you do
not specify the arithmetic type and the filter System object is unlocked, the analysis tool assumes a
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double-precision filter. When you do not specify the arithmetic type and the System object is locked,
the function performs the analysis based on the data type of the locked input.

The 'Fixed' value applies to filter System objects with fixed-point properties only.

When you specify this input as 'Fixed' and the filter object has the data type of the coefficients set
to 'Same word length as input', the arithmetic analysis performed depends on whether the
System object is unlocked or locked.

• If the System object is unlocked, the analysis object function cannot determine the data type of
the coefficients. The function assumes that the data type of the coefficients is signed, has a 16-bit
word length, and is autoscaled. The function performs fixed-point analysis based on this
assumption.

• If the System object is locked –– When the input data type is 'double' or 'single', the analysis
object function cannot determine the data type of the coefficients. The function assumes that the
data type of the coefficients is signed, has a 16-bit word length, and is autoscaled. The function
performs fixed-point analysis based on this assumption.

To check if the System object is locked or unlocked, use the isLocked function.

When you specify this input as 'Fixed' and the filter object has the data type of the coefficients set
to a custom numeric type, the object function performs fixed-point analysis based on the custom
numeric data type.
Data Types: char | string

Output Arguments
filtInfo — Filter information
character array

Filter information, returned as a character array.

• When you set the infoType input to 'short', the function displays basic filter information.
• When you set the infoType input to 'long', the function displays this.

• Specifications such as the filter structure and filter order.
• Information about the design method and options.
• Performance measurements, such as the passband cutoff or stopband attenuation, for the filter

response.
• Cost of implementing the filter in terms of operations required to apply the filter to data.

When the filter uses fixed-point arithmetic, the function returns additional information about the
filter. The information includes the arithmetic setting and details about the filter internals.

Version History
Introduced in R2013b
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See Also
Functions
coeffs | order | info

Objects
comm.RaisedCosineReceiveFilter | comm.RaisedCosineTransmitFilter

Topics
“Analysis Methods for Filter System Objects”
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fvtool
Package: comm

Plot frequency response of filter

Syntax
fvtool(rcfilter)
fvtool(rcfilter,options)
fvtool(____,Name,Value)

Description
fvtool(rcfilter) plots the magnitude response of the specified filter.

fvtool(rcfilter,options) plots the response that is specified by options.

For example, to plot the impulse response of the specified filter, set options to 'impulse'.

fvtool(rcfilter,'impulse');

fvtool(____,Name,Value) specifies additional options using one or more name-value arguments
in addition to any input argument combination from the previous syntaxes.

For more input options, see the FVTool function.

Examples

Create Square-Root-Raised-Cosine Transmit Filter with Unity Passband Gain

Create a square-root-raised-cosine (SRRC) transmit filter System object™, and then plot the filter
response. The results show that the linear filter gain is greater than unity. Specifically, the passband
gain is greater than 0 dB.

txfilter = comm.RaisedCosineTransmitFilter;
fvtool(txfilter)
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Obtain the filter coefficients by using the coeffs object function and adjust the filter gain to unit
energy.

b = coeffs(txfilter);

Because a filter with unity passband gain must have filter coefficients that sum to 1, set the linear
filter gain to the inverse of the sum of the filter tap coefficients, b.Numerator.

txfilter.Gain = 1/sum(b.Numerator);

Verify that the resulting filter coefficients sum to 1.

bNorm = coeffs(txfilter);
sum(bNorm.Numerator)

ans = 1.0000

Plot the filter frequency response again. The results now show that the passband gain is 0 dB, which
is unity gain.

fvtool(txfilter)
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Input Arguments
rcfilter — Filter
comm.RaisedCosineReceiveFilter System object | comm.RaisedCosineTransmitFilter
System object

Filter, specified as one of these System objects.

• comm.RaisedCosineReceiveFilter
• comm.RaisedCosineTransmitFilter

options — Filter analysis options
'magnitude' (default) | 'phase' | 'freq' | 'grpdelay' | 'phasedelay' | 'impulse' | 'step' |
'polezero' | 'coefficients' | 'info' | 'magestimate' | 'noisepower'

Filter analysis options, specified as one of these values:

• 'magnitude' –– Magnitude response
• 'phase' –– Phase response
• 'freq' –– Frequency response
• 'grpdelay' –– Group delay
• 'phasedelay' –– Phase delay
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• 'impulse' –– Impulse response
• 'step' –– Step response
• 'polezero' –– Pole zero plot
• 'coefficients' –– Coefficients vector
• 'info' –– Filter information
• 'magestimate' –– Magnitude response estimate
• 'noisepower' –– Round-off noise power spectrum

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: fvtool(rcfilter,'Arithmetic','single')

Fs — Sampling rate
scalar

Sampling rate, specified as a scalar. This value, Fs, determines the Nyquist interval [–Fs/2, Fs/2] in
which the function shows the frequency response of the filters in the channelizer.
Data Types: single | double

Arithmetic — Arithmetic type
'double' (default) | 'single' | 'Fixed'

Specify the arithmetic used during analysis. The analysis tool assumes a double-precision filter when
the arithmetic input is not specified and the filter System object is unlocked. The 'Arithmetic'
property set to 'Fixed' applies only to filter System objects with fixed-point properties.

When you specify this argument as 'Fixed', the function plots the double-precision reference filter
and the quantized version of the filter. The function uses the CoefficientsDataType property of
the respective filter System object to create the quantized version of the filter analysis values in
options except for these:

• 'magestimate' –– Magnitude response estimate
• 'noisepower' –– Round-off noise power spectrum

For these two analysis options, the function uses all of the fixed-point settings to analyze the
quantized version of the filter.
Data Types: char | string

Version History
Introduced in R2013b
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See Also
Functions
info | coeffs | order

Objects
comm.RaisedCosineReceiveFilter | comm.RaisedCosineTransmitFilter

Tools
FVTool

Topics
“Analysis Methods for Filter System Objects”
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freqz
Package: comm

Frequency response of discrete-time filter

Syntax
[filtresp,w] = freqz(rcfilter)
[filtresp,w] = freqz(rcfilter,n)
[filtresp,w] = freqz( ___ ,'Arithmetic',arithType)

freqz(rcfilter)

Description
[filtresp,w] = freqz(rcfilter) returns filtresp, the complex frequency response of the
specified filter. The output w contains the frequencies (in radians per sample) at which the function
evaluates the frequency response.

[filtresp,w] = freqz(rcfilter,n) returns the complex frequency response of the specified
filter and the corresponding frequencies at n points that are equally spaced around the upper-half of
the unit circle (from 0 to π).

This function uses the transfer function that is associated with the specified filter to calculate the
frequency response of the filter with the current coefficient values.

[filtresp,w] = freqz( ___ ,'Arithmetic',arithType) specifies the type of arithmetic that
the function uses to evaluate the filter response. You can use any input combination from the previous
syntaxes.

freqz(rcfilter) plots the magnitude and unwrapped phase of the frequency response of the
specified filter by using the fvtool object function.

For more input options, see the freqz function.

Examples

Evaluate RRC Filter Frequency Response

Evaluate the frequency response of an RRC filter.

Create a transmit RRC filter System object™. Evaluate the frequency response by using the freqz
object function.

rrcFilt = comm.RaisedCosineTransmitFilter( ...
    "FilterSpanInSymbols",30, ...
    "RolloffFactor",0.25);
freqz(rrcFilt)
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Input Arguments
rcfilter — Filter
comm.RaisedCosineReceiveFilter System object | comm.RaisedCosineTransmitFilter
System object

Filter, specified as one of these System objects.

• comm.RaisedCosineReceiveFilter
• comm.RaisedCosineTransmitFilter

n — Number of points over which the frequency response is computed
8192 (default) | positive integer

Number of points over which the frequency response is computed, specified as positive integer. For
faster computations (performed using FFTs), specify n as a power of two.
Data Types: double

arithType — Arithmetic type
'double' (default) | 'single' | 'Fixed'

Arithmetic used in the filter analysis, specified as 'double', 'single', or 'Fixed'. When you do
not specify the arithmetic type and the filter System object is unlocked, the analysis tool assumes a
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double-precision filter. When you do not specify the arithmetic type and the System object is locked,
the function performs the analysis based on the data type of the locked input.

The 'Fixed' value applies to filter System objects with fixed-point properties only.

When you specify this input as 'Fixed' and the filter object has the data type of the coefficients set
to 'Same word length as input', the arithmetic analysis performed depends on whether the
System object is unlocked or locked.

• If the System object is unlocked, the analysis object function cannot determine the data type of
the coefficients. The function assumes that the data type of the coefficients is signed, has a 16-bit
word length, and is autoscaled. The function performs fixed-point analysis based on this
assumption.

• If the System object is locked –– When the input data type is 'double' or 'single', the analysis
object function cannot determine the data type of the coefficients. The function assumes that the
data type of the coefficients is signed, has a 16-bit word length, and is autoscaled. The function
performs fixed-point analysis based on this assumption.

To check if the System object is locked or unlocked, use the isLocked function.

When you specify this input as 'Fixed' and the filter object has the data type of the coefficients set
to a custom numeric type, the object function performs fixed-point analysis based on the custom
numeric data type.
Data Types: char | string

Output Arguments
filtresp — Frequency response
column vector

Frequency response, returned as a complex-valued column vector of length n. The function evaluates
the frequency response at n points that are equally spaced around the upper-half of the unit circle
(from 0 to π).
Data Types: double

w — Frequencies used for frequency response evaluation
column vector

Frequencies used for frequency response evaluation, returned as a column vector of length n. Unit
are in radians per sample. The frequencies are equally spaced around the upper-half of the unit circle
(from 0 to π).
Data Types: double

Tips
• Several ways exist for analyzing the frequency response of filters. The freqz function accounts

for quantization effects in the filter coefficients but does not account for quantization effects in
filtering arithmetic. To account for the quantization effects in filtering arithmetic, see the
noisepsd function.

• For faster computations (performed using FFTs), specify n, the number of points over which the
function computes the frequency response, as a power of two.
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Algorithms
The freqz function calculates the frequency response for a filter from the filter transfer function
Hq(z). The complex-valued frequency response is calculated by evaluating Hq(ejω) at discrete values
of w. The input argument n specifies the number of equally-spaced points around the upper-half of the
unit circle at which the function evaluates the frequency response.

• When you do not specify scalar sampling frequency fs as an input argument, the frequency
ranges from 0 to π radians per sample.

• When you specify scalar sampling frequency fs as an input argument to freqz, the frequency
ranges from 0 to fs/2 Hz. For more information about fs, see the freqz function.

Version History
Introduced in R2013b

See Also
Functions
info | coeffs | order | freqz | fvtool

Objects
comm.RaisedCosineReceiveFilter | comm.RaisedCosineTransmitFilter

Topics
“Analysis Methods for Filter System Objects”
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grpdelay
Package: comm

Group delay response of discrete-time filter

Syntax
[gd,w] = grpdelay(rcfilter)
[gd,w] = grpdelay(rcfilter,n)
[gd,w] = grpdelay( ___ ,'Arithmetic',arithType)

grpdelay(rcfilter)

Description
[gd,w] = grpdelay(rcfilter) returns gd, the group delay of the specified filter based on the
filter coefficients. The output w contains the frequencies (in radians per sample) at which the function
evaluates the group delay. The group delay is defined as− d

dw (angle(w)).

[gd,w] = grpdelay(rcfilter,n) returns the group delay of the specified filter and the
corresponding frequencies at n points that are equally spaced around the upper-half of the unit circle
(from 0 to π).

[gd,w] = grpdelay( ___ ,'Arithmetic',arithType) computes the group delay of the filter
System object, specifies the type of arithmetic that the function uses to compute the group delay. You
can use any input combination from the previous syntaxes.

grpdelay(rcfilter) plots the group delay of the specified filter by using the fvtool object
function.

For more input options, see the grpdelay function.

Examples

Compute Group Delay of RRC Filter

Compute the group delay of an RRC filter.

rcfilter = comm.RaisedCosineTransmitFilter;
gd = grpdelay(rcfilter,32);
gd(1:5)'

ans = 1×5

    40    40    40    40    40
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Input Arguments
rcfilter — Filter
comm.RaisedCosineReceiveFilter System object | comm.RaisedCosineTransmitFilter
System object

Filter, specified as one of these System objects.

• comm.RaisedCosineReceiveFilter
• comm.RaisedCosineTransmitFilter

n — Number of points over which the group delay is computed
8192 (default) | positive integer

Number of points over which the group delay is computed, specified as a positive integer. For faster
computations (performed using FFTs) specify n as a power of two.
Data Types: double

arithType — Arithmetic type
'double' (default) | 'single' | 'Fixed'

Arithmetic used in the filter analysis, specified as 'double', 'single', or 'Fixed'. When you do
not specify the arithmetic type and the filter System object is unlocked, the analysis tool assumes a
double-precision filter. When you do not specify the arithmetic type and the System object is locked,
the function performs the analysis based on the data type of the locked input.

The 'Fixed' value applies to filter System objects with fixed-point properties only.

When you specify this input as 'Fixed' and the filter object has the data type of the coefficients set
to 'Same word length as input', the arithmetic analysis performed depends on whether the
System object is unlocked or locked.

• If the System object is unlocked, the analysis object function cannot determine the data type of
the coefficients. The function assumes that the data type of the coefficients is signed, has a 16-bit
word length, and is autoscaled. The function performs fixed-point analysis based on this
assumption.

• If the System object is locked –– When the input data type is 'double' or 'single', the analysis
object function cannot determine the data type of the coefficients. The function assumes that the
data type of the coefficients is signed, has a 16-bit word length, and is autoscaled. The function
performs fixed-point analysis based on this assumption.

To check if the System object is locked or unlocked, use the isLocked function.

When you specify this input as 'Fixed' and the filter object has the data type of the coefficients set
to a custom numeric type, the object function performs fixed-point analysis based on the custom
numeric data type.
Data Types: char | string

Output Arguments
gd — Group delay
column vector
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Group delay, returned as a column vector of length n.
Data Types: double

w — Frequencies used for group delay evaluation
column vector

Frequencies in radians/sample used for group delay evaluation, returned as a column vector of length
n. Unit are in radians per sample. The frequencies are equally spaced around the upper-half of the
unit circle (from 0 to π).
Data Types: double

Tips
• For faster computations (performed using FFTs), specify n, the number of points over which the

function computes the group delay, as a power of two.

Version History
Introduced in R2013b

See Also
Functions
info | coeffs | order | freqz | fvtool | filter | impz | grpdelay

Objects
comm.RaisedCosineReceiveFilter | comm.RaisedCosineTransmitFilter

Topics
“Analysis Methods for Filter System Objects”

 grpdelay

4-47



impz
Package: comm

Impulse response of discrete-time filter

Syntax
[impresp,t] = impz(rcfilter)
[impresp,t] = impz(rcfilter,n)
[impresp,t] = impz(rcfilter,n,fs)
[impresp,t] = impz(rcfilter,[],fs)
[impresp,t] = impz( ___ ,'Arithmetic',arithType)

impz(rcfilter)

Description
[impresp,t] = impz(rcfilter) returns impresp, the impulse response of the specified filter.
The output t represents the sample intervals and equals [0 1 2 ...k-1]'. k is the number of filter
coefficients.

[impresp,t] = impz(rcfilter,n) computes the impulse response at floor(n) 1 second
intervals. In this case, t equals (0:floor(n) – 1)'.

[impresp,t] = impz(rcfilter,n,fs) computes the impulse response at floor(n) 1/fs second
intervals. In this case, t equals (0:floor(n) – 1)'/fs.

[impresp,t] = impz(rcfilter,[],fs) computes the impulse response at k 1/fs second
intervals. k is the number of filter coefficients. In this case, t equals (0:k – 1)'/fs.

[impresp,t] = impz( ___ ,'Arithmetic',arithType) specifies the type of arithmetic that the
function uses to evaluate the impulse response. You can use any input combination from the previous
syntaxes.

impz(rcfilter) plots the magnitude and unwrapped phase of the impulse response of the specified
filter by using the fvtool object function.

You can use the impz object function for real and complex filters. When you omit the output
arguments, impz plots only the real part of the impulse response.

For more input options, see the Signal Processing Toolbox™ impz function.

Examples

Evaluate RRC Filter Impulse Response

Evaluate the impulse response of an RRC filter.

Create a transmit RRC filter System object™. Evaluate the impulse response by using the impz object
function.
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rcfilter = comm.RaisedCosineTransmitFilter;
impz(rcfilter)

Input Arguments
rcfilter — Filter
comm.RaisedCosineReceiveFilter System object | comm.RaisedCosineTransmitFilter
System object

Filter, specified as one of these System objects.

• comm.RaisedCosineReceiveFilter
• comm.RaisedCosineTransmitFilter

n — Number of filter coefficients
positive integer

Number of filter coefficients, specified as a positive integer. This value determines the length of the
output impulse response vector, impResp.
Data Types: double

fs — Sampling frequency
1 (default) | positive scalar

 impz
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Sampling frequency that the function uses to compute the impulse response, specified as a positive
scalar.
Data Types: double

arithType — Arithmetic type
'double' (default) | 'single' | 'Fixed'

Arithmetic used in the filter analysis, specified as 'double', 'single', or 'Fixed'. When you do
not specify the arithmetic type and the filter System object is unlocked, the analysis tool assumes a
double-precision filter. When you do not specify the arithmetic type and the System object is locked,
the function performs the analysis based on the data type of the locked input.

The 'Fixed' value applies to filter System objects with fixed-point properties only.

When you specify this input as 'Fixed' and the filter object has the data type of the coefficients set
to 'Same word length as input', the arithmetic analysis performed depends on whether the
System object is unlocked or locked.

• If the System object is unlocked, the analysis object function cannot determine the data type of
the coefficients. The function assumes that the data type of the coefficients is signed, has a 16-bit
word length, and is autoscaled. The function performs fixed-point analysis based on this
assumption.

• If the System object is locked –– When the input data type is 'double' or 'single', the analysis
object function cannot determine the data type of the coefficients. The function assumes that the
data type of the coefficients is signed, has a 16-bit word length, and is autoscaled. The function
performs fixed-point analysis based on this assumption.

To check if the System object is locked or unlocked, use the isLocked function.

When you specify this input as 'Fixed' and the filter object has the data type of the coefficients set
to a custom numeric type, the object function performs fixed-point analysis based on the custom
numeric data type.
Data Types: char | string

Output Arguments
impresp — Impulse response
column vector

Impulse response, returned as a column vector of length n. If n is not specified, the length of the
impulse response vector equals the number of coefficients in the filter.
Data Types: double

t — Sample intervals
column vector

Sample intervals in seconds, returned as a column vector of equally spaced points. Units are in
seconds. The syntax used determines the range of the output.
Data Types: double
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Version History
Introduced in R2013b

See Also
Functions
info | coeffs | order | freqz | fvtool | filter | impz

Objects
comm.RaisedCosineReceiveFilter | comm.RaisedCosineTransmitFilter

Topics
“Analysis Methods for Filter System Objects”
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order
Package: comm

Order of discrete-time filter System object

Syntax
filtOrder = order(rcfilter)

Description
filtOrder = order(rcfilter) returns the order of the filter System object. The order depends
on the filter structure and the reference double-precision floating-point coefficients.

Examples

Determine Group Delay for RRC Filter Pair

Create a square root raised cosine (RRC) filter pair using the
comm.RaisedCosineTransmitFilter and comm.RaisedCosineReceiveFilter System objects.
Determine the group delay of the overall filter pair.

txrcfilt = comm.RaisedCosineTransmitFilter

txrcfilt = 
  comm.RaisedCosineTransmitFilter with properties:

                     Shape: 'Square root'
             RolloffFactor: 0.2000
       FilterSpanInSymbols: 10
    OutputSamplesPerSymbol: 8
                      Gain: 1

rxrcfilt = comm.RaisedCosineReceiveFilter

rxrcfilt = 
  comm.RaisedCosineReceiveFilter with properties:

                    Shape: 'Square root'
            RolloffFactor: 0.2000
      FilterSpanInSymbols: 10
    InputSamplesPerSymbol: 8
         DecimationFactor: 8
         DecimationOffset: 0
                     Gain: 1

groupDelay = order(txrcfilt)/2 + order(rxrcfilt)/2

groupDelay = 80
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Input Arguments
rcfilter — Input filter
comm.RaisedCosineReceiveFilter System object | comm.RaisedCosineTransmitFilter
System object

Input filter, specified as one of these of filter System objects.

• comm.RaisedCosineReceiveFilter
• comm.RaisedCosineTransmitFilter

Output Arguments
filtOrder — Filter order
scalar

Filter order, returned as a scalar. The order depends on the filter structure and the reference double-
precision floating-point coefficients.
Data Types: double

Version History
Introduced in R2013b

See Also
Functions
info | coeffs

Objects
comm.RaisedCosineReceiveFilter | comm.RaisedCosineTransmitFilter
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info
Package: comm

Information about FM broadcast modulator or demodulator

Syntax
fmbInfo = info(fmb)

Description
fmbInfo = info(fmb) returns a structure containing information for the
comm.FMBroadcastModulator or comm.FMBroadcastDemodulator System object

Note

• The modulator input sequence length for the audio input must be a multiple of
AudioDecimationFactor.

• The modulator input sequence length for the RDS/RBDS input must be a multiple of
RBDSDecimationFactor.

• When RBDS is true, the demodulator input sequence length must be a multiple of
AudioDecimationFactor and RBDSDecimationFactor.

• When RBDS is false, the demodulator input sequence length must be a multiple of
AudioDecimationFactor.

.

Examples

Modulate and Demodulate Streaming Audio Signals Using FM Broadcast Method

Modulate and demodulate an audio signal with the FM broadcast modulator and demodulator System
objects. Plot the frequency responses to compare the input and demodulated audio signals.

Load the audio file guitartune.wav by using an audio file reader System object™. Set the samples
per frame to 44,100, which is large enough to include the entire audio file.

audiofilereader = dsp.AudioFileReader("guitartune.wav", ...
    SamplesPerFrame=44100);
x = audiofilereader();

Create spectrum analyzer System objects to plot the spectra of the modulated and demodulated
signals.

saFM = spectrumAnalyzer( ...
    SampleRate=152e3, ...
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    Title="FM Broadcast Signal");
saAudio = spectrumAnalyzer( ...
    SampleRate=44100, ...
    ShowLegend=true, ...
    Title="Audio Signal", ...
    ChannelNames=["Input signal" "Demodulated signal"]);

Create FM broadcast modulator and demodulator objects. Set the sample rate of the output audio
signal to match the sample rate of the input audio signal. Configure the demodulator to match the
specified modulator.

fmbMod = comm.FMBroadcastModulator( ...
    AudioSampleRate=audiofilereader.SampleRate, ...
    SampleRate=200e3);
fmbDemod = comm.FMBroadcastDemodulator(fmbMod)

fmbDemod = 
  comm.FMBroadcastDemodulator with properties:

            SampleRate: 200000
    FrequencyDeviation: 75000
    FilterTimeConstant: 7.5000e-05
       AudioSampleRate: 44100
             PlaySound: false
                Stereo: false
                  RBDS: false

The length of the sequence input to the object must be an integer multiple of the decimation factor.
To determine the audio decimation factor of the filter in the modulator and demodulator, use the
info object function.

info(fmbMod)

ans = struct with fields:
       AudioDecimationFactor: 441
    AudioInterpolationFactor: 2000
        RBDSDecimationFactor: 19
     RBDSInterpolationFactor: 320

info(fmbDemod)

ans = struct with fields:
       AudioDecimationFactor: 50
    AudioInterpolationFactor: 57
        RBDSDecimationFactor: 50
     RBDSInterpolationFactor: 57

The audio decimation factor of the modulator is a multiple of the audio frame length of 44,100. The
audio decimation factor of the demodulator is an integer multiple of the 200,000 samples data
sequence length of the modulator output.

Modulate the audio signal and plot the spectrum of the modulated signal.

y = fmbMod(x);
saFM(y)
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Demodulate the modulated audio signal and plot the resultant spectrum. Compare the input signal
spectrum with the demodulated signal spectrum. The spectra are similar except that the demodulated
signal has smaller high-frequency components.

z = fmbDemod(y);
saAudio([x z])
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Input Arguments
fmb — FM broadcast object
comm.FMBroadcastModulator System object | comm.FMBroadcastDemodulator System object

FM broadcast object, specified as one of these System objects.

• comm.FMBroadcastModulator
• comm.FMBroadcastDemodulator

Output Arguments
fmbInfo — FM broadcast object information
structure

FM broadcast object information, returned as a structure containing these fields.

Field Description
AudioDecimationFactor Decimation factor of the audio modulator or

demodulator filter.
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Field Description
AudioInterpolationFactor Interpolation factor of the audio modulator or

demodulator filter.
RBDSDecimationFactor Decimation factor of the RDS/RBDS modulator or

demodulator filter.
RBDSInterpolationFactor Interpolation factor of the RDS/RBDS modulator

or demodulator filter.

Version History
Introduced in R2015a

See Also
Objects
comm.FMBroadcastModulator | comm.FMBroadcastDemodulator
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info
Package: comm

Characteristic information of GPU-based Viterbi decoder

Syntax
infostruct = info(gpuVitDec)

Description
infostruct = info(gpuVitDec) returns characteristic information of the specified graphics
processing unit (GPU) based Viterbi decoder.

Examples

Get Characteristic Information of GPU-based Viterbi Decoder

Create a GPU-based Viterbi decoder System object™ that accepts an input vector of hard decision
values, which are zeros or ones.

gpuVitDec = comm.gpu.ViterbiDecoder('InputFormat','Hard');

Get the characteristic information of the GPU-based Viterbi decoder.

infostruct = info(gpuVitDec)

infostruct = struct with fields:
    AcquisitionDepth: 70

Input Arguments
gpuVitDec — GPU-based Viterbi decoder
comm.gpu.ViterbiDecoder System object

GPU-based Viterbi decoder, specified as a comm.gpu.ViterbiDecoder System object.

Output Arguments
infostruct — Characteristic information
structure

Characteristic information of the input GPU-based Viterbi decoder, returned as a structure that
contains this field.

AcquisitionDepth — Acquisition depth used in GPU implementation
integer
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Acquisition depth used in the GPU implementation, returned as an integer.

The acquisition depth is the number of depunctured codewords that are used to overlap
subsequences of the received data in the GPU implementation of the Viterbi decoder. For
unpunctured codes, AcquisitionDepth is the greater of ten times the constraint length or two
times the TracebackDepth property of the decoder. For punctured codes, AcquisitionDepth is
scaled by a multiple of the number of codewords in the puncture pattern vector.

Version History
Introduced in R2012a

See Also
Objects
comm.gpu.ConvolutionalEncoder | comm.gpu.ViterbiDecoder
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info
Package: comm

Characteristic information about multiband combining

Syntax
mbcInfo = info(multibandcombiner)

Description
mbcInfo = info(multibandcombiner) returns a structure containing characteristic information
about the multiband combiner.

Examples

Show Multiband Combiner Characteristic Information

Create a mutliband combiner System object™ and show the characteristic information for the
configured object.

Create a multiband combine object. Use the info object function to view the characteristic
information.

mutlibandcombiner = comm.MultibandCombiner()

mutlibandcombiner = 
  comm.MultibandCombiner with properties:

           InputSampleRate: 1000000
          FrequencyOffsets: [0 1000000]
    OutputSampleRateSource: 'Auto'

info(mutlibandcombiner)

ans = struct with fields:
    OutputSampleRate: 3000000
               Delay: 36

Input Arguments
multibandcombiner — Multiband combiner
comm.MultibandCombiner System object

Multiband combiner, specified as a comm.MutlibandCombiner System object.
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Output Arguments
mbcInfo — Multiband combiner characteristic information
structure

Multiband combiner characteristic information, returned as a structure containing these fields. The
multiband combiner is specified by the input multibandcombiner.

OutputSampleRate — Sample rate of output signal
positive scalar

Sample rate of the output signal in Hz, returned as a positive scalar.

Delay — Delay between input and output
positive scalar

Delay between input and output signals in samples at the output sampling rate.

Version History
Introduced in R2021b

See Also
Objects
comm.MultibandCombiner

Functions
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plot
Package: comm

Plot nonlinearity AM/AM and AM/PM characteristics

Syntax
plot(mnl)
plot(mnl,'Gain')
mnlplot = plot( ___ )

Description
plot(mnl) plots the output signal power and the phase change versus the input signal power. This
syntax is equivalent to plot(mnl,'Pout').

plot(mnl,'Gain') plots the gain and the phase change versus the input signal power.

mnlplot = plot( ___ ) returns a handle to the figure containing the generated plot. Specify an
input argument combination from any of the previous syntaxes.

Examples

Plot Output Response for Amplifier Model

Plot the amplifier output power and phase response for various model methods.

Create a memoryless nonlinearity impairment System object™ for each of the nonlinearity modeling
methods.

ampCubicPoly= comm.MemorylessNonlinearity('Method','Cubic polynomial');
ampHyperbolic = comm.MemorylessNonlinearity('Method','Hyperbolic tangent');
ampGhorbani = comm.MemorylessNonlinearity('Method','Ghorbani model');
ampSaleh = comm.MemorylessNonlinearity('Method','Saleh model');
ampModRapp = comm.MemorylessNonlinearity('Method','Modified Rapp model');
ampLookupTable = comm.MemorylessNonlinearity('Method','Lookup table','ReferenceImpedance',50);

Use the plot object function of the comm.MemorylessNonlinearity System object to show the
response curves for the output power and phase for the each of the amplifier models.

plot(ampCubicPoly);
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plot(ampHyperbolic);
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plot(ampSaleh);
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plot(ampLookupTable);
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plot(ampGhorbani);
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plot(ampModRapp);
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Input Arguments
mnl — Memoryless nonlinearity
comm.Memoryless Nonlinearity System object

Memoryless nonlinearity, specified as a comm.MemorylessNonlinearity System object.

Output Arguments
mnlplot — Plot figure
Figure object

Plot figure, returned as a Figure object created using the figure function. Use the Figure object
to query or modify properties of the figure after it is created.

Version History
Introduced in R2021a

See Also
comm.MemorylessNonlinearity
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constellation
Package: comm

Calculate or plot ideal signal constellation

Syntax
symbols = constellation(obj)
constellation(obj)

Description
symbols = constellation(obj) returns the numerical values of the constellation.

constellation(obj) generates a constellation plot for the object.

Examples

Plot QPSK Reference Constellation

Create a QPSK modulator.

mod = comm.QPSKModulator;

Determine the reference constellation points.

refC = constellation(mod)

refC = 4×1 complex

   0.7071 + 0.7071i
  -0.7071 + 0.7071i
  -0.7071 - 0.7071i
   0.7071 - 0.7071i

Plot the constellation.

constellation(mod)
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Reconfigure the object for bit input and plot the constellation to show the binary values of the Gray-
encoded mapping.

release(mod)
mod.BitInput = true; 
constellation(mod)
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Create a QPSK demodulator having phase offset set to 0.

demod = comm.QPSKDemodulator(0);

Plot the reference constellation. The constellation method works for both modulator and
demodulator objects.

constellation(demod)
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Plot PSK Reference Constellation

Create a PSK modulator.

mod = comm.PSKModulator;

Determine the reference constellation points.

refC = constellation(mod)

refC = 8×1 complex

   0.9239 + 0.3827i
   0.3827 + 0.9239i
  -0.3827 + 0.9239i
  -0.9239 + 0.3827i
  -0.9239 - 0.3827i
  -0.3827 - 0.9239i
   0.3827 - 0.9239i
   0.9239 - 0.3827i

Plot the constellation.

constellation(mod)
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Create a PSK demodulator having modulation order 16.

demod = comm.PSKDemodulator(16);

Plot its reference constellation. The constellation method works for both modulator and
demodulator objects.

constellation(demod)
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Plot BPSK Reference Constellation

Create a BPSK modulator.

mod = comm.BPSKModulator;

Determine the reference constellation points.

refC = constellation(mod)

refC = 2×1 complex

   1.0000 + 0.0000i
  -1.0000 + 0.0000i

Plot the constellation.

constellation(mod)
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Create a BPSK demodulator having phase offset set to π
2 .

demod = comm.BPSKDemodulator(pi/2);

Determine the reference constellation points.

refC = constellation(demod)

refC = 2×1 complex

   0.0000 + 1.0000i
  -0.0000 - 1.0000i

Plot the reference constellation. The constellation method works for both modulator and
demodulator objects.

constellation(demod)
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Input Arguments
obj — System object to return constellation for
System object

System object to return constellation for, specified as a modulator System object.
Data Types: object

Output Arguments
symbols — Constellation points
complex vector (default)

Constellation points, returned as a complex vector.
Data Types: double | single
Complex Number Support: Yes

Version History
Introduced in R2012a
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See Also
Objects
comm.BPSKModulator | comm.BPSKDemodulator | comm.PSKModulator |
comm.PSKDemodulator | comm.QPSKModulator | comm.QPSKDemodulator |
comm.OQPSKModulator | comm.OQPSKDemodulator | comm.gpu.PSKModulator |
comm.gpu.PSKDemodulator

Topics
“View Constellation Diagram”
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info
Package: comm

Characteristic information about ray-tracing channel

Syntax
chanInfo = info(rtchan)

Description
chanInfo = info(rtchan) returns a structure containing characteristic information about the
input ray-tracing channel.

Examples

Return Information for Ray-Tracing Channel Between Two Sites in Hong Kong

Perform ray tracing between two sites in Hong Kong, China, build a multipath channel model using
the ray-tracing result, and view the ray-tracing channel information.

Create a Site Viewer map display of buildings in Hong Kong. For more information about the osm file,
see [1] on page 4-80.

sv = siteviewer("Buildings","hongkong.osm");
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Create transmitter and receiver sites.

tx = txsite( ...
    "Latitude",22.2789, ...
    "Longitude",114.1625, ...
    "AntennaAngle",30, ... % azimuth angle
    "AntennaHeight",10, ...
    "TransmitterFrequency",28e9);
rx = rxsite( ...
    "Latitude",22.2799, ...
    "Longitude",114.1617, ...
    "AntennaAngle",120, ... % azimuth angle
    "AntennaHeight",1);

Perform ray tracing to find rays with up to 2 reflections.

pm = propagationModel("raytracing", ...
        "Method",'sbr', ...
        "MaxNumReflections",3);
rays = raytrace(tx,rx,pm);

Create a channel model by using the transmitter site, receiver site, and calculated rays between the
sites. Return information from the ray-tracing channel.

rtchan = comm.RayTracingChannel(rays{1},tx,rx);
info(rtchan)

ans = struct with fields:
             CarrierFrequency: 2.8000e+10
             CoordinateSystem: 'Geographic'
        TransmitArrayLocation: [3×1 double]
         ReceiveArrayLocation: [3×1 double]
          NumTransmitElements: 1
           NumReceiveElements: 1
           ChannelFilterDelay: 4
    ChannelFilterCoefficients: [11×30 double]
          NumSamplesProcessed: 0
                LastFrameTime: 0

Appendix

[1] The osm file is downloaded from https://www.openstreetmap.org, which provides access to crowd-
sourced map data all over the world. The data is licensed under the Open Data Commons Open
Database License (ODbL), https://opendatacommons.org/licenses/odbl/.

Input Arguments
rtchan — Ray-tracing channel
comm.RayTracingChannel System object

Ray-tracing channel, specified as a comm.RayTracingChannel System object.
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Output Arguments
chanInfo — Ray tracing channel characteristic information
structure

Ray tracing channel characteristic information, returned as a structure containing these fields. The
ray tracing channel is specified by the input rtchan.

CarrierFrequency — Carrier frequency
positive scalar

Carrier frequency in Hz, returned as a positive scalar.

CoordinateSystem — Coordinate system
'Cartesian' | 'Geographic'

Coordinate system, returned as 'Cartesian' or 'Geographic'. Any comm.Ray objects, specified
by the PropagationRays property of the rtchan input, that have their PathSpecification
property set to 'Locations', must have the same CoordinateSystem property setting.

Dependencies

This property applies when at least one comm.Ray object in the PropagationRays property of the
rtchan input has PathSpecification set to 'Locations'.

TransmitArrayLocation — Transmit array location
three element column vector

Transmit array location, returned as a three element column vector. Any comm.Ray objects, specified
by the PropagationRays property of the rtchan input, that have their PathSpecification
property set to 'Locations', must have the same TransmitterLocation property setting.

Dependencies

This property applies when at least one comm.Ray object in the PropagationRays property of the
rtchan input has PathSpecification set to 'Locations'.

ReceiveArrayLocation — Receive array location
three element column vector

Receive array location, returned as a three element column vector. Any comm.Ray objects, specified
by the PropagationRays property of the rtchan input, that have their PathSpecification
property set to 'Locations', must have the same ReceiverLocation property setting.

Dependencies

This property applies when at least one comm.Ray object in the PropagationRays property of the
rtchan input has PathSpecification set to 'Locations'.

NumTransmitElements — Number of elements in transmit array
positive integer

Number of elements in the transmit array, returned as a positive integer.

NumReceiveElements — Number of elements in receive array
positive integer
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Number of elements in the receive array, returned as a positive integer.

ChannelFilterDelay — Channel filter delay
nonnegative integer

Channel filter delay in samples, returned as a nonnegative integer.

ChannelFilterCoefficients — Channel filter coefficients
NP-by-NH matrix

Channel filter coefficients, returned as an NP-by-NH matrix. This coefficient matrix is used to convert
channel impulse responses to channel filter tap gains for each sample, and then for each pair of
transmit and receive antenna elements. NP is the number of paths (specifically, the number of rays as
indicated by the length of the PropagationRays property of the rtchan input). NH is the number of
impulse response samples (specifically, the number of channel filter taps).

NumSamplesProcessed — Number of samples processed by channel object
nonnegative integer

Number of samples processed by the channel object since its last reset, returned as a nonnegative
integer.

LastFrameTime — End time of last frame
nonnegative integer

End time of last frame in seconds, returned as a nonnegative integer.

Version History
Introduced in R2020b

See Also
Objects
arrayConfig | comm.Ray | comm.RayTracingChannel

Functions
showProfile
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showProfile
Package: comm

Plot temporal and spatial profiles of ray-tracing channel

Syntax
showProfile(rtchan)
showProfile(rtchan,'ArrayPattern',false)

Description
showProfile(rtchan) plots the power delay profile (PDP), angle of departure (AoD), and angle of
arrival (AoA) information for the ray-tracing channels in a single figure with three subplots.

• The PDP subplot is derived from the propagation delay, path loss, phase shift, pattern gain at
transmit array and pattern gain at receive array for each ray specified by the PropagationRays
property of the rtchan input.

• The AoD and AoA subplots show the 3-D directions of the rays in the local coordinate system
(LCS).

• When the TransmitArray or ReceiveArray properties are objects from the “Phased Array
System Toolbox” software, the AoD and AoA subplots also show the directivity pattern of the
arrays.

showProfile(rtchan,'ArrayPattern',false) optionally turns off the directivity pattern in the
AoD and AoA subplots. This option applies only when the TransmitArray or ReceiveArray
property in the comm.RayTracingChannel System object are objects from the “Phased Array
System Toolbox” software.

Examples

Show Temporal and Spatial Profiles of Ray-Tracing Channel

Perform ray-tracing between two sites in Chicago. Build a multipath channel model using the ray
tracing result, and show the temporal and spatial profiles of the channel.

Launch Site Viewer with buildings in Chicago. For more information about the osm file, see [1] on
page 4-86.

viewer = siteviewer("Buildings","chicago.osm");

Create a transmitter site, a receiver site, and a SBR ray tracing propagation model for up to five
reflections.

tx = txsite('Latitude',41.8800, ...
    'Longitude',-87.6295, ...
    "AntennaAngle",30,"AntennaHeight",10,...
    "TransmitterFrequency",28e9);
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rx = rxsite('Latitude',41.881352, ...
    'Longitude',-87.629771, ...
    'AntennaHeight',30);
pm = propagationModel("raytracing", ...
    "Method","sbr", ...
    "MaxNumReflections",5);

Show obstructed line of sight.

los(tx,rx)

Show reflected propagation paths using ray tracing.

raytrace(tx,rx,pm)
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Perform ray tracing to find rays between the transmitter and receiver sites for the specified SBR
propagation model. Create a channel model using transmitter site, receiver site, and calculated rays
between the sites. Show temporal and spatial profiles of the channel.

rays = raytrace(tx,rx,pm);
rtchan = comm.RayTracingChannel(rays{1},tx,rx);
showProfile(rtchan);

 showProfile
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Appendix

[1] The osm file is downloaded from https://www.openstreetmap.org, which provides access to crowd-
sourced map data all over the world. The data is licensed under the Open Data Commons Open
Database License (ODbL), https://opendatacommons.org/licenses/odbl/.

Input Arguments
rtchan — Ray-tracing channel
comm.RayTracingChannel System object

Ray-tracing channel, specified as a comm.RayTracingChannel System object.

Version History
Introduced in R2020b

See Also
Objects
comm.Ray | comm.RayTracingChannel

Functions
info
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hide
Package: comm

Hide scope window

Syntax
hide(scope)

Description
hide(scope) hides the window of the System object scope.

Examples

Hide and Show Scope

Create a comm.ConstellationDiagram object.

scope = comm.ConstellationDiagram;

Hide the constellation diagram scope window.

if(isVisible(scope))
    hide(scope)
end

Show the constellation diagram scope window.

if(~isVisible(scope))
    show(scope)
end

Hide the constellation diagram scope window again.

if(isVisible(scope))
    hide(scope)
end

Hide and Show Constellation Diagram

Generate a 16-QAM reference constellation and a signal to display.

M = 16;
xRef = (0:M-1)';
refConst = qammod(xRef,M);
signal = randi([0 M-1],1000,1);
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Create a constellation diagram System object™, specifying the constellation reference points and
axes limits using name-value pairs.

scope = comm.ConstellationDiagram('ReferenceConstellation',refConst, ...
    'XLimits',[-4 4],'YLimits',[-4 4]);

Modulate the random data signal using QAM. Add Gaussian white noise to the QAM symbols. Display
the QAM symbols and noisy symbols with the constellation diagram object.

sym = qammod(signal,M);
rcv = awgn(sym,20,'measured');
scope([sym rcv]);

Hide the constellation diagram scope window.
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if(isVisible(scope))
    hide(scope)
end

Show the constellation diagram scope window.

if(~isVisible(scope))
    show(scope)
end

Clear the workspace variables.

clear scope sym rcv M refConst signal xRef 
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Input Arguments
scope — Scope System object
scope System object

Scope System object, specified as a comm.ConstellationDiagram System object.
Example: scope = comm.ConstellationDiagram;

Version History
Introduced in R2013a

See Also
Functions
isVisible | show

Objects
comm.ConstellationDiagram
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isVisible
Package: comm

Determine visibility of scope window

Syntax
visibility = isVisible(scope)

Description
visibility = isVisible(scope) returns a logical to verify in the System object scope is open.
visibility is 1 if the scope window is open and 0 otherwise.

Examples

Hide and Show Scope

Create a comm.ConstellationDiagram object.

scope = comm.ConstellationDiagram;

Hide the constellation diagram scope window.

if(isVisible(scope))
    hide(scope)
end

Show the constellation diagram scope window.

if(~isVisible(scope))
    show(scope)
end

Hide the constellation diagram scope window again.

if(isVisible(scope))
    hide(scope)
end

Hide and Show Constellation Diagram

Generate a 16-QAM reference constellation and a signal to display.

M = 16;
xRef = (0:M-1)';
refConst = qammod(xRef,M);
signal = randi([0 M-1],1000,1);
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Create a constellation diagram System object™, specifying the constellation reference points and
axes limits using name-value pairs.

scope = comm.ConstellationDiagram('ReferenceConstellation',refConst, ...
    'XLimits',[-4 4],'YLimits',[-4 4]);

Modulate the random data signal using QAM. Add Gaussian white noise to the QAM symbols. Display
the QAM symbols and noisy symbols with the constellation diagram object.

sym = qammod(signal,M);
rcv = awgn(sym,20,'measured');
scope([sym rcv]);

Hide the constellation diagram scope window.
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if(isVisible(scope))
    hide(scope)
end

Show the constellation diagram scope window.

if(~isVisible(scope))
    show(scope)
end

Clear the workspace variables.

clear scope sym rcv M refConst signal xRef 
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Input Arguments
scope — Scope System object
scope System object

Scope System object, specified as a comm.ConstellationDiagram or comm.EyeDiagram System
object.
Example: scope = comm.ConstellationDiagram;

Version History
Introduced in R2013a

See Also
Functions
show | hide

Objects
comm.ConstellationDiagram | comm.EyeDiagram
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show
Package: comm

Show scope window

Syntax
show(scope)

Description
show(scope) shows the window of the System object scope.

Examples

Hide and Show Scope

Create a comm.ConstellationDiagram object.

scope = comm.ConstellationDiagram;

Hide the constellation diagram scope window.

if(isVisible(scope))
    hide(scope)
end

Show the constellation diagram scope window.

if(~isVisible(scope))
    show(scope)
end

Hide the constellation diagram scope window again.

if(isVisible(scope))
    hide(scope)
end

Hide and Show Constellation Diagram

Generate a 16-QAM reference constellation and a signal to display.

M = 16;
xRef = (0:M-1)';
refConst = qammod(xRef,M);
signal = randi([0 M-1],1000,1);

 show

4-95



Create a constellation diagram System object™, specifying the constellation reference points and
axes limits using name-value pairs.

scope = comm.ConstellationDiagram('ReferenceConstellation',refConst, ...
    'XLimits',[-4 4],'YLimits',[-4 4]);

Modulate the random data signal using QAM. Add Gaussian white noise to the QAM symbols. Display
the QAM symbols and noisy symbols with the constellation diagram object.

sym = qammod(signal,M);
rcv = awgn(sym,20,'measured');
scope([sym rcv]);

Hide the constellation diagram scope window.
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if(isVisible(scope))
    hide(scope)
end

Show the constellation diagram scope window.

if(~isVisible(scope))
    show(scope)
end

Clear the workspace variables.

clear scope sym rcv M refConst signal xRef 
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Input Arguments
scope — Scope System object
scope System object

Scope System object, specified as a comm.ConstellationDiagram System object.
Example: scope = comm.ConstellationDiagram;

Version History
Introduced in R2013a

See Also
Functions
hide | isVisible

Objects
comm.ConstellationDiagram
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info
System object: comm.WINNER2Channel
Package: comm

Display information about WINNER2Channel object

Note Download Required: To use , first download the WINNER II Channel Model for
Communications Toolbox add-on.

Syntax
s = info(obj)

Description
s = info(obj) returns a structure containing information about the Winner2Channel System
object characteristics. The information structure contains:

• Numlinks - Number of links in the system
• NumBSElements - Number of transmit antennas at the BS for each link
• NumMSElements - Number of receive antennas at the MS for each link
• NumPaths - Number of delay paths for each link
• SampleRate - Sample rate for each link
• ChannelFilterDelay - Channel filter delay per link, measured in samples
• NumSamplesProcessed - Number of samples the channel has processed since the last reset

Version History
Introduced in R2016b
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info
Package: comm

Provide dimensioning information for OFDM modulator

Syntax
infostruct = info(hMod)

Description
infostruct = info(hMod) returns the input, pilot, and output data dimensions for the specified
OFDM modulator System object.

Examples

Determine OFDM Modulator Data Dimensions

Get the OFDM modulator data dimensions by using the info object function.

Construct an OFDM modulator System object™ with user-specified pilot indices, an inserted DC null,
and specify two transmit antennas.

hMod = comm.OFDMModulator('NumGuardBandCarriers',[4;3], ...
    'PilotInputPort',true, ...
    'PilotCarrierIndices',cat(3,[12; 26; 40; 54], ...
    [11; 25; 39; 53]), ...
    'InsertDCNull',true, ...
    'NumTransmitAntennas',2);

Use the info object function to get the modulator input data, pilot input data, and output data sizes.

info(hMod)

ans = struct with fields:
     DataInputSize: [48 1 2]
    PilotInputSize: [4 1 2]
        OutputSize: [80 2]

Input Arguments
hMod — OFDM modulator
System object

OFDM modulator, specified as a comm.OFDMModulator System object.
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Output Arguments
infostruct — Dimensions of structure for OFDM modulator
struct

Dimensions of structure for OFDM modulator, returned as a structure containing these fields.

DataInputSize — Dimensions of input data
3-D array

Dimensions of input data, returned as a 3-D array of numeric values. The dimensions of this field are
Ndata-by-Nsym-by-Nt, where Ndata is the number of data subcarriers such that Ndata = NFFT − NleftG −
NrightG − NDCNull − Npilot − NcustNull.

For variable definitions, see Variable Definitions.

PilotInputSize — Dimensions of the pilot input data
3-D array

Dimensions of the pilot input array, returned as a 3-D array of numeric values. The output dimensions
of this field are Npilot-by-Nsym-by-Nt.

OutputSize — Dimensions of modulator output data
3-D array

Dimensions of the modulator output data, returned as a 3-D array of numeric values. The dimensions
of this field are ((NFFT + NCP)×Nsym)-by-Nt.

For variable definitions, see Variable Definitions.

Data Types: struct

More About
List of Variables

The variables mentioned in this table are defined in this table:

Variable Definitions

Variable Description
NFFT Number of subcarriers
NleftG Number of subcarriers in the left guard band
NrightG Number of subcarriers in the right guard band
NDCNull Number of subcarriers in the DC null (either 0 or 1)
Npilot Number of pilot subcarriers
NcustNull Number of subcarriers used for custom nulls (applies only when the

PilotCarrierIndices property of input hMod is a 3-D array)
Nt Number of transmit antennas
NCP Length of cyclic prefix.
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Version History
Introduced in R2014a

See Also
Functions
ofdmmod

Objects
comm.OFDMModulator
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info
Package: comm

Return characteristic information about channel filter

Syntax
infostruct = info(chanFilt)

Description
infostruct = info(chanFilt) returns a structure containing characteristic information about
the comm.ChannelFilter System object.

Examples

Determine Channel Filter Structure Dimensions

In a distributed MIMO system, send the same signal from two geographically separate transmitters
(Tx) and combine the received signals at one single receiver (Rx) to explore spatial diversity. The two
Txs are not co-located and they experience different multipath (path delays) to the Rx. Specify the
path delays respectively.

delay1 = [0 1.5 2.3 5.2 6.6];
delay2 = [0 3.7 6.2];

Configure one channel filter object per Tx.

chanFilt1 = comm.ChannelFilter('PathDelays', delay1);
chanFilt2 = comm.ChannelFilter('PathDelays', delay2);

Use the info object function to get the ChannelFilterDelay and ChannelFilterCoefficients.

info(chanFilt1)

ans = struct with fields:
           ChannelFilterDelay: 6
    ChannelFilterCoefficients: [5x21 double]

info(chanFilt2)

ans = struct with fields:
           ChannelFilterDelay: 4
    ChannelFilterCoefficients: [3x19 double]
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Input Arguments
chanFilt — Channel filter
System object

Channel filter, specified as a comm.ChannelFilter System object.

Output Arguments
infostruct — Characteristic information about channel filter
struct

Characteristic information about channel filter, returned as a structure containing these fields:

ChannelFilterDelay — Channel filter delay
positive real scalar

Channel filter delay, returned as a positive real scalar.
Data Types: double

ChannelFilterCoefficients — Channel filter coefficients
vector | matrix

Channel filter coefficients, returned as a vector or a matrix.
Data Types: double

Version History
Introduced in R2020b

See Also
Objects
comm.ChannelFilter
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showResourceMapping
Package: comm

Show the subcarrier mapping of the OFDM symbols created by the OFDM modulator System object

Syntax
showResourceMapping(hMod)
showResourceMapping(hMod,ci)

Description
showResourceMapping(hMod) shows a visualization of the subcarrier mapping for the OFDM
symbols created by the OFDM modulator System object.

showResourceMapping(hMod,ci) uses the values in input ci to number the subcarrier indices
that the function displays. The subcarrier indices are numbered from 1 to ciNFFT, where NFFT is the
number of FFT points.

Examples

Create and Modify OFDM Modulator

Create and display an OFDM modulator System object™ with default property values.

hMod = comm.OFDMModulator

hMod = 
  comm.OFDMModulator with properties:

               FFTLength: 64
    NumGuardBandCarriers: [2x1 double]
            InsertDCNull: false
          PilotInputPort: false
      CyclicPrefixLength: 16
               Windowing: false
              NumSymbols: 1
     NumTransmitAntennas: 1

Modify the number of subcarriers and symbols.

hMod.FFTLength = 128;
hMod.NumSymbols = 2;

Verify that the number of subcarriers and the number of symbols changed.

disp(hMod)

  comm.OFDMModulator with properties:

 showResourceMapping
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               FFTLength: 128
    NumGuardBandCarriers: [2x1 double]
            InsertDCNull: false
          PilotInputPort: false
      CyclicPrefixLength: 16
               Windowing: false
              NumSymbols: 2
     NumTransmitAntennas: 1

Use the showResourceMapping object function to show the mapping of data, pilot, and null
subcarriers in the time-frequency space.

showResourceMapping(hMod)

Input Arguments
hMod — System object to visualize
comm.OFDMModulator System object

OFDM modulator, specified as a comm.OFDMModulator System object.

ci — Subcarrier indices to visualize
[1,…,NFFT] (default) | two-element row vector of integers

Subcarrier indices to visualize, specified as a two-element row vector of integers. ci should satisfy
diff(ci) = NFFT − 1.
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Version History
Introduced in R2014a

See Also
Functions
ofdmmod

Objects
comm.OFDMModulator
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info
Package: comm

Characteristic information about carrier synchronizer

Syntax
infostruct = info(carrSynch)

Description
infostruct = info(carrSynch) returns a structure containing characteristic information for the
CarrierSynchronizer System object.

Examples

Determine Carrier Synchronizer Loop Parameters

Create a carrier synchronizer object.

csync = comm.CarrierSynchronizer;

Determine the normalized pull-in range, the maximum frequency lock delay, and the maximum phase
lock delay by using the info method.

syncInfo = info(csync)

syncInfo = struct with fields:
    NormalizedPullInRange: 0.0628
    MaxFrequencyLockDelay: 1.5787e+04
        MaxPhaseLockDelay: 130

The normalized pull-in range is 0.0628 rad/sec. Convert the pull-in range to Hz. This represents the
maximum normalized frequency offset that can be corrected by the carrier synchronizer.

foffsetmax = syncInfo.NormalizedPullInRange/(2*pi)

foffsetmax = 0.0100

The time to acquire a frequency lock is 15787 s, and the time to acquire a phase lock is 130 s.

The overall acquisition time, Tlock, is well approximated by the sum of the frequency and phase lock
terms.

Tlock = syncInfo.MaxFrequencyLockDelay + syncInfo.MaxPhaseLockDelay

Tlock = 1.5917e+04
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Input Arguments
carrSynch — System object to get information from
System object

System object to get information from.

Output Arguments
infostruct — Structure containing object information
struct

Structure containing these fields with information about the System object.

NormalizedPullInRange — Normalized pull in range
scalar

Normalized pull in range in radians, returned as a scalar. NormalizedPullInRange is the largest
frequency offset (rad), normalized by the loop bandwidth, for which the synchronizer can acquire
lock.

MaxFrequencyLockDelay — Maximum frequency lock delay
positive integer

Maximum frequency lock delay, returned as a positive integer. MaxFrequencyLockDelay is the
number of samples required for the synchronizer to acquire frequency lock.

MaxPhaseLockDelay — Maximum phase lock delay
positive integer

Maximum phase lock delay, returned as a positive integer. MaxPhaseLockDelay is the number of
samples required for the synchronizer to acquire phase lock.

Data Types: struct

Version History
Introduced in R2015a

See Also
Objects
comm.CarrierSynchronizer

 info

4-109



info
Package: comm

Characteristic information about the equalizer object

Syntax
infostruct = info(obj)

Description
infostruct = info(obj) returns a structure containing characteristic information for the System
object.

Examples

Display Decision Feedback Equalizer Latency

Display latency value for a decision feedback equalizer object.

Create a decision feedback equalizer object.

dfe = comm.DecisionFeedbackEqualizer;

Display latency value for a decision feedback equalizer object by using the info object function.

info(dfe)

ans = struct with fields:
    Latency: 2

Input Arguments
obj — System object to get information from
System object

System object to get information from.

Output Arguments
infostruct — Structure containing object information
structure

Structure containing fields with information about the System object.

Latency — Equalizer latency
scalar
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Equalizer latency, returned as a scalar.

Version History
Introduced in R2012a

See Also
Objects
comm.LinearEqualizer | comm.DecisionFeedbackEqualizer
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maxstep
Package: comm

Maximum step size for LMS equalizer convergence

Syntax
mumax = maxstep(eq,x)

Description
mumax = maxstep(eq,x) predicts a bound on the step size to provide convergence of the mean
values of the coefficients of the equalizer defined by the eq System object. The set input signal
sequences in x are assumed to have zero mean or nearly so.

Examples

Decision Feedback Equalize BPSK-Modulated Signal

Create a BPSK modulator and an equalizer System object™, specifying a decision feedback LMS
equalizer having eight forward taps, five feedback taps, and a step size of 0.03.

bpsk = comm.BPSKModulator;
eqdfe_lms = comm.DecisionFeedbackEqualizer('Algorithm','LMS', ...
    'NumForwardTaps',8,'NumFeedbackTaps',5,'StepSize',0.03);

Change the reference tap index of the equalizer.

eqdfe_lms.ReferenceTap = 4;

Build a set of test data. Receive the data by convolving the signal.

x = bpsk(randi([0 1],1000,1));
rxsig = conv(x,[1 0.8 0.3]);

Use maxstep to find the maximum permitted step size.

mxStep = maxstep(eqdfe_lms,rxsig)

mxStep = 0.1028

Equalize the received signal. Use the first 200 symbols as the training sequence.

y = eqdfe_lms(rxsig,x(1:200));

Input Arguments
eq — Equalizer object
System object
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Equalizer object, specified as a comm.LinearEqualizer or comm.DecisionFeedbackFEqualizer
System object.

x — Input signal
column vector

Input signal, specified as a column vector. The input signal vector length must be equal to an integer
multiple of the InputSamplesPerSymbol property. For more information, see “Symbol Tap Spacing” on
page 3-403.
Data Types: double
Complex Number Support: Yes

Output Arguments
mumax — Prediction of maximum step size for LMS equalizer convergence
scalar

Prediction of maximum step size for LMS equalizer convergence, returned as a scalar.

Version History
Introduced in R2019a

See Also
Objects
comm.LinearEqualizer | comm.DecisionFeedbackEqualizer
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mmseweights
Package: comm

Linear equalizer MMSE tap weights

Syntax
weights = mmseweights(eq,chTaps,EbN0)

Description
weights = mmseweights(eq,chTaps,EbN0) calculated minimum mean squared error (MMSE)
solution for the linear equalizer, eq System object given the channel delay taps, chTaps, and signal
to noise ratio, EbN0.

Examples

Calculate MMSE Weights for Linear Equalizer

Calculate the minimum mean squared error (MMSE) solution and use the weights for the linear
equalizer taps weights.

Initialize simulation variables.

M = 4; % QPSK
numSymbols = 10000;
numTrainingSymbols = 1000;
chtaps = [1 0.5*exp(1i*pi/6) 0.1*exp(-1i*pi/8)];
EbN0 = 20;

Generate QPSK modulated symbols. Apply delayed multipath channel filtering and AWGN
impairments to the symbols.

data = randi([0 M-1], numSymbols, 1);
tx = pskmod(data, M, pi/4);
rx = awgn(filter(chtaps,1,tx),25,'measured');

Create a linear equalizer System object configured to use CMA algorithm and input the taps weights.
Calculate the MMSE weights. Set the initial tap weights to the calculated MMSE weights. Equalize
the impaired symbols.

eq = comm.LinearEqualizer('Algorithm','CMA','AdaptWeights',false,'InitialWeightsSource','Property')

eq = 
  comm.LinearEqualizer with properties:

                Algorithm: 'CMA'
                  NumTaps: 5
                 StepSize: 0.0100
            Constellation: [0.7071 + 0.7071i -0.7071 + 0.7071i ... ]
    InputSamplesPerSymbol: 1
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       AdaptWeightsSource: 'Property'
             AdaptWeights: false
     InitialWeightsSource: 'Property'
           InitialWeights: [5x1 double]
       WeightUpdatePeriod: 1

wgts = mmseweights(eq,chtaps,EbN0)

wgts = 5×1 complex

   0.0005 - 0.0068i
   0.0103 + 0.0117i
   0.9694 - 0.0019i
  -0.3987 + 0.2186i
   0.0389 - 0.1756i

eq.InitialWeights = wgts;

[y,err,weights] = eq(rx);

Plot constellation of impaired and equalized symbols.

constell = comm.ConstellationDiagram('NumInputPorts',2);
constell(rx,y)
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Plot the equalizer error signal and compute the error vector magnitude of the equalized symbols.

plot(abs(err))
grid on; xlabel('Symbols'); ylabel('|e|')
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errevm = comm.EVM;
evm = errevm(tx,y)

evm = 139.1636

Plot equalizer tap weights.

subplot(3,1,1); stem(real(weights)); ylabel('real(weights)'); xlabel('Tap'); grid on; axis([1 8 -0.5 1])
line([eq.NumTaps+0.5 eq.NumTaps+0.5], [-0.5 1], 'Color', 'r', 'LineWidth', 1)
title('Equalizer Tap Weights')
subplot(3,1,2); stem(imag(weights)); ylabel('imag(weights)'); xlabel('Tap'); grid on; axis([1 8 -0.5 1])
line([eq.NumTaps+0.5 eq.NumTaps+0.5], [-0.5 1], 'Color', 'r', 'LineWidth', 1)
subplot(3,1,3); stem(abs(weights)); ylabel('abs(weights)'); xlabel('Tap'); grid on; axis([1 8 -0.5 1])
line([eq.NumTaps+0.5 eq.NumTaps+0.5], [-0.5 1], 'Color', 'r', 'LineWidth', 1)
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Input Arguments
eq — Equalizer object
System object

Equalizer object, specified as a comm.LinearEqualizer System object.

chTaps — Channel delay taps
vector

Channel delay taps, specified as a vector.
Data Types: double
Complex Number Support: Yes

EbN0 — Signal to noise ratio
scalar

Signal to noise ratio of the channel, specified as a scalar.
Data Types: double
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Output Arguments
weights — Weights for linear equalizer
vector

Weights for linear equalizer, returned as a vector.

Version History
Introduced in R2019a

See Also
Objects
comm.LinearEqualizer
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visualize
Package: comm

Visualize spectrum mask of phase noise

Syntax
visualize(phznoise)

Description
visualize(phznoise) displays the magnitude response of the filter defined by the
comm.PhaseNoise System object. The function uses the FVTool function to display the magnitude
response.

Examples

Visualize Spectrum Mask of Phase Noise

Create a phase noise object and display the spectral mask.

pnoise = comm.PhaseNoise( ...
    Level=[-40 -70], ...
    FrequencyOffset=[100 200], ...
    SampleRate=1000);
visualize(pnoise)
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Input Arguments
phznoise — Phase noise
comm.PhaseNoise System object

Phase noise that defines the spectrum mask that is displayed, specified as a comm.PhaseNoise
System object.

Version History
Introduced in R2012a

See Also
Tools
FVTool

Objects
comm.PhaseNoise
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addCustomTerrain
Add custom terrain data

Syntax
addCustomTerrain(terrainName,files)
addCustomTerrain( ___ ,Name,Value)

Description
addCustomTerrain(terrainName,files) adds the terrain data specified with a user-defined
terrainName and files. You can use this function to add custom terrain data in Site Viewer and
other RF propagation functions. You can access the custom terrain data in the current and future
sessions of MATLAB until you call removeCustomTerrain.

Note In Antenna Toolbox, addCustomTerrain function converts terrain elevation data from
orthometric to ellipsoidal for visualization and when performing Euclidean distance or angle
calculations between locations for example for free space path loss.

addCustomTerrain( ___ ,Name,Value) adds custom terrain data with additional options specified
by one or more name-value pairs.

Examples

Site Viewer Maps Using Custom Terrain

Add terrain for a region around Boulder, CO. The DTED file was downloaded from the "SRTM Void
Filled" data set available from the U.S. Geological Survey.

dtedfile = "n39_w106_3arc_v2.dt1";
attribution = "SRTM 3 arc-second resolution. Data available " + ...
   "from the U.S. Geological Survey.";
addCustomTerrain("southboulder",dtedfile,"Attribution",attribution)

Use the custom terrain name in Site Viewer.

viewer = siteviewer("Terrain","southboulder");
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Create a site with the terrain region.

mtzion = txsite("Name","Mount Zion", ...
   "Latitude",39.74356, ...
   "Longitude",-105.24193, ...
   "AntennaHeight", 30);
show(mtzion)
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Create a coverage map of the area within 20 km of the transmitter site.

coverage(mtzion, ...
   "MaxRange",20000, ...
   "SignalStrengths",-100:-5)
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Remove the custom terrain.

close(viewer)
removeCustomTerrain("southboulder")

Input Arguments
terrainName — User-defined identifier for terrain data
string scalar | character vector

User-defined identifier for terrain data, specified as a string scalar or a character vector.
Data Types: char | string

files — Names of DTED files to read
string scalar | character vector | string vector | cell array of character vectors

Names of DTED files to read, specified as a string scalar, a character vector, a string vector, or a cell
array of character vectors.

• To add custom terrain from one DTED file, specify files as a string scalar or a character vector.
• To add custom terrain from multiple DTED files, specify files as a string vector or a cell array of

character vectors. If you specify multiple files that do not cover a complete rectangular
geographic region, you must set the FillMissing name-value argument to true.

The form of each element of files depends on the location of the file.
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• If the file is in your current folder or in a folder on the MATLAB path, then specify the name of the
file, such as "myFile.dt1".

• If the file is not in the current folder or in a folder on the MATLAB path, then specify the full or
relative path name, such as "C:\myfolder\myFile.dt1" or "dataDir\myFile.dt1".

Data Types: char | string | cell

Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'FillMissing',true

Attribution — Attribution of custom terrain data
character vector | string scalar

Attribution of custom terrain data, specified as a character vector or a string scalar. The attribution is
displayed on the Site Viewer map. By default, the value is empty.
Data Types: char | string

FillMissing — Fill data of missing files with value 0
false (default) | true

Fill data of missing files with value 0, specified as true or false. Missing file values are required to
complete a rectangular geographic region with the input files.
Data Types: logical

WriteLocation — Name of folder to write extracted terrain files to
character vector | string scalar

Name of folder to write extracted terrain files to, specified as a character vector or a string scalar.
The folder must exist and have write permissions. By default, addCustomTerrain writes extracted
terrain files to a temporary folder that it generates using the tempname function.
Data Types: char | string

Tips
• You can find and download DTED files by using EarthExplorer, a data portal provided by the US

Geological Survey (USGS). From the list of data sets, search for DTED files by selecting Digital
Elevation, SRTM, and then SRTM 1 Arc-Second Global and SRTM Void Filled.

Version History
Introduced in R2019b

See Also
removeCustomTerrain | siteviewer
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angle
Angle between sites

Syntax
[az,el] = angle(site1,site2)
[az,el] = angle(site1,site2,path)
[az,el] = angle( ___ ,Name,Value)

Description
[az,el] = angle(site1,site2) returns the azimuth and elevation angles between site1 and
site2.

[az,el] = angle(site1,site2,path) returns the angles using a specified path type, either a
Euclidean or great circle path.

[az,el] = angle( ___ ,Name,Value) returns the azimuth and elevation angles with additional
options specified by name-value arguments.

Examples

Angle Between Sites

Create transmitter and receiver sites.

tx = txsite('Name','MathWorks','Latitude',42.3001,'Longitude',-71.3504);
rx = rxsite('Name','Fenway Park','Latitude',42.3467,'Longitude',-71.0972);

Get the azimuth and elevation angles between the sites.

[az,el] = angle(tx,rx)

az = 14.0142

el = -0.2816

Get the azimuth angle between sites in degrees clockwise from north.

azFromEast = angle(tx,rx); % Unit: degrees counter-clockwise from east
azFromNorth = -azFromEast + 90 % Convert angle to clockwise from north

azFromNorth = 75.9858

Angle Between Sites When Path is Great Circle

Create transmitter and receiver sites.
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tx = txsite('Name','MathWorks','Latitude',42.3001,'Longitude',-71.3504);
rx = rxsite('Name','Fenway Park','Latitude',42.3467,'Longitude',-71.0972);

Get the azimuth and elevation angles between the sites.

[az,el] = angle(tx,rx,'greatcircle')

az = 14.0635

el = 0

Input Arguments
site1,site2 — Transmitter or receiver site
txsite object | rxsite object

Transmitter or receiver site, specified as a txsite or rxsite object. You can use array inputs to
specify multiple sites.

path — Measurement path type
'euclidean' | 'greatcircle'

Measurement path type, specified as one of the following:

• 'euclidean' — Use the shortest path through space connecting the antenna center positions of
the sites.

• 'greatcircle' — Use the shortest path on the surface of the earth connecting the latitude and
longitude locations of the sites. This path uses a spherical Earth model.

Data Types: char

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Map','siteviewer1'

Map — Map for visualization or surface data
siteviewer object | triangulation object | string scalar | character vector

Map for visualization or surface data, specified as a siteviewer object, a triangulation object, a
string scalar, or a character vector. Valid and default values depend on the coordinate system.
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Coordinate System Valid map values Default map value
"geographic" • A siteviewer objecta.

• A terrain name, if the
function is called with an
output argument. Valid
terrain names are "none",
"gmted2010", or the name
of the custom terrain data
added using
addCustomTerrain.

• The current siteviewer
object or a new siteviewer
object if none are open.

• "gmted2010", if the
function is called with an
output.

"cartesian" • "none".
• A siteviewer object.
• The name of an STL file.
• A triangulation object.

• "none".

a Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not
imply endorsement by MathWorks.

Data Types: char | string

Output Arguments
az — Azimuth angle between sites
M-by-N arrays

Azimuth angle between site1 and site2, returned as M-by-N arrays in degrees. M is the number of
sites in site1 and N is the number of sites in site2. The azimuth angle is expressed in degrees
counter-clockwise from the east (for geographic sites), or from the global x-axis around the global z-
axis (for Cartesian sites), ranging from -180 to 180 degrees.

el — Elevation angle between sites
M-by-N arrays

Elevation angle between site1 and site2, returned as M-by-N arrays in degrees. M is the number
of sites in site2 and N is the number of sites in site1. The elevation angle is expressed in degrees
from the horizontal (or X-Y) plane, ranging from -90 to 90 degrees.

When you specify the path type as 'greatcircle', the elevation angle is always zero.

Version History
Introduced in R2019b

See Also
distance
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clearMap
Clear plots

Syntax
clearMap(viewer)

Description
clearMap(viewer) removes all plots from the specified Site Viewer.

Examples

View Transmitter Site On Site Viewer

1 Launch a Site Viewer with streets basemap.

viewer = siteviewer("Basemap","streets");

2 View a transmitter site on this map.

tx = txsite;
show(tx)
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3 Clear the map.

t = timer('TimerFcn',@(~,~)disp('Fired.'),'StartDelay',3);
start(t)
wait(t)
clearMap(viewer)

Input Arguments
viewer — Map viewer for visualizing transmitter or receiver sites
siteviewer object
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Map viewer for visualizing transmitter or receiver sites, specified as a siteviewer object.1

Version History
Introduced in R2019b

See Also
close | siteviewer

1 Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not
imply endorsement by MathWorks.
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close
Close Site Viewer

Syntax
close(viewer)

Description
close(viewer) closes the Site Viewer window and deletes the handle.

Examples

Compare Coverage Maps

Launch two Site Viewer windows. One Site Viewer window uses the terrain model and the other
window does not use the terrain model.

viewer1 = siteviewer("Terrain","gmted2010","Name","Site Viewer (Using Terrain)");
viewer2 = siteviewer("Terrain","none","Name","Site Viewer (No Terrain)");

Create a transmitter site.

tx = txsite;

Generate a coverage map on each window. The map with terrain uses the Longley-Rice propagation
model by default.

coverage(tx,"Map",viewer1)
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The map without terrain uses the free-space model by default.

coverage(tx,"Map",viewer2)
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Input Arguments
viewer — Map viewer for visualizing transmitter or receiver sites
siteviewer object

Map viewer for visualizing transmitter or receiver sites, specified as a siteviewer object.2

Version History
Introduced in R2019b

See Also
clearMap | siteviewer

2 Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not
imply endorsement by MathWorks.
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contour
Display contour map of RF propagation data in Site Viewer

Syntax
contour(pd)
contour( ___ ,Name,Value)

Description
contour(pd) creates a filled contour plot in the current Site Viewer. Contours are colored according
to data values of corresponding locations.

contour( ___ ,Name,Value) creates a filled contour map with additional options specified by
name-value pair arguments.

Examples

Capacity Map Using SINR Data

Define names and locations of sites around Boston.

names = ["Fenway Park","Faneuil Hall","Bunker Hill Monument"];
lats = [42.3467,42.3598,42.3763];
lons = [-71.0972,-71.0545,-71.0611];

Create an array of transmitter sites.

txs = txsite("Name",names,...
       "Latitude",lats,...
       "Longitude",lons, ...
       "TransmitterFrequency",2.5e9);
show(txs)
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Create a signal-to-interference-plus-noise-ratio (SINR) map, where signal source for each location is
selected as the transmitter site with the strongest signal.

sv1 = siteviewer("Name","SINR map");
sinr(txs,"MaxRange",5000)
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Return SINR propagation data.

pd = sinr(txs,"MaxRange",5000);
[sinrDb,lats,lons] = getDataVariable(pd,"SINR"); 

Compute capacity using the Shannon-Hartley theorem.

bw = 1e6; % Bandwidth is 1 MHz
sinrRatio = 10.^(sinrDb./10); % Convert from dB to power ratio
capacity = bw*log2(1+sinrRatio)/1e6; % Unit: Mbps

Create new propagation data for the capacity map and display the contour plot.

pdCapacity = propagationData(lats,lons,"Capacity",capacity);
sv2 = siteviewer("Name","Capacity map");
legendTitle = "Capacity" + newline + "(Mbps)";
contour(pdCapacity,"LegendTitle",legendTitle);
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Input Arguments
pd — Propagation data
propagationData object (default)

Propagation data, specified as a propagationData object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Type','power'

DataVariableName — Data variable to contour map
DataVariableName (default) | character vector | string scalar

Data variable to contour map, specified as the comma-separated pair consisting of
'DataVariableName' and a character vector or a string scalar corresponding to a variable name in
the data table used to create the propagation data container object pd.
Data Types: char | string

Type — Type of value to plot
'custom' (default) | 'power' | 'efield' | 'sinr' | 'pathloss'
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Type of value to plot, specified as the comma-separated pair consisting of 'Type' and one of the
values in the 'Type' column:

Type ColorLimits LegendTitle
'custom' [min(Data) max(Data)] ''
'power' [-120 -5] 'Power (dBm)'
'efield' [20 135] 'E-field (dBuV/m)'
'sinr' [-5 20] 'SINR (dB)'
'pathloss' [45 160] 'Path loss (dB)'

The default value for Levels is a linearly spaced vector bounded by ColorLimits.
Data Types: char | string

Levels — Data value levels to plot
numeric vector

Data value levels to plot, specified as the comma-separated pair consisting of 'Levels' and numeric
vector. Each level is displayed as a different colored, filled contour on the map. The colors are
selected using Colors if specified, or else Colormap and ColorLimits. Data points with values
below the minimum level are not included in the plot.

The default value for Levels is a linearly spaced vector bounded by ColorLimits.
Data Types: double

Colors — Colors of data points
M-by-3 array of RGB | array of strings | cell array of character vectors

Colors of the filled contours, specified as the comma-separated pair consisting of 'Colors' and an
M-by-3 array of RGB (red, blue, green) or an array of strings, or a cell array of character vectors.
Colors are assigned element-wise to values in Levels for coloring the corresponding points. Colors
cannot be used with Colormap and ColorLimits.
Data Types: double | char | string

Colormap — Color map for coloring points
'jet(256)' (default) | predefined colormap name | M-by-3 array of RGB triplets

Colormap for the coloring points, specified as the comma-separated pair consisting of 'Colormap'
and a predefined colormap name or an M-by-3 array of RGB (red, blue, green) triplets that define M
individual colors. Colormap cannot be used with Colors.
Data Types: double | char | string

ColorLimits — Color limits for color map
two-element vector

Color limits for the colormap, specified as the comma-separated pair consisting of 'ColorLimits'
and a two-element vector of the form [min max]. The color limits indicate the data level values that
map to the first and last colors in the colormap. ColorLimits cannot be used with Colors.
Data Types: double
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Transparency — Transparency of contour map
0.4 (default) | numeric scalar in the range of [0,1]

Transparency of the contour plot, specified as a numeric scalar in the range [0,1], where 0 is
completely transparent and 1 is completely opaque.
Data Types: double

ShowLegend — Show color legend on map
true (default) | false

Show color legend on map, specified as the comma-separated pair consisting of 'ShowLegend' and
true or false.
Data Types: logical

LegendTitle — Title of color legend
character vector | string scalar

Title of color legend, specified as the comma-separated pair consisting of 'LegendTitle' and a
character vector or a string scalar.
Data Types: string | char

Map — Map for surface data
siteviewer object

Map for surface data, specified as the comma-separated pair consisting of 'Map' and a siteviewer
object.3 The default value is the current Site Viewer or a new Site Viewer, if none is open.
Data Types: char | string

Version History
Introduced in R2020a

See Also
plot | interp | getDataVariable

3 Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not
imply endorsement by MathWorks.
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coverage
Display or compute coverage map

Syntax
coverage(txs)
coverage(txs,propmodel)
coverage(txs,rx)
coverage(txs,rx,propmodel)
coverage( ___ ,Name,Value, ___ )
pd = coverage(txs, ___ )

Description
coverage(txs) displays the coverage map for the specified transmitter site in the current Site
Viewer. Each colored contour of the map defines an area where the corresponding signal strength is
transmitted to the mobile receiver.

Note This function only supports antenna sites with CoordinateSystem property set to
"geographic".

coverage(txs,propmodel) displays the coverage map based on the specified propagation model.
The default propagation model is "longley-rice" when terrain is in use and "freespace" when
terrain is not used.

coverage(txs,rx) displays the coverage map based on the receiver site properties.

coverage(txs,rx,propmodel) displays the coverage map based on the receiver site properties
and specified propagation model.

coverage( ___ ,Name,Value, ___ ) displays the coverage map using additional options specified
by the Name,Value pairs.

pd = coverage(txs, ___ ) returns computed coverage data in the propagation data object, pd. No
plot is displayed and any graphical only name-value pairs are ignored.

Examples

Coverage Map of Transmitter

Create a transmitter site at MathWorks headquarters.

tx = txsite('Name','MathWorks', ...
        'Latitude', 42.3001, ...
        'Longitude', -71.3503);

Show the coverage map.
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coverage(tx)

Coverage Map Using Transmitter and Receiver

Create a transmitter site at MathWorks headquarters.

tx = txsite('Name','MathWorks', ...
        'Latitude', 42.3001, ...
        'Longitude', -71.3503);

Create a receiver site at Fenway Park with an antenna height of 1.2 m and system loss of 10 dB.

rx = rxsite('Name','Fenway Park', ...
       'Latitude',42.3467, ...
       'Longitude',-71.0972,'AntennaHeight',1.2,'SystemLoss',10);

Calculate the coverage area of the transmitter using a close-in propagation model.

coverage(tx,rx,'PropagationModel','closein')
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Coverage Map for Strong and Weak Signals

Define strong and weak signal strengths with corresponding colors.

strongSignal = -75;
strongSignalColor = "green";
weakSignal = -90;
weakSignalColor = "cyan";

Create a transmitter site and display the coverage map.

tx = txsite('Name','MathWorks', ...
    'Latitude',42.3001, ...
    'Longitude',-71.3503);
coverage(tx, ...
    'SignalStrengths',[strongSignal,weakSignal], ...
    'Colors', [strongSignalColor,weakSignalColor])
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Combined Coverage Map of Multiple Transmitters

Define the names and the locations of sites around Boston.

names = ["Fenway Park","Faneuil Hall","Bunker Hill Monument"];
lats = [42.3467,42.3598,42.3763];
lons = [-71.0972,-71.0545,-71.0611];

Create the transmitter site array.

txs = txsite('Name', names,...
       'Latitude',lats,...
       'Longitude',lons, ...
       'TransmitterFrequency',2.5e9);

Display the combined coverage map for multiple signal strengths, using close-in propagation model.

coverage(txs,'close-in','SignalStrengths',-100:5:-60)
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Coverage Map Using Longley-Rice and Ray Tracing Method

Launch Site Viewer using buildings in Chicago. For more information about the osm file, see [1] on
page 4-151.

viewer = siteviewer("Buildings","chicago.osm");
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Create a transmitter site on the building.

tx = txsite("Latitude",41.8800, ...
   "Longitude",-87.6295, ...
   "TransmitterFrequency",2.5e9);
show(tx)
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Coverage Map Using Longley-Rice Propagation Model

Create a coverage map of the city using the Longley-Rice propagation model.

coverage(tx,"SignalStrengths",-100:-5,"MaxRange",250,"Resolution",1)
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Longley-Rice models over-the-rooftops propagation along vertical slices and obstructions tend to
dominate the coverage region.

Coverage Map Using Ray Tracing Propagation Model and Image Method

Create a coverage map of the city by using a ray tracing propagation model that uses the image
method. Calculate line-of-sight and single-reflection propagation paths.

pmImage = propagationModel("raytracing","Method","image", ...
    "MaxNumReflections",1);
coverage(tx,pmImage,"SignalStrengths",-100:-5, ...
    "MaxRange",250,"Resolution",2)
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This coverage map shows new regions that are in service due to reflected propagation paths.

Coverage Map Using Ray Tracing Propagation Model and SBR Method

Create a coverage map of the city by using a ray tracing propagation model that uses the shooting
and bouncing rays (SBR) method, which is generally faster than the image method. Increase the
maximum number of path reflections to 2.

pmSBR = propagationModel("raytracing","Method","sbr", ...
    "MaxNumReflections",2);
coverage(tx,pmSBR,"SignalStrengths",-100:-5, ...
    "MaxRange",250,"Resolution",2)
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This coverage map shows new regions that are in service due to the additional reflected propagation
paths.

Appendix

[1] The osm file is downloaded from https://www.openstreetmap.org, which provides access to crowd-
sourced map data all over the world. The data is licensed under the Open Data Commons Open
Database License (ODbL), https://opendatacommons.org/licenses/odbl/.

Input Arguments
txs — Transmitter sites
txsite object | array of txsite objects

Transmitter site, specified as a txsite object. Use array inputs to specify multiple sites.

This function only supports plotting antenna sites when CoordinateSystem property is set to
"geographic".

rx — Receiver site
rxsite object

Receiver site, specified as a rxsite object.

This function only supports plotting antenna sites when CoordinateSystem property is set to
"geographic".
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propmodel — Propagation model to use for path loss calculations
"longley-rice" (default) | "freespace" | "close-in" | "rain" | "gas" | "fog" |
"raytracing" | propagation model created with propagationModel

Propagation model to use for the path loss calculations, specified as one of these options:

• "freespace" — Free space propagation model
• "rain" — Rain propagation model
• "gas" — Gas propagation model
• "fog" — Fog propagation model
• "close-in" — Close-in propagation model
• "longley-rice" — Longley-Rice propagation model
• "tirem" — TIREM™ propagation model
• "raytracing" — Ray tracing propagation model that uses the shooting and bouncing rays (SBR)

method. When you specify a ray tracing model as input, the function incorporates multipath
interference by using a phasor sum.

• A propagation model created with the propagationModel function

The default value depends on the coordinate system used by the input sites.

Coordinate System Default propagation model value
"geographic" • "longley-rice" when you use a terrain.

• "freespace" when you do not use a terrain.
"cartesian" • "freespace" when Map is set to none.

• "raytracing" when Map is set to the name
of an STL file or a triangulation object. The
default ray tracing model uses the shooting
and bouncing rays (SBR) method.

Terrain propagation models, including "longley-rice" and "tirem", are only supported for sites
with a CoordinateSystem value of "geographic".

You can also specify the propagation model by using the PropagationModel name-value pair
argument.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: "Type","power"

Type — Type of signal strength to compute
"power" (default) | "efield"

Type of signal strength to compute, specified as one of these options:
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• "power" — The signal strengths in SignalStrengths is in power units (dBm) of the signal at
the mobile receiver input.

• "efield"— The signal strength in SignalStrengths is in electric field strength units (dBμV/m)
of signal wave incident on the antenna.

Data Types: char

SignalStrengths — Signal strengths to display on coverage map
numeric vector

Signal strengths to display on coverage map, specified as a numeric vector.

Each strength uses different colored filled contour on the map. The default value is -100 dBm if Type
is "power" and 40 dBμV/m if Type is "efield".
Data Types: double

PropagationModel — Propagation model to use for path loss calculations
"freespace" | "close-in" | "rain" | "gas" | "fog" | "longley-rice" | "raytracing" |
propagation model created with propagationModel

Propagation model to use for the path loss calculations, specified as one of these options:

• "freespace" — Free space propagation model
• "rain" — Rain propagation model
• "gas" — Gas propagation model
• "fog" — Fog propagation model
• "close-in" — Close-in propagation model
• "longley-rice" — Longley-Rice propagation model
• "tirem" — TIREM propagation model
• "raytracing" — Ray tracing propagation model that uses the shooting and bouncing rays (SBR)

method. When you specify a ray tracing model as input, the function incorporates multipath
interference by using a phasor sum.

• A propagation model created with the propagationModel function

The default value depends on the coordinate system used by the input sites.

Coordinate System Default propagation model value
"geographic" • "longley-rice" when you use a terrain.

• "freespace" when you do not use a terrain.
"cartesian" • "freespace" when Map is set to none.

• "raytracing" when Map is set to the name
of an STL file or a triangulation object. The
default ray tracing model uses the shooting
and bouncing rays (SBR) method.

Terrain propagation models, including "longley-rice" and "tirem", are only supported for sites
with a CoordinateSystem value of "geographic".
Data Types: char | string

 coverage

4-153



MaxRange — Maximum range of coverage map from each transmitter site
numeric scalar

Maximum range of coverage map from each transmitter site, specified as a positive numeric scalar in
meters representing great circle distance. MaxRange defines the region of interest on the map to
plot. The default value is automatically computed based on the type of propagation model.

Type of Propagation Model MaxRange
Atmospheric or empirical Range of minimum value in SignalStrengths.
Terrain 30 km or distance to the furthest building.
Ray tracing 500 m

For more information about the types of propagation models, see “Choose a Propagation Model”.
Data Types: double

Resolution — Resolution of coverage map
"auto" (default) | numeric scalar

Resolution of coverage map, specified as "auto" or a numeric scalar in meters.

The resolution of "auto" computes the maximum value scaled to MaxRange. Decreasing the
resolution increases the quality of the coverage map and the time required to create it.
Data Types: char | double

ReceiverGain — Mobile receiver gain
2.1 (default) | numeric scalar

Mobile receiver gain, specified as a numeric scalar in dB. The receiver gain value includes the mobile
receiver antenna gain and system loss.

The receiver gain computes received signal strength when Type is "power".

If receiver site argument rx is passed to coverage, the default value is the maximum gain of the
receiver antenna with the system loss subtracted. Otherwise the default value is 2.1.
Data Types: char | double

ReceiverAntennaHeight — Mobile receiver antenna height above ground elevation
1 (default) | numeric scalar

Mobile receiver antenna height above ground elevation, specified as a numeric scalar in meters.

If receiver site argument rx is passed to coverage, the default value is the AntennaHeight of the
receiver. Otherwise the default value is 1.
Data Types: double

Colors — Colors of filled contours on coverage map
M-by-3 array of RGB triplets | array of strings | cell array of character vectors

Colors of filled contours on coverage map, specified as one of these options:
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• An M-by-3 array of RGB triplets whose elements specify the intensities of the red, green, and blue
components of the color. The intensities must be in the range [0,1]; for example, [0.4 0.6
0.7].

• An array of strings such as ["red" "green" "blue"] or ["r" "g" "b"].
• A cell array of character vectors such as {'red','green','blue'} or {'r','g','b'}.

Colors are assigned element-wise to SignalStrengths values for coloring the corresponding filled
contours.

Colors cannot be used with ColorLimits or ColorMap.

This table contains the color names and equivalent RGB triplets for some common colors.

Color Name Short Name RGB Triplet Appearance
"red" "r" [1 0 0]
"green" "g" [0 1 0]
"blue" "b" [0 0 1]
"cyan" "c" [0 1 1]
"magenta" "m" [1 0 1]
"yellow" "y" [1 1 0]
"black" "k" [0 0 0]
"white" "w" [1 1 1]

Data Types: char | string | double

ColorLimits — Color limits for colormap
two-element vector

Color limits for colormap, specified as a two-element vector of type [min max].

The color limits indicate the signal level values that map to the first and last colors on the colormap.

The default value is [-120 -5] if the Type is "power" and [20 135] if Type is "efield".

ColorLimits cannot be used with Colors.
Data Types: double

ColorMap — Colormap filled contours for coverage map
"jet" (default) | predefined color map | M-by-3 array of RGB triplets

Colormap filled contours on coverage map, specified as a predefined colormap or M-by-3 array of
RGB triplets, where M defines individual colors.

ColorMap cannot be used with Colors.
Data Types: char | double

ShowLegend — Show signal strength color legend on map
true (default) | false

Show signal strength color legend on map, specified as true or false.
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Data Types: logical

Transparency — Transparency of coverage map
0.4 (default) | numeric scalar

Transparency of coverage map, specified as a numeric scalar in the range 0 to 1. 0 is transparent and
1 is opaque.
Data Types: double

Map — Map for visualization of surface data
siteviewer object

Map for visualization of surface data, specified as a siteviewer object.4

Data Types: char | string

Output Arguments
pd — Coverage data
propagationData object

Coverage data, returned as a propagationData object consisting of Latitude and Longitude, and a
signal strength variable corresponding to the plot type. Name of the propagationData is
"Coverage Data".

Version History
Introduced in R2019b

Ray tracing functions consider multipath interference
Behavior changed in R2022b

When calculating received power using ray tracing models, the coverage function now incorporates
multipath interference by using a phasor sum. In previous releases, the function used a power sum.
As a result, the calculations in R2022b are more accurate than in previous releases.

"raytracing" propagation models use SBR method
Behavior changed in R2021b

Starting in R2021b, when you use the coverage function and specify the propmodel argument or
PropagationModel name-value argument as "raytracing", the function uses the shooting and
bouncing rays (SBR) method and calculates up to two reflections. In previous releases, the coverage
function uses the image method and calculates up to one reflection.

To display or compute coverage maps using the image method instead, create a propagation model by
using the propagationModel function. Then, use the coverage function with the propagation
model as input. This example shows how to update your code.

pm = propagationModel("raytracing","Method","image");
coverage(txs,pm)

4 Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not
imply endorsement by MathWorks.
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For information about the SBR and image methods, see “Choose a Propagation Model”.

Starting in R2021b, all RF Propagation functions use the SBR method by default and calculate up to
two reflections. For more information, see “Default modeling method is shooting and bouncing rays
method” on page 4-212.

See Also
link | sigstrength | sinr | propagationModel
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distance
Distance between sites

Syntax
d = distance(site1,site2)
d = distance(site1,site2,path)
d = distance( ___ ,Name,Value)

Description
d = distance(site1,site2) returns the distance in meters between site1 and site2.

d = distance(site1,site2,path) returns the distance using a specified path type, either a
Euclidean or great circle path.

d = distance( ___ ,Name,Value) returns the distance with additional options specified by name-
value arguments.

Examples

Distance Between Transmitter and Receiver Site

Create transmitter and receiver sites.

tx = txsite('Name','MathWorks','Latitude',42.3001,'Longitude',-71.3504);
rx = rxsite('Name','Fenway Park','Latitude',42.3467,'Longitude',-71.0972);

Get the Euclidean distance in km between the sites.

dme = distance(tx,rx)

dme = 2.1504e+04

dkm = dme / 1000

dkm = 21.5037

Get the great circle distance between the two sites.

dmg = distance(tx,rx,'greatcircle')

dmg = 2.1451e+04

Input Arguments
site1,site2 — Transmitter or receiver site
txsite object | rxsite object
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Transmitter or receiver site, specified as a txsite or rxsite object. You can use array inputs to
specify multiple sites.

path — Measurement path type
'euclidean' | 'greatcircle'

Measurement path type, specified as one of the following:

• 'euclidean' — Use the shortest path through space that connects the antenna center positions
of the sites.

• 'greatcircle' — Use the shortest path on the surface of the earth that connects the latitude
and longitude locations of the sites. This path uses a spherical Earth model.

Data Types: char

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Map','siteviewer1'

Map — Map for visualization or surface data
siteviewer object | triangulation object | string scalar | character vector

Map for visualization or surface data, specified as a siteviewer object, a triangulation object, a
string scalar, or a character vector. Valid and default values depend on the coordinate system.

Coordinate System Valid map values Default map value
"geographic" • A siteviewer objecta.

• A terrain name, if the
function is called with an
output argument. Valid
terrain names are "none",
"gmted2010", or the name
of the custom terrain data
added using
addCustomTerrain.

• The current siteviewer
object or a new siteviewer
object if none are open.

• "gmted2010", if the
function is called with an
output.

"cartesian" • "none".
• A siteviewer object.
• The name of an STL file.
• A triangulation object.

• "none".

a Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not
imply endorsement by MathWorks.

Data Types: char | string
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Output Arguments
d — Distance between sites
M-by-N numeric array

Distance between sites, returned as an M-by-N numeric array in meters, where M is the number of
sites in site2 and N is the number of sites in site1.

Version History
Introduced in R2019b

See Also
angle
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elevation
Elevation of site

Syntax
z = elevation(site)
z = elevation( ___ ,Name,Value)

Description
z = elevation(site) returns the ground or building surface elevation of antenna site in meters.
Elevation is measured relative to mean sea level using earth gravitational model, EGM-96. If the site
coincides with a building, elevation is measured at the top of the building. Otherwise, elevation is
measured at the ground.

This function only supports antenna sites with a CoordinateSystem property value of
'geographic'.

z = elevation( ___ ,Name,Value) returns the ground elevation of the antenna in meters with
additional options specified by name-value arguments.

Examples

Elevation at Mount Washington

Compute and display the elevation at Mount Washington in meters.

mtwash = txsite('Name','Mt Washington','Latitude',44.2706, ...
       'Longitude',-71.3033);
z = elevation(mtwash)

z = 1.8704e+03

Input Arguments
site — Transmitter or receiver site
txsite or rxsite object | array of txsite or rxsite objects

Transmitter or receiver site, specified as a txsite or rxsite object or an array of txsite or
rxsite objects.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
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Example: 'Map','siteviewer1'

Map — Map for visualization or surface data
siteviewer object | string scalar | character vector

Map for visualization or surface data, specified as one of the following:

• A siteviewer object.5

• A terrain name if the function is called with an output argument. Valid terrain names are 'none',
'gmted2010', or the name of the custom terrain data added using addCustomTerrain.

The default value is:

• The current siteviewer object or a new siteviewer object if none are open.
• 'gmted2010' if called with an output.

Data Types: char | string

Output Arguments
z — Ground or building surface elevation of antenna site
M-by-1 matrix

Ground or building surface elevation of the antenna site, returned as an M-by-1 matrix with each
element unit in meters. M is the number of sites in site.

Version History
Introduced in R2019b

See Also
Functions
distance | angle

Objects
txsite | rxsite

5 Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not
imply endorsement by MathWorks.
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getDataVariable
Get data variable values

Syntax
datavariable = getDataVariable(pd)
[datavariable,lat,lon] = getDataVariable(pd)
[ ___ ] = getDataVariable(pd,varname)

Description
datavariable = getDataVariable(pd) returns the values of the data points in the propagation
data object. The data is processed such that the missing values are removed and duplicate location
data are replaced with mean values.

[datavariable,lat,lon] = getDataVariable(pd) returns the location coordinates of the data
points in the propagation data object.

[ ___ ] = getDataVariable(pd,varname) returns the values of the data points corresponding to
the varname variable.

Examples

Capacity Map Using SINR Data

Define names and locations of sites around Boston.

names = ["Fenway Park","Faneuil Hall","Bunker Hill Monument"];
lats = [42.3467,42.3598,42.3763];
lons = [-71.0972,-71.0545,-71.0611];

Create an array of transmitter sites.

txs = txsite("Name",names,...
       "Latitude",lats,...
       "Longitude",lons, ...
       "TransmitterFrequency",2.5e9);
show(txs)
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Create a signal-to-interference-plus-noise-ratio (SINR) map, where signal source for each location is
selected as the transmitter site with the strongest signal.

sv1 = siteviewer("Name","SINR map");
sinr(txs,"MaxRange",5000)
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Return SINR propagation data.

pd = sinr(txs,"MaxRange",5000);
[sinrDb,lats,lons] = getDataVariable(pd,"SINR"); 

Compute capacity using the Shannon-Hartley theorem.

bw = 1e6; % Bandwidth is 1 MHz
sinrRatio = 10.^(sinrDb./10); % Convert from dB to power ratio
capacity = bw*log2(1+sinrRatio)/1e6; % Unit: Mbps

Create new propagation data for the capacity map and display the contour plot.

pdCapacity = propagationData(lats,lons,"Capacity",capacity);
sv2 = siteviewer("Name","Capacity map");
legendTitle = "Capacity" + newline + "(Mbps)";
contour(pdCapacity,"LegendTitle",legendTitle);
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Input Arguments
pd — Propagation data
propagationData object (default)

Propagation data, specified as a propagationData object.

varname — Variable name in data table
character vector | string scalar

Variable name in the data table, specified as a character vector or a string scalar. This variable name
must correspond to a variable with numeric data other than the latitude or longitude data.

Output Arguments
datavariable — Values of data points
column vector

Values of data points in the propagation data object, returned as a column vector.

lat — Latitude of data points
M-by-1 vector

Latitude of data points, returned as an M-by-1 vector with each element unit in degrees.
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lon — Longitude of data points
M-by-1 vector

Longitude of data points, returned as an M-by-1 matrix with each element unit in degrees. The output
is wrapped so that the values are in the range [-180 180].

Version History
Introduced in R2020a

See Also
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hide
Hide site from Site Viewer

Syntax
hide(site)
hide( ___ ,Name,Value)

Description
hide(site) hides the location of the specified antenna site from the current Site Viewer.

hide( ___ ,Name,Value) hides the site with additional options specified by one or more name-value
pairs.

Examples

Show and Hide Transmitter Site

Create and show a transmitter site.

tx = txsite('Name','MathWorks Apple Hill',...
       'Latitude',42.3001, ...
       'Longitude',-71.3504);
show(tx)
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Hide the transmitter site.

hide(tx)

Show and Hide Sites with Cartesian Coordinates

Import and view an STL file. The file models a small conference room with one table and four chairs.

viewer = siteviewer('SceneModel','conferenceroom.stl');

Create a transmitter site near the upper corner of the room and a receiver site above the table.
Specify the position using Cartesian coordinates in meters. Then, visualize the sites.

tx = txsite('cartesian', ...
    'AntennaPosition',[-1.46; -1.42; 2.1]);
rx = rxsite('cartesian', ...
    'AntennaPosition',[0.3; 0.3; 0.85]);

show(tx)
show(rx)

Pan by left-clicking, zoom by right-clicking or by using the scroll wheel, and rotate the visualization
by clicking the middle button and dragging or by pressing Ctrl and left-clicking and dragging.
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Hide the sites.

hide(tx)
hide(rx)
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Input Arguments
site — Transmitter or receiver site
txsite or rxsite object | array of txsite or rxsite objects

Transmitter or receiver site, specified as a txsite or rxsite object or an array of txsite or
rxsite objects.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Map','siteviewer1'

Map — Map for visualization of surface data
siteviewer object

Map for visualization of surface data, specified as a siteviewer object.6

Data Types: char | string

Version History
Introduced in R2019b

See Also
show

6 Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not
imply endorsement by MathWorks.
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interp
Interpolate RF propagation data

Syntax
interpvalue = interp(pd,lat,lon)
interpvalue = interp(pd,Name,Value)

Description
interpvalue = interp(pd,lat,lon) returns interpolated values from the propagation data for
each query point specified in latitude and longitude vectors. The interpolation is performed using a
scattered data interpolation method. Values corresponding to query points outside the data region
are assigned a NaN.

interpvalue = interp(pd,Name,Value) returns interpolated values with additional options
specified by name-value pair arguments.

Examples

Transmitter Site Service Areas

Define names and locations of sites around Boston.

names = ["Fenway Park","Faneuil Hall","Bunker Hill Monument"];
lats = [42.3467,42.3598,42.3763];
lons = [-71.0972,-71.0545,-71.0611];

Create array of transmitter sites.

txs = txsite("Name", names,...
       "Latitude",lats,...
       "Longitude",lons, ...
       "TransmitterFrequency",2.5e9);

Compute received power data for each transmitter site.

maxr = 20000;
pd1 = coverage(txs(1),"MaxRange",maxr);
pd2 = coverage(txs(2),"MaxRange",maxr);
pd3 = coverage(txs(3),"MaxRange",maxr);

Compute rectangle containing locations of all data.

locs = [location(pd1); location(pd2); location(pd3)];
[minlatlon, maxlatlon] = bounds(locs);

Create grid of locations over rectangle.

gridlength = 300;
latv = linspace(minlatlon(1),maxlatlon(1),gridlength);
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lonv = linspace(minlatlon(2),maxlatlon(2),gridlength);
[lons,lats] = meshgrid(lonv,latv);
lats = lats(:);
lons = lons(:);

Get data for each transmitter at grid locations using interpolation.

v1 = interp(pd1,lats,lons);
v2 = interp(pd2,lats,lons);
v3 = interp(pd3,lats,lons);

Create propagation data containing minimum received power values.

minReceivedPower = min([v1 v2 v3],[],2,"includenan");
pd = propagationData(lats,lons,"MinReceivedPower",minReceivedPower);

Plot minimum received power, which shows the weakest signal received from any transmitter site.
The area shown may correspond to the service area of triangulation using the three transmitter sites.

sensitivity = -110;
contour(pd,"Levels",sensitivity:-5,"Type","power")

Input Arguments
pd — Propagation data
propagationData object (default)

Propagation data, specified as a propagationData object.
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lat — Latitude coordinate values
vector

Latitude coordinate values, specified as a vector in decimal degrees with reference to Earth's
ellipsoid. model WGS-84. The latitude coordinates must be in the range [-90 90].

lon — Longitude coordinate values
vector

Longitude coordinate values, specified as a vector in decimal degrees with reference to Earth's
ellipsoid. model WGS-84.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Method','linear'

DataVariableName — Data variable to interpolate
character vector | string scalar

Data variable to interpolate, specified as the comma-separated pair consisting of
'DataVariableName' and a character vector or string scalar corresponding to a variable name in
the data table used to create the propagationData container object. The default value is the
DataVariableName property in the propagationData.
Data Types: char | string

Method — Method used to interpolate data
'natural' (default) | 'nearest' | 'linear'

Method used to interpolate data, specified as the comma separated-pair consisting 'Method' and
one of the following:

• 'natural' - Natural neighbor interpolation
• 'linear' - Linear interpolation
• 'nearest' - Nearest neighbor interpolation

Data Types: char | string

Output Arguments
interpvalue — Interpolated values from propagation data
numeric vector

Interpolated values from the propagation data for each query point specified in latitude and longitude
vectors, returned as a numeric vector.
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Version History
Introduced in R2020a

See Also
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link
Display or compute communication link status

Syntax
link(rx,tx)
link(rx,tx,propmodel)
link( ___ ,Name,Value)
status = link( ___ )

Description
link(rx,tx) displays a one-way point-to-point communication link between a receiver site and
transmitter site in the current Site Viewer. The plot is color coded to identify the link success status.

link(rx,tx,propmodel) displays the communication link based on the specified propagation
model.

link( ___ ,Name,Value) displays a communication link using additional options specified by
Name,Value pairs.

status = link( ___ ) returns the success status of the communication link as true or false.

Examples

Communication Link Between Geographic Transmitter and Receiver

Create a transmitter site.

tx = txsite("Name","MathWorks", ...
        "Latitude",42.3001, ...
        "Longitude",-71.3503);

Create a receiver site with a sensitivity defined in dBm.

 rx = rxsite("Name","Boston", ...
        "Latitude",42.3601, ...
        "Longitude",-71.0589, ...
        "ReceiverSensitivity",-90);

Plot the communication link between the transmitter and the receiver.

link(rx,tx)
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Communication Link Between Cartesian Transmitter and Receiver

Import and view an STL file. The file models a small conference room with one table and four chairs.

viewer = siteviewer('SceneModel','conferenceroom.stl');

Create a transmitter site near the upper corner of the room and a receiver site above the table.
Specify the position using Cartesian coordinates in meters.

tx = txsite('cartesian', ...
    'AntennaPosition',[-1.46; -1.42; 2.1]);
rx = rxsite('cartesian', ...
    'AntennaPosition',[0.3; 0.3; 0.85]);

Plot the communication link between the transmitter and the receiver.

link(rx,tx)

Pan by left-clicking, zoom by right-clicking or by using the scroll wheel, and rotate the visualization
by clicking the middle button and dragging or by pressing Ctrl and left-clicking and dragging.
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Input Arguments
rx — Receiver site
rxsite object | array of rxsite objects

Receiver site, specified as a rxsite object. You can use array inputs to specify multiple sites.

tx — Transmitter site
txsite object | array of txsite objects

Transmitter site, specified as a txsite object. You can use array inputs to specify multiple sites.

propmodel — Propagation model to use for path loss calculations
"longley-rice" (default) | "freespace" | "close-in" | "rain" | "gas" | "fog" |
"raytracing" | propagation model created with propagationModel

Propagation model to use for the path loss calculations, specified as one of these options:

• "freespace" — Free space propagation model
• "rain" — Rain propagation model
• "gas" — Gas propagation model
• "fog" — Fog propagation model
• "close-in" — Close-in propagation model
• "longley-rice" — Longley-Rice propagation model
• "tirem" — TIREM propagation model
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• "raytracing" — Ray tracing propagation model that uses the shooting and bouncing rays (SBR)
method. When you specify a ray tracing model as input, the function incorporates multipath
interference by using a phasor sum.

• A propagation model created with the propagationModel function

The default value depends on the coordinate system used by the input sites.

Coordinate System Default propagation model value
"geographic" • "longley-rice" when you use a terrain.

• "freespace" when you do not use a terrain.
"cartesian" • "freespace" when Map is set to none.

• "raytracing" when Map is set to the name
of an STL file or a triangulation object. The
default ray tracing model uses the shooting
and bouncing rays (SBR) method.

Terrain propagation models, including "longley-rice" and "tirem", are only supported for sites
with a CoordinateSystem value of "geographic".

You can also specify the propagation model by using the PropagationModel name-value pair
argument.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: "Type","power"

PropagationModel — Propagation model to use for path loss calculations
"freespace" | "close-in" | "rain" | "gas" | "fog" | "longley-rice" | "raytracing" |
propagation model created with propagationModel

Propagation model to use for the path loss calculations, specified as one of these options:

• "freespace" — Free space propagation model
• "rain" — Rain propagation model
• "gas" — Gas propagation model
• "fog" — Fog propagation model
• "close-in" — Close-in propagation model
• "longley-rice" — Longley-Rice propagation model
• "tirem" — TIREM propagation model
• "raytracing" — Ray tracing propagation model that uses the shooting and bouncing rays (SBR)

method. When you specify a ray tracing model as input, the function incorporates multipath
interference by using a phasor sum.

• A propagation model created with the propagationModel function
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The default value depends on the coordinate system used by the input sites.

Coordinate System Default propagation model value
"geographic" • "longley-rice" when you use a terrain.

• "freespace" when you do not use a terrain.
"cartesian" • "freespace" when Map is set to none.

• "raytracing" when Map is set to the name
of an STL file or a triangulation object. The
default ray tracing model uses the shooting
and bouncing rays (SBR) method.

Terrain propagation models, including "longley-rice" and "tirem", are only supported for sites
with a CoordinateSystem value of "geographic".
Data Types: char | string

SuccessColor — Color of successful links
"green" (default) | RGB triplet | character vector | string scalar

Color of successful links, specified as one of these options:

• An RGB triplet whose elements specify the intensities of the red, green, and blue components of
the color. The intensities must be in the range [0,1]; for example, [0.4 0.6 0.7].

• A character vector such as "red" or "r".
• A string scalar such as "red" or "r".

This table contains the color names and equivalent RGB triplets for some common colors.

Color Name Short Name RGB Triplet Appearance
"red" "r" [1 0 0]
"green" "g" [0 1 0]
"blue" "b" [0 0 1]
"cyan" "c" [0 1 1]
"magenta" "m" [1 0 1]
"yellow" "y" [1 1 0]
"black" "k" [0 0 0]
"white" "w" [1 1 1]

Data Types: char | string | double

FailColor — Color of unsuccessful links
"red" (default) | RGB triplet | character vector | string scalar

Color of unsuccessful links, specified as one of these options:

• An RGB triplet whose elements specify the intensities of the red, green, and blue components of
the color. The intensities must be in the range [0,1]; for example, [0.4 0.6 0.7].

• A character vector such as "red" or "r".
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• A string scalar such as "red" or "r".

This table contains the color names and equivalent RGB triplets for some common colors.

Color Name Short Name RGB Triplet Appearance
"red" "r" [1 0 0]
"green" "g" [0 1 0]
"blue" "b" [0 0 1]
"cyan" "c" [0 1 1]
"magenta" "m" [1 0 1]
"yellow" "y" [1 1 0]
"black" "k" [0 0 0]
"white" "w" [1 1 1]

Data Types: char | string | double

Map — Map for visualization or surface data
siteviewer object | triangulation object | string scalar | character vector

Map for visualization or surface data, specified as a siteviewer object, a triangulation object, a
string scalar, or a character vector. Valid and default values depend on the coordinate system.

Coordinate System Valid map values Default map value
"geographic" • A siteviewer objecta.

• A terrain name, if the
function is called with an
output argument. Valid
terrain names are "none",
"gmted2010", or the name
of the custom terrain data
added using
addCustomTerrain.

• The current siteviewer
object or a new siteviewer
object if none are open.

• "gmted2010", if the
function is called with an
output.

"cartesian" • "none".
• A siteviewer object.
• The name of an STL file.
• A triangulation object.

• "none".

a Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not
imply endorsement by MathWorks.

Data Types: char | string

Output Arguments
status — Success status of communication link
M-by-N array

Success status of communication links, returned as an M-by-N arrays. M is the number of transmitter
sites and N is the number of receiver sites.

 link

4-181



Version History
Introduced in R2019b

Ray tracing functions consider multipath interference
Behavior changed in R2022b

When calculating received power using ray tracing models, the link function now incorporates
multipath interference by using a phasor sum. In previous releases, the function used a power sum.
As a result, the calculations in R2022b are more accurate than in previous releases.

"raytracing" propagation models use SBR method
Behavior changed in R2021b

Starting in R2021b, when you use the link function and specify the propmodel argument or
PropagationModel name-value argument as "raytracing", the function uses the shooting and
bouncing rays (SBR) method and calculates up to two reflections. In previous releases, the link
function uses the image method and calculates up to one reflection.

To display or compute communication link status using the image method instead, create a
propagation model by using the propagationModel function. Then, use the link function with the
propagation model as input. This example shows how to update your code.

pm = propagationModel("raytracing","Method","image");
link(rx,tx,pm)

For information about the SBR and image methods, see “Choose a Propagation Model”.

Starting in R2021b, all RF Propagation functions use the SBR method by default and calculate up to
two reflections. For more information, see “Default modeling method is shooting and bouncing rays
method” on page 4-212.

See Also
sigstrength | coverage | sinr | los | propagationModel
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location
Coordinates at distance and angle from site

Syntax
sitelocation = location(site)
[lat,lon] = location(site)
[ ___ ] = location(site,distance,azimuth)

Description
sitelocation = location(site) returns the site location of the antenna.

[lat,lon] = location(site) returns the latitude and longitude of the antenna site.

This syntax only supports antenna sites with a CoordinateSystem property value of
'geographic'.

[ ___ ] = location(site,distance,azimuth) returns the new location achieved by moving the
antenna site by the distance specified in the direction of the azimuth angle. The location is calculated
by moving along a great circle path using a spherical Earth model.

This syntax only supports antenna sites with a CoordinateSystem property value of
'geographic'.

Examples

Location of Antenna Site

Create a site 1 km north of a given site.

Create the first transmitter site.

tx = txsite('Name','MathWorks', ...
       'Latitude',42.3001, ...
       'Longitude',-71.3504);

Calculate the location 1 km north of the first site.

[lat,lon] = location(tx,1000,90)

lat = 42.3091

lon = -71.3504

Create a second transmitter site at the location specified by lat and lon.

tx2 = txsite('Name','Second transmitter', ...
       'Latitude',lat, ...
       'Longitude',lon);
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Show the two transmitter sites.

show([tx,tx2])

Input Arguments
site — Antenna site
scalar | array

Antenna site, specified as a scalar or an array. It is either a txsite or a rxsite object. For more
information, see txsite, and rxsite

Note If distance or azimuth is a vector, then site must be a scalar.

distance — Distance to move antenna site
scalar | vector

Distance to move antenna site, specified as a scalar or vector in meters.

azimuth — Azimuth angle
scalar | vector

Azimuth angle, specified as a scalar or vector in degrees. Azimuth angle is measured
counterclockwise from due east.
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Output Arguments
sitelocation — Location of antenna site
M-by-2 matrix

Location of antenna site, returned as an M-by-2 matrix with each element unit in degrees. M is the
number of sites in sites. The location value includes the latitude and longitude of the antenna site.

If the antenna site has the CoordinateSystem property set to 'geographic', L is a 1-by-2 vector
in degrees latitude and longitude. The output longitude wrapped so that values are in the range
[-180 180]. If SITE has CoordinateSystem set to 'cartesian', L is a 1-by-3 vector.

lat — Latitude of one or more antenna sites
M-by-1 vector

Latitude of one or more antenna sites, returned as an M-by-1 vector with each element unit in
degrees. M is the number of sites in site.

lon — Longitude of one or more antenna sites
M-by-1 matrix

Longitude of one or more antenna sites, returned as an M-by-1 matrix with each element unit in
degrees. M is the number of sites in site. The output is wrapped so that the values are in the range
[-180 180].

Version History
Introduced in R2019b

See Also
distance | angle | txsite | rxsite
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los
Display or compute line-of-sight (LOS) visibility status

Syntax
los(site1,site2)
los(site1,site2,Name,Value)
vis = los(site1,site2,Name,Value)

Description
los(site1,site2) displays the line-of-sight (LOS) visibility from site 1 to site 2 in the current Site
Viewer. The plot is color coded to identify the visibility of the points along the line.

los(site1,site2,Name,Value) sets properties using one or more name-value pairs. For example,
los(site1,site2,'ObstructedColor','red') displays the LOS in red to show blocked
visibility.

vis = los(site1,site2,Name,Value) returns the status of the LOS visibility.

Examples

LOS from a Transmitter Site to a Receiver Site

Create a transmitter site with an antenna of height 30 m and a receiver site at ground level.

tx = txsite("Name","MathWorks Apple Hill",...
          "Latitude",42.3001,"Longitude",-71.3504,"AntennaHeight",30);
rx = rxsite("Name","MathWorks Lakeside", ...
           "Latitude",42.3021,"Longitude",-71.3764);

Plot the LOS between the two sites.

los(tx,rx)
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LOS from a Transmitter Site to Two Receiver Sites

Create a transmitter site with an antenna of height 30 m and two receiver sites with antennas at
ground level.

tx = txsite("Name","MathWorks Apple Hill",...
          "Latitude",42.3001,"Longitude",-71.3504,"AntennaHeight",30);

names = ["Fenway Park","Bunker Hill Monument"];
lats = [42.3467,42.3763];
lons = [-71.0972,-71.0611];

Create the receiver site array.

rxs = rxsite("Name", names,...
      "Latitude",lats,...
      "Longitude",lons);

Plot the LOSs to the receiver sites. The red portion of the LOS represents obstructed visibility.

los(tx,rxs)
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LOS Between Cartesian Sites

Import and view an STL file. The file models a small conference room with one table and four chairs.

viewer = siteviewer("SceneModel","conferenceroom.stl");

Create a transmitter site near the upper corner of the room and a receiver site above the table.
Specify the position using Cartesian coordinates in meters.

tx = txsite("cartesian", ...
    "AntennaPosition",[-1.46; -1.42; 2.1]);
rx = rxsite("cartesian", ...
    "AntennaPosition",[0.3; 0.3; 0.85]);

Plot the LOS between the transmitter and the receiver.

los(rx,tx)

Pan by left-clicking, zoom by right-clicking or by using the scroll wheel, and rotate the visualization
by clicking the middle button and dragging or by pressing Ctrl and left-clicking and dragging.
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Plot Propagation Rays Between Sites in Chicago

Return ray tracing results in comm.Ray objects and plot the ray propagation paths after relaunching
the Site Viewer map.

Create a Site Viewer map, loading building data for Chicago. For more information about the osm file,
see [1] on page 4-193.

viewer = siteviewer("Buildings","chicago.osm");
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Create a transmitter site on one building and a receiver site on another building. Use the los
function to show the line of sight path between the transmitter and receiver sites.

tx = txsite( ...
    "Latitude",41.8800, ...
    "Longitude",-87.6295, ...
    "TransmitterFrequency",2.5e9);
rx = rxsite( ...
    "Latitude",41.881352, ...
    "Longitude",-87.629771, ...
    "AntennaHeight",30);
los(tx,rx)
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Perform ray tracing for up to two reflections. For the configuration defined, ray tracing returns a cell
array containing the ray objects. Close the Site Viewer map.

pm = propagationModel( ...
    "raytracing", ...
    "Method","sbr", ...
    "MaxNumReflections",2);
rays = raytrace(tx,rx,pm)

rays = 1×1 cell array
    {1×3 comm.Ray}

rays{1}(1,1)

ans = 
  Ray with properties:

      PathSpecification: 'Locations'
       CoordinateSystem: 'Geographic'
    TransmitterLocation: [3×1 double]
       ReceiverLocation: [3×1 double]
            LineOfSight: 0
           Interactions: [1×1 struct]
              Frequency: 2.5000e+09
         PathLossSource: 'Custom'
               PathLoss: 92.7739
             PhaseShift: 1.2933

   Read-only properties:
       PropagationDelay: 5.7088e-07
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    PropagationDistance: 171.1462
       AngleOfDeparture: [2×1 double]
         AngleOfArrival: [2×1 double]
        NumInteractions: 1

rays{1}(1,2)

ans = 
  Ray with properties:

      PathSpecification: 'Locations'
       CoordinateSystem: 'Geographic'
    TransmitterLocation: [3×1 double]
       ReceiverLocation: [3×1 double]
            LineOfSight: 0
           Interactions: [1×2 struct]
              Frequency: 2.5000e+09
         PathLossSource: 'Custom'
               PathLoss: 100.8574
             PhaseShift: 2.9398

   Read-only properties:
       PropagationDelay: 5.9259e-07
    PropagationDistance: 177.6532
       AngleOfDeparture: [2×1 double]
         AngleOfArrival: [2×1 double]
        NumInteractions: 2

rays{1}(1,3)

ans = 
  Ray with properties:

      PathSpecification: 'Locations'
       CoordinateSystem: 'Geographic'
    TransmitterLocation: [3×1 double]
       ReceiverLocation: [3×1 double]
            LineOfSight: 0
           Interactions: [1×2 struct]
              Frequency: 2.5000e+09
         PathLossSource: 'Custom'
               PathLoss: 106.3302
             PhaseShift: 4.6994

   Read-only properties:
       PropagationDelay: 6.3790e-07
    PropagationDistance: 191.2374
       AngleOfDeparture: [2×1 double]
         AngleOfArrival: [2×1 double]
        NumInteractions: 2

close(viewer)

You can plot the rays without performing ray tracing again. Create another Site Viewer map with the
same buildings. Show the transmitter and receiver sites. Using the previously returned cell array of
ray objects, plot the reflected rays between the transmitter site and the receiver site. The plot
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function can plot the path for ray objects collectively or individually. For example, to plot rays for the
only second ray object, specify rays{1}(1,2). This figure plot all paths for all the ray objects.

siteviewer("Buildings","chicago.osm")

ans = 
  siteviewer with properties:

                Name: 'Site Viewer'
            Position: [560 240 800 600]
    CoordinateSystem: "geographic"
             Basemap: 'satellite'
             Terrain: 'gmted2010'
           Buildings: 'chicago.osm'

los(tx,rx)
plot(rays{:},"Type","power", ...
    "TransmitterSite",tx,"ReceiverSite",rx)

Appendix
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[1] The osm file is downloaded from https://www.openstreetmap.org, which provides access to crowd-
sourced map data all over the world. The data is licensed under the Open Data Commons Open
Database License (ODbL), https://opendatacommons.org/licenses/odbl/.

Input Arguments
site1 — Source antenna site
txsite object | rxsite object

Source antenna site, specified as a txsite object or a rxsite object. Site 1 must be a single site
object.

site2 — Target antenna site
txsite object | rxsite object | vector of txsite or rxsite objects

Target antenna site, specified as a txsite object or a rxsite object. Site 2 can be a single site
object or a vector of multiple site objects.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'ObstructedColor','blue'

VisibleColor — Plot color for successful visibility
'green' (default) | RGB triplet | character vector | string scalar

Plot color for successful visibility, specified as one of the following:

• An RGB triplet whose elements specify the intensities of the red, green, and blue components of
the color. The intensities must be in the range [0,1]; for example, [0.4 0.6 0.7].

• A character vector such as 'red' or 'r'.
• A string scalar such as "red" or "r".

This table contains the color names and equivalent RGB triplets for some common colors.

Color Name Short Name RGB Triplet Appearance
"red" "r" [1 0 0]
"green" "g" [0 1 0]
"blue" "b" [0 0 1]
"cyan" "c" [0 1 1]
"magenta" "m" [1 0 1]
"yellow" "y" [1 1 0]
"black" "k" [0 0 0]
"white" "w" [1 1 1]
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ObstructedColor — Plot color for blocked visibility
'red' (default) | RGB triplet | character vector | string scalar

Plot color for blocked visibility, specified as one of the following:

• An RGB triplet whose elements specify the intensities of the red, green, and blue components of
the color. The intensities must be in the range [0,1]; for example, [0.4 0.6 0.7].

• A character vector such as 'red' or 'r'.
• A string scalar such as "red" or "r".

This table contains the color names and equivalent RGB triplets for some common colors.

Color Name Short Name RGB Triplet Appearance
"red" "r" [1 0 0]
"green" "g" [0 1 0]
"blue" "b" [0 0 1]
"cyan" "c" [0 1 1]
"magenta" "m" [1 0 1]
"yellow" "y" [1 1 0]
"black" "k" [0 0 0]
"white" "w" [1 1 1]

Resolution — Sampling distance between two sites
'auto' (default) | numeric scalar

Resolution of sample locations used to compute line-of-sight visibility, specified as 'auto' or a
numeric scalar expressed in meters. Resolution defines the distance between samples on the great
circle path using a spherical Earth model. If Resolution is 'auto', the function computes a value
based on the distance between the sites.

Map — Map for visualization or surface data
siteviewer object | triangulation object | string scalar | character vector

Map for visualization or surface data, specified as a siteviewer object, a triangulation object, a
string scalar, or a character vector. Valid and default values depend on the coordinate system.

Coordinate System Valid map values Default map value
"geographic" • A siteviewer objecta.

• A terrain name, if the
function is called with an
output argument. Valid
terrain names are "none",
"gmted2010", or the name
of the custom terrain data
added using
addCustomTerrain.

• The current siteviewer
object or a new siteviewer
object if none are open.

• "gmted2010", if the
function is called with an
output.
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Coordinate System Valid map values Default map value
"cartesian" • "none".

• A siteviewer object.
• The name of an STL file.
• A triangulation object.

• "none".

a Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not
imply endorsement by MathWorks.

Data Types: char | string

Output Arguments
vis — Status of LOS visibility
true or 1 | false or 0 | n-by 1 logical array

Status of LOS visibility, returned as logical 1 (true) or 0 (false). If there are multiple target sites,
the function returns a logical array of n-by-1.

Version History
Introduced in R2019b

See Also
distance | angle | link
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pathloss
Package: rfprop

Path loss of radio wave propagation

Syntax
pl = pathloss(propmodel,rx,tx)
pl = pathloss( ___ ,Name,Value)
[pl,info] = pathloss( ___ )

Description
pl = pathloss(propmodel,rx,tx) returns the path loss of radio wave propagation at the
receiver site from the transmitter site.

pl = pathloss( ___ ,Name,Value) returns the path loss using additional options specified by
Name,Value pairs.

[pl,info] = pathloss( ___ ) returns the path loss and the information about the propagation
paths.

Examples

Path Loss of Receiver In Heavy Rain

Specify the transmitter and the receiver sites.

tx = txsite('Name','MathWorks Apple Hill', ...
    'Latitude',42.3001,'Longitude',-71.3504, ...
    'TransmitterFrequency', 2.5e9);

rx = rxsite('Name','Fenway Park', ...
    'Latitude',42.3467,'Longitude',-71.0972);

Create the propagation model for heavy rainfall rate.

pm = propagationModel('rain','RainRate',50)

pm = 
  Rain with properties:

    RainRate: 50
        Tilt: 0

Calculate the pathloss at the receiver using the rain propagation model.

pl = pathloss(pm,rx,tx)

pl = 127.3208
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Input Arguments
propmodel — Propagation model
propagation model object

Propagation model, specified as a propagation model object. Use the propagationModel function.
Data Types: object

rx — Receiver site
rxsite object

Receiver site, specified as a rxsite object. You can use array inputs to specify multiple sites.
Data Types: char

tx — Transmitter site
txsite object

Transmitter site, specified as a txsite object. You can use array inputs to specify multiple sites.
Data Types: char

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Map','none'

Map — Map for visualization or surface data
siteviewer object | triangulation object | string scalar | character vector

Map for visualization or surface data, specified as a siteviewer object, a triangulation object, a
string scalar, or a character vector. Valid and default values depend on the coordinate system.

Coordinate System Valid map values Default map value
"geographic" • A siteviewer objecta.

• A terrain name, if the
function is called with an
output argument. Valid
terrain names are "none",
"gmted2010", or the name
of the custom terrain data
added using
addCustomTerrain.

• The current siteviewer
object or a new siteviewer
object if none are open.

• "gmted2010", if the
function is called with an
output.
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Coordinate System Valid map values Default map value
"cartesian" • "none".

• A siteviewer object.
• The name of an STL file.
• A triangulation object.

• "none".

a Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not
imply endorsement by MathWorks.

Data Types: char | string

Output Arguments
pl — Path loss
scalar | M-by-N arrays

Path loss, returned as a scalar or M-by-N cell arrays containing a row vector of path loss values in
decibels. M is the number of TX sites and N is the number of RX sites.

Path loss is computed along the shortest path shortest path through space connecting the transmitter
and receiver antenna centers.

For terrain propagation models, path loss is computed using terrain elevation profile that is computed
at sample locations on the great circle path between the transmitter and the receiver. If Map is a
siteviewer object with buildings specified, the terrain elevation is adjusted to include the height of
the buildings.

info — Information corresponding to each propagation path
M-by-N structure array | M-by-N cell array containing vector of structures in each cell

Information corresponding to each propagation path, returned as a M-by-N cell array containing
vector of structures in each cell for ray tracing propagation models and M-by-N structure array for all
other propagation models. The field and values for the structures are:

• PropagationDistance — Total distance of propagation path returned as a double scalar in
meters.

• AngleOfDeparture — Angle of departure of signal from transmitter site antenna returned as a
2-by-1 double vector of azimuth and elevation angles in degrees.

• AngleOfArrival — Angle of arrival of signal at receiver site antenna returned as a 2-by-1 double
vector of azimuth and elevation angles in degrees.

• NumReflections — Number of reflections undergone by signal along propagation path, returned
specified as 0, 1, or 2. This field and value is only for ray tracing propagation models.

Angle values in this structure are defined using the local East-North-Up coordinate system of the
antenna when CoordinateSystem is set to geographic. Angle values in this structure are defined
using global Cartesian coordinate system when CoordinateSystem is set to cartesian. Azimuth
angle is measured either from east (when 'geographic') or from the global x-axis around the global
z-axis (when 'cartesian'). Elevation angle is measured from the horizontal (or X-Y) plane to the x-
axis of the antenna in the range -90 to 90.
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Version History
Introduced in R2019b

Ray tracing models using SBR method find paths with exact geometric accuracy
Behavior changed in R2022b

Ray tracing models that find propagation paths by using the shooting and bouncing rays (SBR)
method correct the results so that the geometric accuracy of each path is exact, using single-
precision floating-point computations. In previous releases, the paths have approximate geometric
accuracy.

As a result, when you use a ray tracing model as input to the pathloss function, the function can
return different results than in previous releases.

See Also
propagationModel | range
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plot
Display RF propagation data in Site Viewer

Syntax
plot(pd)
plot( ___ ,Name,Value)

Description
plot(pd) displays propagation data in the current Site Viewer. Each data point is displayed as a
circular marker that is colored according to the corresponding value.

plot( ___ ,Name,Value) displays the propagation data with additional options specified by name-
value pair arguments.

Examples

Compute Signal Strength Data in Urban Environment

Launch Site Viewer with basemaps and building files for Manhattan. For more information about the
osm file, see [1] on page 4-203.

viewer = siteviewer("Basemap","streets_dark",...
        "Buildings","manhattan.osm");
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Show a transmitter site on a building.

tx = txsite("Latitude",40.7107,...
        "Longitude",-74.0114,...
        "AntennaHeight",80);
show(tx)

Create receiver sites along nearby streets.

latitude = [linspace(40.7088, 40.71416, 50), ...
        linspace(40.71416, 40.715505, 25), ...
        linspace(40.715505, 40.7133, 25), ...
        linspace(40.7133, 40.7143, 25)]';
longitude = [linspace(-74.0108, -74.00627, 50), ...
        linspace(-74.00627 ,-74.0092, 25), ...
        linspace(-74.0092, -74.0110, 25), ...
        linspace(-74.0110, -74.0132, 25)]';
rxs = rxsite("Latitude", latitude, "Longitude", longitude);

Compute signal strength at each receiver location.

signalStrength = sigstrength(rxs, tx)';

Create a propagationData object to hold computed signal strength data.

tbl = table(latitude, longitude, signalStrength);
pd = propagationData(tbl);

Plot the signal strength data on a map as colored points.

legendTitle = "Signal" + newline + "Strength" + newline + "(dB)";
plot(pd, "LegendTitle", legendTitle, "Colormap", parula);
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Appendix

[1] The osm file is downloaded from https://www.openstreetmap.org, which provides access to crowd-
sourced map data all over the world. The data is licensed under the Open Data Commons Open
Database License (ODbL), https://opendatacommons.org/licenses/odbl/.

Input Arguments
pd — Propagation data
propagationData object (default)

Propagation data, specified as a propagationData object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Type','power'

DataVariableName — Data variable to plot
pd.DataVariableName (default) | character vector | string scalar

Data variable to plot, specified as the comma-separated pair consisting of 'DataVariableName' and
a character vector or a string scalar corresponding to a variable name in the data table used to create
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the propagation data container object pd. The default value is dynamic and corresponds to the
DataVariableName property of the propagationData object.
Data Types: char | string

Type — Type of value to plot
'custom' (default) | 'power' | 'efield' | 'sinr' | 'pathloss'

Type of value to plot, specified as the comma-separated pair consisting of 'Type' and one of the
values in the Type column:

Type ColorLimits LegendTitle
'custom' [min(Data) max(Data)] ''
'power' [-120 -5] 'Power (dBm)'
'efield' [20 135] 'E-field (dBuV/m)'
'sinr' [-5 20] 'SINR (dB)'
'pathloss' [45 160] 'Path loss (dB)'

The default value for Levels is a linearly spaced vector bounded by ColorLimits.
Data Types: char | string

Levels — Data value levels to plot
numeric vector

Data value levels to plot, specified as the comma-separated pair consisting of 'Levels' and a
numeric vector. The propagation data is binned according to Levels. The data in each bin is color
coded according to the corresponding level. The colors are selected using Colors if specified, or else
Colormap and ColorLimits. Data points with values below the minimum level are not included in
the plot.

The default value for Levels is a linearly spaced vector bounded by ColorLimits.
Data Types: double

Colors — Colors of data points
M-by-3 array of RGB | array of strings | cell array of character vectors

Colors of the data points, specified as the comma-separated pair consisting of 'Colors' and an M-
by-3 array of RGB (red, blue, green) or an array of strings, or a cell array of character vectors. Colors
are assigned element-wise to values in Levels for coloring the corresponding points. Colors cannot
be used with Colormap and ColorLimits.
Data Types: double | char | string

Colormap — Color map for coloring points
'jet(256)' (default) | predefined colormap name | M-by-3 array of RGB triplets

Colormap for the coloring points, specified as the comma-separated pair consisting of 'Colormap'
and a predefined colormap name or an M-by-3 array of RGB (red, blue, green) triplets that define M
individual colors. Colormap cannot be used with Colors.
Data Types: double | char | string
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ColorLimits — Color limits for color map
two-element vector

Color limits for the colormap, specified as the comma-separated pair consisting of 'ColorLimits'
and a two-element vector of the form [min max]. The color limits indicate the data level values that
map to the first and last colors in the colormap. ColorLimits cannot be used with Colors.
Data Types: double

MarkerSize — Size of data markers
10 (default) | positive numeric scalar

Size of data markers plotted on the map, specified as the comma-separated pair consisting of
'MarkerSize' and a positive numeric scalar in pixels.
Data Types: double

ShowLegend — Show color legend on map
true (default) | false

Show color legend on map, specified as the comma-separated pair consisting of 'ShowLegend' and
true or false.
Data Types: logical

LegendTitle — Title of color legend
character vector | string scalar

Title of color legend, specified as the comma-separated pair consisting of 'LegendTitle' and a
character vector or a string scalar.
Data Types: string | char

Map — Map for surface data
siteviewer object

Map for surface data, specified as the comma-separated pair consisting of 'Map' and a siteviewer
object.7 The default value is the current Site Viewer or a new Site Viewer, if none is open.
Data Types: char | string

Version History
Introduced in R2020a

See Also

7 Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not
imply endorsement by MathWorks.
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location
Coordinates of RF propagation data

Syntax
datalocation = location(pd)
[lat,lon] = location(pd)

Description
datalocation = location(pd) returns the location coordinates of the data points in the
propagation data object.

[lat,lon] = location(pd) returns the latitude and longitude of the propagation data object

Examples

Transmitter Site Service Areas

Define names and locations of sites around Boston.

names = ["Fenway Park","Faneuil Hall","Bunker Hill Monument"];
lats = [42.3467,42.3598,42.3763];
lons = [-71.0972,-71.0545,-71.0611];

Create array of transmitter sites.

txs = txsite("Name", names,...
       "Latitude",lats,...
       "Longitude",lons, ...
       "TransmitterFrequency",2.5e9);

Compute received power data for each transmitter site.

maxr = 20000;
pd1 = coverage(txs(1),"MaxRange",maxr);
pd2 = coverage(txs(2),"MaxRange",maxr);
pd3 = coverage(txs(3),"MaxRange",maxr);

Compute rectangle containing locations of all data.

locs = [location(pd1); location(pd2); location(pd3)];
[minlatlon, maxlatlon] = bounds(locs);

Create grid of locations over rectangle.

gridlength = 300;
latv = linspace(minlatlon(1),maxlatlon(1),gridlength);
lonv = linspace(minlatlon(2),maxlatlon(2),gridlength);
[lons,lats] = meshgrid(lonv,latv);
lats = lats(:);
lons = lons(:);
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Get data for each transmitter at grid locations using interpolation.

v1 = interp(pd1,lats,lons);
v2 = interp(pd2,lats,lons);
v3 = interp(pd3,lats,lons);

Create propagation data containing minimum received power values.

minReceivedPower = min([v1 v2 v3],[],2,"includenan");
pd = propagationData(lats,lons,"MinReceivedPower",minReceivedPower);

Plot minimum received power, which shows the weakest signal received from any transmitter site.
The area shown may correspond to the service area of triangulation using the three transmitter sites.

sensitivity = -110;
contour(pd,"Levels",sensitivity:-5,"Type","power")

Input Arguments
pd — Propagation data
propagationData object (default)

Propagation data, specified as a propagationData object.

Output Arguments
datalocation — Location coordinates of data points
M-by-2 matrix
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Location of antenna site, returned as an M-by-2 matrix with each element unit in degrees. M is the
number of rows in the data table with valid latitude and longitude values. Duplicate locations are not
removed.

lat — Latitude of data points
M-by-1 vector

Latitude of data points, returned as an M-by-1 vector with each element unit in degrees.

lon — Longitude of data points
M-by-1 vector

Longitude of data points, returned as an M-by-1 matrix with each element unit in degrees. The output
is wrapped so that the values are in the range [-180 180].

Version History
Introduced in R2020a

See Also
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propagationModel
Create RF propagation model

Syntax
pm = propagationModel(modelname)
pm = propagationModel( ___ ,Name,Value)

Description
pm = propagationModel(modelname) creates an RF propagation model for the specified model.

pm = propagationModel( ___ ,Name,Value) specifies options using name-value arguments. For
example, pm = propagationModel('rain','RainRate',96) creates a rain propagation model
with a rain rate of 96 mm/h.

Examples

Signal Strength of Receiver in Heavy Rain

Specify transmitter and receiver sites.

tx = txsite('Name','MathWorks Apple Hill',...
       'Latitude',42.3001, ...
       'Longitude',-71.3504, ...
       'TransmitterFrequency', 2.5e9);
 
rx = rxsite('Name','Fenway Park',...
       'Latitude',42.3467, ...
       'Longitude',-71.0972);

Create the propagation model for a heavy rainfall rate.

pm = propagationModel('rain','RainRate',50)

pm = 
  Rain with properties:

    RainRate: 50
        Tilt: 0

Calculate the signal strength at the receiver using the rain propagation model.

ss = sigstrength(rx,tx,pm)

ss = -87.1559
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Longley-Rice Propagation Model

Create a default transmitter site.

tx = txsite;

Create a Longley-Rice propagation model by using the propagationModel function.

pm = propagationModel("longley-rice","TimeVariabilityTolerance",0.7)

pm = 
  LongleyRice with properties:

              AntennaPolarization: 'horizontal'
               GroundConductivity: 0.0050
               GroundPermittivity: 15
          AtmosphericRefractivity: 301
                      ClimateZone: 'continental-temperate'
         TimeVariabilityTolerance: 0.7000
    SituationVariabilityTolerance: 0.5000

Find the coverage of the transmitter site by using the defined propagation model.

coverage(tx,"PropagationModel",pm)
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Input Arguments
modelname — Name of propagation model
'freespace' | 'rain' | 'gas' | 'fog' | 'close-in' | 'longley-rice' | 'tirem' |
'raytracing'

Name of propagation model, specified as one of these:

• 'freespace' — Free space propagation model.
• 'rain' — Rain propagation model. For more information, see [3].
• 'gas' — Gas propagation model. For more information, see [6].
• 'fog' — Fog propagation model. For more information, see [2].
• 'close-in' — Close-in propagation model typically used in urban macro-cell scenarios. For more

information, see [1].

Note The close-in model implements a statistical path loss model and can be configured for
different scenarios. The default values correspond to an urban macro-cell scenario in a non-line-of-
sight (NLOS) environment.

• 'longley-rice' — Longley-Rice propagation model. This model is also known as Irregular
Terrain Model (ITM). You can use this model to calculate point-to-point path loss between sites
over an irregular terrain, including buildings. Path loss is calculated from free-space loss, terrain
diffraction, ground reflection, refraction through atmosphere, tropospheric scatter, and
atmospheric absorption. For more information and list of limitations, see [4].

Note The Longley-Rice model implements the point-to-point mode of the model, which uses
terrain data to predict the loss between two points.

• 'tirem' — Terrain Integrated Rough Earth Model™ (TIREM). You can use this model to calculate
point-to-point path loss between sites over an irregular terrain, including buildings. Path loss is
calculated from free-space loss, terrain diffraction, ground reflection, refraction through
atmosphere, tropospheric scatter, and atmospheric absorption. This model needs access to an
external TIREM library. The actual model is valid from 1 MHZ to 1000 GHz. But with Antenna
Toolbox elements and arrays the frequency range is limited to 200 GHz.

• 'raytracing' — A multipath propagation model that uses ray tracing analysis to compute
propagation paths and corresponding path losses. Path loss is calculated from free-space loss,
reflection loss due to material, and antenna polarization loss. You can perform ray tracing analysis
using the shooting and bouncing rays (SBR) method or the image method. Specify a method using
the 'Method' property. The SBR method includes effects from surface reflections but does not
include effects from diffraction, refraction, or scattering. The image method considers surface
reflection only. Both ray tracing methods are valid for a frequency range of 100 MHz to 100 GHz.
For information about differences between the image and SBR methods, see “Choose a
Propagation Model”. Use the raytrace function to compute and plot the propagation paths
between the sites.

Dependencies

Specifying 'tirem' requires Antenna Toolbox.
Data Types: char
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: propagationModel("rain","RainRate",50) sets the rate of rainfall in the rain
propagation model to 50 millimeters per hour.

Each type of propagation model object supports a different set of properties. For a full list of the
properties and their descriptions for a propagation model type, see the associated object page.

Type of Propagation Model Object Page
'freespace' FreeSpace
'rain' Rain
'gas' Gas
'fog' Fog
'close-in' CloseIn
'longley-rice' LongleyRice
'tirem' TIREM
'raytracing' RayTracing

Output Arguments
pm — Propagation model
FreeSpace object | Rain object | Gas object | Fog object | CloseIn object | ...

Propagation model, returned as a FreeSpace, Rain, Gas, Fog, CloseIn, LongleyRice, TIREM, or
RayTracing object.

Version History
Introduced in R2019b

Default modeling method is shooting and bouncing rays method
Behavior changed in R2021b

Starting in R2021b, when you create a propagation model using the syntax
propagationModel('raytracing'), MATLAB returns a RayTracing model with the Method
value set to 'sbr' and two reflections (instead of 'image' and one reflection as in previous
releases).

To create ray tracing propagation models that use the image method, use the syntax
propagationModel('raytracing','Method','image').

propagationModel('raytracing-image-method') syntax will be removed in a future
release
Warns starting in R2022a
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The propagationModel('raytracing-image-method') syntax will be removed in a future
release.

Use the propagationModel('raytracing','Method','image') syntax to use the image ray
tracing method. Alternatively, using the propagationModel('raytracing') syntax sets the ray
tracing method to SBR.
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See Also
Functions
sigstrength | coverage | link | sinr | range | los | pathloss | rangeangle | raytrace

Topics
“Choose a Propagation Model”
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range
Package: rfprop

Range of radio wave propagation

Syntax
r = range(propmodel,tx,pl)

Description
r = range(propmodel,tx,pl)returns the range of radio wave propagation from the transmitter
site.

Examples

Range of Transmitter In Heavy Rain

Specify transmitter and receiver sites.

tx = txsite('Name','MathWorks Apple Hill',...
       'Latitude',42.3001, ...
       'Longitude',-71.3504, ...
       'TransmitterFrequency', 2.5e9);
 
rx = rxsite('Name','Fenway Park',...
       'Latitude',42.3467, ...
       'Longitude',-71.0972);

Create the propagation model for heavy rainfall rate.

pm = propagationModel('rain','RainRate',50)

pm = 
  Rain with properties:

    RainRate: 50
        Tilt: 0

Calculate the range of transmitter using the rain propagation model and a path loss of 127 dB.

r = range(pm,tx,127)

r = 2.0747e+04

Input Arguments
propmodel — Propagation model
propagation model object
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Propagation model, specified as a propagation model object. Use the propagationModel function.
Data Types: object

tx — Transmitter site
txsite object

Transmitter site, specified as a txsite object. You can use array inputs to specify multiple sites.
Data Types: char

pl — Path loss
scalar

Path loss, specified as a scalar in decibels.
Data Types: double

Output Arguments
r — range
scalar | M-by-1 arrays

Range, returned as a scalar or M-by-1 array with each element in meters. M is the number of TX
sites.

Range is the maximum distance for which the path loss does not exceed the value of the specified pl.

Version History
Introduced in R2019b

See Also
propagationModel | pathloss
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raytrace
Display or compute RF propagation rays

Syntax
raytrace(tx,rx)
raytrace(tx,rx,propmodel)
raytrace( ___ ,Name,Value)
rays = raytrace( ___ )

Description
The raytrace function plots or computes propagation paths by using ray tracing with surface
geometry defined by the 'Map' property. Each plotted propagation path is color-coded according to
the received power (dBm) or path loss (dB) along the path. The ray tracing analysis includes surface
reflections but does not include effects from diffraction, refraction, or scattering. Operational
frequency for this function is from 100 MHz to 100 GHz. For more information, see “Choose a
Propagation Model”.

raytrace(tx,rx) displays the propagation paths from the transmitter site (tx) to the receiver site
(rx) in the current Site Viewer by using the shooting and bouncing rays (SBR) method with up to two
reflections.

raytrace(tx,rx,propmodel) displays the propagation paths from the transmitter site (tx) to the
receiver site (rx) based on the specified propagation model. To input building and terrain materials to
calculate path loss, create a 'raytracing' propagation model using the propagationModel
function and set the properties to specify building materials.

raytrace( ___ ,Name,Value) specifies options using one or more name-value arguments in
addition to the input arguments in previous syntaxes.

rays = raytrace( ___ ) returns the propagation paths in rays.

Examples

Obstructed and Reflected Paths Using Ray Tracing

Show reflected propagation paths in Chicago using the ray tracing analysis with the SBR method

Launch Site Viewer with buildings in Chicago. For more information about the osm file, see [1] on
page 4-219.

viewer = siteviewer("Buildings","chicago.osm");

Create a transmitter site on a building and a receiver site near another building.

tx = txsite("Latitude",41.8800, ...
    "Longitude",-87.6295, ...
    "TransmitterFrequency",2.5e9);
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show(tx)
rx = rxsite("Latitude",41.8813452, ...
    "Longitude",-87.629771, ...
    "AntennaHeight",30);
show(rx)

Show obstruction to line-of-sight.

los(tx,rx)

Show reflected propagation path using ray tracing with up to two reflections.

raytrace(tx,rx)
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Appendix

[1] The osm file is downloaded from https://www.openstreetmap.org, which provides access to crowd-
sourced map data all over the world. The data is licensed under the Open Data Commons Open
Database License (ODbL), https://opendatacommons.org/licenses/odbl/.

Signal Strength Using Ray Tracing Propagation Model

Launch Site Viewer with buildings in Chicago. For more information about the osm file, see [1] on
page 4-222.

viewer = siteviewer("Buildings","chicago.osm");
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Create a transmitter site on a building.

tx = txsite("Latitude",41.8800, ...
    "Longitude",-87.6295, ...
    "TransmitterFrequency",2.5e9);

Create a receiver site near another building.

rx = rxsite("Latitude",41.881352, ...
    "Longitude",-87.629771, ...
    "AntennaHeight",30);

Compute the signal strength by using a ray tracing propagation model. By default, the ray tracing
model uses the SBR method, and performs line-of-sight and two-reflection analysis.

pm = propagationModel("raytracing");
ssTwoReflections = sigstrength(rx,tx,pm)

ssTwoReflections = -54.3015

Plot the propagation paths for SBR with up to two reflections.

raytrace(tx,rx,pm) 
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Compute signal strength with analysis up to two reflections, where total received power is the
cumulative power of all propagation paths

pm.MaxNumReflections = 5;
ssFiveReflections = sigstrength(rx,tx,pm)

ssFiveReflections = -53.3889

Observe the effect of material by replacing default concrete material with perfect reflector.

pm.BuildingsMaterial = "perfect-reflector";
ssPerfect = sigstrength(rx,tx,pm)

ssPerfect = -39.6703

Plot the propagation paths for SBR with up to five reflections.

raytrace(tx,rx,pm)
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Appendix

[1] The osm file is downloaded from https://www.openstreetmap.org, which provides access to crowd-
sourced map data all over the world. The data is licensed under the Open Data Commons Open
Database License (ODbL), https://opendatacommons.org/licenses/odbl/.

Path Loss Due to Material Reflection and Atmosphere

Calculate path loss due to material reflection and atmosphere in Hong Kong. Configure a ray tracing
model to use the shooting and bouncing rays (SBR) method with up to 5 reflections.

Launch Site Viewer with buildings in Hong Kong. For more information about the osm file, see [1] on
page 4-226.

viewer = siteviewer("Buildings","hongkong.osm");
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Define transmitter and receiver sites to model a small cell scenario in a dense urban environment.

tx = txsite("Name","Small cell transmitter", ...
    "Latitude",22.2789, ...
    "Longitude",114.1625, ...
    "AntennaHeight",10, ...
    "TransmitterPower",5, ...
    "TransmitterFrequency",28e9);
rx = rxsite("Name","Small cell receiver", ...
    "Latitude",22.2799, ...
    "Longitude",114.1617, ...
    "AntennaHeight",1);

Create a ray tracing propagation model for perfect reflection with up to 5 reflections. Specify the ray
tracing method as shooting and bouncing rays (SBR).

pm = propagationModel("raytracing", ...
    "Method","sbr", ...
    "AngularSeparation","low", ...
    "MaxNumReflections",5, ...
    "BuildingsMaterial","perfect-reflector", ...
    "TerrainMaterial","perfect-reflector");

Visualize the propagation paths and compute the corresponding path losses.

raytrace(tx,rx,pm,"Type","pathloss")
raysPerfect = raytrace(tx,rx,pm,"Type","pathloss");
plPerfect = [raysPerfect{1}.PathLoss]

plPerfect = 1×13
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  104.2656  103.5720  112.0095  109.3152  111.2814  112.0011  112.4436  108.1516  111.2827  111.3898  117.7513  116.5894  117.7638

Recompute and visualize the propagation paths after configuring material reflection loss by setting
building and terrain material types in the propagation model. The first value is unchanged because it
corresponds to the line-of-sight propagation path.

pm.BuildingsMaterial = "glass";
pm.TerrainMaterial = "concrete";
raytrace(tx,rx,pm,"Type","pathloss")
raysMtrls = raytrace(tx,rx,pm,"Type","pathloss");
plMtrls = [raysMtrls{1}.PathLoss]

plMtrls = 1×13

  104.2656  106.1294  119.2408  121.2477  122.4096  121.5561  126.9482  124.1615  122.8182  127.5476  139.0676  140.5833  153.3285
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Recompute and visualize the propagation paths with atmospheric loss by adding atmospheric
propagation models.

pm = pm + propagationModel("rain") + propagationModel("gas");
raytrace(tx,rx,pm,"Type","pathloss")
raysAtmospheric = raytrace(tx,rx,pm,"Type","pathloss");
plAtmospheric = [raysAtmospheric{1}.PathLoss]

plAtmospheric = 1×13

  105.3245  107.1891  121.8260  123.1432  124.9966  124.1453  129.6661  126.0578  125.4086  130.2655  143.0507  144.5666  157.3145
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Appendix

[1] The osm file is downloaded from https://www.openstreetmap.org, which provides access to crowd-
sourced map data all over the world. The data is licensed under the Open Data Commons Open
Database License (ODbL), https://opendatacommons.org/licenses/odbl/.

Visualize Ray Tracing in Conference Room

This example shows how to:

• Scale an STL file so that the model uses units of meters.
• View the scaled model in Site Viewer.
• Use ray tracing to calculate and display propagation paths from a transmitter to a receiver.

While Cartesian txsite and rxsite objects require position coordinates in meters, STL files might
use other units. If your STL file does not use meters, you must scale the model before importing it
into Site Viewer.

Read an STL file as a triangulation object. The file models a small conference room with one table
and four chairs.

TR = stlread("conferenceroom.stl");

Scale the coordinates and create a new triangulation object. For this example, assume that the
conversion factor from the STL units to meters is 0.9.
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scale = 0.9;
scaledPts = TR.Points * scale;
TR_scaled = triangulation(TR.ConnectivityList,scaledPts);

View the new triangulation object using Site Viewer. Alternatively, you can save the new
triangulation object as an STL file by using the stlwrite function.

viewer = siteviewer("SceneModel",TR_scaled);

Create and display a transmitter site close to the wall and a receiver site under the table. Specify the
position using Cartesian coordinates in meters.

tx = txsite("cartesian", ...
    "AntennaPosition",[-1.25; -1.25; 1.9], ...
    "TransmitterFrequency",2.8e9);
show(tx,"ShowAntennaHeight",false) 

rx = rxsite("cartesian", ...
    "AntennaPosition",[0.3; 0.2; 0.5]);
show(rx,"ShowAntennaHeight",false)

Pan by left-clicking, zoom by right-clicking or by using the scroll wheel, and rotate the visualization
by clicking the middle button and dragging or by pressing Ctrl and left-clicking and dragging.
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Create a ray tracing propagation model for Cartesian coordinates. Specify the ray tracing method as
shooting and bouncing rays (SBR). Calculate rays that have up to 2 reflections. Set the surface
material to wood.

pm = propagationModel("raytracing", ...
    "CoordinateSystem","cartesian", ...
    "Method","sbr", ...
    "MaxNumReflections",2, ...
    "SurfaceMaterial","wood"); 

Calculate the propagation paths and return the result as a comm.Ray object. Extract and plot the
rays.

r = raytrace(tx,rx,pm);
r = r{1};
plot(r)

View information about a ray by clicking on it.
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Input Arguments
tx — Transmitter site
txsite object | array of txsite objects

Transmitter site, specified as a txsite object or an array of txsite objects. If the receiver sites are
specified as arrays, then the propagation paths are plotted from each transmitter to each receiver
site.

rx — Receiver site
rxsite object | array of rxsite objects

Receiver site, specified as a rxsite object or an array of rxsite objects. If the transmitter sites are
specified as arrays, then the propagation paths are plotted from each transmitter to each receiver
site.

propmodel — Propagation model
character vector | string | ray tracing propagation model created with propagationModel

Propagation model, specified as a character vector, a string, or a ray tracing propagation model
created with the propagationModel function. The default is 'raytracing', a ray tracing
propagation model that uses the SBR method with the maximum number of reflections set to 2.

To specify a ray tracing propagation model that calculates different numbers of reflections, create a
RayTracing object by using the propagationModel function and set the MaxNumReflections
property.
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Type','power'

Type — Type of quantity to plot
'power' (default) | 'pathloss'

Type of quantity to plot, specified as the comma-separated pair consisting of 'Type' and 'power' in
dBm or 'pathloss' in dB.

When you specify 'power', each path is color-coded according to the received power along the path.
When you specify 'pathloss', each path is color-coded according to the path loss along the path.

Friis equation is used to calculate the received power:

Prx = Ptx + Gtx + Grx− L− Ltx− Lrx

where:

• Prx is the received power along the path.
• Ptx is the transmit power defined in tx.TransmitterPower.
• Gtx is the antenna gain of tx in the direction of the angle-of-departure (AoD).
• Grx is the antenna gain of rx in the direction of the angle-of-arrival (AoA).
• L is the path loss calculated along the path.
• Ltx is the system loss of the transmitter defined in tx.SystemLoss.
• Lrx is the system loss of the receiver defined in rx.SystemLoss.

Data Types: char

PropagationModel — Type of propagation model for ray tracing analysis
'raytracing' (default) | ray tracing propagation model created with propagationModel

Type of propagation model for ray tracing analysis, specified as the comma-separated pair consisting
of 'PropagationModel' and 'raytracing' or a ray tracing propagation model created with the
propagationModel function. If you specify 'raytracing', then the raytrace function calculates
propagation paths by using the SBR method with up to 2 reflections for the ray tracing propagation
model object configuration

To perform ray tracing analysis using the image method instead, specify a propagation model created
using the propagationModel function. This code shows how to create a propagation model that
uses the image method.

pm = propagationModel('raytracing','Method','image');

For information about differences between the image and SBR methods, see “Choose a Propagation
Model”.
Data Types: char
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ColorLimits — Color limits for colormap
two-element numeric row vector

Color limits for colormap, specified as the comma-separated pair consisting of 'ColorLimits' and a
two-element numeric row vector of the form [min max]. The units and default values of the color
limits depend on the value of the 'Type' parameter:

• 'power'– Units are in dBm, and the default value is [-120 -5].
• 'pathloss'– Units are in dB, and the default value is [45 160].

The color limits indicate the values that map to the first and last colors in the colormap. Propagation
paths with values below the minimum color limit are not plotted.
Data Types: double

Colormap — Colormap for coloring propagation paths
'jet' (default) | predefined color map name | M-by-3 array of RGB

Colormap for coloring propagation paths, specified as the comma-separated pair consisting of
'Colormap' and a predefined color map name or an M-by-3 array of RGB (red, blue, green) triplets
that define M individual colors.
Data Types: char | double

ShowLegend — Show color legend on map
true (default) | false

Show color legend on map, specified as the comma-separated pair consisting of 'ShowLegend' and
true or false.
Data Types: logical

Map — Map for visualization or surface data
siteviewer object | triangulation object | string scalar | character vector

Map for visualization or surface data, specified as a siteviewer object, a triangulation object, a
string scalar, or a character vector. Valid and default values depend on the coordinate system.

Coordinate System Valid map values Default map value
"geographic" • A siteviewer objecta.

• A terrain name, if the
function is called with an
output argument. Valid
terrain names are "none",
"gmted2010", or the name
of the custom terrain data
added using
addCustomTerrain.

• The current siteviewer
object or a new siteviewer
object if none are open.

• "gmted2010", if the
function is called with an
output.
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Coordinate System Valid map values Default map value
"cartesian" • "none".

• A siteviewer object.
• The name of an STL file.
• A triangulation object.

• "none".

a Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not
imply endorsement by MathWorks.

Data Types: char | string

Output Arguments
rays — Ray configuration object
M-by-N cell array

Ray configuration, returned as a M-by-N cell array where M is the number of transmitter sites and N
is the number of receiver sites. Each cell element is a row vector of comm.Ray objects representing
all the rays found between the corresponding transmitter site and receiver site. Within each row
vector, the comm.Ray objects with the same transmitter to receiver interactions types are grouped
together, groups are sorted alphabetically and then by ascending number of reflections. In each
group, the rays are ordered by increasing propagation distance.

Version History
Introduced in R2019b

SBR method finds paths with exact geometric accuracy
Behavior changed in R2022b

When you find propagation paths using the SBR method, MATLAB corrects the results so that the
geometric accuracy of each path is exact, using single-precision floating-point computations. In
previous releases, the paths have approximate geometric accuracy.

For example, this code finds propagation paths between a transmitter and receiver by using the
default SBR method and returns the paths as comm.Ray objects. In R2022b, the raytrace function
finds seven propagation paths. In earlier releases, the function approximates eight propagation paths,
one of which is a duplicate path.

viewer = siteviewer(Buildings="hongkong.osm");
 
tx = txsite(Latitude=22.2789,Longitude=114.1625,AntennaHeight=10, ...
   TransmitterPower=5,TransmitterFrequency=28e9);
rx = rxsite(Latitude=22.2799,Longitude=114.1617,AntennaHeight=1);
 
rSBR = raytrace(tx,rx)
raytrace(tx,rx)
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R2022b R2022a
rSBR =

  1×1 cell array

    {1×7 comm.Ray}

rSBR =

  1×1 cell array

    {1×8 comm.Ray}

Paths calculated using the SBR method in R2022b more closely align with paths calculated using the
image method. The image method finds all possible paths with exact geometric accuracy. For
example, this code uses the image method to find propagation paths between the same transmitter
and receiver.

viewer = siteviewer(Buildings="hongkong.osm");
 
tx = txsite(Latitude=22.2789,Longitude=114.1625, ...
   AntennaHeight=10,TransmitterPower=5, ...
   TransmitterFrequency=28e9);
rx = rxsite(Latitude=22.2799,Longitude=114.1617, ...
   AntennaHeight=1);
 
pm = propagationModel("raytracing",Method="image",MaxNumReflections=2);
 
rImage = raytrace(tx,rx,pm)

rImage =

  1×1 cell array

    {1×7 comm.Ray}

In this case, the SBR method finds the same number of propagation paths as the image method. In
general, the SBR method finds a subset of the paths found by the image method. When both the
image and SBR methods find the same path, the points along the path are the same within a
tolerance of machine precision for single-precision floating-point values.
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This code compares the path losses, within a tolerance of 0.0001, calculated by the SBR and image
methods.

abs([rSBR{1}.PathLoss]-[rImage{1}.PathLoss]) < 0.0001

ans =

  1×7 logical array

   1   1   1   1   1   1   1

The path losses are the same within the specified tolerance.

As a result, the raytrace function can return different results in R2022b compared to previous
releases.

• The function can return a different number of comm.Ray objects because it discards invalid or
duplicate paths.

• The function can return different comm.Ray objects because it calculates exact paths rather than
approximate paths.

raytrace function uses SBR method
Behavior changed in R2021b

Starting in R2021b, the raytrace function uses the shooting and bouncing rays (SBR) method and
calculates up to two reflections by default. In previous releases, the raytrace function uses the
image method and calculates up to one reflection.

To display or compute RF propagation rays using the image method instead, create a propagation
model by using the propagationModel function. Then, use the raytrace function with the
propagation model as input. This example shows how to update your code.

pm = propagationModel('raytracing','Method','image');
raytrace(tx,rx,pm)

For information about the SBR and image methods, see “Choose a Propagation Model”.

Starting in R2021b, all RF Propagation functions use the SBR method by default and calculate up to
two reflections. For more information, see “Default modeling method is shooting and bouncing rays
method” on page 4-212.

NumReflections name-value argument will be removed
Warns starting in R2022a

The NumReflections name-value argument will be removed in a future release. The
NumReflections name-value argument now only applies for the image ray tracing method. Instead,
create a propagation model by using the propagationModel function with its MaxNumReflections
name-value argument. Then, use the raytrace function with the propagation model as an input. This
example shows the recommended workflow.

pm = propagationModel('raytracing', ...
    'Method','image','MaxNumReflections',2);
rays = raytrace(tx,rx,pm);
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See Also
Functions
propagationModel | los | sigstrength

Objects
siteviewer | rxsite | txsite

Topics
“Choose a Propagation Model”
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removeCustomTerrain
Remove custom terrain data

Syntax
removeCustomTerrain(terrainName)

Description
removeCustomTerrain(terrainName) removes the custom terrain data specified by the user-
defined terrainName. You can use this function to remove terrain data that is no longer needed. The
terrain data to be removed must have been previously added using addCustomTerrain.

Examples

Site Viewer Maps Using Custom Terrain

Add terrain for a region around Boulder, CO. The DTED file was downloaded from the "SRTM Void
Filled" data set available from the U.S. Geological Survey.

dtedfile = "n39_w106_3arc_v2.dt1";
attribution = "SRTM 3 arc-second resolution. Data available " + ...
   "from the U.S. Geological Survey.";
addCustomTerrain("southboulder",dtedfile,"Attribution",attribution)

Use the custom terrain name in Site Viewer.

viewer = siteviewer("Terrain","southboulder");
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Create a site with the terrain region.

mtzion = txsite("Name","Mount Zion", ...
   "Latitude",39.74356, ...
   "Longitude",-105.24193, ...
   "AntennaHeight", 30);
show(mtzion)
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Create a coverage map of the area within 20 km of the transmitter site.

coverage(mtzion, ...
   "MaxRange",20000, ...
   "SignalStrengths",-100:-5)
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Remove the custom terrain.

close(viewer)
removeCustomTerrain("southboulder")

Input Arguments
terrainName — User-defined identifier for terrain data
string scalar | character vector

User-defined identifier for terrain data previously added using addCustomTerrain, specified as a
string scalar or a character vector.
Data Types: char | string

Version History
Introduced in R2019b

See Also
addCustomTerrain | siteviewer
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add
Package: rfprop

Add propagation models

Syntax
pmc = add(propmodel1,propmodel2)

Description
pmc = add(propmodel1,propmodel2) adds propagation model objects propmodel1 and
propmodel2 and returns a composite propagation model object pmc which contains propmodel1
and propmodel2.

Note

• The syntax propmodel1+propmodel2 can be used in place of add.
• A composite propagation model cannot contain more than one propagation model object of the

same class.
• A composite propagation model cannot contain more than one propagation model object which

includes effects of free-space loss.

Examples

Signal Strength Over Terrain Using Composite Propagation Model

Specify the transmitter and the receiver sites.

tx = txsite("Name","Fenway Park", ...
      "Latitude",42.3467, ...
        "Longitude",-71.0972, ...
        "TransmitterFrequency",6e9);
rx = rxsite("Name","Bunker Hill Monument", ...
        "Latitude",42.3763, ...
        "Longitude",-71.0611);  

Calculate signal strength using default Longley-Rice model.

 ss1 = sigstrength(rx,tx)

ss1 = -80.9353

Create composite propagation model with Longley-Rice and specific atmospheric propagation models.

pm = propagationModel("longley-rice") + ...
       propagationModel("gas") + propagationModel("rain");  
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Calculate signal strength using composite propagation model.

ss2 = sigstrength(rx,tx,pm)

ss2 = -81.2259

Input Arguments
propmodel1 — Propagation model
character vector | string

Propagation model, specified as a character vector or string. You can also use the
propagationModel function to define this input.
Data Types: char | string

propmodel2 — Propagation model
character vector | string

Propagation model, specified as a character vector or string. You can also use the
propagationModel function to define this input.
Data Types: char | string

Output Arguments
pmc — Composite propagation model
composite propagationModel function object

Composite propagation model, composite propagationModel function object

The path loss computed by pmc is the sum of path losses computed by propmodel1 and
propmodel2. If either propmodel1 or propmodel2 is a ray tracing model, then pmc is also a ray
tracing model where path losses from rain, gas, or fog models in the composite are added to the path
loss computed for each propagation path.

Version History
Introduced in R2020a

See Also
propagationModel | range
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pattern
Display antenna radiation pattern in Site Viewer

Syntax
pattern(tx)
pattern(rx,frequency)
pattern( ___ ,Name,Value)

Description
pattern(tx) displays the 3-D antenna radiation pattern for the transmitter site txsite in the
current Site Viewer. Signal gain value (dBi) in a particular direction determines the color of the
pattern.

pattern(rx,frequency) displays the 3-D radiation pattern for the receiver site rxsite for the
specified frequency.

pattern( ___ ,Name,Value) displays the 3-D radiation pattern with additional options specified by
name-value pair arguments.

Examples

Single Transmitter Site Pattern

Define and visualize the radiation pattern of a single transmitter site.

tx = txsite;
pattern(tx)
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Pattern for Cartesian Transmitter

Import and view an STL file. The file models a small conference room with one table and four chairs.

viewer = siteviewer('SceneModel','conferenceroom.stl');

Create a transmitter site that uses a three-element uniform linear array (ULA) with an element
spacing of 0.05 meters. Specify the position using Cartesian coordinates in meters.

cfgArray = arrayConfig("Size",[3 1],"ElementSpacing",0.05);
tx = txsite("cartesian", ...
    "AntennaPosition",[0; 0; 2.1], ...
    "Antenna",cfgArray);

Display the antenna pattern. Specify the size of the pattern plot as 0.4 meters.

pattern(tx,"Transparency",0.6,"Size",0.4)

Pan by left-clicking, zoom by right-clicking or by using the scroll wheel, and rotate the visualization
by clicking the middle button and dragging or by pressing Ctrl and left-clicking and dragging.

 pattern

4-243



Tilt the antenna by updating the AntennaAngle property of the transmitter. Display the updated
pattern.

tx.AntennaAngle = [0 90];
pattern(tx,"Transparency",0.6,"Size",0.4)
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Input Arguments
tx — Transmitter site
txsite object

Transmitter site, specified as a txsite object.

rx — Receiver site
rxsite object

Receiver site, specified as a rxsite object.

frequency — Frequency to calculate radiation pattern
positive scalar

Frequency to calculate radiation pattern, specified as a positive scalar.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Size',2

Size — Size of pattern plot
'auto' (default) | numerical scalar
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Size of the pattern plot, specified as a numerical scalar in meters. This parameter represents the
distance between the antenna position and the point on the plot with the highest gain.

The default value depends on the CoordinateSystem property of the siteviewer object. When
CoordinateSystem is 'geographic', the default size is 50 meters. When CoordinateSystem is
'cartesian', the default size is approximately 1/6 of the scene model size.
Data Types: double

Transparency — Transparency of pattern plot
0.4 (default) | real number in the range of [0,1]

Transparency of the pattern plot, specified as a real number in the range of [0,1], where 0 is
completely transparent and 1 is completely opaque.
Data Types: double

Colormap — Colormap for coloring of pattern plot
'jet(256)' (default) | predefined colormap name | M-by-3 array of RGB triplets

Colormap for coloring of the pattern plot, specified as a predefined colormap name or an M-by-3
array of RGB (red, blue, green) triplets that define M individual colors.
Data Types: double

Resolution — Resolution of 3-D pattern
'high' (default) | 'low' | 'medium'

Resolution of 3-D map, specified as 'low', 'medium', or 'high'. This property controls the visual
quality and the time taken to plot the pattern where the value of 'low' corresponds to the fastest
and the least detailed pattern.
Data Types: double

Map — Map for visualization of surface data
siteviewer object

Map for visualization of surface data, specified as a siteviewer object.8

Data Types: char | string

Version History
Introduced in R2019b

See Also
coverage

8 Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not
imply endorsement by MathWorks.
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show
Show site in Site Viewer

Syntax
show(site)
show(site,Name,Value)

Description
show(site) displays the location of the specified transmitter or receiver site using a marker in the
current Site Viewer.

show(site,Name,Value) displays site with additional options specified by one or more name-
value arguments.

Examples

Default Receiver Site

Create and show the default receiver site.

rx = rxsite

rx = 
  rxsite with properties:

                   Name: 'Site 2'
               Latitude: 42.3021
              Longitude: -71.3764
                Antenna: 'isotropic'
           AntennaAngle: 0
          AntennaHeight: 1
             SystemLoss: 0
    ReceiverSensitivity: -100

show(rx)
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Show and Hide Transmitter Site

Create and show a transmitter site.

tx = txsite('Name','MathWorks Apple Hill',...
       'Latitude',42.3001, ...
       'Longitude',-71.3504);
show(tx)
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Hide the transmitter site.

hide(tx)
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Show and Hide Sites with Cartesian Coordinates

Import and view an STL file. The file models a small conference room with one table and four chairs.

viewer = siteviewer('SceneModel','conferenceroom.stl');

Create a transmitter site near the upper corner of the room and a receiver site above the table.
Specify the position using Cartesian coordinates in meters. Then, visualize the sites.

tx = txsite('cartesian', ...
    'AntennaPosition',[-1.46; -1.42; 2.1]);
rx = rxsite('cartesian', ...
    'AntennaPosition',[0.3; 0.3; 0.85]);

show(tx)
show(rx)

Pan by left-clicking, zoom by right-clicking or by using the scroll wheel, and rotate the visualization
by clicking the middle button and dragging or by pressing Ctrl and left-clicking and dragging.

Hide the sites.

hide(tx)
hide(rx)
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Input Arguments
site — Transmitter or receiver site
txsite or rxsite object | array of txsite or rxsite objects

Transmitter or receiver site, specified as a txsite or rxsite object or an array of txsite or
rxsite objects.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'ClusterMarkers',true

Icon — Image file
character vector

Image file, specified as a character vector.
Data Types: char

IconSize — Width and height of icon
36-by-36 (default) | 1-by-2 vector of positive numeric values

Width and height of the icon, specified as a 1-by-2 vector of positive numeric values in pixels.
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IconAlignment — Vertical position of icon relative to site
'top' (default) | 'center' | 'bottom'

Vertical position of icon relative to site, specified as:

• 'bottom - Aligns the icon below the site antenna position.
• 'center' - Aligns the center of the icon to the site antenna position.
• 'top' - Aligns the icon above the site antenna position.

ClusterMarkers — Combine nearby markers into groups or clusters
true | false

Combine nearby markers into groups or clusters, specified as true or false.
Data Types: char

Map — Map for visualization of surface data
siteviewer object

Map for visualization of surface data, specified as a siteviewer object.9

Data Types: char | string

ShowAntennaHeight — Option to show line from site to surface
true or 1 (default) | false or 0

Option to show a white line from the site down to the nearest surface, specified as numeric or logical
1 (true) or 0 (false).
Data Types: logical

Version History
Introduced in R2019b

See Also
hide

9 Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not
imply endorsement by MathWorks.

4 Object Functions

4-252



sigstrength
Received signal strength

Syntax
ss = sigstrength(rx,tx)
ss = sigstrength(rx,tx,propmodel)
ss = sigstrength( ___ ,Name,Value)

Description
ss = sigstrength(rx,tx) returns the signal strength in power units (dBm) at the receiver site
due to the transmitter site.

ss = sigstrength(rx,tx,propmodel) returns the signal strength at the receiver site using the
specified propagation model. Specifying a propagation model is the same as specifying the
PropagationModel name-value argument.

ss = sigstrength( ___ ,Name,Value) specifies options using name-value arguments, in addition
to any combination of arguments from the previous syntaxes. For example, "Type","efield"
returns the signal strength in electric field strength units (dBμV/m).

Examples

Received Power and Link Margin at Receiver

Create a transmitter site.

tx = txsite('Name','Fenway Park', ...
        'Latitude', 42.3467, ...
        'Longitude', -71.0972);

Create a receiver site with sensitivity defined (in dBm).

 rx = rxsite('Name','Bunker Hill Monument', ...
        'Latitude', 42.3763, ...
        'Longitude', -71.0611, ...
        'ReceiverSensitivity', -90);

Calculate the received power and link margin. Link margin is the difference between the receiver's
sensitivity and the received power.

ss = sigstrength(rx,tx)

ss = -71.1414

margin = abs(rx.ReceiverSensitivity - ss)

margin = 18.8586
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Signal Strength Using Ray Tracing Propagation Model

Launch Site Viewer with buildings in Chicago. For more information about the osm file, see [1] on
page 4-256.

viewer = siteviewer("Buildings","chicago.osm");

Create a transmitter site on a building.

tx = txsite("Latitude",41.8800, ...
    "Longitude",-87.6295, ...
    "TransmitterFrequency",2.5e9);

Create a receiver site near another building.

rx = rxsite("Latitude",41.881352, ...
    "Longitude",-87.629771, ...
    "AntennaHeight",30);

Compute the signal strength by using a ray tracing propagation model. By default, the ray tracing
model uses the SBR method, and performs line-of-sight and two-reflection analysis.

pm = propagationModel("raytracing");
ssTwoReflections = sigstrength(rx,tx,pm)

ssTwoReflections = -54.3015

Plot the propagation paths for SBR with up to two reflections.

raytrace(tx,rx,pm) 
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Compute signal strength with analysis up to two reflections, where total received power is the
cumulative power of all propagation paths

pm.MaxNumReflections = 5;
ssFiveReflections = sigstrength(rx,tx,pm)

ssFiveReflections = -53.3889

Observe the effect of material by replacing default concrete material with perfect reflector.

pm.BuildingsMaterial = "perfect-reflector";
ssPerfect = sigstrength(rx,tx,pm)

ssPerfect = -39.6703

Plot the propagation paths for SBR with up to five reflections.

raytrace(tx,rx,pm)
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Appendix

[1] The osm file is downloaded from https://www.openstreetmap.org, which provides access to crowd-
sourced map data all over the world. The data is licensed under the Open Data Commons Open
Database License (ODbL), https://opendatacommons.org/licenses/odbl/.

Input Arguments
rx — Receiver site
rxsite object | array of rxsite objects

Receiver site, specified as a rxsite object. You can use array inputs to specify multiple sites.

tx — Transmitter site
txsite object | array of txsite objects

Transmitter site, specified as a txsite object. You can use array inputs to specify multiple sites.

propmodel — Propagation model to use for path loss calculations
"longley-rice" (default) | "freespace" | "close-in" | "rain" | "gas" | "fog" |
"raytracing" | propagation model created with propagationModel

Propagation model to use for the path loss calculations, specified as one of these options:

• "freespace" — Free space propagation model
• "rain" — Rain propagation model
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• "gas" — Gas propagation model
• "fog" — Fog propagation model
• "close-in" — Close-in propagation model
• "longley-rice" — Longley-Rice propagation model
• "tirem" — TIREM propagation model
• "raytracing" — Ray tracing propagation model that uses the shooting and bouncing rays (SBR)

method. When you specify a ray tracing model as input, the function incorporates multipath
interference by using a phasor sum.

• A propagation model created with the propagationModel function

The default value depends on the coordinate system used by the input sites.

Coordinate System Default propagation model value
"geographic" • "longley-rice" when you use a terrain.

• "freespace" when you do not use a terrain.
"cartesian" • "freespace" when Map is set to none.

• "raytracing" when Map is set to the name
of an STL file or a triangulation object. The
default ray tracing model uses the shooting
and bouncing rays (SBR) method.

Terrain propagation models, including "longley-rice" and "tirem", are only supported for sites
with a CoordinateSystem value of "geographic".

You can also specify the propagation model by using the PropagationModel name-value pair
argument.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: "Type","power"

Type — Type of signal strength to compute
"power" (default) | "efield"

Type of signal strength to compute, specified as one of these options:

• "power" — The signal strength is in power units (dBm) of the signal at the mobile receiver input.
• "efield"— The signal strength is in electric field strength units (dBμV/m) of signal wave incident

on the antenna.

Data Types: char | string

PropagationModel — Propagation model to use for path loss calculations
"freespace" | "close-in" | "rain" | "gas" | "fog" | "longley-rice" | "raytracing" |
propagation model created with propagationModel
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Propagation model to use for the path loss calculations, specified as one of these options:

• "freespace" — Free space propagation model
• "rain" — Rain propagation model
• "gas" — Gas propagation model
• "fog" — Fog propagation model
• "close-in" — Close-in propagation model
• "longley-rice" — Longley-Rice propagation model
• "tirem" — TIREM propagation model
• "raytracing" — Ray tracing propagation model that uses the shooting and bouncing rays (SBR)

method. When you specify a ray tracing model as input, the function incorporates multipath
interference by using a phasor sum.

• A propagation model created with the propagationModel function

The default value depends on the coordinate system used by the input sites.

Coordinate System Default propagation model value
"geographic" • "longley-rice" when you use a terrain.

• "freespace" when you do not use a terrain.
"cartesian" • "freespace" when Map is set to none.

• "raytracing" when Map is set to the name
of an STL file or a triangulation object. The
default ray tracing model uses the shooting
and bouncing rays (SBR) method.

Terrain propagation models, including "longley-rice" and "tirem", are only supported for sites
with a CoordinateSystem value of "geographic".
Data Types: char | string

Map — Map for visualization or surface data
siteviewer object | triangulation object | string scalar | character vector

Map for visualization or surface data, specified as a siteviewer object, a triangulation object, a
string scalar, or a character vector. Valid and default values depend on the coordinate system.

Coordinate System Valid map values Default map value
"geographic" • A siteviewer objecta.

• A terrain name, if the
function is called with an
output argument. Valid
terrain names are "none",
"gmted2010", or the name
of the custom terrain data
added using
addCustomTerrain.

• The current siteviewer
object or a new siteviewer
object if none are open.

• "gmted2010", if the
function is called with an
output.
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Coordinate System Valid map values Default map value
"cartesian" • "none".

• A siteviewer object.
• The name of an STL file.
• A triangulation object.

• "none".

a Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not
imply endorsement by MathWorks.

Data Types: char | string

Output Arguments
ss — Signal strength
M-by-N array

Signal strength, returned as M-by-N array, where M is the number of transmitter sites and N is the
number of receiver sites.

The units of ss depend on the value of the Type name-value argument.

• When you specify Type as "power", then ss is in power units (dBm) of the signal at the mobile
receiver input.

• When you specify Type as "efield", then ss is in electric field strength units (dBμV/m) of signal
wave incident on the antenna.

Version History
Introduced in R2019b

Ray tracing functions consider multipath interference
Behavior changed in R2022b

When calculating received power using ray tracing models, the sigstrength function now considers
multipath interference by using a phasor sum. In previous releases, the function used a power sum.
As a result, the calculations in R2022b are more accurate than in previous releases.

"raytracing" propagation models use SBR method
Behavior changed in R2021b

Starting in R2021b, when you use the sigstrength function and specify the propmodel argument
or PropagationModel name-value argument as "raytracing", the function uses the shooting and
bouncing rays (SBR) method and calculates up to two reflections. In previous releases, the
sigstrength function uses the image method and calculates up to one reflection.

To calculate received signal strength using the image method instead, create a propagation model by
using the propagationModel function. Then, use the sigstrength function with the propagation
model as input. This example shows how to update your code.

pm = propagationModel("raytracing","Method","image");
ss = sigstrength(rx,tx,pm)

For information about the SBR and image methods, see “Choose a Propagation Model”.
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Starting in R2021b, all RF Propagation functions use the SBR method by default and calculate up to
two reflections. For more information, see “Default modeling method is shooting and bouncing rays
method” on page 4-212.

See Also
link | sinr | propagationModel
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sinr
Display or compute signal-to-interference-plus-noise (SINR) ratio

Syntax
sinr(txs)
sinr(txs,propmodel)
sinr( ___ ,Name,Value)
pd = sinr(txs, ___ )
r = sinr(rxs,txs, ___ )

Description
sinr(txs) displays the signal-to-interference-plus-noise ratio (SINR) for transmitter sites txs in the
current Site Viewer. The map contours are generated using SINR values computed for receiver site
locations on the map. For each location, the signal source is the transmitter site in TXS with the
greatest signal strength. The remaining transmitter sites in txs with the same transmitter frequency
act as sources of interference. If txs is scalar or there are no sources of interference the resultant
map displays signal-to-noise ratio (SNR).

This function only supports plotting for antenna sites with a CoordinateSystem property value of
"geographic".

sinr(txs,propmodel) displays the SINR map with the propagation model set to the value in
propmodel.

sinr( ___ ,Name,Value) sets properties using one or more name-value pairs, in addition to the
input arguments in previous syntaxes. For example, sinr(txs,"MaxRange",8000) sets the range
from the site location at 8000 meters to include in the SINR map region.

pd = sinr(txs, ___ ) returns computed SINR data in the propagation data object, pd. No plot is
displayed and any graphical only name-value pairs are ignored.

r = sinr(rxs,txs, ___ ) returns the sinr in dB computed at the receiver sites due to the
transmitter sites.

Examples

SINR Map for Multiple Transmitters

Define names and location of sites in Boston.

names = ["Fenway Park","Faneuil Hall","Bunker Hill Monument"];
lats = [42.3467,42.3598,42.3763];
lons = [-71.0972,-71.0545,-71.0611];

Create a transmitter site array.

txs = txsite("Name", names,...
       "Latitude",lats,...
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       "Longitude",lons, ...
       "TransmitterFrequency",2.5e9);

Display the SINR map, where signal source for each location is selected as the transmitter site with
the strongest signal.

sinr(txs)

Input Arguments
txs — Transmitter sites
txsite object | array of txsite objects

Transmitter site, specified as a txsite object. Use array inputs to specify multiple sites.

This function only supports plotting antenna sites when CoordinateSystem property is set to
"geographic".

rxs — Receiver sites
rxsite object | array of rxsite objects

Receiver site, specified as a rxsite object. Use array inputs to specify multiple sites.

This function only supports plotting antenna sites when CoordinateSystem property is set to
"geographic".

propmodel — Propagation model to use for path loss calculations
"longley-rice" (default) | "freespace" | "close-in" | "rain" | "gas" | "fog" |
"raytracing" | propagation model created with propagationModel
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Propagation model to use for the path loss calculations, specified as one of these options:

• "freespace" — Free space propagation model
• "rain" — Rain propagation model
• "gas" — Gas propagation model
• "fog" — Fog propagation model
• "close-in" — Close-in propagation model
• "longley-rice" — Longley-Rice propagation model
• "tirem" — TIREM propagation model
• "raytracing" — Ray tracing propagation model that uses the shooting and bouncing rays (SBR)

method. When you specify a ray tracing model as input, the function incorporates multipath
interference by using a phasor sum.

• A propagation model created with the propagationModel function

The default value depends on the coordinate system used by the input sites.

Coordinate System Default propagation model value
"geographic" • "longley-rice" when you use a terrain.

• "freespace" when you do not use a terrain.
"cartesian" • "freespace" when Map is set to none.

• "raytracing" when Map is set to the name
of an STL file or a triangulation object. The
default ray tracing model uses the shooting
and bouncing rays (SBR) method.

Terrain propagation models, including "longley-rice" and "tirem", are only supported for sites
with a CoordinateSystem value of "geographic".

You can also specify the propagation model by using the PropagationModel name-value pair
argument.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: "MaxRange",8000

General

SignalSource — Signal source of interest
"strongest" (default) | transmitter site object

Signal source of interest, specified as the comma-separated pair consisting of SignalSource and
"strongest" or as a transmitter site object. When the signal source of interest is "strongest", the
transmitter with the greatest signal strength is chosen as the signal source of interest for that
location. When computing sinr, SignalSource can be a txsite array with equal number of
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elements rxs where each transmitter site element defines the signal source for the corresponding
receiver site.

PropagationModel — Propagation model to use for path loss calculations
"freespace" | "close-in" | "rain" | "gas" | "fog" | "longley-rice" | "raytracing" |
propagation model created with propagationModel

Propagation model to use for the path loss calculations, specified as one of these options:

• "freespace" — Free space propagation model
• "rain" — Rain propagation model
• "gas" — Gas propagation model
• "fog" — Fog propagation model
• "close-in" — Close-in propagation model
• "longley-rice" — Longley-Rice propagation model
• "tirem" — TIREM propagation model
• "raytracing" — Ray tracing propagation model that uses the shooting and bouncing rays (SBR)

method. When you specify a ray tracing model as input, the function incorporates multipath
interference by using a phasor sum.

• A propagation model created with the propagationModel function

The default value depends on the coordinate system used by the input sites.

Coordinate System Default propagation model value
"geographic" • "longley-rice" when you use a terrain.

• "freespace" when you do not use a terrain.
"cartesian" • "freespace" when Map is set to none.

• "raytracing" when Map is set to the name
of an STL file or a triangulation object. The
default ray tracing model uses the shooting
and bouncing rays (SBR) method.

Terrain propagation models, including "longley-rice" and "tirem", are only supported for sites
with a CoordinateSystem value of "geographic".
Data Types: char | string

ReceiverNoisePower — Total noise power at receiver
-107 (default) | scalar

Total noise power at receiver, specified as a scalar in dBm. The default value assumes that the
receiver bandwidth is 1 MHz and receiver noise figure is 7 dB.

N = − 174 + 10 * log(B) + F

where,

• N = Receiver noise in dBm
• B = Receiver bandwidth in Hz
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• F = Noise figure in dB

ReceiverGain — Receiver gain
2.1 (default) | scalar

Mobile receiver gain, specified as a scalar in dB. The receiver gain values include the antenna gain
and the system loss. If you call the function using an output argument, the default value is computed
using rxs.

ReceiverAntennaHeight — Receiver antenna height
1 (default) | scalar

Receiver antenna height above the ground, specified as a scalar in meters. If you call the function
using an output argument, the default value is computed using rxs.

Map — Map for visualization or surface data
siteviewer object | triangulation object | string scalar | character vector

Map for visualization or surface data, specified as a siteviewer object, a triangulation object, a
string scalar, or a character vector. Valid and default values depend on the coordinate system.

Coordinate System Valid map values Default map value
"geographic" • A siteviewer objecta.

• A terrain name, if the
function is called with an
output argument. Valid
terrain names are "none",
"gmted2010", or the name
of the custom terrain data
added using
addCustomTerrain.

• The current siteviewer
object or a new siteviewer
object if none are open.

• "gmted2010", if the
function is called with an
output.

"cartesian" • "none".
• A siteviewer object.
• The name of an STL file.
• A triangulation object.

• "none".

a Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not
imply endorsement by MathWorks.

Data Types: char | string

For Plotting SINR

Values — Values of SINR for display
[-5:20] (default) | numeric vector

Values of SINR for display, specified as a numeric vector. Each value is displayed as a different
colored, filled on the contour map. The contour colors are derived using Colormap and
ColorLimits.

MaxRange — Maximum range of coverage map from each transmitter site
numeric scalar
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Maximum range of coverage map from each transmitter site, specified as a positive numeric scalar in
meters representing great circle distance. MaxRange defines the region of interest on the map to
plot. The default value is automatically computed based on the type of propagation model.

Type of Propagation Model MaxRange
Atmospheric or empirical 30 km
Terrain 30 km or distance to the furthest building.
Ray tracing 500 m

For more information about the types of propagation models, see “Choose a Propagation Model”.
Data Types: double

Resolution — Resolution of receiver site locations used to compute SINR values
"auto" (default) | numeric scalar

Resolution of receiver site locations used to compute SINR values, specified as "auto" or a numeric
scalar in meters. The resolution defines the maximum distance between the locations. If the
resolution is "auto", sinr computes a value scaled to MaxRange. Decreasing the resolution
increases the quality of the SINR map and the time required to create it.

Colormap — Colormap for coloring filled contours
"jet" (default) | M-by-3 array of RGB triplets

Colormap for coloring filled contours, specified as an M-by-3 array of RGB triplets, where M is the
number of individual colors.

ColorLimits — Color limits for color maps
[-5 20] (default) | two-element vector

Color limits for color maps, specified as a two-element vector of the form [min max]. The color limits
indicate the SINR values that map to the first and last colors in the colormap.

ShowLegend — Show signal strength color legend on map
"true" (default) | "false"

Show signal strength color legend on map, specified as "true" or "false".

Transparency — Transparency of SINR map
0.4 (default) | numeric scalar

Transparency of SINR map, specified as a numeric scalar in the range [0, 1]. If the value is zero, the
map is completely transparent. If the value is one, the map is completely opaque.

Output Arguments
r — Signal to interference plus noise ratio at the receiver
numeric vector (default)

Signal to interference plus noise ratio at the receiver due to the transmitter sites, returned as a
numeric vector. The vector length is equal to the number of receiver sites.
Data Types: double
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pd — SINR data
propagationData object

SINR data, returned as a propagationData object consisting of Latitude and Longitude, and a
signal strength variable corresponding to the plot type. Name of the propagationData is "SINR
Data".

Version History
Introduced in R2019b

Ray tracing functions consider multipath interference
Behavior changed in R2022b

When calculating received power using ray tracing models, the sinr function now incorporates
multipath interference by using a phasor sum. In previous releases, the function used a power sum.
As a result, the calculations in R2022b are more accurate than in previous releases.

"raytracing" propagation models use SBR method
Behavior changed in R2021b

Starting in R2021b, when you use the sinr function and specify the propmodel argument or
PropagationModel name-value argument as "raytracing", the function uses the shooting and
bouncing rays (SBR) method and calculates up to two reflections. In previous releases, the sinr
function uses the image method and calculates up to one reflection.

To display or compute the SINR using the image method instead, create a propagation model by
using the propagationModel function. Then, use the sinr function with the propagation model as
input. This example shows how to update your code.

pm = propagationModel("raytracing","Method","image");
sinr(txs,pm)

For information about the SBR and image methods, see “Choose a Propagation Model”.

Starting in R2021b, all RF Propagation functions use the SBR method by default and calculate up to
two reflections. For more information, see “Default modeling method is shooting and bouncing rays
method” on page 4-212.

See Also
coverage | propagationModel
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plot (rays), plot
Package: comm

Display RF propagation rays in Site Viewer

Syntax
plot(rays)
plot(rays,Name,Value)

Description
plot(rays) plots the propagation paths for ray objects in the Site Viewer map.

plot(rays,Name,Value) plots the propagation paths for ray objects in the Site Viewer map with
additional options specified by one or more name-value pair arguments.

Examples

Plot Propagation Rays Between Sites in Chicago

Return ray tracing results in comm.Ray objects and plot the ray propagation paths after relaunching
the Site Viewer map.

Create a Site Viewer map, loading building data for Chicago. For more information about the osm file,
see [1] on page 4-272.

viewer = siteviewer("Buildings","chicago.osm");
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Create a transmitter site on one building and a receiver site on another building. Use the los
function to show the line of sight path between the transmitter and receiver sites.

tx = txsite( ...
    "Latitude",41.8800, ...
    "Longitude",-87.6295, ...
    "TransmitterFrequency",2.5e9);
rx = rxsite( ...
    "Latitude",41.881352, ...
    "Longitude",-87.629771, ...
    "AntennaHeight",30);
los(tx,rx)
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Perform ray tracing for up to two reflections. For the configuration defined, ray tracing returns a cell
array containing the ray objects. Close the Site Viewer map.

pm = propagationModel( ...
    "raytracing", ...
    "Method","sbr", ...
    "MaxNumReflections",2);
rays = raytrace(tx,rx,pm)

rays = 1×1 cell array
    {1×3 comm.Ray}

rays{1}(1,1)

ans = 
  Ray with properties:

      PathSpecification: 'Locations'
       CoordinateSystem: 'Geographic'
    TransmitterLocation: [3×1 double]
       ReceiverLocation: [3×1 double]
            LineOfSight: 0
           Interactions: [1×1 struct]
              Frequency: 2.5000e+09
         PathLossSource: 'Custom'
               PathLoss: 92.7739
             PhaseShift: 1.2933

   Read-only properties:
       PropagationDelay: 5.7088e-07
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    PropagationDistance: 171.1462
       AngleOfDeparture: [2×1 double]
         AngleOfArrival: [2×1 double]
        NumInteractions: 1

rays{1}(1,2)

ans = 
  Ray with properties:

      PathSpecification: 'Locations'
       CoordinateSystem: 'Geographic'
    TransmitterLocation: [3×1 double]
       ReceiverLocation: [3×1 double]
            LineOfSight: 0
           Interactions: [1×2 struct]
              Frequency: 2.5000e+09
         PathLossSource: 'Custom'
               PathLoss: 100.8574
             PhaseShift: 2.9398

   Read-only properties:
       PropagationDelay: 5.9259e-07
    PropagationDistance: 177.6532
       AngleOfDeparture: [2×1 double]
         AngleOfArrival: [2×1 double]
        NumInteractions: 2

rays{1}(1,3)

ans = 
  Ray with properties:

      PathSpecification: 'Locations'
       CoordinateSystem: 'Geographic'
    TransmitterLocation: [3×1 double]
       ReceiverLocation: [3×1 double]
            LineOfSight: 0
           Interactions: [1×2 struct]
              Frequency: 2.5000e+09
         PathLossSource: 'Custom'
               PathLoss: 106.3302
             PhaseShift: 4.6994

   Read-only properties:
       PropagationDelay: 6.3790e-07
    PropagationDistance: 191.2374
       AngleOfDeparture: [2×1 double]
         AngleOfArrival: [2×1 double]
        NumInteractions: 2

close(viewer)

You can plot the rays without performing ray tracing again. Create another Site Viewer map with the
same buildings. Show the transmitter and receiver sites. Using the previously returned cell array of
ray objects, plot the reflected rays between the transmitter site and the receiver site. The plot
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function can plot the path for ray objects collectively or individually. For example, to plot rays for the
only second ray object, specify rays{1}(1,2). This figure plot all paths for all the ray objects.

siteviewer("Buildings","chicago.osm")

ans = 
  siteviewer with properties:

                Name: 'Site Viewer'
            Position: [560 240 800 600]
    CoordinateSystem: "geographic"
             Basemap: 'satellite'
             Terrain: 'gmted2010'
           Buildings: 'chicago.osm'

los(tx,rx)
plot(rays{:},"Type","power", ...
    "TransmitterSite",tx,"ReceiverSite",rx)

Appendix
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[1] The osm file is downloaded from https://www.openstreetmap.org, which provides access to crowd-
sourced map data all over the world. The data is licensed under the Open Data Commons Open
Database License (ODbL), https://opendatacommons.org/licenses/odbl/.

Input Arguments
rays — Ray configuration object
comm.Ray object

Ray configuration, specified as one comm.Ray object or a vector of comm.Ray objects. Each object
must have the PathSpecification property set to "Locations".
Data Types: comm.Ray

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: plot(rays,"Type","pathloss","ColorLimits",[-100 0]) adds the propagation
path specified in rays to the current Site Viewer and adjusts the default color limits.

Type — Quantity type to plot
"pathloss" (default) | "power"

Quantity type to plot, specified as "pathloss" or "power". Based on the value specified for Type,
the color applied along the path maps to the path loss in dB or the power in dBm of the signal along
the path.
Data Types: char | string

TransmitterSite — Transmitter site
txsite object

Transmitter site, specified as a txsite object.
Dependencies

Applies only when Type is set to "power".
Data Types: char

ReceiverSite — Receiver site
rxsite object

Receiver site, specified as an rxsite object.
Dependencies

Applies only when Type is set to "power".
Data Types: char

ColorLimits — Colormap color limits
[-120 -5] or [45 160] (default) | 1-by-2 numeric vector
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Color limits for colormap, specified as a 1-by-2 numeric vector, [min, max], where min represents the
lower saturation limit and max represents the upper saturation limit. The default is [-120 -5] when
Type is set to 'power' and [45 160] when Type is set to 'pathloss'.
Data Types: double

Colormap — Colormap applied to propagation path
'jet' (default) | M-by-3 numeric array

Colormap applied to propagation path, specified as an M-by-3 numeric array of RGB (red,green,blue)
triplets that define M individual colors.
Data Types: double | char | string

ShowLegend — Show color legend on map
true (default) | false

Show color legend on map, specified as true or false.
Data Types: logical

Map — Map for visualization and surface data
siteviewer object

Map for visualization and surface data, specified as a siteviewer object.10 The default is the current
siteviewer object, or if no Site Viewer is open a new siteviewer object opens.
Data Types: siteviewer object

Version History
Introduced in R2020a

See Also
Functions
raytrace

Objects
comm.Ray | siteviewer

10 Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not
imply endorsement by MathWorks.

4 Object Functions

4-274



hasdata
Package: matlab.io.datastore

Determine if data is available to read from TDMS datastore

Syntax
tf = hasdata(tdmsds)

Description
tf = hasdata(tdmsds) returns logical 1 (true) if there is data available to read from the TDMS
datastore specified by tdmsds. Otherwise, it returns logical 0 (false).

Examples

Check TDMS Datastore for Readable Data

In a while-loop, use hasdata to determine if there is any more data to read at the current location.

tdmsds = tdmsDatastore(tdmsDatastore("C:\data\tdms"));
while hasdata(tdmsds)
    m = read(tdmsds);
        ⋮
end

Input Arguments
tdmsds — TDMS datastore
TDMSDatastore object

TDMS datastore, specified as a TDMSDatastore object.
Example: tdmsds = tdmsDatastore("C:\data\tdms")

Output Arguments
tf — Indicator of data to read
1 | 0

Indicator of data to read, returned as a logical 1 (true) or 0 (false).

Limitations
• TDMS functions are supported on Windows platforms only.

Version History
Introduced in R2022a
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See Also
Functions
tdmsDatastore | read | reset
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preview
Package: matlab.io.datastore

Read first 8 records from TDMS datastore

Syntax
data = preview(tdmsds)

Description
data = preview(tdmsds) returns the first 8 records from TDMS datastore tdmsds, without
changing the current read position in the datastore.

Examples

Examine Preview of TDMS Datastore
tdmsds = tdmsds = tdmsDatastore("C:\data\tdms");
data = preview(tdmsds)

data =

  1×3 cell array

    {8×2 table}    {8×2 table}    {8×2 table}

data{3}

ans =

  8×2 table

    Torque1     Torque2 
    ________    ________

        0.15    -0.55729
    -0.18286         0.1
    -0.18286    -0.55729
    -0.18286    -0.88593
    -0.18286         0.1
        0.15    -0.22864
    -0.51572    -0.88593
        0.15         0.1

Input Arguments
tdmsds — TDMS datastore
TDMSDatastore object

TDMS datastore, specified as a TDMSDatastore object.
Example: tdmsds = tdmsDatastore("C:\data\tdms")
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Output Arguments
data — Start of TDMS datastore records
cell array of tables

Start of TDMS datastore records, returned as a cell array of tables from the TDMS data.

Limitations
• TDMS functions are supported on Windows platforms only.

Version History
Introduced in R2022a

See Also
Functions
tdmsDatastore | read | readall | hasdata
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read
Package: matlab.io.datastore

Read data in TDMS datastore

Syntax
data = read(tdmsds)
[data,info] = read(tdmsds)

Description
data = read(tdmsds) reads data from the files in the TDMS datastore tdmds, and returns a cell
array of tables or timetables. Each element of the cell array corresponds to a channel group in the
datastore file data.

The read function returns a subset of data from the datastore. The size of the subset is determined
by the ReadSize property of the datastore object. On the first call, read starts reading from the
beginning of the datastore, and subsequent calls continue reading from the endpoint of the previous
call. Use reset to read from the beginning again.

The function returns a cell array of tables or a cell array of timetables, depending on the value of the
tdmds.RowTimes property. See “Read TDMS-File Data into Timetables” on page 4-279.

[data,info] = read(tdmsds) also returns the output argument info, with information and
metadata about the extracted data.

Examples

Read Datastore by Files

Read data from a TDMS datastore one file at a time. Set the read size and read the first data set.

tdmsds = tdmsDatastore("C:\data\tdms",ReadSize="file");
data1 = read(tdmsds);

Read the second file and view information about the data.
[data2,info2] = read(tdmsds);
info2

info2 = 
  struct with fields:

    Filename: "C:\data\tdms\Turbine_002.tdms"
    FileSize: 172098
      Offset: 0
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Read TDMS-File Data into Timetables

By providing a vector of durations, you can read TDMS-file data into timetables.

Define a vector of 1000 elements of 1 ms duration. Set up the datastore object to read 1000 records
(ReadSize) and return a timetable (RowTimes).

durvec = milliseconds(1:1000);
tdmsds = tdmsDatastore("C:\data\tdms",ReadSize=1000,RowTimes=durvec)

tdmsds = 

  TDMSDatastore with properties:

                   Files: ["C:\data\tdms\Turbine_001.tdms"    "C:\data\tdms\Turbine_002.tdms"    "C:\data\tdms\Turbine_003.tdms"]
             ChannelList: [6×8 table]
    SelectedChannelGroup: [0×0 string]
        SelectedChannels: [0×0 string]
                RowTimes: [0.001 sec    0.002 sec    0.003 sec    0.004 sec    0.005 sec    0.006 sec    0.007 sec    …    ]
                ReadSize: 1000

Read 1000 records from the datastore into timetables.

dd = read(tdmsds)

dd =

  1×3 cell array

    {1000×2 timetable}    {1000×2 timetable}    {1000×2 timetable}

View part of one of the timetables.

dd{1}

ans =

  1000×2 timetable

      Time       Acceleration1    Acceleration2
    _________    _____________    _____________

    0.001 sec       -1.9851                0   
    0.002 sec       -3.9702                0   
    0.003 sec        11.911           1.5521   
    0.004 sec        5.9553          -1.5521   
    0.005 sec        1.9851          -4.6562   
    0.006 sec        5.9553           4.6562   
    0.007 sec        3.9702          -1.5521   
    0.008 sec        3.9702          -4.6562   

        :              :                :      

    0.993 sec        50.656          -469.05   
    0.994 sec        46.686          -475.26   
    0.995 sec         40.73          -472.16   
    0.996 sec         40.73          -462.84   
    0.997 sec        34.775          -461.29   
    0.998 sec        38.745          -472.16   
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    0.999 sec        38.745           -464.4   
    1 sec            34.775          -462.84   

    Display all 1000 rows.

Input Arguments
tdmsds — TDMS datastore
TDMSDatastore object

TDMS datastore, specified as a TDMSDatastore object.
Example: tdmsds = tdmsDatastore("C:\data\tdms")

Output Arguments
data — Output data
cell array of tables

Output data, returned as a cell array of tables from the TDMS records.

info — Information about data
structure array

Information about the data source file, returned as a structure with the following fields:

Filename
FileSize
Offset

The offset field indicates the position of the data in the file.

Limitations
• TDMS functions are supported on Windows platforms only.

Version History
Introduced in R2022a

See Also
Functions
tdmsDatastore | reset | preview | readall | hasdata
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readall
Package: matlab.io.datastore

Read all data in TDMS datastore

Syntax
data = readall(tdmsds)

Description
data = readall(tdmsds) reads all the data in the datastore specified by tdmsds, and returns a
cell array of tables or timetables. Each element of the cell array corresponds to a channel group in
the datastore file data.

The function returns a cell array of tables or a cell array of timetables, depending on the value of the
tdmds.RowTimes property. See tdmsDatastore.

After the readall function returns all the data, it resets tdmsds to point to the beginning of the
datastore.

Examples

Read All the Data in a Datastore

Read all the data from a multiple file TDMS datastore into an array of tables.

Set up datastore and read all its data.

tdmsds = tdmsDatastore("C:\data\tdms");
data = readall(td)

data =

  1×3 cell array

    {9936×2 table}    {9936×2 table}    {9936×2 table} 

View part of the data.
data{1}

ans =

  9936×2 table

    Acceleration1    Acceleration2
    _____________    _____________

       -1.9851                0   
       -3.9702                0   
        11.911           1.5521   
        5.9553          -1.5521   
        1.9851          -4.6562   
        5.9553           4.6562   
        3.9702          -1.5521   
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        3.9702          -4.6562   

          :                :      

       -4.8046           6.7826   
       -7.2068           2.2609   
       -7.2068           4.5218   
       -7.2068           6.7826   
       -2.4023           9.0435   
       -2.4023           4.5218   
       -9.6091           2.2609   
       -12.011           4.5218   

Input Arguments
tdmsds — TDMS datastore
TDMSDatastore object

TDMS datastore, specified as a TDMSDatastore object.
Example: tdmsds = tdmsDatastore("C:\data\tdms")

Output Arguments
data — Output data
cell array of tables

Output data, returned as a cell array of tables from all TDMS-files in the datastore.

Limitations
• TDMS functions are supported on Windows platforms only.

Version History
Introduced in R2022a

See Also
Functions
tdmsDatastore | read | preview
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reset
Package: matlab.io.datastore

Reset TDMS datastore to initial state

Syntax
reset(tdmsds)

Description
reset(tdmsds) resets the TDMS datastore specified by tdmsds to its initial read state, where no
data has been read from it. Resetting allows you to reread from the same datastore.

Examples

Reset TDMS Datastore

Reset a TDMS datastore so that you can read from it again.

tdmsds = tdmsDatastore("C:\data\tdms");
data = read(tdmsds);
    ⋮
reset(tdmsds);
data = read(tdmsds);

Input Arguments
tdmsds — TDMS datastore
TDMSDatastore object

TDMS datastore, specified as a TDMSDatastore object.
Example: tdmsds = tdmsDatastore("C:\data\tdms")

Limitations
• TDMS functions are supported on Windows platforms only.

Version History
Introduced in R2022a

See Also
Functions
tdmsDatastore | read | hasdata
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A-Law Compressor
Implement A-law compressor for source coding

Library
Source Coding

Description
The A-Law Compressor block implements an A-law compressor for the input signal. The formula for
the A-law compressor is

y =

A x
1 + logAsgn(x) for 0 ≤ x ≤ V

A
V 1 + log(A x /V)

1 + logA sgn(x) for VA < x ≤ V

where A is the A-law parameter of the compressor, V is the peak signal magnitude for x, log is the
natural logarithm, and sgn is the sign function.

The most commonly used A value is 87.6.

The input can have any shape or frame status. This block processes each vector element
independently.

Parameters
A value

The A-law parameter of the compressor.
Peak signal magnitude

The peak value of the input signal. This is also the peak value of the output signal.

Supported Data Type
Port Supported Data Types
In • double
Out • double

Pair Block
A-Law Expander
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References

[1] Sklar, Bernard. Digital Communications: Fundamentals and Applications. Englewood Cliffs, N.J.,
Prentice-Hall, 1988.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
A-Law Expander | Mu-Law Compressor
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A-Law Expander
Implement A-law expander for source coding

Library
Source Coding

Description
The A-Law Expander block recovers data that the A-Law Compressor block compressed. The formula
for the A-law expander, shown below, is the inverse of the compressor function.

x =

y(1 + logA)
A for 0 ≤ y ≤ V

1+logA

exp y (1 + logA)/V − 1 V
Asgn(y) for  V

1+logA < y ≤ V

The input can have any shape or frame status. This block processes each vector element
independently.

Parameters
A value

The A-law parameter of the compressor.
Peak signal magnitude

The peak value of the input signal. This is also the peak value of the output signal.

Match these parameters to the ones in the corresponding A-Law Compressor block.

Supported Data Type
Port Supported Data Types
In • double
Out • double

Pair Block
A-Law Compressor
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References

[1] Sklar, Bernard. Digital Communications: Fundamentals and Applications. Englewood Cliffs, N.J.,
Prentice-Hall, 1988.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
A-Law Compressor | Mu-Law Expander
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Algebraic Deinterleaver
Restore ordering of input symbols using algebraically derived permutation

Library
Block sublibrary of Interleaving

Description
The Algebraic Deinterleaver block restores the original ordering of a sequence that was interleaved
using the Algebraic Interleaver block. In typical usage, the parameters in the two blocks have the
same values.

The Number of elements parameter, N, indicates how many numbers are in the input vector. This
block accepts a column vector input signal.

The block accepts the following data types: int8, uint8, int16, uint16, int32, uint32, boolean,
single, double, and fixed-point. The output signal inherits its data type from the input signal.

The Type parameter indicates the algebraic method that the block uses to generate the appropriate
permutation table. Choices are Takeshita-Costello and Welch-Costas. Each of these methods
has parameters and restrictions that are specific to it; these are described on the reference page for
the Algebraic Interleaver block.

Parameters
Type

The type of permutation table that the block uses for deinterleaving. Choices are Takeshita-
Costello and Welch-Costas.

Number of elements
The number of elements, N, in the input vector.

Multiplicative factor
The factor the block uses to compute the corresponding interleaver's cycle vector. This field
appears only when you set Type to Takeshita-Costello.

Cyclic shift
The amount by which the block shifts indices when creating the corresponding interleaver's
permutation table. This field appears only when you set Type to Takeshita-Costello.

Primitive element
An element of order N in the finite field GF(N+1). This field appears only if Type is set to Welch-
Costas.
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Pair Block
Algebraic Interleaver

References

[1] Heegard, Chris and Stephen B. Wicker. Turbo Coding. Boston: Kluwer Academic Publishers, 1999.

[2] Takeshita, O. Y. and D. J. Costello, Jr. "New Classes Of Algebraic Interleavers for Turbo-Codes."
Proc. 1998 IEEE International Symposium on Information Theory, Boston, Aug. 16-21, 1998.
419.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
General Block Deinterleaver | Algebraic Interleaver
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Algebraic Interleaver
Reorder input symbols using algebraically derived permutation table

Library
Block sublibrary of Interleaving

Description
The Algebraic Interleaver block rearranges the elements of its input vector using a permutation that
is algebraically derived. The Number of elements parameter, N, indicates how many numbers are in
the input vector. This block accepts a column vector input signal.

The block accepts the following data types: int8, uint8, int16, uint16, int32, uint32, boolean,
single, double, and fixed-point. The output signal inherits its data type from the input signal.

The Type parameter indicates the algebraic method that the block uses to generate the appropriate
permutation table. Choices are Takeshita-Costello and Welch-Costas. Each of these methods
has parameters and restrictions that are specific to it:

• If you set Type to Welch-Costas, then N + 1 must be prime. The Primitive element parameter
is an integer, A, between 1 and N that represents a primitive element of the finite field GF(N + 1).
This means that every nonzero element of GF(N + 1) can be expressed as A raised to some integer
power.

In a Welch-Costas interleaver, the permutation maps the integer k to mod(Ak,N + 1) - 1.
• If you set Type to Takeshita-Costello, then N must be 2m for some integer m. The

Multiplicative factor parameter, k, must be an odd integer less than N. The Cyclic shift
parameter, h, must be a nonnegative integer less than N.

A Takeshita-Costello interleaver uses a length-N cycle vector whose nth element is

c(n) = mod k ⋅ n ⋅ (n− 1)
2 , N + 1, n

for integers n between 1 and N. The intermediate permutation function is obtained by using the
following relationship:

Π c n = c n + 1

where

n = 1:N

The interleaver's actual permutation vector is the result of cyclically shifting the elements of the
permutation vector, π, by the Cyclic shift parameter, h.
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Parameters
Type

The type of permutation table that the block uses for interleaving.
Number of elements

The number of elements, N, in the input vector.
Multiplicative factor

The factor used to compute the interleaver's cycle vector. This field appears only if Type is set to
Takeshita-Costello.

Cyclic shift
The amount by which the block shifts indices when creating the permutation table. This field
appears only if Type is set to Takeshita-Costello.

Primitive element
An element of order N in the finite field GF(N+1). This field appears only if Type is set to Welch-
Costas.

Pair Block
Algebraic Deinterleaver

References

[1] Heegard, Chris and Stephen B. Wicker. Turbo Coding. Boston: Kluwer Academic Publishers, 1999.

[2] Takeshita, O. Y. and D. J. Costello, Jr. "New Classes Of Algebraic Interleavers for Turbo-Codes."
Proc. 1998 IEEE International Symposium on Information Theory, Boston, Aug. 16-21, 1998.
419.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
General Block Interleaver | Algebraic Deinterleaver
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APP Decoder
Decode convolutional code using a posteriori probability (APP) method

Library
Convolutional sublibrary of Error Detection and Correction

Description
The APP Decoder block performs a posteriori probability (APP) decoding of a convolutional code.

Input Signals and Output Signals

The input L(u) represents the sequence of log-likelihoods of encoder input bits, while the input L(c)
represents the sequence of log-likelihoods of code bits. The outputs L(u) and L(c) are updated
versions of these sequences, based on information about the encoder.

If the convolutional code uses an alphabet of 2n possible symbols, this block's L(c) vectors have length
Q*n for some positive integer Q. Similarly, if the decoded data uses an alphabet of 2k possible output
symbols, then this block's L(u) vectors have length Q*k.

This block accepts a column vector input signal with any positive integer for Q.

If you only need the input L(c) and output L(u), you can attach a Simulink Ground block to the input
L(u) and a Simulink Terminator block to the output L(c).

This block accepts single and double data types. Both inputs, however, must be of the same type.
The output data type is the same as the input data type.

Specifying the Encoder

To define the convolutional encoder that produced the coded input, use the Trellis structure
parameter. This parameter is a MATLAB structure whose format is described in “Trellis Description of
a Convolutional Code”. You can use this parameter field in two ways:

• If you have a variable in the MATLAB workspace that contains the trellis structure, enter its name
as the Trellis structure parameter. This way is preferable because it causes Simulink to spend
less time updating the diagram at the beginning of each simulation, compared to the usage
described next.

• If you want to specify the encoder using its constraint length, generator polynomials, and possibly
feedback connection polynomials, use a poly2trellis command within the Trellis structure
field. For example, to use an encoder with a constraint length of 7, code generator polynomials of
171 and 133 (in octal numbers), and a feedback connection of 171 (in octal), set the Trellis
structure parameter to

poly2trellis(7,[171 133],171)
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To indicate how the encoder treats the trellis at the beginning and end of each frame, set the
Termination method parameter to either Truncated or Terminated. The Truncated option
indicates that the encoder resets to the all-zeros state at the beginning of each frame. The
Terminated option indicates that the encoder forces the trellis to end each frame in the all-zeros
state. If you use the Convolutional Encoder block with the Operation mode parameter set to
Truncated (reset every frame), use the Truncated option in this block. If you use the
Convolutional Encoder block with the Operation mode parameter set to Terminate trellis by
appending bits, use the Terminated option in this block.

Specifying Details of the Algorithm

You can control part of the decoding algorithm using the Algorithm parameter. The True APP
option implements a posteriori probability decoding as per equations 20–23 in section V of [1]. To
gain speed, both the Max* and Max options approximate expressions like

log∑
i

exp(ai)

by other quantities. The Max option uses max(ai) as the approximation, while the Max* option uses
max(ai) plus a correction term given by ln(1 + exp( − ai− 1− ai )) [3].

The Max* option enables the Scaling bits parameter in the dialog box. This parameter is the number
of bits by which the block scales the data it processes internally (multiplies the input by
(2^numScalingBits) and divides the pre-output by the same factor). Use this parameter to avoid
losing precision during the computations.

Parameters
Trellis structure

MATLAB structure that contains the trellis description of the convolutional encoder.
Termination method

Either Truncated or Terminated. This parameter indicates how the convolutional encoder
treats the trellis at the beginning and end of frames.

Algorithm
Either True APP, Max*, or Max.

Number of scaling bits
An integer between 0 and 8 that indicates by how many bits the decoder scales data in order to
avoid losing precision. This field is active only when Algorithm is set to Max*.

Disable L(c) output port
Select this check box to disable the secondary block output, L(c).

References

[1] Benedetto, S., G. Montorsi, D. Divsalar, and F. Pollara, “A Soft-Input Soft-Output Maximum A
Posterior (MAP) Module to Decode Parallel and Serial Concatenated Codes,” JPL TDA
Progress Report, Vol. 42-127, November 1996.

[2] Benedetto, Sergio and Guido Montorsi, “Performance of Continuous and Blockwise Decoded
Turbo Codes.” IEEE Communications Letters, Vol. 1, May 1997, 77–79.
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[3] Viterbi, Andrew J., “An Intuitive Justification and a Simplified Implementation of the MAP Decoder
for Convolutional Codes,” IEEE Journal on Selected Areas in Communications, Vol. 16,
February 1998, 260–264.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Viterbi Decoder | Convolutional Encoder

Functions
poly2trellis
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AGC
Adaptively adjust gain for constant signal-level output
Library: Communications Toolbox / RF Impairments Correction

Description
The automatic gain controller (AGC) block adaptively adjusts its gain to achieve a constant signal
level at the output.

This icon shows the AGC block with the optional Px port.

Ports
Input

In — Input signal
column vector

Input signal, specified as a column vector.
Data Types: single | double | int | uint

Output

y — Output signal
NS-element column vector

Output signal, returned as an NS-element column vector. NS is the length of the input signal. The
output signal is the same data type as the input signal.

Px — Power level estimate
NS-element column vector

Power level estimate, returned as an NS-element column vector. NS is the length of the input signal.
You can use powerlevel as an energy detector output.

Dependencies

To enable this port, select the Enable output of estimated input power parameter.
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Parameters
Step size — Step size for gain updates

0.01 | positive scalar

Step size for gain updates, specified as a positive scalar. Increasing the step size enables the AGC to
respond more quickly to changes in the input signal level but increases variation in the output signal
level after reaching steady-state operation. For more information, see “AGC Performance Criteria” on
page 5-16.

Desired output power (W) — Target output power level

1 | positive scalar

Target output power level, specified as a positive scalar. The power level is measured in watts
referenced to 1 ohm.

Averaging length — Length of the averaging window

100 | positive integer

Length of the averaging window in samples, specified as a positive integer. For more information on
how the averaging length influences the variance of the AGC output signal in steady-state operation
and the execution speed, see “Tips” on page 5-16.

Maximum power gain (dB) — Maximum power gain

60 (default) | positive scalar

Maximum power gain in decibels, specified as a positive scalar. Large gain adjustments can cause
clipping when a small input signal power suddenly increases. Use this property to avoid large gain
adjustments by limiting the gain that the AGC applies to the input signal. For an example, see
“Compare AGC Performance for Different Maximum Gains”.

Enable output of estimated input power — Option to output estimated input power

off (default) | on

Select this check box to provide an output port, Px, that returns an estimate of the input signal
power.

Simulate using — Type of simulation to run
Interpreted execution (default) | Code generation

Type of simulation to run, specified as Interpreted execution or Code generation.

• Interpreted execution — Simulate the model by using the MATLAB interpreter. This option
requires less startup time than the Code generation option, but the speed of subsequent
simulations is slower. In this mode, you can debug the source code of the block.

• Code generation — Simulate the model by using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
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simulations unless the model changes. This option requires additional startup time, but the speed
of the subsequent simulations is faster than Interpreted execution.

Block Characteristics
Data Types double | single
Multidimensional
Signals

no

Variable-Size Signals yes

More About
Logarithmic-Loop AGC

The AGC implementation uses a logarithmic feedback loop. As this figure of the logarithmic-loop AGC
algorithm shows, the output signal is the product of the input signal and the exponential of the loop
gain. The error signal is the difference between the reference level and the product of the logarithm
of the detector output and the exponential of the loop gain. After multiplying by the step size, the
AGC passes the error signal to an integrator.

The logarithmic-loop AGC performs well for a variety of signal types, including amplitude modulation.
The “AGC Detector” on page 5-16 is applied to the input signal, which improves convergence times,
but increases signal power variation at the detector input. Large signal variation at the detector input
is acceptable for floating-point systems.

Mathematically, the algorithm is summarized as

 AGC
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y(n) = x(n) ⋅ exp(g(n− 1)),
z(n) = D(x(n)) ⋅ exp(2g(n− 1)),
e(n) = A− ln(z(n)), and
g(n) = g(n− 1) + K ⋅ e(n),

where:

• x is the input signal.
• y is the output signal.
• g is the loop gain.
• D(•) is the detector function.
• z is the detector output.
• A is the reference value.
• e is the error signal.
• K is the step size.

AGC Detector

The AGC detector output, z, computes a square law detector given by

z(m) = 1
N∑n = mN

(m + 1)N − 1 y(n) 2 ,

where N is the update period. The square law detector produces an output proportional to the square
of the input signal y.

AGC Performance Criteria

Increasing the step size decreases the attack time and decay times, but it also increases gain
pumping.

• Attack time — The duration taken for the AGC to respond to an increase in the input amplitude
• Decay time — The duration taken for the AGC to respond to a decrease in the input amplitude
• Gain pumping — The variation in the gain value during steady-state operation

Tips
• This block is designed for streaming applications.
• If the signal amplitude does not change within the frame, you can simulate an ideal AGC by

calculating the average gain desired for a frame of samples. Then, apply the gain to each sample
in the frame.

• If you use the AGC with higher order QAM signals, you might need to reduce the variation in the
gain during steady-state operation. Inspect the constellation diagram at the output of the AGC
during steady-state operation. You can increase the averaging length to avoid frequent gain
adjustments. An increase in averaging length reduces execution speed.

Version History
Introduced in R2013a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Objects
comm.AGC
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AWGN Channel
Add white Gaussian noise to input signal
Library: Communications Toolbox / Channels

Description
The AWGN Channel block adds white Gaussian noise to the input signal. It inherits the sample time
from the input signal.

Ports
Input

In — Input data signal
vector | matrix

Input data signal, specified as an NS-by-1 vector or an NS-by-NC matrix.

NS represents the number of samples in the input signal. NC represents the number of channels, as
determined by the number of columns in the input signal matrix. Both NS and NC can be equal to 1.

The block adds frames of length-NS Gaussian noise to each of the NC channels, using a distinct
random distribution per channel.
Data Types: double | single
Complex Number Support: Yes

Var — Variance of additive white Gaussian noise
positive scalar | vector

Variance of additive white Gaussian noise, specified as a positive scalar or a 1-by-NC vector. NC
represents the number of channels, as determined by the number of columns in the input signal
matrix. For more information, see “Specifying the Variance Directly or Indirectly” on page 5-22.

Dependencies

To enable this port, set Mode to Variance from port.
Data Types: double

Output

Out — Output data signal
vector | matrix
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Output data signal for the AWGN channel, returned as a vector or matrix. The datatype and
dimensions of Out match those of the input signal, In.

Parameters
Initial seed — Noise generator initial seed

67 (default) | positive scalar | vector

Noise generator initial seed, specified as a positive scalar or a 1-by-NC vector.

This block uses the Random Source block to generate noise. Random numbers are generated using
the Ziggurat method (V5 RANDN algorithm). The block reuses the same initial seeds every time you
rerun the simulation, so that this block outputs the same signal each time you run a simulation.

When the input signal is complex, the block creates random data as:

randData = randn(2*NS,NC) 
noise = randData(1:2:end) + 1i(randData(2:2:end))

NS is the number of samples and NC is the number of channels.

You can specify different seed values for each DLL build.

Tunable: Yes

Mode — Variance mode

Signal to noise ratio (Eb/No) (default) | Signal to noise ratio (Es/No) | Signal to
noise ratio (SNR) | Variance from mask | Variance from port

Variance mode, specified as Signal to noise ratio (Eb/No), Signal to noise ratio (Es/
No), Signal to noise ratio (SNR), Variance from mask, or Variance from port. For
more information, see “Relationship Among Eb/No, Es/No, and SNR Modes” on page 5-21 and
“Specifying the Variance Directly or Indirectly” on page 5-22.

Eb/No (dB) — Ratio of information bit energy per symbol to noise power spectral density

10 (default) | scalar | vector

Ratio of information bit energy per symbol to noise power spectral density in decibels, specified as a
scalar or vector. The information bit energy is the magnitude without channel coding.

Tunable: Yes
Dependencies

To enable this parameter, set Mode to Eb/No.

Es/No (dB) — Ratio of information symbol energy per symbol to noise power spectral
density

10 (default) | scalar | vector

Ratio of information symbol energy per symbol to noise power spectral density in decibels, specified
as a scalar or vector. The information bit energy is the magnitude without channel coding.
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Tunable: Yes

Dependencies

To enable this parameter, set Mode to Es/No.

SNR (dB) — Ratio of signal power to noise power

10 (default) | scalar | vector

Ratio of signal power to noise power in decibels, specified as a scalar or vector.

Tunable: Yes

Dependencies

To enable this parameter, set Mode to SNR.

Number of bits per symbol — Number of bits in each input symbol

1 (default) | scalar | vector

Number of bits in each input symbol, specified as a scalar or vector.

Dependencies

To enable this parameter, set Mode to Eb/No.

Input signal power, referenced to 1 ohm (watts) — Mean square power of input

1 (default) | scalar | vector

Mean square power of the input in watts, specified as a scalar or vector.

• When Mode is Eb/No or Es/No, the parameter is the mean square power of the input symbols.
• When Mode is SNR, this parameter is the mean square power of the input samples.

Tunable: Yes

Dependencies

To enable this parameter, set Mode to Eb/No, Es/No, or SNR.

Symbol period (s) — Duration of an information channel

1 (default) | positive scalar | vector

Duration of an information channel symbol in seconds, specified as a positive scalar or vector. The
duration of the information channel is measured without channel coding.

Dependencies

To enable this parameter, set Mode to Eb/No or Es/No.

Variance — Variance of white Gaussian noise

1 (default) | scalar | vector
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Variance of the white Gaussian noise, specified as a scalar or vector. For more information, see
“Specifying the Variance Directly or Indirectly” on page 5-22.

Tunable: Yes

Dependencies

To enable this parameter, set Mode to Variance from mask.

Block Characteristics
Data Types double | single
Multidimensional
Signals

no

Variable-Size Signals no

Tips
• You can tune parameters in normal mode, accelerator mode, or rapid accelerator mode.
• Unless otherwise indicated, parameters are nontunable.

• For nontunable parameters, when you use the Simulink Coder™ rapid simulation (RSIM) target
to build an RSIM executable, you cannot change their values without recompiling the model.

• If a parameter is tunable, you can change its value at any time. This is useful for Monte Carlo
simulations in which you run the simulation multiple times (such as on multiple computers)
with different amounts of noise.

Algorithms
Relationship Among Eb/No, Es/No, and SNR Modes

For uncoded complex input signals, the AWGN Channel block relates Eb/N0, Es/N0, and SNR according
to these equations:

Es/N0 = (Tsym/Tsamp) · SNR
Es/N0 = Eb/N0 + 10log10(k)  in dB

• Es represents the signal energy in joules.
• Eb represents the bit energy in joules.
• N0 represents the noise power spectral density in watts/Hz.
• Tsym represents the Symbol period (s) parameter of the block in Es/No mode.
• k represents the number of information bits per input symbol, Number of bits per symbol.
• Tsamp represents the inherited sample time of the block, in seconds.

For real signal inputs, the AWGN Channel block relates Es/N0 and SNR according to this equation:
Es/N0 = 0.5 (Tsym/Tsamp) · SNR

Note
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• All values of power assume a nominal impedance of 1 ohm.
• The equation for the real case differs from the corresponding equation for the complex case by a

factor of 2. Specifically, the object uses a noise power spectral density of N0/2 watts/Hz for real
input signals, versus N0 watts/Hz for complex signals.

For more information, see “AWGN Channel Noise Level”.

Specifying the Variance Directly or Indirectly

To directly specify the variance of the noise generated by AWGN Channel, specify the Mode as:

• Variance from mask, where you specify the variance in the dialog box. The value must be
positive.

• Variance from port, where you provide the variance as an input to the block. The variance
input must be positive, and its sampling rate must equal that of the input signal.

For Variance from mask and Variance from port mode:

• If the variance is a scalar, then all signal channels are uncorrelated but share the same variance.
• If the variance is a vector whose length is the number of channels in the input signal, then each

element represents the variance of the corresponding signal channel.

Note If you apply complex input signals to the AWGN Channel block, then it adds complex zero-
mean Gaussian noise with the calculated or specified variance. The variance for each quadrature
component of the complex noise is half of the calculated or specified value.

To specify the variance indirectly, that is, to have the block calculate the variance, specify the Mode
as:

• Signal to noise ratio (Eb/No), where the block calculates the variance from these
quantities that you specify in the dialog box:

• Eb/No (dB), the ratio of bit energy to noise power spectral density
• Number of bits per symbol
• Input signal power, referenced to 1 ohm (watts), the actual power of the symbols at the input of

the block
• Symbol period (s)

• Signal to noise ratio (Es/No), where the block calculates the variance from these
quantities that you specify in the dialog box:

• Es/No (dB), the ratio of signal energy to noise power spectral density
• Input signal power, referenced to 1 ohm (watts), the actual power of the symbols at the input of

the block
• Symbol period (s)

• Signal to noise ratio (SNR), where the block calculates the variance from these quantities
that you specify in the dialog box:

• SNR (dB), the ratio of signal power to noise power
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• Input signal power, referenced to 1 ohm (watts), the actual power of the samples at the input of
the block

Changing the symbol period in the AWGN Channel block affects the variance of the noise added per
sample, which also causes a change in the final error rate.

NoiseVariance = SignalPower × SymbolPeriod

SampleTime × 10
Es/No

10

Tip Select the symbol period equal to the symbol period of the model. The value depends on what
constitutes a symbol and what the oversampling applied to it is. For example, a symbol could have 3
bits and be oversampled by 4. For more information, see “AWGN Channel Noise Level”.

Version History
Introduced before R2006a

References
[1] Proakis, John G. Digital Communications. 4th Ed. McGraw-Hill, 2001.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Random Source | MIMO Fading Channel

Objects
comm.AWGNChannel

Topics
“Gray-Coded M-PSK Modulation Error Rate in AWGN Channel Using Simulink”
“Filter Using Simulink Raised Cosine Filter Blocks”
“Reed Solomon Examples with Shortening, Puncturing, and Erasures”
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Barker Code Generator
Generate bipolar Barker Code
Library: Communications Toolbox

Communications Toolbox / Comm Sources / Sequence
Generators

Description
The Barker Code Generator block generates a bipolar Barker code. The short length and low
correlation sidelobes make Barker codes useful for frame synchronization in digital communications
systems. For more information, see “Barker Codes” on page 5-25.

Ports
Output

output — Barker code frame
column vector

Barker code frame, returned as a column vector. If the frame length exceeds the Barker code length,
the block fills the frame by repeating the Barker code.

Dependencies

Set the data type of the output with the Output data type parameter.

Parameters
Code length — Length of generated code
7 (default) | 1 | 2 | 3 | 4 | 5 | 11 | 13

Length of the generated code, specified as 1, 2, 3, 4, 5, 7, 11, or 13. For more information, see
“Barker Codes” on page 3-69.
Example: 2 outputs the Barker code [–1;1].
Data Types: double

Sample time — Output sample time
1 (default) | -1 | positive scalar

Positive scalars specify the time in seconds between each sample of the output signal. If you set the
Sample time to -1, the output signal inherits the sample time from downstream. For information on
the relationship between the Sample time and Samples per frame parameters, see “Sample
Timing” on page 5-26.
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Samples per frame — Samples per output frame
1 (default) | positive integer

Samples per output frame, specified as a positive integer. If Samples per frame is M, the block
outputs a frame containing M samples comprised of length N Barker code sequences. N is the length
of the generated code, which is set by the Code length parameter. When M is not an integer multiple
of N, consecutive frames maintain continuity of the Barker code across frame boundaries.

For information on the relationship between Sample time and Samples per frame, see “Sample
Timing” on page 5-26.
Data Types: double

Output data type — Output data type
double (default) | int8

Output data type, specified as double or int8.
Data Types: char | string

Simulate using — Type of simulation to run
Code generation (default) | Interpreted execution

Type of simulation to run, specified as Code generation or Interpreted execution.

• Code generation — Simulate the model by using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations unless the model changes. This option requires additional startup time, but the speed
of the subsequent simulations is faster than Interpreted execution.

• Interpreted execution — Simulate the model by using the MATLAB interpreter. This option
requires less startup time than the Code generation option, but the speed of subsequent
simulations is slower. In this mode, you can debug the source code of the block.

Block Characteristics
Data Types double | integer
Multidimensional
Signals

no

Variable-Size Signals no

More About
Barker Codes

Barker codes have a maximum autocorrelation sequence, which has off-peak autocorrelations no
larger than 1.

A correlation sidelobe is the correlation of a codeword with a time-shifted version of itself. The
correlation sidelobe, Ck, for a k-symbol shift of an N-bit code sequence, {Xj}, is
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Ck = ∑
j = 1

N − k
X jX j + k

For j=1, 2, 3,..., N, Xj is an individual code symbol that is equal to +1 or –1. The adjacent symbols are
assumed to be 0.

The output code is in a bipolar format with 0 and 1 mapped to 1 and –1. The maximum known Barker
code length is 13. The short length and low correlation sidelobes make Barker codes useful for frame
synchronization in digital communications systems. The Barker code generator outputs the Barker
codes listed in this table.

Barker
Code
Length

Barker Code Sidelobe Level

1 [–1] 0 dB
2 [–1; 1] –6 dB
3 [–1; –1; 1] –9.5 dB
4 [–1; –1; 1; –1] –12 dB
5 [–1; –1; –1; 1; –1] –14 dB
7 [–1; –1; –1; 1; 1; –1; 1] –16.9 dB
11 [–1; –1; –1; 1; 1; 1; –1; 1; 1; –1; 1] –20.8 dB
13 [–1; –1; –1; –1; –1; 1; 1; –1; –1; 1; –1; 1; –1] –22.3 dB

Sample Timing

The time between output updates is equal to the product of the Samples per frame and Sample
time parameter values. For example, if Sample time and Samples per frame each equal 1, the
block outputs a sample every second. If you increase Samples per frame to 10, then the block
outputs a 10-by-1 vector every 10 seconds. This ensures that the equivalent output rate is not
dependent on the Samples per frame parameter.

Version History
Introduced before R2006a

Existing models automatically update this block to current version
Behavior changed in R2020a

Starting in R2020a, Simulink no longer allows you to use the Barker Code Generator block version
available before R2015b.

Existing models automatically update to load the Barker Code Generator block version announced in
“Source blocks output frames of contiguous time samples but do not use the frame attribute” in the
R2015b Release Notes. For more information on block forwarding, see “Maintain Compatibility of
Library Blocks Using Forwarding Tables” (Simulink).
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Does not support integer only code generation.

See Also
Blocks
PN Sequence Generator | OVSF Code Generator | Walsh Code Generator

Objects
comm.BarkerCode
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Baseband File Reader
Read baseband signals from file
Library: Communications Toolbox / Comm Sources

Description
The Baseband File Reader block reads a signal from a baseband file. A baseband file is a specific type
of binary file written by the Baseband File Writer block. Baseband signals are typically
downconverted from a nonzero center frequency to 0 Hz. The block automatically reads the sample
rate, center frequency, number of channels, and any descriptive data.

Input/Output Ports
Output

Data — Baseband signal
scalar | vector | matrix

Baseband signal, returned as a scalar, vector, or matrix. The signal is read from the file specified by
the Baseband file name parameter. The sample time is either inherited from the file or can be set by
the Sample Time (s) parameter.
Data Types: double

EOF — End-of-file indicator
logical scalar

End-of-file indicator, returned as a logical scalar. The output is true when the Repeatedly read the
file parameter is false and the entire file has been read. To enable this port, select the Output end-
of-file indicator parameter.

Parameters
Baseband file name — Name of file from which data is read
example.bb (default) | character vector

Specify the name of the baseband file as a character vector.

Click Browse to locate the baseband file you want to read. Click File Info to display this information:

• File name
• Sample rate
• Center frequency
• Number of samples
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• Number of channels
• Data type
• Any metadata fields

Data Types: char

Inherit sample time from file — Select source of sample time
on (default) | off

Select this check box to inherit the sample time from the file specified by Baseband file name.

Sample time (s) — Block sample time
1 (default) | positive scalar

Specify the block sample time in seconds as a positive scalar. To enable this parameter, clear the
Inherit sample time from file check box.

Samples per frame — Number of samples per output frame
100 (default) | positive integer scalar

Number of samples per output frame, specified as a positive integer or Inf. When this parameter is
Inf, the output frame contains all of the samples in the baseband file.

Repeatedly read the file — Continuously loop data from file
off (default) | on

Select this check box to repeatedly read the contents of the baseband file. When the end of the file is
reached:

• The block outputs zeros, if the Repeatedly read the file parameter is not selected (off).
• The block outputs samples from the beginning of the file, if the Repeatedly read the file

parameter is selected (on).

Simulate using — Type of simulation to run
Code generation (default) | Interpreted execution

Type of simulation to run, specified as Code generation or Interpreted execution.

• Code generation — Simulate the model by using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations unless the model changes. This option requires additional startup time, but the speed
of the subsequent simulations is faster than Interpreted execution.

• Interpreted execution — Simulate the model by using the MATLAB interpreter. This option
requires less startup time than the Code generation option, but the speed of subsequent
simulations is slower. In this mode, you can debug the source code of the block.

Block Characteristics
Data Types double | integer | single
Multidimensional
Signals

no
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Variable-Size Signals no

Version History
Introduced in R2016b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Baseband File Writer
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Baseband File Writer
Write baseband signals to file
Library: Communications Toolbox / Comm Sinks

Description
The Baseband File Writer block writes a baseband signal to a specific type of binary file. Baseband
signals are typically down-converted from a nonzero center frequency to 0 Hz. Sample rate, which is
determined by the input signal sample time and frame size, and center frequency are saved when the
signal is written to a file.

Input/Output Ports
Input

Port_1 — Baseband signal
scalar | vector | matrix

This port accepts a baseband signal to be saved under the filename specified by the Baseband file
name parameter. The saved signal is always complex.
Data Types: single | double

Parameters
Baseband file name — Name of file in which data is saved
untitled.bb (default) | character vector

Specify the name of the baseband file as a character vector.

To specify the location where the file is saved, click Browse.

Center frequency (Hz) — Center frequency of the baseband signal
1e8 (default) | nonnegative scalar

Specify the center frequency in Hz as a nonnegative scalar.

Metadata in a structure — Data describing the baseband signal
struct() (default) | structure

Specify data describing the baseband signal as a structure. If the signal has no descriptive data, this
parameter is an empty structure. The structure can contain any number of fields. Field names have
no restrictions, but the field values must be numeric, logical, or character data types having any
dimension.
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Number of latest samples to write — Number of samples to write
inf (default) | positive scalar

Specify the number to write. If this parameter is inf, all samples are saved. Otherwise, only the last
N samples are saved, where N is specified by this parameter.

Simulate using — Select simulation mode
Code generation (default) | Interpreted execution

Code generation
On the first model run, simulate and generate code for the block using only MATLAB functions
supported for code generation. If the structure of the block does not change, subsequent model
runs do not regenerate the code.

Interpreted execution
Simulate model using all supported MATLAB functions. Choosing this option can slow simulation
performance.

Block Characteristics
Data Types double | integer | single
Multidimensional
Signals

no

Variable-Size Signals no

Tips
• The Baseband File Writer block writes baseband signals to uncompressed binary files. To share

these files, you can compress them to a zip file using the zip function. For more information, see
“Create and Extract from Zip Archives”.

Version History
Introduced in R2016b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Baseband File Reader
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Baseband PLL
(To be removed) Implement baseband phase-locked loop

Note  will be removed in a future release. To design voltage-controlled oscillators (VCOs) and phase-
locked loops (PLLs), use the “Phase-Locked Loops” (Mixed-Signal Blockset) blocks.

Library
Components sublibrary of Synchronization

Description
The Baseband PLL (phase-locked loop) block is a feedback control system that automatically adjusts
the phase of a locally generated signal to match the phase of an input signal. Unlike the Phase-
Locked Loop block, this block uses a baseband method and does not depend on a carrier frequency.

This PLL has these three components:

• An integrator used as a phase detector.
• A filter. You specify the filter's transfer function using the Lowpass filter numerator and

Lowpass filter denominator parameters. Each is a vector that gives the respective polynomial's
coefficients in order of descending powers of s.

To design a filter, you can use the Signal Processing Toolbox functions cheby1, and cheby2. The
default filter is a Chebyshev type II filter whose transfer function arises from the command below.

[num, den] = cheby2(3,40,100,'s')
• A voltage-controlled oscillator (VCO). You specify the sensitivity of the VCO signal to its input

using the VCO input sensitivity parameter. This parameter, measured in Hertz per volt, is a scale
factor that determines how much the VCO shifts from its quiescent frequency.

This block accepts a sample-based scalar signal. The input signal represents the received signal. The
three output ports produce:

• The output of the filter
• The output of the phase detector
• The output of the VCO

This model is nonlinear; for a linearized version, use the Linearized Baseband PLL block.

For more information, “Phase-Locked Loops”.
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Parameters
Lowpass filter numerator

The numerator of the lowpass filter's transfer function, represented as a vector that lists the
coefficients in order of descending powers of s.

Lowpass filter denominator
The denominator of the lowpass filter's transfer function, represented as a vector that lists the
coefficients in order of descending powers of s.

VCO input sensitivity (Hz/V)
This value scales the input to the VCO and, consequently, the shift from the VCO's quiescent
frequency.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Topics
“Phase-Locked Loops”
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BCH Decoder
Decode BCH code to recover binary vector data
Library: Communications Toolbox / Error Detection and Correction /

Block

Description
The BCH Decoder block recovers a binary message vector from a binary BCH codeword vector. For
proper decoding, the Codeword length, N and Message length, K parameter values in this block
must match the parameters in the corresponding BCH Encoder block. The full-length values of N and
K must produce a valid narrow-sense BCH code.

If the encoder is processing multiple codewords per frame, then the same puncture pattern holds for
all codewords. The input and output signal lengths are listed in “Input and Output Signal Length in
BCH Blocks” on page 5-39.

See “Tips” on page 5-40 for information about valid N values, valid (N,K) pairs, and error-correcting
capabilities for a given BCH code.

If decoding fails, the message portion of the decoder input is returned unchanged as the decoder
output.

The sample times of all input and output signals are equal.

This icon shows optional ports.

Ports
Input

In — Encoded message
binary column vector

Encoded message, specified as a binary column vector. The encoded message is a BCH code with
message length K and codeword length (N – number of punctures).
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean

Era — Erasure vector
binary column vector
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Erasure vector, specified as a binary column vector that is the same length as In. Erasure values of 1
correspond to erased bits in the same position in the codeword. Values of 0 correspond to bits that
are not erased.

Dependencies

To enable this port, select Enable erasures input port.
Data Types: double | Boolean

Output

Out — Decoded message
binary column vector

Decoded message, returned as a binary column vector input signal with an integer multiple of
Message length, K elements or Shortened message length, S elements if the code is shortened.
Each group of input elements represents one codeword to decode. The input and output signal
lengths are listed in the “Input and Output Signal Length in BCH Blocks” on page 5-39 table.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean

Err — Decoding errors
integer vector

Decoding errors, returned as an integer vector that indicates the number of errors detected during
decoding of the codeword. A negative integer indicates that the block detected more errors than it
could correct by using the coding scheme.

Dependencies

To enable this port, select Output number of corrected errors.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean

For more information, see “Supported Data Types” on page 5-40.

Parameters
Codeword length, N — Codeword length

15 (default) | integer

Codeword length, specified as an integer of the form N = 2M–1, where M is an integer from 3 through
16. For more information, see “Tips” on page 5-40.

Message length, K — Message length

5 (default) | integer

Message length, specified as an integer. The (N, K) pair must produce a narrow-sense BCH code.

Shortened message length, S — Shortened message length

5 (default) | integer
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Shortened message length, specified as an integer. When you specify this parameter, provide full-
length N and K values to specify the (N, K) code that is shortened to an (N–K+S, S) code.

Dependencies

To enable this parameter, select Specify shortened message length.

Generator polynomial — Generator polynomial

'X^10 + X^8 + X^5 + X^4 + X^2 + X + 1' (default) | polynomial character vector | binary row
vector | binary Galois row vector

Generator polynomial, specified as one of the following:

• A polynomial character vector — For more information, see “Representation of Polynomials in
Communications Toolbox”.

• A binary row vector that represents the coefficients of the generator polynomial in order of
descending power.

• A binary Galois row vector that represents the coefficients of the generator polynomial in order of
descending power.

Example: 'X^10 + X^8 + X^5 + X^4 + X^2 + X + 1', which is equivalent to
bchgenpoly(15,5)

Dependencies

To enable this parameter, select Specify generator polynomial.

Primitive polynomial — Primitive polynomial

'X^4 + X + 1' (default) | polynomial character vector | binary row vector

Primitive polynomial in order of descending power. It is a polynomial of order M that defines the finite
Galois field GF(2), specified as one of the following:

• A polynomial character vector — For more information, see “Representation of Polynomials in
Communications Toolbox”.

• A binary row vector that represents the coefficients of the generator polynomial in order of
descending power.

Example: 'X^4 + X + 1', which is the primitive polynomial used for a (15,5) code, ppoly =
primpoly(4,'nodisplay'); int2bit(ppoly,ceil(log2(max(ppoly))))'

Dependencies

To enable this parameter, select Specify primitive polynomial.

Disable generator polynomial checking — Option to disable generator polynomial
checking

on (default) | off

Select this parameter to disable generator polynomial check.
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Each time a model initializes, the block performs a polynomial check. This check verifies that X N + 1
is divisible by the specified generator polynomial, where N represents the full codeword length. For
larger codes, disabling the check speeds up the simulation process.

Tip Always run the check at least once before disabling this feature.

Dependencies

To enable this parameter, select Specify generator polynomial.

Puncture vector — Puncture vector

[ones(8,1); zeros(2,1)] (default) | column vector

Puncture vector, specified as a binary column vector of length N–K. Element indices with 1s represent
data symbol indices that pass through the block unaltered. Element indices with 0s represent data
symbol indices that get punctured, or removed, from the data stream. For more information, see
“Puncturing and Erasures” on page 5-39.

Dependencies

To enable this parameter, select Puncture code.

Enable erasures input port — Option to enable erasures input port

off (default) | on

Selecting this check box enables the erasures port, Era.

Through the port, you can input a binary column vector that is 1/M times as long as the codeword
input.

Erasure values of 1 correspond to erased symbols in the same position in the bit-packed codeword.
Values of 0 correspond to nonerased symbols. For more information, see “Puncturing and Erasures”
on page 5-39.

Output number of corrected errors — Option to enable port to output number of
corrected errors

off (default) | on

Selecting this check box enables an additional output port, Err, which indicates the number of errors
the block corrected in the input codeword.

Block Characteristics
Data Types Boolean | double | integer | single
Multidimensional
Signals

no

Variable-Size Signals no

5 Blocks

5-38



More About
Input and Output Signal Length in BCH Blocks

This table shows how to compute the input and output signal lengths for the BCH encoder and
decoder blocks.

The notation y = c * x denotes that y is an integer multiple of x.

Specify Shortened Message
Length, S

BCH Encoder BCH Decoder

off Input Length:

c * K

Output Length:

c * (N – P)

Input Length:

c * (N – P)

Output Length:

c * K

Erasures Length:

c * (N – P)
on Input Length:

c * S

Output Length:

c * (N - K + S - P)

Input Length:

c * (N - K + S - P)

Output Length:

c * S

Erasures Length:

c * (N - K + S - P)

• N is the codeword length
• K is the message length
• S is the shortened message length
• P is the number of punctures value, and is equal to the number of zeros in the puncture vector.

Puncturing and Erasures

1s and 0s have precisely opposite meanings for the puncture and erasure vectors.

In a puncture vector,

• 1 means that the data symbol is passed through the block unaltered.
• 0 means that the data symbol is to be punctured, or removed, from the data stream.

In an erasure vector,

• 1 means that the data symbol is to be replaced with an erasure symbol.
• 0 means that the data symbol is passed through the block unaltered.
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These conventions apply to both the encoder and the decoder. For more information, see “Shortening,
Puncturing, and Erasures”.

Supported Data Types

Port Supported Data Types
In • Double-precision floating point

• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Out • Double-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Era • Double-precision floating point
• Boolean

Err • Double-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Pair Block

BCH Encoder — Encodes data using BCH algorithm.

Tips
• To generate the list of valid (N,K) pairs along with the corresponding values of the error-correction

capability, run bchnumerr(N).
• Valid values for N = 2M–1, where M is an integer from 3 through 16. The maximum allowable value

of N is 65,535.

Algorithms
This block implements the algorithm, inputs, and outputs described in “Algorithms for BCH and RS
Errors-only Decoding”.

Version History
Introduced before R2006a

References
[1] Wicker, Stephen B. Error Control Systems for Digital Communication and Storage. Upper Saddle

River, NJ: Prentice Hall, 1995.
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[2] Berlekamp, Elwyn R. Algebraic Coding Theory. New York: McGraw-Hill, 1968.

[3] Clark, George C., Jr., and J. Bibb Cain. Error-Correction Coding for Digital Communications. New
York: Plenum Press, 1981.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
BCH Encoder

Objects
comm.BCHDecoder

Functions
bchdec | bchgenpoly | primpoly

Topics
“Block Codes”
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BCH Encoder
Create BCH code from binary vector data
Library: Communications Toolbox / Error Detection and Correction /

Block

Description
The BCH Encoder block creates a BCH code with message length K and codeword length (N –
number of punctures).

If the encoder is processing multiple codewords per frame, then the same puncture pattern holds for
all codewords. The input and output signal lengths are listed in “Input and Output Signal Length in
BCH Blocks” on page 5-45.

See “Tips” on page 5-46 for information about valid N values, valid (N,K) pairs, and error-correcting
capabilities for a given BCH code.

Ports
Input

In — Message to encode
binary column vector

Message to encode, specified as a binary column vector input signal with an integer multiple of
Message length, K elements or Shortened message length, S elements if the code is shortened.
Each group of input elements represents one message word to encode. The input and output signal
lengths are listed in “Input and Output Signal Length in BCH Blocks” on page 5-45.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean

Output

Out — Encoded message
binary column vector

Encoded message, returned as a binary column vector. The encoded message is a BCH code with
message length K and codeword length (N – number of punctures).
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean

For more information, see “Supported Data Types” on page 5-45.

Parameters
Codeword length, N — Codeword length
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15 (default) | integer

Codeword length, specified as an integer of the form N = 2M–1, where M is an integer from 3 through
16. For more information, see “Tips” on page 5-46.

Message length, K — Message length

5 (default) | integer

Message length, specified as an integer. The (N, K) pair must produce a narrow-sense BCH code.

Shortened message length, S — Shortened message length

5 (default) | integer

Shortened message length, specified as an integer. When you specify this parameter, provide full-
length N and K values to specify the (N, K) code that is shortened to an (N–K+S, S) code.

Dependencies

To enable this parameter, select Specify shortened message length.

Generator polynomial — Generator polynomial

'X^10 + X^8 + X^5 + X^4 + X^2 + X + 1' (default) | polynomial character vector | binary row
vector | binary Galois row vector

Generator polynomial, specified as one of the following:

• A polynomial character vector — For more information, see “Representation of Polynomials in
Communications Toolbox”.

• A binary row vector that represents the coefficients of the generator polynomial in order of
descending power.

• A binary Galois row vector that represents the coefficients of the generator polynomial in order of
descending power.

Example: 'X^10 + X^8 + X^5 + X^4 + X^2 + X + 1', which is equivalent to
bchgenpoly(15,5)

Dependencies

To enable this parameter, select Specify generator polynomial.

Primitive polynomial — Primitive polynomial

'X^4 + X + 1' (default) | polynomial character vector | binary row vector

Primitive polynomial in order of descending power. It is a polynomial of order M that defines the finite
Galois field GF(2), specified as one of the following:

• A polynomial character vector — For more information, see “Representation of Polynomials in
Communications Toolbox”.

• A binary row vector that represents the coefficients of the generator polynomial in order of
descending power.
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Example: 'X^4 + X + 1', which is the primitive polynomial used for a (15,5) code, ppoly =
primpoly(4,'nodisplay'); int2bit(ppoly,ceil(log2(max(ppoly))))'

Dependencies

To enable this parameter, select Specify primitive polynomial.

Disable generator polynomial checking — Option to disable generator polynomial
checking

on (default) | off

Select this parameter to disable generator polynomial check.

Each time a model initializes, the block performs a polynomial check. This check verifies that X N + 1
is divisible by the specified generator polynomial, where N represents the full codeword length. For
larger codes, disabling the check speeds up the simulation process.

Tip Always run the check at least once before disabling this feature.

Dependencies

To enable this parameter, select Specify generator polynomial.

Puncture vector — Puncture vector

[ones(8,1); zeros(2,1)] (default) | binary column vector

Puncture vector, specified as a binary column vector of length N–K. Element indices with 1s represent
data symbol indices that pass through the block unaltered. Element indices with 0s represent data
symbol indices that get punctured, or removed, from the data stream. For more information, see
“Shortening, Puncturing, and Erasures”.

Note 1s and 0s have precisely opposite meanings for the puncture and erasure vectors. For an
erasure vector, 1 means that the data symbol is to be replaced with an erasure symbol, and 0 means
that the data symbol is passed through the block unaltered. This convention applies to both the
encoder and the decoder.

Dependencies

To enable this parameter, select Puncture code.

Block Characteristics
Data Types Boolean | double | integer | single
Multidimensional
Signals

no

Variable-Size Signals no
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More About
Input and Output Signal Length in BCH Blocks

This table shows how to compute the input and output signal lengths for the BCH encoder and
decoder blocks.

The notation y = c * x denotes that y is an integer multiple of x.

Specify Shortened Message
Length, S

BCH Encoder BCH Decoder

off Input Length:

c * K

Output Length:

c * (N – P)

Input Length:

c * (N – P)

Output Length:

c * K

Erasures Length:

c * (N – P)
on Input Length:

c * S

Output Length:

c * (N - K + S - P)

Input Length:

c * (N - K + S - P)

Output Length:

c * S

Erasures Length:

c * (N - K + S - P)

• N is the codeword length
• K is the message length
• S is the shortened message length
• P is the number of punctures value, and is equal to the number of zeros in the puncture vector.

Supported Data Types

Port Supported Data Types
In • Double-precision floating point

• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers
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Port Supported Data Types
Out • Double-precision floating point

• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Pair Block

BCH Decoder — Decodes BCH encoded data.

Tips
• To generate the list of valid (N,K) pairs along with the corresponding values of the error-correction

capability, run bchnumerr(N).
• Valid values for N = 2M–1, where M is an integer from 3 through 16. The maximum allowable value

of N is 65,535.

Algorithms
This block implements the algorithm, inputs, and outputs described in “Algorithms for BCH and RS
Errors-only Decoding”.

Version History
Introduced before R2006a

References
[1] Clark, George C., Jr., and J. Bibb Cain. Error-Correction Coding for Digital Communications. New

York: Plenum Press, 1981.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
BCH Decoder

Objects
comm.BCHEncoder

Functions
bchenc | bchgenpoly | primpoly
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Topics
“Block Codes”
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Bernoulli Binary Generator
Generate Bernoulli-distributed random binary numbers
Library: Communications Toolbox / Comm Sources / Random Data

Sources

Description
The Bernoulli Binary Generator block generates random binary numbers using a Bernoulli
distribution. Use this block to generate random data bits to simulate digital communication systems
and obtain performance metrics such as bit error rate. The Bernoulli distribution with parameter p
produces zero with probability p and one with probability 1-p. The Bernoulli distribution has mean
value 1-p and variance p(1-p). The Probability of zero parameter specifies p and can be any real
number in range [0, 1].

The output signal can be a column or row vector, two-dimensional matrix, or scalar. The number of
rows in the output signal corresponds to the number of samples in one frame and is set by the
Samples per frame parameter. The number of columns in the output signal corresponds to the
number of channels and is set by the number of elements in the Probability of zero parameter. For
more details, see “Sources and Sinks” in Communications Toolbox User's Guide

Ports
Output

Out — Output data signal
scalar | vector | matrix

Output data signal, returned as a scalar, vector, or matrix.
Data Types: double

Parameters
Probability of zero — Probability of generating zero at output

0.5 (default) | integer in the range [0, 1] | vector of integers in the range [0, 1]

Probability of zero must be in the range of [0, 1]. The number of elements in the Probability of zero
parameter corresponds to the number of independent channels output from the block. The Bernoulli
distribution with parameter p produces zero with probability p and one with probability 1-p.

Source of initial seed — Source of initial seed for random number generator

Auto (default) | Parameter
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Select Parameter to use the Initial seed parameter to specify the initial seed for the random
number generator.

Note When the Source of initial seed parameter is set to Auto and the Simulate using parameter
is set to Code generation, the random number generator uses an initial seed of zero. In this case,
the block generates the same random numbers each time it is started. To ensure that the model uses
different initial seeds, set Simulate using parameter to Interpreted execution. If you run
Interpreted execution in Rapid accelerator mode, then the model behaves the same as
Code generation mode.

Dependencies

Select Auto for the block to use the global random number stream as the initial seed. For more
information, see “Managing the Global Stream Using RandStream” and “Random Number
Generators”.

Initial seed — Initial seed for random number generator

nonnegative scalar

If you set the Initial seed parameter to a constant value, then the resulting sequence is repeatable.

Dependencies

To enable this parameter, set the Source of initial seed to Parameter.

Sample time — Sample time of output signal

1 (default) | -1 | positive scalar

Positive scalars specify the time in seconds between each sample of the output signal. If you set the
Sample time to -1, the output signal inherits the sample time from downstream. For information on
the relationship between the Sample time and Samples per frame parameters, see “Sample
Timing” on page 5-50.

Samples per frame — Samples per frame of output signal
1 (default) | positive scalar

Samples per frame in one channel of the output signal, specified as a positive integer. For information
on the relationship between Sample time and Samples per frame, see “Sample Timing” on page 5-
50.

Output data type — Data type of output signal

double (default) | boolean

Select the data type for the output signal.

Simulate using — Type of simulation to run
Code generation (default) | Interpreted execution

Type of simulation to run, specified as Code generation or Interpreted execution.
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• Code generation — Simulate the model by using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations unless the model changes. This option requires additional startup time, but the speed
of the subsequent simulations is faster than Interpreted execution.

• Interpreted execution — Simulate the model by using the MATLAB interpreter. This option
requires less startup time than the Code generation option, but the speed of subsequent
simulations is slower. In this mode, you can debug the source code of the block.

Block Characteristics
Data Types Boolean | double | integer | single
Multidimensional
Signals

no

Variable-Size Signals no

More About
Sample Timing

The time between output updates is equal to the product of the Samples per frame and Sample
time parameter values. For example, if Sample time and Samples per frame each equal 1, the
block outputs a sample every second. If you increase Samples per frame to 10, then the block
outputs a 10-by-1 vector every 10 seconds. This ensures that the equivalent output rate is not
dependent on the Samples per frame parameter.

Version History
Introduced before R2006a

Bernoulli Binary Generator block update supported in Upgrade Advisor
Behavior changed in R2020a

Starting in R2020a, Bernoulli Binary Generator block allows you to use the Upgrade Advisor. You can
update to the block version announced in R2015b or keep the block version available before R2015b.

• Use the Upgrade Advisor to update existing models that include the Bernoulli Binary Generator
block.

• Behavior of the random number generator is changed. The statistics are improved. For more
information, see “Source blocks output frames of contiguous time samples but do not use the
frame attribute” in the R2015b Release Notes.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Random Integer Generator | Binary Symmetric Channel
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Functions
randi | rand
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Binary Cyclic Decoder
Decode systematic cyclic code to recover binary vector data

Library
Block sublibrary of Error Detection and Correction

Description
The Binary Cyclic Decoder block recovers a message vector from a codeword vector of a binary
systematic cyclic code. For proper decoding, the parameter values in this block should match those in
the corresponding Binary Cyclic Encoder block.

This block accepts a column vector input signal containing N elements, where N is the codeword
length. The output signal is a column vector containing K elements, where K is the message length of
the cyclic code.

You can determine the systematic cyclic coding scheme in one of two ways:

• To create an [N,K] code, enter N and K as the first and second dialog parameters, respectively. The
block computes an appropriate generator polynomial, namely, cyclpoly(N,K,'min').

• To create a code with codeword length N and a particular degree-(N-K) binary generator
polynomial, enter N as the first parameter and a polynomial character vector or a binary vector as
the second parameter. The vector represents the generator polynomial by listing its coefficients in
order of ascending exponents. You can create cyclic generator polynomials using the
Communications Toolbox cyclpoly function.

For information about the data types each block port supports, see the “Supported Data Type” on
page 5-53 table on this page.

Parameters
Codeword length N

The codeword length N, which is also the input vector length.
Message length K, or generator polynomial

Either the message length, which is also the input vector length, a polynomial character vector,
or a binary vector that represents the generator polynomial for the code.
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Supported Data Type
Port Supported Data Types
In • Double-precision floating point

• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers
• Fixed-point

Out • Double-precision floating point
• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers
• Fixed-point

Pair Block
Binary Cyclic Encoder

See Also
cyclpoly

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.
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Binary Cyclic Encoder
Create systematic cyclic code from binary vector data

Library
Block sublibrary of Error Detection and Correction

Description
The Binary Cyclic Encoder block creates a systematic cyclic code with message length K and
codeword length N.

This block accepts a column vector input signal containing K elements. The output signal is a column
vector containing N elements.

You can determine the systematic cyclic coding scheme in one of two ways:

• To create an [N,K] code, enter N and K as the first and second dialog parameters, respectively. The
block computes an appropriate generator polynomial, namely, cyclpoly(N,K,'min').

• To create a code with codeword length N and a particular degree-(N-K) binary generator
polynomial, enter N as the first parameter and a polynomial character vector or a binary vector as
the second parameter. The vector represents the generator polynomial by listing its coefficients in
order of ascending exponents. You can create cyclic generator polynomials using the
Communications Toolbox cyclpoly function.

For information about the data types each block port supports, see the “Supported Data Type” on
page 5-55 table on this page.

Parameters
Codeword length N

The codeword length, which is also the output vector length.
Message length K, or generator polynomial

Either the message length, which is also the input vector length, a polynomial character vector,
or a binary vector that represents the generator polynomial for the code.
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Supported Data Type
Port Supported Data Types
In • Double-precision floating point

• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers
• Fixed-point

Out • Double-precision floating point
• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers
• Fixed-point

Pair Block
Binary Cyclic Decoder

See Also
cyclpoly (in the Communications Toolbox documentation)

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.
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Binary-Input RS Encoder
Create Reed-Solomon code from binary vector data
Library: Communications Toolbox / Error Detection and Correction /

Block

Description
The Binary-Input RS Encoder block creates a Reed-Solomon code.

The symbols for the code are binary sequences of length M, corresponding to elements of the Galois
field GF(2M). The first bit in each symbol is the most significant bit.

Suppose M = 3, N = 23-1 = 7, and K = 2. Then a message is a vector of length 2 whose entries are
integers between 0 and 7. A corresponding codeword is a vector of length 7 whose entries are
integers between 0 and 7. The following figure illustrates possible input and output signals to this
block when codeword length N=7 and message word length K=2. Since N=2M–1, when N=7, the
symbol length, M=3.

Each input message word is a binary vector of length 6, that represents 2 three-bit integers. Each
corresponding output codeword is a binary vector of length 21 that represents 7 three-bit integers.
For more information, see “Input and Output Signal Length in RS Blocks” on page 5-59.
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Ports
Input

In — Message
binary column vector

Message in bits, specified as one of the following:

• When there is no message shortening, a (NC×K×M)-by-1 binary column vector.
• When there is message shortening, a (NC×S×M)-by-1 binary column vector.

NC is the number of message words, K is the Message length K (symbols), M is the number of bits
per symbol, and S is the Shortened message length S (symbols).

Note The number of decoded message words equals the number of codewords.

For more information, see “Input and Output Signal Length in RS Blocks” on page 5-59.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean |
ufix(1)

Output

Out — Reed-Solomon codeword
binary column vector

Reed-Solomon codeword in bits, returned as an (NC×(N – K + S – P)×M)-by-1 binary column vector.
NC is the number of codewords, N is the Codeword length N (symbols), K is the Message length
K (symbols), S is the Shortened message length S (symbols), P is the number of punctures per
codeword, and M is the number of bits per symbol.

For more information, see “Input and Output Signal Length in RS Blocks” on page 5-59.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean |
ufix(1)

For more information, see “Supported Data Types” on page 5-61.

Parameters
Codeword length N (symbols) — Codeword length

7 (default) | integer

Codeword length in symbols, specified as an integer.

For more information, see “Restrictions on the M and the Codeword Length N” on page 5-60 and
“Input and Output Signal Length in RS Blocks” on page 5-59.

Message length K (symbols) — Message word length

3 (default) | integer
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Message word length in symbols, specified as an integer in the range [1, N–2], where N is the
codeword length.

Shortened message length S (symbols) — Shortened message word length

3 (default) | integer

Shortened message word length in symbols, specified as an integer, such that S ≤ K. When
Shortened message length S (symbols) < Message length K (symbols), the Reed-Solomon code
is shortened.

You still specify N and K values for the full-length (N, K) code but the decoding is shortened to an (N–
K+S, S) code.

Dependencies

To enable this parameter, select Specify shortened message length.

Generator polynomial — Generator polynomial

rsgenpoly(7, 3, [], [], 'double') (default) | polynomial character vector | binary row vector
| binary Galois row vector

Generator polynomial with values from 0 to 2M–1, in order of descending power, specified as one of
the following:

• A polynomial character vector. For more information, see “Representation of Polynomials in
Communications Toolbox”.

• An integer row vector that represents the coefficients of the generator polynomial in order of
descending power.

• An integer Galois row vector that represents the coefficients of the generator polynomial in order
of descending power.

Each coefficient is an element of the Galois field defined by the primitive polynomial. For more
information, see “Specify the Generator Polynomial” on page 5-60.
Example: [1 3 1 2 3], which is equivalent to rsgenpoly(7,3)

Dependencies

To enable this parameter, select Specify generator polynomial.

Primitive polynomial — Primitive polynomial

'X^3 + X + 1' (default) | polynomial character vector | binary row vector

Primitive polynomial in order of descending power. This polynomial is of order M and defines the
finite Galois field GF(2M) corresponding to the integers that form message words and codewords.
Specify the primitive polynomial as one of the following:

• A polynomial character vector. For more information, see “Representation of Polynomials in
Communications Toolbox”.

• A binary row vector that represents the coefficients of the generator polynomial.

For more information, see “Restrictions on the M and the Codeword Length N” on page 5-60.
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Example: 'X^3 + X + 1', which is the primitive polynomial used for a (7,3) code, ppoly =
primpoly(3,'nodisplay'); int2bit(ppoly,ceil(log2(max(ppoly))))'

Dependencies

To enable this parameter, select Specify primitive polynomial.

Puncture vector — Puncture vector

[ones(2,1); zeros(2,1)] (default) | binary column vector

Puncture vector, specified as an (N–K)-by-1 binary column vector. Element indices with 1s represent
data symbol indices that pass through the block unaltered. Element indices with 0s represent data
symbol indices that get punctured, or removed, from the data stream. For more information, see
“Puncturing and Erasures” on page 5-61.

Dependencies

To enable this parameter, select Puncture code.

Output data type — Output type of the block

Same as input (default) | boolean | double

Output type of the block, specified as Same as input, boolean, or double.

Block Characteristics
Data Types Boolean | double | fixed pointa | integer | single
Multidimensional
Signals

no

Variable-Size Signals no
a ufix(1) only.

More About
Input and Output Signal Length in RS Blocks

The Reed-Solomon code has a message word length, K, or shortened message word length, S. The
codeword length is N – K + S – P, where N is the full codeword length and P is the number of
punctures per codeword. When there is no message shortening, the codeword length expression
reduces to N – P, because K = S. If the decoder is processing multiple codewords per frame, then the
same puncture pattern holds for all codewords.

This table provides expressions for the input and output signal lengths for the Reed-Solomon encoder
and decoder.

The notation y = NC × x denotes that y is an integer multiple of x.
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 Input, Erasure, and Output Vector Lengths
RS Block Coder No Message Shortening Used Message Shortening Used
Binary-Input RS Encoder Input Length (bits):

NC × K × M

Output Length (bits):

NC × (N–P) × M

Input Length (bits):

NC × S × M

Output Length (bits):

NC × (N–K+S–P) × M
Binary-Output RS Decoder Input Length (bits):

NC × (N–P) × M

Erasures Length (symbols):

NC × (N–P)

Output Length (bits):

NC × K × M

Input Length (bits):

NC × (N–K+S–P) × M

Erasures Length (symbols):

NC × (N–K+S–P)

Output Length (bits):

NC × S × M

• N is the codeword length.
• K is the message word length.
• S is the shortened message word length.
• NC is the number of codewords (and message words).
• P is the number of punctures per codeword, and is equal to the number of zeros in the puncture

vector.
• M is the degree of the primitive polynomial. Each group of M bits represents an integer between 0

and 2M–1 that belongs to the finite Galois field GF(2M).

For more information on representing data for Reed-Solomon codes, see “Integer Format (Reed-
Solomon Only)”.

Also, see “Restrictions on the M and the Codeword Length N” on page 5-60.

Restrictions on the M and the Codeword Length N

• If you do not select Specify primitive polynomial, valid values for the codeword length, N, are
from 7 to 65535. In this case, the block uses the default primitive polynomial of degree M =
ceil(log2(N+1)). You can display the default primitive polynomial by running
primpoly(ceil(log2(N+1))).

• If you select Specify primitive polynomial, valid values for the primitive polynomial degree, M,
are from 3 to 16. The valid values for N in this case are from 7 to 2M–1. Selecting Specify
primitive polynomial enables you to specify the primitive polynomial that defines the finite field
GF(2M), which corresponds to the values that form message words and codewords.

Specify the Generator Polynomial

Select Specify generator polynomial to enable the Generator polynomial parameter for
specifying the generator polynomial of the Reed-Solomon code. Enter an integer row vector with
element values from 0 to 2M-1. The vector represents a polynomial, in descending order of powers,
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whose coefficients are elements of GF(2M) represented in integer format. For more information about
integer and binary format, see “Integer Format (Reed-Solomon Only)”. The generator polynomial
must be equal to a polynomial with this factored form:

g(x) = (x+αb)(x+αb+1)(x+αb+2)...(x+αb+N-K-1)

α is the primitive element of the Galois field over which the input message is defined, and b is an
integer.

If you do not select Specify generator polynomial, the block uses the default generator polynomial,
corresponding to b=1, for Reed-Solomon encoding. You can display the default generator polynomial
by running rsgenpoly.

• If you are using the default primitive polynomial (Specify primitive polynomial is not selected),
the default generator polynomial is rsgenpoly(N,K), where N = 2M-1.

• If you are not using the default primitive polynomial (Specify primitive polynomial is selected)
and you specify the primitive polynomial as poly, the generator polynomial is
rsgenpoly(N,K,poly).

Note The degree of the generator polynomial is N − K, where N is the codeword length and K is the
message word length.

Puncturing and Erasures

1s and 0s have precisely opposite meanings for the puncture and erasure vectors.

In a puncture vector,

• 1 means that the data symbol is passed through the block unaltered.
• 0 means that the data symbol is to be punctured, or removed, from the data stream.

In an erasure vector,

• 1 means that the data symbol is to be replaced with an erasure symbol.
• 0 means that the data symbol is passed through the block unaltered.

These conventions apply to both the encoder and the decoder. For more information, see “Shortening,
Puncturing, and Erasures”.

Supported Data Types

Port Supported Data Types
In • Double-precision floating point

• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers
• 1-bit unsigned integer (ufix(1))
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Port Supported Data Types
Out • Double-precision floating point

• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers
• 1-bit unsigned integer (ufix(1))

Pair Block

Binary-Output RS Decoder

Algorithms
This object implements the algorithm, inputs, and outputs described in “Algorithms for BCH and RS
Errors-only Decoding”.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Binary-Output RS Decoder | Integer-Input RS Encoder

Objects
comm.RSEncoder

Functions
rsenc | rsgenpoly | primpoly
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Binary Linear Decoder
Decode linear block code to recover binary vector data

Library
Block sublibrary of Error Detection and Correction

Description
The Binary Linear Decoder block recovers a binary message vector from a binary codeword vector of
a linear block code.

The Generator matrix parameter is the generator matrix for the block code. For proper decoding,
this should match the Generator matrix parameter in the corresponding Binary Linear Encoder
block. If N is the codeword length of the code, then Generator matrix must have N columns. If K is
the message length of the code, then the Generator matrix parameter must have K rows.

This block accepts a column vector input signal containing N elements. This block outputs a column
vector with a length of K elements.

The decoder tries to correct errors, using the Decoding table parameter. If Decoding table is the
scalar 0, then the block defaults to the table produced by the Communications Toolbox function
syndtable. Otherwise, Decoding table must be a 2N-K-by-N binary matrix. The rth row of this
matrix is the correction vector for a received binary codeword whose syndrome has decimal integer
value r-1. The syndrome of a received codeword is its product with the transpose of the parity-check
matrix.

For information about the data types each block port supports, see the “Supported Data Type” on
page 5-64 table on this page.

Parameters
Generator matrix

Generator matrix for the code; same as in Binary Linear Encoder block.
Decoding table

Either a 2N-K-by-N matrix that lists correction vectors for each codeword's syndrome; or the scalar
0, in which case the block defaults to the table corresponding to the Generator matrix
parameter.
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Supported Data Type
Port Supported Data Types
In • Double-precision floating point

• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers
• Fixed-point

Out • Double-precision floating point
• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers
• Fixed-point

Pair Block
Binary Linear Encoder

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.
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Binary Linear Encoder
Create linear block code from binary vector data

Library
Block sublibrary of Error Detection and Correction

Description
The Binary Linear Encoder block creates a binary linear block code using a generator matrix that you
specify. If K is the message length of the code, then the Generator matrix parameter must have K
rows. If N is the codeword length of the code, then Generator matrix must have N columns.

This block accepts a column vector input signal containing K elements. This block outputs a column
vector with a length of N elements. For information about the data types each block port supports,
see “Supported Data Type” on page 5-65.

Parameters
Generator matrix

A K-by-N matrix, where K is the message length and N is the codeword length.

Supported Data Type
Port Supported Data Types
In • Double-precision floating point

• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers
• Fixed-point

Out • Double-precision floating point
• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers
• Fixed-point
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Pair Block
Binary Linear Decoder

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.
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Binary-Output RS Decoder
Decode Reed-Solomon code to recover binary vector data
Library: Communications Toolbox / Error Detection and Correction /

Block

Description
The Binary-Output RS Decoder block recovers a binary message vector from a binary Reed-Solomon
codeword vector. For proper decoding, the parameter values in this block must match parameter
values in the corresponding Binary-Input RS Encoder block.

The symbols for the code are binary sequences of length M, corresponding to elements of the Galois
field GF(2M). The first bit in each symbol is the most significant bit.

This figure shows the decoder input-output word length for codeword length N=7 and message word
length K=2. Since N=2M–1, when N=7, the symbol length, M=3.

Each input codeword is a binary vector of length 21 that represents 7 three-bit integers. Each
corresponding output message word is a binary vector of length 6, that represents 2 three-bit
integers. For more information, see “Input and Output Signal Length in RS Blocks” on page 5-71.
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This icon shows all ports, including optional ones: 

Ports
Input

In — Reed-Solomon codeword
binary column vector

Reed-Solomon codeword in bits, specified as an (NC×(N – K + S – P)×M)-by-1 binary column vector.
NC is the number of codewords, N is the Codeword length N (symbols), K is the Message length
K (symbols), S is the Shortened message length S (symbols), P is the number of punctures per
codeword, and M is the number of bits per symbol.

For more information, see “Input and Output Signal Length in RS Blocks” on page 5-71.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean |
ufix(1)

Era — Erasure vector
binary column vector

Erasure vector in symbols, specified as an (NC×(N – K + S – P))-by-1 binary column vector. NC is the
number of codewords, N is the Codeword length N (symbols), K is the Message length K
(symbols), S is the Shortened message length S (symbols), P is the number of punctures per
codeword, and M is the number of bits per symbol.

Erasure values of 1 correspond to erased bits in the same position in the codeword. Values of 0
correspond to bits that are not erased. For more information, see “Puncturing and Erasures” on page
5-73.

Dependencies

To enable this port, select Enable erasures input port.
Data Types: double | Boolean

Output

Out — Decoded message
binary column vector

Decoded message in bits, returned as one of the following:

• When there is no message shortening, a (NC×K×M)-by-1 binary column vector.
• When there is message shortening, a (NC×S×M)-by-1 binary column vector.

NC is the number of message words, K is the Message length K (symbols), M is the number of bits
per symbol, and S is the Shortened message length S (symbols).
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Note The number of decoded message words equals the number of codewords.

For more information, see “Input and Output Signal Length in RS Blocks” on page 5-71.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean |
ufix(1)

Err — Decoding errors
integer vector

Symbol decoding errors, returned as an integer vector with NC elements, where NC is the number of
codewords. This port indicates the number of symbol errors detected during decoding of each
codeword. A negative integer indicates that the block detected more errors than it could correct by
using the specified coding scheme.

Note An (N,K) Reed-Solomon code can correct up to floor((N-K)/2) symbol errors (not bit errors)
in each codeword. When a received codeword contains more than (N-K)/2 symbol errors, a decoding
failure occurs.

Dependencies

To enable this port, select Output number of corrected symbol errors.
Data Types: double

For more information, see “Supported Data Types” on page 5-73.

Parameters
Codeword length N (symbols) — Codeword length

7 (default) | integer

Codeword length in symbols, specified as an integer.

For more information, see “Restrictions on M and Codeword Length N” on page 5-72 and “Input and
Output Signal Length in RS Blocks” on page 5-71.

Message length K (symbols) — Message word length

3 (default) | integer

Message word length in symbols, specified as an integer in the range [1, N–2], where N is the
codeword length.

Shortened message length S (symbols) — Shortened message word length

3 (default) | integer

Shortened message word length in symbols, specified as an integer, such that S ≤ K. When
Shortened message length S (symbols) < Message length K (symbols), the Reed-Solomon code
is shortened.
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You still specify N and K values for the full-length (N, K) code but the decoding is shortened to an (N–
K+S, S) code.

Dependencies

To enable this parameter, select Specify shortened message length.

Generator polynomial — Generator polynomial

rsgenpoly(7, 3, [], [], 'double') (default) | polynomial character vector | binary row vector
| binary Galois row vector

Generator polynomial with values from 0 to 2M–1, in order of descending power, specified as one of
the following:

• A polynomial character vector. For more information, see “Representation of Polynomials in
Communications Toolbox”.

• An integer row vector that represents the coefficients of the generator polynomial in order of
descending power.

• An integer Galois row vector that represents the coefficients of the generator polynomial in order
of descending power.

Each coefficient is an element of the Galois field defined by the primitive polynomial. For more
information, see “Specify the Generator Polynomial” on page 5-72.
Example: [1 3 1 2 3], which is equivalent to rsgenpoly(7,3)

Dependencies

To enable this parameter, select Specify generator polynomial.

Primitive polynomial — Primitive polynomial

'X^3 + X + 1' (default) | polynomial character vector | binary row vector

Primitive polynomial in order of descending power. This polynomial is of order M and defines the
finite Galois field GF(2M) corresponding to the integers that form message words and codewords.
Specify the primitive polynomial as one of the following:

• A polynomial character vector. For more information, see “Representation of Polynomials in
Communications Toolbox”.

• A binary row vector that represents the coefficients of the generator polynomial.

For more information, see “Restrictions on M and Codeword Length N” on page 5-72.
Example: 'X^3 + X + 1', which is the primitive polynomial used for a (7,3) code, ppoly =
primpoly(3,'nodisplay'); int2bit(ppoly,ceil(log2(max(ppoly))))'

Dependencies

To enable this parameter, select Specify primitive polynomial.

Puncture vector — Puncture vector

[ones(2,1); zeros(2,1)] (default) | binary column vector
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Puncture vector, specified as an (N–K)-by-1 binary column vector. Element indices with 1s represent
data symbol indices that pass through the block unaltered. Element indices with 0s represent data
symbol indices that get punctured, or removed, from the data stream. For more information, see
“Puncturing and Erasures” on page 5-73.

Dependencies

To enable this parameter, select Punctured code.

Enable erasures input port — Enable erasures input port

off (default) | on

Selecting this check box enables the erasures port, Era. For more information, see “Puncturing and
Erasures” on page 5-73.

Output number of corrected symbol errors — Enable port to output number of
corrected symbol errors

off (default) | on

Selecting this check box enables an additional output port, Err, which indicates the number of
symbol errors the block corrected in the input codeword.

Output data type — Output type of the block

Same as input (default) | boolean | double

Output type of the block, specified as Same as input, boolean, or double.

Block Characteristics
Data Types Boolean | double | fixed pointa | integer | single
Multidimensional
Signals

no

Variable-Size Signals no
a ufix(1) only.

More About
Input and Output Signal Length in RS Blocks

The Reed-Solomon code has a message word length, K, or shortened message word length, S. The
codeword length is N – K + S – P, where N is the full codeword length and P is the number of
punctures per codeword. When there is no message shortening, the codeword length expression
reduces to N – P, because K = S. If the decoder is processing multiple codewords per frame, then the
same puncture pattern holds for all codewords.

This table provides expressions for the input and output signal lengths for the Reed-Solomon encoder
and decoder.

The notation y = NC × x denotes that y is an integer multiple of x.
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 Input, Erasure, and Output Vector Lengths
RS Block Coder No Message Shortening Used Message Shortening Used
Binary-Input RS Encoder Input Length (bits):

NC × K × M

Output Length (bits):

NC × (N–P) × M

Input Length (bits):

NC × S × M

Output Length (bits):

NC × (N–K+S–P) × M
Binary-Output RS Decoder Input Length (bits):

NC × (N–P) × M

Erasures Length (symbols):

NC × (N–P)

Output Length (bits):

NC × K × M

Input Length (bits):

NC × (N–K+S–P) × M

Erasures Length (symbols):

NC × (N–K+S–P)

Output Length (bits):

NC × S × M

• N is the codeword length.
• K is the message word length.
• S is the shortened message word length.
• NC is the number of codewords (and message words).
• P is the number of punctures per codeword, and is equal to the number of zeros in the puncture

vector.
• M is the degree of the primitive polynomial. Each group of M bits represents an integer between 0

and 2M–1 that belongs to the finite Galois field GF(2M).

For more information on representing data for Reed-Solomon codes, see “Integer Format (Reed-
Solomon Only)”.

Also, see “Restrictions on M and Codeword Length N” on page 5-72.

Restrictions on M and Codeword Length N

• If you do not select Specify primitive polynomial, valid values for the codeword length, N, are
from 7 to 65535. In this case, the block uses the default primitive polynomial of degree M =
ceil(log2(N+1)). You can display the default primitive polynomial by running
primpoly(ceil(log2(N+1))).

• If you select Specify primitive polynomial, valid values for the primitive polynomial degree, M,
are from 3 to 16. The valid values for N in this case are from 7 to 2M–1. Selecting Specify
primitive polynomial enables you to specify the primitive polynomial that defines the finite field
GF(2M), which corresponds to the values that form message words and codewords.

Specify the Generator Polynomial

Select Specify generator polynomial to enable the Generator polynomial parameter for
specifying the generator polynomial of the Reed-Solomon code. Enter an integer row vector with
element values from 0 to 2M-1. The vector represents a polynomial, in descending order of powers,
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whose coefficients are elements of GF(2M) represented in integer format. For more information about
integer and binary format, see “Integer Format (Reed-Solomon Only)”. The generator polynomial
must be equal to a polynomial with this factored form:

g(x) = (x+αb)(x+αb+1)(x+αb+2)...(x+αb+N-K-1)

α is the primitive element of the Galois field over which the input message is defined, and b is an
integer.

If you do not select Specify generator polynomial, the block uses the default generator polynomial,
corresponding to b=1, for Reed-Solomon encoding. You can display the default generator polynomial
by running rsgenpoly.

• If you are using the default primitive polynomial (Specify primitive polynomial is not selected),
the default generator polynomial is rsgenpoly(N,K), where N = 2M-1.

• If you are not using the default primitive polynomial (Specify primitive polynomial is selected)
and you specify the primitive polynomial as poly, the generator polynomial is
rsgenpoly(N,K,poly).

Note The degree of the generator polynomial is N − K, where N is the codeword length and K is the
message word length.

Puncturing and Erasures

1s and 0s have precisely opposite meanings for the puncture and erasure vectors.

In a puncture vector,

• 1 means that the data symbol is passed through the block unaltered.
• 0 means that the data symbol is to be punctured, or removed, from the data stream.

In an erasure vector,

• 1 means that the data symbol is to be replaced with an erasure symbol.
• 0 means that the data symbol is passed through the block unaltered.

These conventions apply to both the encoder and the decoder. For more information, see “Shortening,
Puncturing, and Erasures”.

Supported Data Types

Port Supported Data Types
In • Double-precision floating point

• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers
• 1-bit unsigned integer (ufix(1))
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Port Supported Data Types
Out • Double-precision floating point

• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers
• 1-bit unsigned integer (ufix(1))

Era • Double-precision floating point
• Boolean

Err • Double-precision floating point

Pair Block

Binary-Input RS Encoder

Algorithms
This block uses the Berlekamp-Massey decoding algorithm. For information about this algorithm, see
“Algorithms for BCH and RS Errors-only Decoding”.

Version History
Introduced before R2006a

References
[1] Wicker, Stephen B. Error Control Systems for Digital Communication and Storage. Upper Saddle

River, NJ: Prentice Hall, 1995.

[2] Berlekamp, Elwyn R. Algebraic Coding Theory. New York: McGraw-Hill, 1968.

[3] Clark, George C., Jr., and J. Bibb Cain. Error-Correction Coding for Digital Communications. New
York: Plenum Press, 1981.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Binary-Input RS Encoder | Integer-Output RS Decoder

Objects
comm.RSDecoder
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Functions
rsdec | rsgenpoly | primpoly
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Binary Symmetric Channel
Introduce binary errors
Library: Communications Toolbox / Channels

Description
The Binary Symmetric Channel block introduces errors to the input signal transmitted through a
binary symmetric channel. The errors are introduced based on the specified Error probability. For
more information, see “Tips” on page 5-78.

Ports
Input

Input — Input signal
column vector | matrix

Input signal, specified as a column vector or an NS-by-NC matrix of Boolean values. NS is the number
of samples per channel. NC is the number of independent data channels. For more information, see
“Tips” on page 5-78.

Output

Output — Binary output signal
column vector | matrix

Binary output signal, returned as a column vector or matrix with the same dimensions as Input. The
output signal is a version of the input signal that has been modified by introducing random errors
based on the specified Error probability. To set the output data type, use Output data type.

Err — Error locations
column vector | matrix

Error locations, returned as a column vector or matrix with the same dimensions as Input. Element
values in Err are 1 or 0, where:

• 1 indicates that the corresponding element in Output has an error.
• 0 indicates that the corresponding element in Output does not have an error.

The data type of Err is the same as Output, as set by Output data type.

Dependencies

To enable this port, select Output error vector.
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Parameters
Error probability — Probability of error occurrence

0.05 (default) | scalar

Probability of error occurrence for the input signal elements, specified as a scalar in the range [0,1].
The probability of error applies independently for each element.

Output error vector — Option to output error locations

on (default) | off

To enable the Err output port to the block, select this parameter.

Output data type — Output data type

double (default) | single | boolean

Select the output data type as double, single, or boolean. This parameter sets the output data
type for both the Output and Err ports.

Initial seed — Initial seed

71 (default) | integer

Initial seed value for the random number generator used by the block, specified as an integer. The
block uses the mt19937ar algorithm to generate uniformly distributed random numbers. For details
about the mt19937ar algorithm, see “Creating and Controlling a Random Number Stream”.

Simulate using — Type of simulation to run

Code generation (default) | Interpreted execution

Type of simulation to run, specified as:

• Code generation –– Simulate the model using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations as long as the model does not change. This option requires additional startup time.

• Interpreted execution –– Simulate the model using the MATLAB interpreter. This option
shortens startup time. In Interpreted execution mode, you can debug the source code of the
block.

Block Characteristics
Data Types Boolean | double | fixed point | integer | single
Multidimensional
Signals

no

Variable-Size Signals no
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Tips
• When the input consists of not Boolean values, Binary Symmetric Channel converts zero-valued

elements to 0 and converts nonzero-valued elements to 1.
• The Binary Symmetric Channel block creates and uses an independent RandStream to provide a

random number stream for probability determination.
• To generate repeatable results, use the same Initial seed value.
• To generate independent probability statistics, set different Initial seed values for multichannel

signals, multiple processing chains, or simulation runs.

Version History
Introduced before R2006a

Random Number Generation
Behavior changed in R2018b

To improve statistical properties, the Binary Symmetric Channel block uses the mt19937ar algorithm
with RandStream. The Binary Symmetric Channel block accepts a single scalar value for the Initial
seed parameter.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Bernoulli Binary Generator

Topics
“Design a Rate 2/3 Feedforward Encoder Using Simulink”
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Bipolar to Unipolar Converter
Map bipolar signal into unipolar signal in range [0, M-1]

Library
Utility Blocks

Description
The Bipolar to Unipolar Converter block maps the bipolar input signal to a unipolar output signal. If
the input consists of integers in the set {-M+1, -M+3, -M+5,..., M-1}, where M is the M-ary number
parameter, then the output consists of integers between 0 and M-1. This block is only designed to
work when the input value is within the set {-M+1, -M+3, -M+5,..., M-1}, where M is the M-ary
number parameter. If the input value is outside of this set of integers the output may not be valid.

The table below shows how the block's mapping depends on the Polarity parameter.

Polarity Parameter Value Output Corresponding to Input Value of k
Positive (M-1+k)/2
Negative (M-1-k)/2

Parameters
M-ary number

The number of symbols in the bipolar or unipolar alphabet.
Polarity

A value of Positive causes the block to maintain the relative ordering of symbols in the
alphabets. A value of Negative causes the block to reverse the relative ordering of symbols in
the alphabets.

Output Data Type
The type of bipolar signal produced at the block's output.

The block supports the following output data types:

• Inherit via internal rule
• Same as input
• double
• int8
• uint8
• int16
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• uint16
• int32
• uint32
• boolean

When the parameter is set to its default setting, Inherit via internal rule, the block
determines the output data type based on the input data type.

• If the input signal is floating-point (either single or double), the output data type is the
same as the input data type.

• If the input data type is not floating-point:

• Based on the M-ary number parameter, the output data type is the ideal unsigned integer
output word length required to contain the range [0 M-1] and is computed as follows:

ideal word length = ceil(log2(M))
• The block sets the output data type to be an unsigned integer, based on the smallest word

length (in bits) that can fit best the computed ideal word length.

Note The selections in the “Hardware Implementation Pane” (Simulink) pane pertaining to word
length constraints do not affect how this block determines output data types.

Examples
If the input is [-3; -1; 1; 3], the M-ary number parameter is 4, and the Polarity parameter is
Positive, then the output is [0; 1; 2; 3]. Changing the Polarity parameter to Negative changes the
output to [3; 2; 1; 0].

If the value for the M-ary number is 28 the block gives an output of uint8.

If the value for the M-ary number is 28+1 the block gives an output of uint16.

Pair Block
Unipolar to Bipolar Converter

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.
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BPSK Demodulator Baseband
Demodulate BPSK-modulated data
Library: Communications Toolbox / Modulation / Digital Baseband

Modulation / PM
Communications Toolbox HDL Support / Modulation / PM

Description
The BPSK Demodulator Baseband block demodulates a signal that was modulated using the binary
phase shift keying method. The input is a baseband representation of the modulated signal. This
block accepts a scalar or column vector input signal. The input signal must be a discrete-time
complex signal. The block maps the points exp(jθ) or -exp(jθ) to 0 and 1, respectively. The Phase
offset (rad) parameter specifies the value of θ.

Ports
Input

In — BPSK-modulated signal
scalar | vector | matrix

BPSK-modulated signal, specified as a scalar, vector, or matrix. When this input is a matrix, each
column is treated as an independent channel. This port is unnamed until the Var port is enabled.
When the noise variance or signal power result in computations involving extreme positive or
negative magnitudes, see “BPSK Soft Demodulation” on page 5-85 for demodulation decision type
considerations.
Data Types: double | single | fixed point
Complex Number Support: Yes

Var — Noise Variance
positive scalar | vector of positive values

Noise variance, specified as a positive scalar or vector of positive values. When the noise variance or
signal power result in computations involving extreme positive or negative magnitudes, see “BPSK
Soft Demodulation” on page 5-85 for demodulation decision type considerations.

Dependencies

To enable this parameter, set the Noise variance source parameter to Port.
Data Types: double

Output

Out — Demodulated signal
scalar | vector
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Demodulated signal, returned as a scalar or vector. If the output is a scalar, the value is an integer. If
the output is a vector, it is an integer-valued or binary-valued vector.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean

Parameters
Main

Decision type — Decision type
Hard decision (default) | Log-likelihood ratio | Approximate log-likelihood ratio

Decision type used during demodulation, specified as Hard decision, Log-likelihood ratio or
Approximate log-likelihood ratio. For more information, see “BPSK Hard-Decision
Demodulation” on page 5-84 and “BPSK Soft Demodulation” on page 5-85.

The output matches the data type of the input values when Decision type is set to Log-likelihood
ratio or Approximate log-likelihood ratio.

Noise variance source — Noise variance source
Dialog (default) | Port

Noise variance source, specified as Dialog or Port.

• Dialog — The noise variance is set using the Noise variance parameter.
• Port — The noise variance is set using the Var input port.

Noise variance — Noise Variance
1 (default) | positive scalar | vector of positive values

Noise variance, specified as a positive scalar or vector of positive values.

• When specified as a scalar, that value is used on all elements in the input signal.
• When specified as a vector, the vector length must be equal to the number of columns in the input

signal. Each noise variance vector element is applied to its corresponding column in the input
signal.

When the noise variance or signal power result in computations involving extreme positive or
negative magnitudes, see “BPSK Soft Demodulation” on page 5-85 for demodulation decision type
considerations.

This parameter is tunable in normal mode, accelerator mode and rapid accelerator mode. If you use
the Simulink Coder rapid simulation (RSIM) target to build an RSIM executable, then you can tune
the parameter without recompiling the model. This is useful for Monte Carlo simulations, in which
you run the simulation multiple times (perhaps on multiple computers) with different amounts of
noise.

Tunable: Yes
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Dependencies

To enable this parameter, set the Decision type parameter to set to either Log-likelihood
ratio or Approximate log-likelihood ratio and set the Noise variance source parameter
to Dialog.

Phase offset (rad) — Phase of zeroth point
0 (default) | real-valued scalar

Phase of the zeroth point, specified as a real-valued scalar. Units are in radians.
Example: pi/4

Data Types

Output data type — Output data type
Inherit via internal rule (default) | Smallest unsigned integer | double | single | ...

Output data type, specified as one of these options

• When you set the Decision type parameter to Hard decision:

• Inherit via internal rule — The block inherits the output data type from the input port.
If the input is a floating-point type (single or double), the output data type is the same as the
input data type. If the input data type is fixed-point, the output data type works as if you set
this parameter to Smallest unsigned integer.

• Smallest unsigned integer — The block selects the output data type based on the
settings used in the Hardware Implementation pane of the Configuration Parameters dialog
box of the model. If you select ASIC/FPGA in the Hardware Implementation pane, the
output data type is the ideal minimum one-bit size, that is, ufix(1). For all other selections,
the output data type is an unsigned integer with the smallest available word length large
enough to fit one bit, usually corresponding to the size of a character (for example, uint8).

• double
• single
• int8
• uint8
• int16
• uint16
• int32
• uint32
• boolean

• When you set the Decision type parameter to Log-likelihood ratio or Approximate log-
likelihood ratio — The block inherits the output data type matches the data type of the input.

Derotate factor — Derotate factor
Same word length as input (default) | Specify word length

Derotate factor, specified as Same word length as input or Specify word length.
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Dependencies

This parameter applies only when the input is fixed-point and the Phase offset (rad) parameter is
not a multiple of π/2.

Block Characteristics
Data Types Boolean | double | fixed pointa, b | integer | single
Multidimensional
Signals

no

Variable-Size Signals yes
a Fixed-point inputs must be signed.
b ufix(1) only at the output when ASIC/FPGA is selected in the Hardware Implementation Pane.

More About
BPSK Hard-Decision Demodulation

When applying hard demodulation, the input signal type and phase offset are considered.

This figure shows the hard decision BPSK demodulator for a floating-point or fixed-point signal and
trivial phase offset (multiple of π/2)

This figure shows the hard decision BPSK demodulator for a floating-point signal and nontrivial phase
offset
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This figure shows the hard decision BPSK demodulator for a fixed-point signal and nontrivial phase
offset

BPSK Soft Demodulation

For soft demodulation, two soft-decision log-likelihood ratio (LLR) algorithms are available: exact LLR
and approximate LLR. The exact LLR algorithm is more accurate but has slower execution speed than
the approximate LLR algorithm. For further description of these algorithms, see the “Hard- vs. Soft-
Decision Demodulation” topic.
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Note The exact LLR algorithm computes exponentials using finite precision arithmetic. For
computations involving very large positive or negative magnitudes, the exact LLR algorithm yields:

• Inf or -Inf if the noise variance is a very large value
• NaN if the noise variance and signal power are both very small values

The approximate LLR algorithm does not compute exponentials. You can avoid Inf, -Inf, and NaN
results by using the approximate LLR algorithm.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder™ provides additional configuration options that affect HDL implementation and
synthesized logic.

HDL Architecture

This block has one default HDL architecture.
HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

See Also
Blocks
BPSK Modulator Baseband | M-PSK Demodulator Baseband | QPSK Demodulator Baseband | DBPSK
Demodulator Baseband

Objects
comm.BPSKDemodulator
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Topics
“View Constellation of Modulator Block”
“Digital Baseband Modulation”
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BPSK Modulator Baseband
Modulate using BPSK method
Library: Communications Toolbox / Modulation / Digital Baseband

Modulation / PM
Communications Toolbox HDL Support / Modulation / PM

Description
The BPSK Modulator Baseband block modulates a signal by using the binary phase shift keying
(BPSK) method. The output is a baseband representation of the modulated signal. The input signal
must be a discrete-time binary-valued signal. If the input bit is 0 or 1, then the modulated symbol is
exp(jθ) or -exp(jθ), respectively. The Phase offset (rad) parameter specifies the value of θ in
radians.

Ports
Input

In — Input data
scalar | vector

Input signal, specified as a scalar or vector with element values in the range [0,M – 1], where M is the
modulation order. If you specify a binary vector, the number of elements must be an integer multiple
of the number of bits per symbol. The number of bits per symbol is equal to log2(M).
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean

Output

Out — BPSK-modulated baseband signal
scalar | vector

BPSK-modulated baseband signal, returned as a complex-valued scalar or vector.
Data Types: single | double | fixed point

Parameters
Main

Phase offset (rad) — Phase offset of zeroth point
0 (default) | scalar

Phase offset of the zeroth point of the constellation in radians, specified as a scalar.
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Example: pi/4

Data Types

Output data type — Output data type
double (default) | single | Inherit via back propagation | fixdt(1,16) | fixdt(1,16,0)
| <data type expression>

Output data type, specified as one of these options.

• double
• single
• Inherit via back propagation — The block matches the output data type and scaling to the

next block in the model
• fixdt(1,16)
• fixdt(1,16,0)
• <data type expression> — Enables parameters for which you specify additional details

Block Characteristics
Data Types Boolean | double | fixed pointa, b | integer | single
Multidimensional
Signals

no

Variable-Size Signals yes
a ufix(ceil(log2(M))) only at the input for M-ary modulation.
b Fixed-point outputs must be signed.

More About
Constellation Visualization

Click View Constellation on the block mask to visualize a signal constellation for the specified block
parameters. Parameter settings must be applied before viewing a constellation. For more information,
see “View Constellation of Modulator Block”.

Algorithms
Phase modulation is a linear baseband modulation technique in which the message modulates the
phase of a constant amplitude signal. Binary Phase Shift Keying (BPSK) is a two phase modulation
scheme, where the 0’s and 1’s in a binary message are represented by two different phase states in
the carrier signal

sn(t) =
2Eb
Tb

cos 2πfct + ϕn ,

for (n− 1)Tb ≤ t ≤ nTb,  n = 1, 2,  3, …where:

• ϕn = πm, m∈{0,1}.
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• Eb is the energy per bit.
• Tb is the bit duration.
• fc is the carrier frequency.

In MATLAB, the baseband representation of a BPSK signal is

sn(t) = e−iϕn = cos πn .

The BPSK signal has two phases: 0 and π. The probability of a bit error in an AWGN channel is

Pb = Q
2Eb
N0

,

where N0 is the noise power spectral density.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).
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See Also
Blocks
BPSK Demodulator Baseband | M-PSK Modulator Baseband | QPSK Modulator Baseband | DBPSK
Modulator Baseband

Objects
comm.BPSKModulator

Topics
“View Constellation of Modulator Block”
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Carrier Synchronizer
Compensate for carrier frequency offset

Library
Synchronization

Description
The Carrier Synchronizer block compensates for carrier frequency and phase offsets using a closed-
loop approach for BPSK, QPSK, OQPSK, 8-PSK, QAM, and PAM modulation schemes. The block
accepts a single input port. To obtain an estimate of the phase error in radians, select the Estimated
phase error output port check box. The block accepts a sample- or frame-based complex input
signal and returns a complex output signal and a an real phase estimate. The block outputs have the
same dimensions as the input.

Note

• This block does not resolve phase ambiguities created by the synchronization algorithm. As
indicated in this table, the potential phase ambiguity introduced by the synchronizer depends on
the modulation type:

Modulation Phase Ambiguity (degrees)
'BPSK' or 'PAM' 0, 180
'OQPSK', 'QPSK', or 'QAM' 0, 90, 180, 270
'8PSK' 0, 45, 90, 135, 180, 225, 270, 315

• For best results, apply carrier synchronization to non-oversampled signals.

Parameters
Modulation

Specify the modulation type as BPSK, QPSK, OQPSK, 8PSK, QAM, or PAM.
Modulation phase offset

Specify the method used to calculate the modulation phase offset as either Auto or Custom.

• Auto applies the traditional offset for the specified modulation type.
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Modulation Phase Offset (radians)
BPSK, QAM, or PAM 0
QPSK or OQPSK π/4
8PSK π/8

• Custom enables the Custom phase offset (radians) parameter.

Custom phase offset (radians)
Specify the phase offset in radians as a real scalar. This parameter is available only when
Modulation phase offset is set to Custom.

Samples per symbol
Specify the number of samples per symbol as a positive integer scalar.

Damping factor
Specify the damping factor of the loop as a positive real finite scalar.

Normalized loop bandwidth
Specify the normalized loop bandwidth as a real scalar between 0 and 1. The bandwidth is
normalized by the sample rate of the carrier synchronizer block.

Estimated phase error output port
Select this check box to provide the estimated phase error to an output port.

Simulate using
Select the simulation mode.
Code generation

On the first model run, simulate and generate code for the block using only MATLAB
functions supported for code generation. If the structure of the block does not change,
subsequent model runs do not regenerate the code.

Interpreted execution
Simulate model using all supported MATLAB functions. Choosing this option can slow
simulation performance.

Algorithms
This block implements the algorithm, inputs, and outputs described on the
comm.CarrierSynchronizer reference page. The object properties correspond to the block
parameters.

Examples

Correct for Frequency and Phase Offset

Correct for a phase and frequency offset imposed on a noisy 16-QAM channel by using the Carrier
Synchronizer block.

The doc_qamcarriersync model configures a 16-QAM signal, filters the signal through a noisy
AWGN channel, adds phase and frequency offset, and then corrects the offsets by using the Carrier
Synchronizer block.
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The constellation diagram shows the signal constellation before and after carrier synchronization.
Before synchronization, the signal appears as a spiral pattern that results from a phase and frequency
offset. After the carrier synchronizer converges to a solution, the signal symbols are grouped around
the reference constellation.

Experiment with the parameters in the Phase/Frequency Offset and Carrier Synchronizer blocks. By
varying these parameters, you can change how quickly the output conforms to an ideal 16-QAM
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constellation. If the signal does not converge to the expected constellation, additional measures can
be taken to achieve successful recovery.

Supported Data Types
Port Supported Data Types
Signal Input • Double-precision floating point

• Single-precision floating point
Signal Output • Double-precision floating point

• Single-precision floating point
Phase Error Estimate • Double-precision floating point

• Single-precision floating point

Version History
Introduced in R2015a

References
[1] Rice, Michael. Digital Communications: A Discrete-Time Approach. Upper Saddle River, NJ:

Prentice Hall, 2009, pp. 359–393.

[2] Huang, Zhijie, Zhiqiang Yi, Ming Zhang, and Kuang Wang. “8PSK Demodulation for New
Generation DVB-S2.” International Conference on Communications, Circuits and Systems,
2004. ICCCAS 2004. Vol. 2, 2004, pp. 1447–1450.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Biquad Filter

Objects
comm.CarrierSynchronizer

Topics
“MSK Signal Recovery”
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Charge Pump PLL
(To be removed) Implement charge pump phase-locked loop using digital phase detector

Note  will be removed in a future release. To design voltage-controlled oscillators (VCOs) and phase-
locked loops (PLLs), use the “Phase-Locked Loops” (Mixed-Signal Blockset) blocks.

Library
Components sublibrary of Synchronization

Description
The Charge Pump PLL (phase-locked loop) block automatically adjusts the phase of a locally
generated signal to match the phase of an input signal. It is suitable for use with digital signals.

This PLL has these three components:

• A sequential logic phase detector, also called a digital phase detector or a phase/frequency
detector.

• A filter. You specify the filter transfer function using the Lowpass filter numerator and Lowpass
filter denominator parameters. Each is a vector that gives the respective polynomial's
coefficients in order of descending powers of s.

To design a filter, use functions such as butter, cheby1, and cheby2 in Signal Processing
Toolbox software. The default filter is a Chebyshev type II filter whose transfer function arises
from the command below.

[num, den] = cheby2(3,40,100,'s')
• A voltage-controlled oscillator (VCO). You specify characteristics of the VCO using the VCO input

sensitivity, VCO quiescent frequency, VCO initial phase, and VCO output amplitude
parameters.

This block accepts a sample-based scalar input signal. The input signal represents the received
signal. The three output ports produce:

• The output of the filter
• The output of the phase detector
• The output of the VCO

A sequential logic phase detector operates on the zero crossings of the signal waveform. The
equilibrium point of the phase difference between the input signal and the VCO signal equals π. The
sequential logic detector can compensate for any frequency difference that might exist between a
VCO and an incoming signal frequency. Hence, the sequential logic phase detector acts as a
frequency detector.

For more information, “Phase-Locked Loops”.
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Parameters
Lowpass filter numerator

The numerator of the lowpass filter transfer function, represented as a vector that lists the
coefficients in order of descending powers of s.

Lowpass filter denominator
The denominator of the lowpass filter transfer function, represented as a vector that lists the
coefficients in order of descending powers of s.

VCO input sensitivity (Hz/V)
This value scales the input to the VCO and, consequently, the shift from the VCO quiescent
frequency value. The units of VCO input sensitivity are Hertz per volt.

VCO quiescent frequency (Hz)
The frequency of the VCO signal when the voltage applied to it is zero. This should match the
frequency of the input signal.

VCO initial phase (rad)
The initial phase of the VCO signal.

VCO output amplitude
The amplitude of the VCO signal.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Topics
“Phase-Locked Loops”
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Coarse Frequency Compensator
Compensate for carrier frequency offset for PAM, PSK, or QAM

Library
Synchronization

Description
The Coarse Frequency Compensator block compensates for a carrier frequency offset for BPSK,
QPSK, OQPSK, 8-PSK, PAM, and QAM modulation schemes. The block accepts a single input signal.
To obtain an estimate of the frequency offset in Hz, select the Estimated frequency offset output
port check box. The block accepts a sample- or frame-based complex input signal and returns a
complex output signal and a real frequency offset estimate. The output signal has the same
dimensions as the input signal. The frequency offset estimate is a scalar.

Parameters
Modulation type of input signal

Specify the modulation type as BPSK, QPSK, OQPSK, 8PSK, PAM, or QAM.

The default setting is QAM.
Estimation algorithm

Specify the frequency offset estimation algorithm as FFT-based or Correlation-based. This
parameter appears when Modulation type of input signal is BPSK, QPSK, 8PSK, or PAM.

The table shows the allowable combinations of the modulation type and the estimation algorithm.

Modulation FFT-Based Algorithm Correlation-Based
Algorithm

BPSK, QPSK, 8PSK, PAM ✓ ✓

OQPSK, QAM ✓  

Frequency resolution (Hz)
Specify the frequency resolution in Hz as a positive real scalar. This option is available when the
FFT-based algorithm is used. The default setting is 0.001 Hz.

Samples per symbol
Specify the number of samples per symbol as a positive integer scalar greater than or equal to 4.
The default setting is 4.
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Maximum frequency offset (Hz)
Specify the maximum frequency offset in Hz as a positive real scalar. This option is appears when
you set Estimation algorithm to Correlation-based. The default setting is 0.05 Hz.

Estimated frequency offset output port
Select this check box to provide the estimated frequency offset to an output port. The default for
this parameter is selected.

Simulate using
Select the simulation mode.
Code generation

On the first model run, simulate and generate code for the block using only MATLAB
functions supported for code generation. If the structure of the block does not change,
subsequent model runs do not regenerate the code.

If the simulation mode is Code generation, System objects accept a maximum of nine
inputs.

Interpreted execution
Simulate your model using all supported MATLAB functions. Choosing this option can slow
simulation performance.

The default setting is Code generation.

Algorithms
This block implements the algorithm, inputs, and outputs described on the
comm.CoarseFrequencyCompensator reference page. The object properties correspond to the
block parameters.

Examples

Correct for Frequency and Phase Offset

Correct for a frequency offset imposed on a noisy 8-PSK channel by using the Coarse Frequency
Compensator block.

Open the doc_coarsefreqcomp model.

Open the dialog boxes to verify these parameter values:

• Random Integer Generator — Sample time is 1e-4, which is equivalent to a 10 ksym/sec symbol
rate.

• Raised Cosine Transmit Filter — Output samples per symbol is 4.
• AWGN Channel — Mode is Signal to noise ratio (SNR) and SNR (dB) is 20.
• Phase/Frequency Offset — Frequency offset (Hz) is 2000.
• Coarse Frequency Compensator — Estimation algorithm is FFT-based and Frequency

resolution (Hz) is 1.
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Run the model. The Spectrum Analyzer block shows both the frequency offset signal and the
compensated signal. In addition, the Display block shows the estimate of the frequency offset.
Observe that the spectrum plot shows that the Coarse Frequency Compensator correctly centers the
signal around 0 Hz. Additionally, the display shows that the estimated frequency offset is 2000 Hz.
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Adjust the parameters in the Phase/Frequency Offset and Coarse Frequency Compensator blocks and
see their effect on frequency compensation performance.

Supported Data Types
Port Supported Data Types
Signal Input • Double-precision floating point

• Single-precision floating point
Signal Output • Double-precision floating point

• Single-precision floating point
Frequency Estimate • Double-precision floating point

• Single-precision floating point

References

[1] Luise, M. and R. Regiannini. “Carrier recovery in all-digital modems for burst-mode
transmissions.” IEEE Transactions on Communications.Vol. 43, No. 2, 3, 4, Feb/Mar/April,
1995, pp. 1169–1178.

[2] Wang, Y., K. Shi, and E. Serpedi. “Non-Data-Aided Feedforward Carrier Frequency Offset
Estimators for QAM Constellations: A Nonlinear Least-Squares Approach.” EURASIP Journal
on Applied Signal Processing. 2004:13, pp. 1993–2001.

[3] Nakagawa, T., M. Matsui, T. Kobayashi, K. Ishihara, R. Kudo, M. Mizoguchi, and Y. Miyamoto.
“Non-Data-Aided Wide-Range Frequency Offset Estimator for QAM Optical Coherent
Receivers.” Optical Fiber Communication Conference and Exposition (OFC/NFOEC), 2011
and the National Fiber Optic Engineers Conference. March 2011, pp. 1–3.

Version History
Introduced in R2015b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Symbol Synchronizer | Carrier Synchronizer

Objects
comm.CoarseFrequencyCompensator

 Coarse Frequency Compensator

5-101



Complex Phase Difference
Phase difference between two complex signals
Library: Communications Toolbox / Utility Blocks

Description
The Complex Phase Difference block computes the phase difference in radians between the second
input signal and the first input signal. The elements of the output are between -π and π. This block
independently processes each pair of corresponding elements.

Ports
Input

In1 — First input signal
scalar | column vector | matrix

First input signal, specified as a scalar, column vector, or matrix. If both input signals are nonscalar,
they must be the same dimension.

Note This block processes complex signals. Real values at the input ports are type cast to complex
values with +j0 complex components.

Data Types: double | single
Complex Number Support: Yes

In2 — Second input signal
scalar | column vector | matrix

Second input signal, specified as a scalar, column vector, or matrix. If both input signals are
nonscalar, they must be the same dimension. In2 must be the same data type as In1.

Note This block processes complex signals. Real values at the input ports are type cast to complex
values with +j0 complex components.

Data Types: double | single

Output

Out1 — Phase shift difference
scalar | column vector | matrix

Phase shift difference in radians, returned as a scalar, column vector, or matrix. If either input signal
is nonscalar, the output signal dimension matches the dimension of the nonscalar input signal. The
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output is the phase difference between the second input signal and the first input signal. The
elements of the output signal are between -π and π and are the same data type as the input signals.

Block Characteristics
Data Types double | single
Multidimensional
Signals

no

Variable-Size Signals no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Complex Phase Shift

 Complex Phase Difference

5-103



Complex Phase Shift
Apply complex phase shift to complex signal
Library: Communications Toolbox / Utility Blocks

Description
The Complex Phase Shift block applies a complex phase shift to a complex signal. This block
independently processes each pair of corresponding elements.

Ports
Input

In — Input signal
scalar | column vector | matrix

Input signal, specified as a scalar, column vector, or matrix.

Note This block processes and outputs complex signals. Real values at the input port are type cast to
complex values with +j0 complex components.

Data Types: double | single
Complex Number Support: Yes

Ph — Phase shift
scalar | column vector | matrix

Phase shift in radians, specified as a scalar, column vector, or matrix. If the phase shift is nonscalar, it
must have the same dimension as the signal at port In.
Data Types: double

Output

Out1 — Phase-shifted signal
scalar | column vector | matrix

Phase-shifted signal, returned as a complex-valued scalar, column vector, or matrix. This output is the
same dimension and data type as the input signal.

Block Characteristics
Data Types double | single
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Multidimensional
Signals

no

Variable-Size Signals no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Complex Phase Difference
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Constellation Diagram
Display and analyze input signals in IQ-plane
Library: Communications Toolbox / Comm Sinks

Communications Toolbox HDL Support / Comm Sinks

Description
The Constellation Diagram block displays real- and complex-valued floating- and fixed-point signals in
the IQ plane. Use this block to perform qualitative and quantitative analysis on modulated single-
carrier signals. Specifically, the IQ-plane displays the in-phase and quadrature components of
modulated signals on the real and imaginary axis of an xy-plot.
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In the Constellation Diagram window, you can:

• Input and plot multiple signals on a single constellation diagram. To define a reference
constellation for each input signal, use the Reference Constellation parameter.

• Select signals in the legend to toggle visibility of individual channels. To display the legend, use
the Legend parameter on the Plot tab. For a multichannel signal, specify the input as a matrix
with individual signals defined in the columns of the matrix.

• Display calculated error vector magnitude (EVM) and modulation error ratio (MER)
measurements for individual signals. To view and configure the measurements, select EVM/MER
on the Measurements tab. When multiple signals are input, you can select which signal to use for
measurements in the Channel section.

Ports
Input

In_1, ..., In_N — Signals (as separate ports)
column vectors | matrices

Signals, specified as separate arguments of Nsym-by-1 column vectors or Nsym-by-Nchannel matrices.
Nsym is the number of symbols, and Nchannel is the number of input signal channels. Signals can have
different data types and dimensions.

You must specify N input ports, where N is the Number of input ports parameter value. You can
visualize up to 20 individual or collective signal channels in the constellation diagram. For example, if
you create a two-channel signal for every input, then you can define up to 10 input ports.
Example: [-1 + 1i; -1 - 1i; 1 + 1i; 1 - 1i] specifies a four-symbol input signal.
Data Types: double
Complex Number Support: Yes

Parameters
Plot

In the Plot tab, you can adjust settings of the constellation diagram configuration, simulate the
model, take a snapshot of the plot, copy the display, and print the figure. Parameters unique to the
constellation diagram scope are described.

Settings — Constellation diagram settings
button

On the Plot tab, click Settings to open the Configuration Plot Settings window. This window includes
parameter subsections to configure the data and axes, labels, and color and styling. Parameters
unique to the constellation diagram are described on this page.

Number of input ports — Number of input ports on scope block

1 (default) | integer in the range [1, 20]

Specify the number of input ports on the scope block as an integer in the range [1, 20].
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The total number of input signal channels cannot exceed 20. When you specify multichannel input
signals, the total number of input signal channels limits the maximum number of input ports.

Samples per symbol — Number of samples used to represent each symbol

1 (default) | positive integer

Specify the number of samples used to represent each symbol as a positive integer. The signal is
downsampled by the value of this parameter before it is plotted.

Offset — Number of samples to skip before plotting points

0 (default) | nonnegative integer

Specify the number of samples to skip before plotting points as a nonnegative integer less than the
Samples per symbol parameter value. This value specifies the number of samples to skip when
Samples per symbol is greater than 1.

Symbols to display — Maximum number of symbols to display

Input frame length (default) | positive integer

Specify the maximum number of symbols to display by selecting Input frame length or specifying
a positive integer. To specify a positive integer, select and then replace <user-defined> with your
desired value. Use this parameter to limit the maximum number of symbols that the constellation
diagram displays when you input long signals. The block plots the most recently received symbols.

Reference Constellation — Reference constellation configuration
button

On the Plot tab or Measurements tab, click Reference Constellation, to open the Reference
Constellation window. This window includes parameters to configure the reference constellation for
each input port.

Show reference constellations — Option to display reference constellations

on (default) | off

Select this parameter to show reference constellations on the plot.

Input — Select input port
1 (default) | positive integer

Configure the reference constellation parameters for the specified input port.

Each input port has its own reference constellation. For a multichannel input signal, the block applies
a single reference constellation for all signals in that input port.

Reference constellation — Reference constellation
Custom (default) | BPSK | 8-PSK | 16-QAM | 64-QAM | 256-QAM
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Specify the reference constellation by selecting Custom, BPSK, QPSK, 8-PSK, 16-QAM, 64-QAM, or
256-QAM. To specify a custom value, first select Custom. Then in the Custom value parameter,
replace the entry with your custom vector of symbol values.

Each input port had its own reference constellation. For a multichannel input signal, the block applies
a single reference constellation for all signals in that input port.

The EVM/MER measurements use the specified reference constellation to calculate the signal quality
of the modulated input signal. For more information about the signal quality measurements, see
“EVM and MER Measurements” on page 5-111.

Custom value — Input reference constellation
[0.7071+0.7071i -0.7071+0.7071i -0.7071-0.7071i 0.7070-0.7071i] (default) | vector

Specify the reference constellation for an input as a vector that defines symbol values for the custom
modulation scheme.

Dependencies

To enable this parameter, set the Reference constellation parameter to Custom Reference
Constellation.
Data Types: char | double
Complex Number Support: Yes

Constellation normalization — Normalization method
Average power (default) | Minimum distance | Peak power

Specify the normalization method that the block uses for the constellation diagram by selecting
Average power, Minimum distance, or Peak power.

Dependencies

To enable this parameter, set the Reference constellation parameter to 16-QAM, 64-QAM, or 256-
QAM.

Average reference power — Average power of reference constellation
1 (default) | positive scalar

Specify the average power of the reference constellation as a positive scalar. The average power is
referenced to a one-ohm load. Units are in watts.

Dependencies

To enable this parameter, set the Reference constellation parameter to BPSK, QPSK, 8-PSK, 16-
QAM, 64-QAM, or 256-QAM.

Reference phase offset (rad) — Phase offset of reference constellation
scalar

Specify the phase offset of the reference constellation as a scalar. Units are in radians.
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Dependencies

To enable this parameter, set the Reference constellation parameter to BPSK, QPSK, 8-PSK, 16-
QAM, 64-QAM, or 256-QAM.

• The default value is 0 for BPSK, 16-QAM, 64-QAM, and 256-QAM.
• The default value is pi/4 for 8-PSK.
• The default value is pi/8 for QPSK.

Legend — Option to display legend
button

On the Plot tab, click Legend to toggle the display of the legend. The names listed in the legend are
the names for signals connected to input ports as specified in the model. The legend does not display
until the model runs with an input signal.

In the scope legend, click a signal name to toggle the signal visibility in the scope.

Trajectory — Option to display signal trajectory
button

On the Plot tab, click Trajectory to toggle the display of the trajectory. Select this parameter to
display the trajectory between constellation points for the plotted signals.

Measurements

In the Measurements tab, you can select the active channel, configure the signal quality
measurements, and toggle the Measurements pane.

For more information about the signal quality measurements, see “EVM and MER Measurements” on
page 5-111.

Channel

Channel — Active input channel
name of first channel in first port (default) | list of channels

Select the active input channel for measurements from the list of input channels. Click EVM/MER to
display the signal quality measurements for the active channel.

The total number of input signal channels cannot exceed 20. When you specify multichannel input
signals, the total number of input signal channels limits the maximum permitted value for the
Number of input ports parameter.

Measurements

Measurement Interval — Duration of EVM and MER measurement

Current display (default) | All displays | positive integer

Specify the duration of the EVM and MER measurement in symbols by selecting Current Display,
or All displays or by specifying a positive integer. To specify a positive integer, select and then
replace <user-defined> with your desired value. The value must be a positive value in the range
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[1, Symbols to display). The block computes measurements after the number of input data samples
exceeds the measurement interval.

EVM Normalization — Normalization method
Average constellation power (default) | Peak constellation power

Specify the normalization method that the block uses for the EVM normalization by selecting
Average constellation power or Peak constellation power.

Reference Constellation — Reference constellation configuration
button

On the Plot tab or Measurements tab, click Reference Constellation, to open the Reference
Constellation window. This window includes parameters to configure the reference constellation for
each input port. For parameter descriptions, see the Reference Constellation parameter in the
“Plot” on page 5-107 section.

EVM/MER — Option to display signal quality measurements pane
button

On the Measurements tab, click EVM/MER to toggle display the signal quality measurements pane.
For more information, see “EVM and MER Measurements” on page 5-111.

Block Characteristics
Data Types Boolean | double | enumerated | fixed point | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals yes
Zero-Crossing
Detection

no

More About
EVM and MER Measurements

The Measurements pane displays the EVM and MER signal quality measurement settings and the
calculation results for the specified signal channel.

• EVM — An error vector is a vector in the IQ plane from the ideal constellation point to the actual
point at the receiver. The EVM calculations include root mean square (RMS), peak, and average
values.

You can normalize the EVMRMS and EVMAverage calculations by the average or peak constellation
power method as computed using these algorithms.
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EVM Normalization Method Algorithm
Average constellation power

EVMk = 100
ek

Pavg

EVMRMS, in percent, for average constellation power
normalization:

EVMRMS(%) = 100

1
N ∑k = 1

N
(ek)

Pavg

Peak constellation power
EVMk = 100

ek
Pmax

EVMRMS, in percent, for peak constellation power
normalization:

EVMRMS(%) = 100

1
N ∑k = 1

N
(ek)

Pmax

The Measurements pane shows the RMS and peak EVM in percent and the average and peak
EVM decibels for the selected input channel. The EVM in decibels is computed as EVM (dB) = 10 ‑
log10(EVMMS) = 20 ‑ log10(EVMRMS), where:

• ek = (Ik− I k)2 + (Qk− Qk)2

• Ik is the in-phase value of the kth symbol in the input vector.
• Qk is the quadrature phase value of the kth symbol in the input vector.
• Ik and Qk represent ideal (reference) symbol values. I k and Qk represent measured (received)

symbol values.
• N is the input vector length.
• Pavg is the value for average constellation power.
• Pmax is the value for peak constellation power.
• EVMRMS = EVMMS

The maximum EVM value in a vector is EVMmax = max
k ∈ [1, ..., N]

EVMk , where k is the kth symbol

in a vector of length N.
• MER — MER is the ratio of the average power of the transmitted signal to the average power of

the error vector. The Measurements pane indicates average MER measurement result in decibels
for the selected signal channel.

MER is a measure of the SNR in a modulated signal, calculated in dB. The MER over N symbols is

MER = 10 × log10

∑
k = 1

N
Ik2 + Qk

2

∑
k = 1

N
ek

dB,
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where:

• ek = (Ik− I k)2 + (Qk− Qk)2

• Ik is the in-phase value of the kth symbol in the input vector.
• Qk is the quadrature phase value of the kth symbol in the input vector.
• Ik and Qk represent ideal (reference) values. I k and Qk represent measured (received) symbols.

Programmatic Configuration

You can programmatically configure the scope properties with callbacks or within scripts by using a
scope configuration object as described in “Control Scope Blocks Programmatically” (Simulink).

Version History
Introduced in R2013b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block is excluded from the generated code when code generation is performed on a system
containing this block.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

This block can be used for simulation visibility in subsystems that generate HDL code, but is not
included in the hardware implementation.

See Also
Blocks
Eye Diagram

Objects
comm.ConstellationDiagram | comm.EVM | comm.MER

Functions
scatterplot

Topics
“Scatter Plots and Constellation Diagrams”
“View Constellation of Modulator Block”
“Control Scope Blocks Programmatically” (Simulink)
“View Data During Simulation” (Simulink)
Line Properties
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Continuous-Time VCO
(To be removed) Implement voltage-controlled oscillator

Note  will be removed in a future release. To design voltage-controlled oscillators (VCOs) and phase-
locked loops (PLLs), use the “Phase-Locked Loops” (Mixed-Signal Blockset) blocks.

Library
Components sublibrary of Synchronization

Description
The Continuous-Time VCO (voltage-controlled oscillator) block generates a signal with a frequency
shift from the Quiescent frequency parameter that is proportional to the input signal. The input
signal is interpreted as a voltage. If the input signal is u(t), then the output signal is

y(t) = Accos 2πfct + 2πkc∫0 t
u(τ)dτ + φ

where Ac is the Output amplitude parameter, fc is the Quiescent frequency parameter, kc is the
Input sensitivity parameter, and φ is the Initial phase parameter.

This block uses a continuous-time integrator to interpret the equation above.

The input and output are both sample-based scalar signals.

Parameters
Output amplitude

The amplitude of the output.
Quiescent frequency

The frequency of the oscillator output when the input signal is zero.
Input sensitivity

This value scales the input voltage and, consequently, the shift from the Quiescent frequency
value. The units of Input sensitivity are Hertz per volt.

Initial phase
The initial phase of the oscillator in radians.

Version History
Introduced before R2006a

5 Blocks

5-114



Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Not recommended for production code.

See Also
Blocks
Discrete-Time VCO

Topics
“Phase-Locked Loops”
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Convolutional Deinterleaver
Restore ordering of symbols that were permuted using shift registers

Library
Convolutional sublibrary of Interleaving

Description
The Convolutional Deinterleaver block recovers a signal that was interleaved using the Convolutional
Interleaver block. Internally, this block uses a set of shift registers. The parameters in the two blocks
must have the same values. For information about delays, see “Delays of Convolutional Interleaving
and Deinterleaving” on page 5-117.

This block accepts a scalar or column vector input signal, which can be real or complex. The output
signal has the same sample time as the input signal.

This block accepts the following data types: int8, uint8, int16, uint16, int32, uint32,
boolean, single, double, and fixed-point.

Parameters
Rows of shift registers

The number of shift registers that the block uses internally.
Register length step

The difference in symbol capacity of each successive shift register, where the last register holds
zero symbols.

Initial conditions
Indicates the values that fill each shift register at the beginning of the simulation (except for the
last shift register, which has zero delay).

• When you select a scalar value for Initial conditions, the value fills all shift registers (except
for the last one)

• When you select a column vector with a length equal to the Rows of shift registers
parameter, each entry fills the corresponding shift register.

The value of the first element of the Initial conditions parameter is unimportant, since the last
shift register has zero delay.

Examples
For an example that uses this block, see “Convolutional Interleaving”.
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Pair Block
Convolutional Interleaver

More About
Delays of Convolutional Interleaving and Deinterleaving

The total delay due to a convolutional interleaver and deinterleaver pair is N × slope × (N – 1).

• N is the number of registers and equals the value of the Rows of shift registers parameter
• slope is the register length step and equals the value of the Register length step parameter

This diagram shows the structure of a general convolutional interleaver comprised of a set of shift
registers, each having a specified delay shown as D(1), D(2),..., D(N), and a commutator to switch
input and output symbols through registers. The kth shift register holds D(k) symbols, where k = 1, 2,
3, … N. The kth shift register has a delay value of ((k–1) × slope). With each new input symbol, the
commutator switches to a new register and shifts in the new symbol while shifting out the oldest
symbol in that register. When the commutator reaches the Nth register, upon the next new input, the
commutator returns to the first register.

Version History
Introduced before R2006a

References
[1] Clark, George C., and J. Bibb Cain. Error-Correction Coding for Digital Communications.

Applications of Communications Theory. New York: Plenum Press, 1981.

[2] Forney, G., D., Jr. "Burst-Correcting Codes for the Classic Bursty Channel." IEEE Transactions on
Communications, vol. COM-19, October 1971. 772-781.

[3] Ramsey, J. L. "Realization of Optimum Interleavers." IEEE Transactions on Information Theory,
IT-16 (3), May 1970. 338-345.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

You can generate HDL code for the Convolutional Deinterleaver block using a shift-register-based
implementation, or a RAM-based implementation.

The default implementation for the Convolutional Deinterleaver block is shift register-based. To
suppress generation of reset logic, set the implementation parameter ResetType to'none'. When
you set ResetType to'none', reset is not applied to the shift registers.

When registers are not fully loaded, mismatches between Simulink and the generated code occur for
some number of samples during the initial phase. To avoid spurious test bench errors, determine the
number of samples required to fill the shift registers. Set the Ignore output data checking
(number of samples) option accordingly. (If you are using the command-line interface, you can use
the IgnoreDataChecking property for this purpose.)

When you select the RAM implementation for a Convolutional Deinterleaver block, HDL Coder uses
RAM resources instead of shift registers.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

ResetType Suppress reset logic generation. The default is default, which generates
reset logic. See also “ResetType” (HDL Coder).

Restrictions

When you select the RAM implementation:

• Double or single data types are not supported for either input or output signals.
• You must set Initial conditions for the block to zero.
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• At least two rows of interleaving are required.

See Also
Blocks
Convolutional Interleaver | General Multiplexed Deinterleaver | Helical Deinterleaver

Functions
convintrlv | convdeintrlv

Objects
comm.ConvolutionalDeinterleaver | comm.ConvolutionalInterleaver

Topics
“Interleaving”
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Convolutional Encoder
Encode binary data using convolutional encoding scheme
Library: Communications Toolbox / Error Detection and Correction /

Convolutional
Communications Toolbox HDL Support / Error Detection and
Correction / Convolutional

Description
The Convolutional Encoder block encodes the input binary message by using the convolutional
encoding scheme specified by a trellis structure. For more information, see “Convolutional Coding”
on page 5-124.

This block can accept inputs that vary in length during simulation. For more information about
variable-size signals, see the “Variable-Size Signal Basics” (Simulink) topic.

These icons show the optional block ports enabled.

Ports
Input

In — Input message
binary column vector

Input message, specified as a binary column vector. This port is unnamed until a second input port is
enabled. If the encoder takes K input bit streams (that is, it can receive 2K possible input symbols),
the block input vector length is L×K for some positive integer L.
Example: [1 1 0 1 0 0 1 1] specifies the message as a binary row vector with eight elements.
Data Types: double | single | Boolean | int8 | int16 | int32 | uint8 | uint16 | uint32 | ufix1

ISt — Initial state of encoder registers
nonnegative integer
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Initial state of encoder registers for every frame input to the block, specified as a nonnegative
integer.

Dependencies

To enable this port set the Operation mode parameter to Truncated (reset every frame) and
select Specify initial state via input port.
Data Types: double | uint32

Rst — Reset state of encoder registers
scalar

Reset state of encoder registers, specified as scalar value. Any nonzero value forces a reset of the
encoder registers.

Dependencies

To enable this port set the Operation mode parameter to Reset on nonzero input via port.
Data Types: double | Boolean

Output

Out — Convolutionally encoded codeword
binary column vector

Convolutionally encoded codeword, returned as a binary column vector. This port is unnamed on the
block icon. If the encoder produces N output bit streams (that is, it can produce 2N possible output
symbols), the block output vector length is L×N for some positive integer L. This output inherits its
data type from the In input.
Data Types: double | single | Boolean | int8 | int16 | int32 | uint8 | uint16 | uint32 | ufix1

FSt — Final state of encoder registers
nonnegative integer

Final state of encoder registers for every frame output from the block, returned as a nonnegative
integer.

Dependencies

This parameter appears only when you set the Operation mode parameter to Continuous,
Truncated (reset every frame), or Reset on nonzero input via port and you select the
Output final state parameter.
Data Types: double

Parameters
Trellis structure — Trellis description of convolutional code

poly2trellis(7, [171 133]) (default)

Trellis description of the convolutional code, specified as a structure that contains the trellis
description for a rate K ∕ N code. K is the number of input bit streams, and N is the number of output
bit streams.
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You can either use the poly2trellis function to create the trellis structure or create it manually.
For more about this structure, see “Trellis Description of a Convolutional Code” and the istrellis
function.

The trellis structure contains these fields.

numInputSymbols — Number of symbols input to encoder
2K

Number of symbols input to the encoder, specified as an integer equal to 2K, where K is the number of
input bit streams.
Data Types: double

numOutputSymbols — Number of symbols output from encoder
2N

Number of symbols output from the encoder, specified as an integer equal to 2N, where N is the
number of output bit streams.
Data Types: double

numStates — Number of states in encoder
power of 2

Number of states in the encoder, specified as a power of 2.
Data Types: double

nextStates — Next states
matrix of integers

Next states for all combinations of current states and current inputs, specified as a matrix of integers.
The matrix size must be numStates by 2K.
Data Types: double

outputs — Outputs
matrix of octal numbers

Outputs for all combinations of current states and current inputs, specified as a matrix of octal
numbers. The matrix size must be numStates by 2K.
Data Types: double

Operation mode — Termination method of encoded frame

Continuous (default) | Truncated (reset every frame) | Terminate trellis by
appending bits | Reset on nonzero input via port

Termination method of the encoded frame, specified as one of these mode values.

• Continuous — The block retains the encoder states at the end of each input for use with the next
frame.

• Truncated (reset every frame) — The block treats each input independently. At the start of
each input frame, the encoder states are reset to all-zeros state, or if you select Specify initial
state via input port, to the state specified by the ISt port.

5 Blocks

5-122



• Terminate trellis by appending bits — The block treats each input independently. For
each input frame, extra bits are used to set the encoder states to all-zeros state at the end of the
frame. The output length is given by y = N × (x + s) / K, where x is the number of input bits, and s
= constraint length – 1 (or, in the case of multiple constraint lengths, s =sum(constraint length(i) –
1)).

Note This block works for cases K ≥ 1, where it has the same values for constraint lengths in
each input stream. For example, constraint lengths of [2 2] or [7 7] will work, but [5 4] will not.

• Reset on nonzero input via port — The block has an additional input port, labeled Rst.
When the Rst input is nonzero, the encoder resets to the all-zeros state.

Note When this block outputs sequences that vary in length during simulation and you set the
Operation mode to Truncated (reset every frame) or Terminate trellis by appending
bits, the block's state resets at every input time step.

Delay reset action to next time step — Option to delay reset action until next time
step

off (default) | on

Select this parameter to reset the block after computing the encoded data. The delay in the reset
action allows the block to support HDL code generation. Generating HDL code, requires HDL Coder
software.
Dependencies

This parameter appears only when you set the Operation mode parameter to Reset on nonzero
input via port.

Specify initial state via input port — Option to specify initial state via input port

off (default) | on

Select this parameter to add the ISt input port to the block.
Dependencies

This parameter appears only when you set the Operation mode parameter to Truncated (reset
every frame).

Output final state — Option to output final register state

off (default) | on

Select this parameter to add the FSt output port to the block.
Dependencies

This parameter appears only when you set the Operation mode parameter to Continuous,
Truncated (reset every frame), or Reset on nonzero input via port.

Puncture code — Option to enable the code puncturing
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off (default) | on

Select this parameter to view and enable the Puncture vector parameter.

Puncture vector — Puncture pattern

[1; 1; 0; 1; 0; 1] (default) | column vector

Puncture pattern, specified as vector. The puncture vector is a pattern of 1s and 0s where the 0s
indicate the bits punctured in the output encoded data. The length of the vector must be an integer
divisor of length(In), the input message vector length.

For some commonly used puncture patterns for specific rates and polynomials, see the Yasuda [3],
Haccoun [4], and Begin [5] references.
Dependencies

This parameter appears only when you select the Puncture code parameter.

Block Characteristics
Data Types Boolean | double | fixed pointa | integer | single
Multidimensional
Signals

no

Variable-Size Signals yes
a ufix(1) only.

More About
Convolutional Coding

Convolutional coding is an error-control coding that has memory. Specifically, the computations and
coded output depend on the current set of input symbols and on a number of previous input symbols
that varies depending on the trellis configuration. A convolutional encoder outputs N bits for every K
input bits. The input can have varying multiples of K bits over a simulation.

Using a MATLAB trellis structure that defines a set of generator polynomials, you can model
nonsystematic, systematic feedforward, or systematic feedback convolutional codes. For more
information and examples that demonstrate various convolutional code architectures, see the
“Convolutional Codes” topic.

To decode the convolutionally coded output, you can use:

• The Viterbi Decoder block — Uses the Viterbi algorithm with hard-decision and soft-decision
decoding

• The APP Decoder block — Uses an a posteriori probability decoder for the soft output decoding of
convolutional codes

Specifying the Encoder

To define the convolutional encoder, use the Trellis structure parameter. You can specify the trellis
structure with a call to the poly2trellis function. For more information, see “Trellis Description of
a Convolutional Code”.
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For example, to use an encoder with a constraint length of 7, code generator polynomials of 171 and
133 (in octal numbers), and a feedback connection of 171 (in octal), set the Trellis structure
parameter to

poly2trellis(7,[171 133],171)

or initialize a MATLAB workspace variable with the same call to poly2trellis, and then specify the
variable name in the Trellis structure parameter.

Simulink spends less time updating the diagram at the beginning of each simulation when the Trellis
structure parameter is specified by using a workspace variable that contains the trellis structure as
opposed to calling the poly2trellis function in the Trellis structure parameter.

Use the Operation mode parameter to specify operating mode and the starting register states.

Version History
Introduced before R2006a

References
[1] Clark, George C., and J. Bibb Cain. Error-Correction Coding for Digital Communications.

Applications of Communications Theory. New York: Plenum Press, 1981.

[2] Gitlin, Richard D., Jeremiah F. Hayes, and Stephen B. Weinstein. Data Communications Principles.
Applications of Communications Theory. New York: Plenum Press, 1992.

[3] Yasuda, Y., K. Kashiki, and Y. Hirata. “High-Rate Punctured Convolutional Codes for Soft Decision
Viterbi Decoding.” IEEE Transactions on Communications 32, no. 3 (March 1984): 315–19.
https://doi.org/10.1109/TCOM.1984.1096047.

[4] Haccoun, D., and G. Begin. “High-Rate Punctured Convolutional Codes for Viterbi and Sequential
Decoding.” IEEE Transactions on Communications 37, no. 11 (November 1989): 1113–25.
https://doi.org/10.1109/26.46505.

[5] Begin, G., D. Haccoun, and C. Paquin. “Further Results on High-Rate Punctured Convolutional
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.
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HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Restrictions

• Input data requirements:

• Must be scalar input
• Must have a boolean or ufix1 data type

• HDL Coder supports only these coding rates:

• ½ to 1/7
• 2/3

• HDL Coder supports only constraint lengths for 3 to 9.
• Specify Trellis structure by the poly2trellis function.
• HDL Coder supports these Operation mode settings:

• Continuous
• Reset on nonzero input via port

If you select this mode, you must select the Delay reset action to next time step option.
When you select this option, the Convolutional Encoder block finishes its current computation
before executing a reset.

• You cannot generate HDL for this block inside a Resettable Synchronous Subsystem.

See Also
Blocks
Viterbi Decoder | APP Decoder

Functions
convenc | poly2trellis | istrellis

Objects
comm.ConvolutionalEncoder

Topics
“Convolutional Codes”
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“Trellis Description of a Convolutional Code”
“Variable-Size Signal Basics” (Simulink)
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Convolutional Interleaver
Permute input symbols using set of shift registers

Library
Convolutional sublibrary of Interleaving

Description
The Convolutional Interleaver block permutes the symbols in the input signal. Internally, it uses a set
of shift registers. For information about delays, see “Delays of Convolutional Interleaving and
Deinterleaving” on page 5-129.

The Initial conditions parameter indicates the values that fill each shift register at the beginning of
the simulation (except for the first shift register, which has zero delay). If Initial conditions is a
scalar, then its value fills all shift registers except the first; if Initial conditions is a column vector
whose length is the Rows of shift registers parameter, then each entry fills the corresponding shift
register. The value of the first element of the Initial conditions parameter is unimportant, since the
first shift register has zero delay.

This block accepts a scalar or column vector input signal, which can be real or complex. The output
signal has the same sample time as the input signal.

The block can accept the data types int8, uint8, int16, uint16, int32, uint32, boolean,
single, double, and fixed-point. The data type of this output will be the same as that of the input
signal.

Parameters
Rows of shift registers

The number of shift registers that the block uses internally.
Register length step

The number of additional symbols that fit in each successive shift register, where the first register
holds zero symbols.

Initial conditions
The values that fill each shift register when the simulation begins.

Examples
For an example that uses this block, see “Convolutional Interleaving”.
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Pair Block
Convolutional Deinterleaver

More About
Delays of Convolutional Interleaving and Deinterleaving

The total delay due to a convolutional interleaver and deinterleaver pair is N × slope × (N – 1).

• N is the number of registers and equals the value of the Rows of shift registers parameter
• slope is the register length step and equals the value of the Register length step parameter

This diagram shows the structure of a general convolutional interleaver comprised of a set of shift
registers, each having a specified delay shown as D(1), D(2),..., D(N), and a commutator to switch
input and output symbols through registers. The kth shift register holds D(k) symbols, where k = 1, 2,
3, … N. The kth shift register has a delay value of ((k–1) × slope). With each new input symbol, the
commutator switches to a new register and shifts in the new symbol while shifting out the oldest
symbol in that register. When the commutator reaches the Nth register, upon the next new input, the
commutator returns to the first register.

Version History
Introduced before R2006a

References
[1] Clark, George C., and J. Bibb Cain. Error-Correction Coding for Digital Communications.

Applications of Communications Theory. New York: Plenum Press, 1981.

[2] Forney, G., D., Jr. "Burst-Correcting Codes for the Classic Bursty Channel." IEEE Transactions on
Communications, vol. COM-19, October 1971. 772-781.

[3] Ramsey, J. L. "Realization of Optimum Interleavers." IEEE Transactions on Information Theory,
IT-16 (3), May 1970. 338-345.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

You can generate HDL code for the Convolutional Interleaver block using a shift-register-based
implementation, or a RAM-based implementation.

The default implementation for the Convolutional Interleaver block is shift register-based. To
suppress generation of reset logic, set the implementation parameter ResetType to'none'. When
you set ResetType to'none', reset is not applied to the shift registers.

When registers are not fully loaded, mismatches between Simulink and the generated code occur for
some number of samples during the initial phase. To avoid spurious test bench errors, determine the
number of samples required to fill the shift registers. Set the Ignore output data checking
(number of samples) option accordingly. (If you are using the command-line interface, you can use
the IgnoreDataChecking property for this purpose.)

When you select the RAM implementation for a Convolutional Interleaver block, HDL Coder uses RAM
resources instead of shift registers.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

ResetType Suppress reset logic generation. The default is default, which generates
reset logic. See also “ResetType” (HDL Coder).

Restrictions

When you select the RAM implementation:

• Double or single data types are not supported for either input or output signals.
• You must set Initial conditions for the block to zero.
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• At least two rows of interleaving are required.

See Also
Blocks
Convolutional Deinterleaver | General Multiplexed Deinterleaver | Helical Deinterleaver

Objects
comm.ConvolutionalDeinterleaver | comm.ConvolutionalInterleaver

Functions
convintrlv | convdeintrlv

Topics
“Interleaving”
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CPFSK Demodulator Baseband
Demodulate CPFSK-modulated data

Library
CPM, in Digital Baseband sublibrary of Modulation

Description
The CPFSK Demodulator Baseband block demodulates a signal that was modulated using the
continuous phase frequency shift keying method. The input to this block is a baseband representation
of the modulated signal. The M-ary number parameter, M, is the size of the input alphabet. M must
have the form 2K for some positive integer K.

This block supports multi-h Modulation index. See CPM Modulator Baseband for details.

Integer-Valued Signals and Binary-Valued Signals

When you set the Output type parameter to Integer, then the block produces odd integers between
-(M-1) and M-1.

When you set the Output type parameter to Bit, then the block produces groupings of K bits. Each
grouping is called a binary word.

In binary output mode, the block first maps each input symbol to an intermediate value as in the
integer output mode. The block then maps the odd integer k to the nonnegative integer (k+M-1)/2.
Finally, the block maps each nonnegative integer to a binary word, using a mapping that depends on
whether the Symbol set ordering parameter is set to Binary or Gray.

This block accepts a scalar-valued or column vector input signal with a data type of single or
double.

Single-Rate Processing

In single-rate processing mode, the input and output signals have the same port sample time. The
block implicitly implements the rate change by making a size change at the output when compared to
the input. The input width must be an integer multiple of the Samples per symbol parameter value,
and the input can be a column vector.

• When you set Output type to Bit, the output width is K times the number of input symbols.
• When you set Output type to Integer, the output width is the number of input symbols.
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Multirate Processing

In multirate processing mode, the input and output signals have different port sample times. The
input must be a scalar. The output symbol time is the product of the input sample time and the
Samples per symbol parameter value.

• When you set Output type to Bit, the output width equals the number of bits per symbol.
• When you set Output type to Integer, the output is a scalar.

Traceback Depth and Output Delays

Internally, this block creates a trellis description of the modulation scheme and uses the Viterbi
algorithm. The Traceback depth parameter, D, in this block is the number of trellis branches that
the algorithm uses to construct each traceback path. D influences the output delay, which is the
number of zero symbols that precede the first meaningful demodulated value in the output.

• When you set the Rate options parameter to Allow multirate processing, and the model
uses a variable-step solver or a fixed-step solver with the Tasking Mode parameter set to
SingleTasking, then the delay consists of D+1 zero symbols.

• When you set the Rate options parameter to Enforce single-rate processing, then the
delay consists of D zero symbols.

The optimal Traceback depth parameter value is dependent on minimum squared Euclidean
distance calculations. Alternatively, a typical value, dependent on the number of states, can be chosen
using the “five-times-the-constraint-length” rule, which corresponds to 5·log2(numStates).

For the definition of the number of states, see CPM Demodulator Baseband Help page.

Parameters
M-ary number

The size of the alphabet.
Output type

Determines whether the output consists of integers or groups of bits.
Symbol set ordering

Determines how the block maps each integer to a group of output bits. This field is active only
when Output type is set to Bit.

Modulation index
Specify the modulation index {hi}. The default is 0.5. The value of this property must be a real,
nonnegative scalar or column vector.

This block supports multi-h Modulation index. See CPM Modulator Baseband for details.
Phase offset (rad)

The initial phase of the modulated waveform.
Samples per symbol

The number of input samples that represent each modulated symbol, which must be a positive
integer. For more information, see “Signal Upsampling and Rate Changes” in Communications
Toolbox User's Guide.
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Rate options
Select the rate processing method for the block.

• Enforce single-rate processing — When you select this option, the input and output
signals have the same port sample time. The block implements the rate change by making a
size change at the output when compared to the input. The output width is the number of
symbols (which is given by dividing the input length by the Samples per symbol parameter
value when the Output type parameter is set to Integer).

• Allow multirate processing — When you select this option, the input and output signals
have different port sample times. The output period is the same as the symbol period and
equals the product of the input period and the Samples per symbol parameter value.

For more information, see Single-Rate Processing and Multirate Processing in the Description
section of this page.

Traceback depth
The number of trellis branches that the CPFSK Demodulator Baseband block uses to construct
each traceback path.

Output datatype
The output data type can be boolean, int8, int16, int32, or double.

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
Output • Double-precision floating point

• Boolean (When Output type set to Bit)
• 8-, 16-, and 32-bit signed integers (When Output type set to Integer)

Pair Block
CPFSK Modulator Baseband

References

[1] Anderson, John B., Tor Aulin, and Carl-Erik Sundberg. Digital Phase Modulation. New York:
Plenum Press, 1986.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.
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See Also
Blocks
CPM Demodulator Baseband | CPFSK Modulator Baseband | Viterbi Decoder | M-FSK Demodulator
Baseband

 CPFSK Demodulator Baseband

5-135



CPFSK Modulator Baseband
Modulate using continuous phase frequency shift keying method

Library
CPM, in Digital Baseband sublibrary of Modulation

Description
The CPFSK Modulator Baseband block modulates a signal using the continuous phase frequency shift
keying method. The output is a baseband representation of the modulated signal. The M-ary number
parameter, M, represents the size of the input alphabet. M must have the form 2K for some positive
integer K.

This block supports multi-h Modulation index. See CPM Modulator Baseband for details.

Integer-Valued Signals and Binary-Valued Signals

When you set the Input type parameter to Integer, the block accepts odd integers between -(M-1)
and M-1.

When you set the Input type parameter to Bit, the block accepts groupings of K bits. Each grouping
is called a binary word. The input vector length must be an integer multiple of K.

In binary input mode, the block maps each binary word to an integer between 0 and M-1, using a
mapping scheme that depends on whether you set the Symbol set ordering parameter to Binary or
Gray. The block then maps the integer k to the intermediate value 2k-(M-1) and proceeds as if it
operates in the integer input mode. For more information, see “Integer-Valued and Binary-Valued
Symbols”.

This block accepts a scalar-valued or column vector input signal. If you set Input type to Bit, then
the input signal can also be a vector of length K.

Single-Rate Processing

In single-rate processing mode, the input and output signals have the same port sample time. The
block implicitly implements the rate change by making a size change at the output when compared to
the input. In this mode, the input to the block can be multiple symbols.

• When you set Input type to Integer, the input can be a column vector, the length of which is the
number of input symbols.

• When you set Input type to Bit, the input must be a column vector with a width that is an
integer multiple of K, the number of bits per symbol.
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The output width equals the product of the number of input symbols and the Samples per symbol
parameter value.

Multirate Processing

In multirate processing mode, the input and output signals have different port sample times. In this
mode, the input to the block must be one symbol.

• When you set Input type to Integer, the input must be a scalar.
• When you set Input type to Bit, the input width must equal the number of bits per symbol.

The output sample time equals the symbol period divided by the Samples per symbol parameter
value.

Parameters
M-ary number

The size of the alphabet.
Input type

Indicates whether the input consists of integers or groups of bits.
Symbol set ordering

Determines how the block maps each group of input bits to a corresponding integer. This field is
active only when Input type is set to Bit.

Modulation index
Specify the modulation index {hi}. The default is 0.5. The value of this property must be a real,
nonnegative scalar or column vector.

This block supports multi-h Modulation index. See CPM Modulator Baseband for details.
Phase offset (rad)

The initial phase of the output waveform, measured in radians.
Samples per symbol

The number of output samples that the block produces for each integer or binary word in the
input, which must be a positive integer. For all non-binary schemes, as defined by the pulse
shapes, this value must be greater than 1.

For more information, see “Signal Upsampling and Rate Changes”.
Rate options

Select the rate processing option for the block.

• Enforce single-rate processing — When you select this option, the input and output
signals have the same port sample time. The block implements the rate change by making a
size change at the output when compared to the input. The output width equals the product of
the number of symbols and the Samples per symbol parameter value.

• Allow multirate processing — When you select this option, the input and output signals
have different port sample times. The output sample time equals the symbol period divided by
the Samples per symbol parameter value.
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Output data type
Select the data type of the output signal. The output data type can be single or double.

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Boolean (When Input type set to Bit)
• 8-, 16-, and 32-bit signed integers (When Input type set to Integer)

Output • Double-precision floating point
• Single-precision floating point

Pair Block
CPFSK Demodulator Baseband

See Also
CPM Modulator Baseband, M-FSK Modulator Baseband

References

[1] Anderson, John B., Tor Aulin, and Carl-Erik Sundberg. Digital Phase Modulation. New York:
Plenum Press, 1986.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.
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CPM Demodulator Baseband
Demodulate signal using CPM method and Viterbi algorithm
Library: Communications Toolbox / Modulation / Digital Baseband

Modulation / CPM

Description
The CPM Demodulator Baseband block demodulates an input signal that was modulated using the
continuous phase modulation (CPM) method.

CPM is a modulation method with memory. The block processing includes a correlator followed by a
maximum-likelihood sequence detector (MLSD) that searches the paths through the state trellis for
the minimum Euclidean distance path. The block uses the Viterbi algorithm to perform MLSD.

For more information about this demodulation and the filtering applied, see “CPM Demodulation” on
page 5-143 and “Pulse Shape Filtering” on page 5-144.

Ports
Input

In — Input signal
scalar | column vector

Input signal, specified as a scalar or column vector. The length of the input signal must be an integer
multiple of the number of samples per symbol specified in the Samples per symbol parameter. For
more information, see “Integer-Valued and Binary-Valued Output Signals” on page 5-144.
Data Types: double | single

Output

Out — Output signal
scalar | column vector

Output signal, returned as a scalar or column vector. For more information, see “Integer-Valued and
Binary-Valued Output Signals” on page 5-144.

Supported Data Types

• Double-precision floating point
• Boolean (when Output type is set to Bit)
• 8-, 16-, and 32-bit signed integers (when Output type is set to Integer)

Data Types: double | Boolean | int8 | int16 | int32
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For more information on the processing rates, see “Single-Rate Processing” on page 5-145, and
“Multirate Processing” on page 5-145.

Parameters
M-ary number — Modulation order

4 (default) | positive integer

Modulation order indicating the alphabet size, specified as a positive integer that is a nonzero power
of two. M must have the form 2K for some positive integer K, where K is the number of bits per
symbol.

Output type — Determines whether output consists of integers or groups of bits

Integer (default) | Bit

Determines whether the output consists of integers or groups of bits, specified as Integer or Bit.

Symbol set ordering — Bit mapping

Binary (default) | Gray

Bit mapping, specified as Binary or Gray.

• Set this parameter to Binary to map symbols using natural binary-coded ordering.
• Set this parameter to Gray to map symbols using Gray-coded ordering.

For more information, see “Integer-Valued and Binary-Valued Output Signals” on page 5-144.

Dependencies

To enable this parameter, set Output type to Bit.

Modulation index — Modulation index {hi}

0.5 (default) | nonnegative scalar | column vector

Modulation index {hi}, specified as a nonnegative scalar or column vector.

{h} represents a sequence of modulation indices. For more information, see “CPM Demodulation” on
page 5-143.

Frequency pulse shape — Type of pulse shaping

Rectangular (default) | Raised Cosine | Spectral Raised Cosine | Gaussian | Tamed FM

Type of pulse shaping used to smooth the phase transitions of the modulated signal, specified as
Rectangular, Raised Cosine, Spectral Raised Cosine, Gaussian, or Tamed FM. For more
information on the filtering options, see “Pulse Shape Filtering” on page 5-144.

Main lobe pulse duration (symbol intervals) — Main lobe duration

1 (default) | positive integer
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Main lobe duration of the largest lobe in the spectral raised cosine pulse, specified as a positive
integer representing the number of symbol intervals used by the demodulator to pulse-shape the
modulated signal.

Dependencies

To enable this parameter, set Frequency pulse shape to Spectral Raised Cosine.

Rolloff — Rolloff factor of spectral raised cosine pulse shape

0.2 (default) | scalar in the range [0, 1]

Rolloff factor of the spectral raised cosine pulse, specified as a scalar in the range [0, 1].

Dependencies

To enable this parameter, set Frequency pulse shape to Spectral Raised Cosine.

BT product — Product of bandwidth and symbol time of Gaussian pulse

0.3 (default) | positive scalar

Product of the bandwidth and symbol time of the Gaussian pulse shape, specified as a positive scalar.
Use BT product to reduce the bandwidth, at the expense of increased intersymbol interference.

Dependencies

To enable this parameter, set Frequency pulse shape to Gaussian.

Pulse length (symbol intervals) — Length of frequency pulse shape

1 (default) | positive integer

Frequency pulse shape length, specified as a positive scalar. For more information on the frequency
pulse length, refer to LT in “Pulse Shape Filtering” on page 5-144.

Symbol prehistory — Data symbols used before the start of simulation

1 (default) | scalar | vector

Data symbols used before the start of simulation, specified as scalar or vector with odd integer
elements in the range [– (M – 1), (M – 1)]. M represents the modulation order, which is specified by
the M-ary number parameter. The Symbol prehistory parameter defines the data symbols used by
the modulator prior to the first call of the block, in reverse chronological order.

• A scalar value expands to a vector of length LP – 1. LP represents the pulse length, which is
specified by the Pulse length (symbol intervals) parameter.

• For a vector, the length must be LP – 1.

Phase offset (rad) — Initial phase offset

0 (default) | scalar

Initial phase offset in radians of the modulated waveform, specified as a scalar.
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Samples per symbol — Symbol sampling rate

8 (default) | positive scalar

Symbol sampling rate, specified as a positive scalar. This parameter represents the number of
samples output for each integer or binary word input. For all nonbinary schemes, as defined by the
pulse shapes, this value must be greater than 1.

For more information, see “Signal Upsampling and Rate Changes”.

Rate options — Block processing rate

Enforce single-rate processing (default) | Allow multirate processing

Block processing rate, specified as one of these options:

• Enforce single-rate processing — The input and output signals have the same port sample
time. The block implements the rate change by making a size change at the output when
compared to the input. The output width is the number of symbols (which is given by dividing the
input length by the Samples per symbol parameter value when the Output type parameter is
set to Integer).

• Allow multirate processing — The input and output signals have different port sample
times. The output period is the same as the symbol period and equals the product of the input
period and the Samples per symbol parameter value.

Traceback depth — Traceback depth for Viterbi algorithm

16 (default) | positive integer

Traceback depth for the Viterbi algorithm, specified as a positive integer representing the number of
trellis branches that the Viterbi algorithm uses to construct each traceback path. The value of this
parameter is also the output delay and the number of zero symbols that precede the first meaningful
demodulated symbol in the output. For more information, see “Traceback Depth and Output Delays”
on page 5-145.

Output data type — Output data type

double (default) | boolean | int8 | int16 | int32

Output data type, specified as double, boolean, int8, int16, or int32. For more information, see
Supported Data Types in Out.

Block Characteristics
Data Types Boolean | double | integer | single
Multidimensional
Signals

no

Variable-Size Signals no
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More About
CPM Demodulation

The CPM demodulation method process consists of a correlator followed by a maximum-likelihood
sequence detector (MLSD) that searches the paths through the state trellis for the minimum
Euclidean distance path. When the modulation index is rational (h = m / p), a finite number of phase
states exist in the symbol. The implementation uses the Viterbi algorithm to perform MLSD.

{hi} is a sequence of modulation indices that moves cyclically through a set of indices {h0, h1, h2,
…,hH-1}.

• hi = mi / pi is the modulation index in proper rational form.
• mi is the numerator of the modulation index.
• pi is the denominator of the modulation index.
• mi and pi are relatively prime positive numbers.
• The least common multiple (LCM) of {p0, p1, p2, …,pH-1} is denoted as p.
• hi= m'i / p.

{hi} determines the number of phase states,

numPhaseStates =
p, for all even m′i
2p, for any odd m′i

,

and affects the number of trellis states,

numStates = numPhaseStates×M(L-1),

• L is the pulse length.
• M is the modulation order.

CPM Method

The input to the demodulator is a baseband representation of the modulated signal:

s(t) = exp j 2π ∑
i = 0

n
αihiq(t − iT) ,  and

nT < t < (n + 1)T .

where:

• {αi} is a sequence of M-ary data symbols selected from the alphabet ±1, ±3, ±(M–1).
• M must have the form 2k for some positive integer k, where M is the modulation order and
specifies the size of the symbol alphabet.

• {hi} is a sequence of modulation indices. hi moves cyclically through a set of indices {h0, h1, h2, ...,
hH-1}. When H=1, only one modulation index exists, h0, which is denoted as h.
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Pulse Shape Filtering

The CPM method uses pulse shaping to smooth the phase transitions of the modulated signal. The
function q(t) is the phase response obtained from the frequency pulse, g(t), through this relation:

q(t) =∫− ∞
t

g(t)dt.

The specified frequency pulse shape corresponds to these pulse shape expressions for g(t).

Pulse Shape Expression
Rectangular

g(t) =
1

2LT , 0 ≤ t ≤ LT

0 otherwise
Raised cosine

g(t) =
1

2LT 1 − cos 2πt
LT , 0 ≤ t ≤ LT

0 otherwise
Spectral raised cosine

g(t) = 1
LmainT

sin 2πt
LmainT
2πt

LmainT

cos β 2πt
LmainT

1 − 4β
LmainT t

2 , 0 ≤ β

≤ 1

Gaussian
g(t) = 1

2T Q 2πBb
t − T

2
ln2 − Q 2πBb

t + T
2

ln2 , where

Q(t) =∫t ∞ 1
2πe−τ2/2dτ

Tamed FM (tamed frequency modulation) g(t) = 1
8 g0(t − T) + 2g0(t) + g0(t + T) , where

g0(t) ≈ 1
T

sin(πt
T )

πt
T

− π2

24
2sin πt

T − 2πt
T cos πt

T − πt
T

2sin πt
T

πt
T

3

• Lmain is the main lobe pulse duration in symbol intervals.
• β is the roll-off factor of the spectral raised cosine.
• Bb is the product of the bandwidth and the Gaussian pulse.
• The duration of the pulse, LT, is the pulse length in symbol intervals. As defined by the

expressions, the spectral raised cosine, Gaussian, and tamed FM pulse shapes have infinite length.
For all practical purposes, LT specifies the truncated finite length.

• T is the symbol durations.
• Q(t) is the complementary cumulative distribution function.

For more information on pulse shape filtering, see [1]

Integer-Valued and Binary-Valued Output Signals

When the Output type parameter is set to Integer:
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• The block produces odd integers between –(M–1) and M–1. The modulation order, M, is specified
by the M-ary number parameter.

• The Output datatype parameter cannot be set to boolean.

When the Output type parameter is set to Bit:

• The block produces groupings of k-length binary words. The binary word mapping options are
natural binary-coded ordering or Gray-coded ordering.

• The Output datatype can only be double or boolean.
• In binary output mode, the block processing follows this procedure:

1 Maps each input symbol to an intermediate value, as in the integer output mode.
2 Maps the odd integer L to the nonnegative integer (L+M–1)/2.
3 Maps each nonnegative integer to a binary word, using Binary or Gray mapping, as

specified by the Symbol set ordering parameter.

Single-Rate Processing

In single-rate processing mode, the input and output signals have the same port sample time. The
block implicitly implements the rate change by making a size change at the output when compared to
the input. The input width must be an integer multiple of the Samples per symbol parameter value,
and the input can be a column vector.

• When you set Output type to Bit, the output width is K times the number of input symbols.
• When you set Output type to Integer, the output width is the number of input symbols.

Multirate Processing

In multirate processing mode, the input and output signals have different port sample times. The
input must be a scalar. The output symbol time is the product of the input sample time and the
Samples per symbol parameter value.

• When you set Output type to Bit, the output width equals the number of bits per symbol.
• When you set Output type to Integer, the output is a scalar.

Traceback Depth and Output Delays

The traceback depth is the number of trellis branches used to construct each traceback path.
Traceback depth influences the output delay, which is the number of zero symbols that precede the
first meaningful demodulated value in the output.

The optimal traceback depth setting depends on minimum squared Euclidean distance calculations.
Alternatively, you can choose a typical value, dependent on the number of states, using the five-times-
the-constraint-length rule, which corresponds to 5log2(numStates).

For a binary raised cosine pulse shape with a pulse length of 3 and h=2/3, applying this rule
(5log2(3×22) = 18 gives a result that is close to the optimum value of 20.

• When the Rate options parameter is set to Allow multirate processing, and the model
uses a variable-step solver or a fixed-step solver with the Tasking Mode parameter set to
SingleTasking, then the delay vector consists of (Traceback depth+1) zero-value symbols.

• When the Rate options parameter is set to Enforce single-rate processing, the delay
vector consists of Traceback depth zero-value symbols.
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Pair Block

CPM Modulator Baseband — Modulates data using continuous phase modulation.

Version History
Introduced before R2006a

References
[1] Anderson, John B., Tor Aulin, and Carl-Erik Sundberg. Digital Phase Modulation. New York:

Plenum Press, 1986.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
CPM Modulator Baseband | CPFSK Demodulator Baseband | GMSK Demodulator Baseband | MSK
Demodulator Baseband | Viterbi Decoder

Objects
comm.CPMDemodulator

Topics
“Continuous-Phase Modulation”
“View CPM Phase Tree Using Simulink”
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CPM Modulator Baseband
Modulate signal using CPM method
Library: Communications Toolbox / Modulation / Digital Baseband

Modulation / CPM

Description
The CPM Modulator Baseband block modulates an input signal using the continuous phase
modulation (CPM) method. The output of the modulator is a baseband representation of the
modulated signal.

For more information about the modulation and the filtering applied, see “CPM Modulation” on page
5-150 and “Pulse Shape Filtering” on page 5-151.

Ports
Input

In — Input signal
scalar | column vector

Input signal, specified as a scalar or column vector.

When the Input type parameter is set to Integer, the block accepts odd integers in the range [ –
(M–1), (M–1)]. M is the modulation order which is specified by the M-ary number parameter.

When the Input type parameter is set to Bit, the block accepts binary-valued inputs that represent
integers. The block collects binary-valued signals into groups of k = log2(M) bits. k is the number of
bits per symbol and M is the modulation order. The input vector length must be an integer multiple of
k. The block maps each group of k bits onto a symbol, as specified by the Symbol set ordering
parameter. For each group of k bits, the block outputs one modulated symbol, oversampled by the
Samples per symbol parameter value.
Supported Data Types

• Double-precision floating point
• Boolean is permitted when Input type is set to Bit
• 8-, 16-, and 32-bit signed integers are permitted when Input type is set to Integer

Data Types: double | Boolean | int8 | int16 | int32

Output

Out — Output signal
scalar | column vector

Output signal, returned as a scalar or column vector.
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• When the Input type parameter is set to Integer, the block outputs one modulated symbol for
each input symbol.

• When the Input type parameter is set to Bit, the block outputs one modulated symbol for each
group of k bits.

In both cases, the modulated symbols are oversampled by the Samples per symbol parameter value.
Data Types: double | single

For more information on the processing rates, see “Single-Rate Processing” on page 5-152, and
“Multirate Processing” on page 5-152.

Parameters
M-ary number — Modulation order

4 (default) | power of two scalar

Modulation order, specified as a power-of-two scalar. The modulation order, M = 2k specifies the
number of points in the signal constellation, where k is a positive integer indicating the number of
bits per symbol.

Input type — Integer or group of bits input indicator

Integer (default) | Bit

Indicates whether the input consists of integers or groups of bits, specified as Integer or Bit.

Symbol set ordering — Symbol mapping

Binary (default) | Gray

Symbol mapping of bit inputs, specified as Binary or Gray.

• Set this parameter to Binary to map symbols using natural binary-coded ordering.
• Set this parameter to Gray to map symbols using Gray-coded ordering.

For more information, see “Symbol Sets” on page 5-152.
Dependencies

To enable this parameter, set Input type to Bit.

Modulation index — Modulation index {hi}

0.5 (default) | nonnegative scalar | column vector

Modulation index {hi}, specified as a nonnegative scalar or column vector.

{h} represents a sequence of modulation indices. For more information, see “CPM Modulation” on
page 5-150.

Frequency pulse shape — Type of pulse shaping

Rectangular (default) | Raised Cosine | Spectral Raised Cosine | Gaussian | Tamed FM
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Type of pulse shaping used to smooth the phase transitions of the modulated signal, specified as
Rectangular, Raised Cosine, Spectral Raised Cosine, Gaussian, or Tamed FM. For more
information on the filtering options, see “Pulse Shape Filtering” on page 5-151.

Main lobe pulse duration (symbol intervals) — Main lobe duration

1 (default) | positive integer

Main lobe duration of the largest lobe in the spectral raised cosine pulse, specified as a positive
integer representing the number of symbol intervals used by the modulator to pulse-shape the
modulated signal.

Dependencies

To enable this parameter, set Frequency pulse shape to Spectral Raised Cosine.

Rolloff — Rolloff factor of spectral raised cosine pulse shape

0.2 (default) | nonnegative scalar

Rolloff factor of the spectral raised cosine pulse, specified as a scalar from 0 to 1.

Dependencies

To enable this parameter, set Frequency pulse shape to Spectral Raised Cosine.

BT product — Product of bandwidth and symbol time of Gaussian pulse shape

0.3 (default) | positive scalar

Product of the bandwidth and symbol time of the Gaussian pulse shape, specified as a positive scalar.
Use BT product to reduce the bandwidth, at the expense of increased intersymbol interference.

Dependencies

To enable this parameter, set Frequency pulse shape to Gaussian.

Pulse length (symbol intervals) — Length of frequency pulse shape

1 (default) | positive integer

Length of the frequency pulse shape in symbol intervals, specified as a positive integer. For more
information on the frequency pulse length, refer to LT in “Pulse Shape Filtering” on page 5-151.

Symbol prehistory — Data symbols used before the start of simulation

1 (default) | scalar | vector

Data symbols used before the start of simulation, specified as scalar or vector with odd integer
elements in the range [– (M-ary number – 1), (M-ary number – 1)]. The Symbol prehistory
parameter defines the data symbols used by the modulator prior to the first call of the block, in
reverse chronological order.

• A scalar value expands to a vector of length LP – 1. LP represents the pulse length, which is
specified by the Pulse length (symbol intervals) parameter.
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• For a vector, the length must be LP – 1.

Phase offset (rad) — Initial phase offset

0 (default) | scalar

Initial phase offset in radians of the modulated waveform, specified as a scalar.

Samples per symbol — Symbol sampling rate

8 (default) | positive scalar

Symbol sampling rate, specified as a positive scalar. This parameter represents the number of
samples output for each integer or binary word input. For all nonbinary schemes, as defined by the
pulse shapes, this value must be greater than 1.

For more information, see “Signal Upsampling and Rate Changes”.

Rate options — Block processing rate

Enforce single-rate processing (default) | Allow multirate processing

Block processing rate, specified as one of these options:

• Enforce single-rate processing — The input and output signals have the same sample
time. The block implements the rate change by making a size change at the output when
compared to the input. The output width equals the product of the number of symbols and the
Samples per symbol parameter value.

• Allow multirate processing — The input and output signals have different sample times.
The output sample time equals the symbol period divided by the Samples per symbol parameter
value.

Output data type — Output data type

double (default) | single

Output data type, specified as double or single.

Block Characteristics
Data Types Boolean | double | integer | single
Multidimensional
Signals

no

Variable-Size Signals no

More About
CPM Modulation

The output of the modulator is a baseband representation of the modulated signal:
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s(t) = exp j 2π ∑
i = 0

n
αihiq(t − iT) ,  and

nT < t < (n + 1)T .

where:

• {αi} is a sequence of M-ary data symbols selected from the alphabet ±1, ±3, ±(M–1).
• M must have the form 2k for some positive integer k, where M is the modulation order and
specifies the size of the symbol alphabet.

• {hi} is a sequence of modulation indices. hi moves cyclically through a set of indices {h0, h1, h2, ...,
hH-1}. When H=1, only one modulation index exists, h0, which is denoted as h.

hi specifies the modulation index. When hi varies from interval to interval, the block operates in multi-
h. To ensure a finite number of phase states, hi must be a rational number.

Pulse Shape Filtering

The CPM method uses pulse shaping to smooth the phase transitions of the modulated signal. The
function q(t) is the phase response obtained from the frequency pulse, g(t), through this relation:

q(t) =∫− ∞
t

g(t)dt.

The specified frequency pulse shape corresponds to these pulse shape expressions for g(t).

Pulse Shape Expression
Rectangular

g(t) =
1

2LT , 0 ≤ t ≤ LT

0 otherwise
Raised cosine

g(t) =
1

2LT 1 − cos 2πt
LT , 0 ≤ t ≤ LT

0 otherwise
Spectral raised cosine

g(t) = 1
LmainT

sin 2πt
LmainT
2πt

LmainT

cos β 2πt
LmainT

1 − 4β
LmainT t

2 , 0 ≤ β

≤ 1

Gaussian
g(t) = 1

2T Q 2πBb
t − T

2
ln2 − Q 2πBb

t + T
2

ln2 , where

Q(t) =∫t ∞ 1
2πe−τ2/2dτ
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Pulse Shape Expression
Tamed FM (tamed frequency modulation) g(t) = 1

8 g0(t − T) + 2g0(t) + g0(t + T) , where

g0(t) ≈ 1
T

sin(πt
T )

πt
T

− π2

24
2sin πt

T − 2πt
T cos πt

T − πt
T

2sin πt
T

πt
T

3

• Lmain is the main lobe pulse duration in symbol intervals.
• β is the roll-off factor of the spectral raised cosine.
• Bb is the product of the bandwidth and the Gaussian pulse.
• The duration of the pulse, LT, is the pulse length in symbol intervals. As defined by the

expressions, the spectral raised cosine, Gaussian, and tamed FM pulse shapes have infinite length.
For all practical purposes, LT specifies the truncated finite length.

• T is the symbol durations.
• Q(t) is the complementary cumulative distribution function.

For more information on pulse shape filtering, see [1].

Symbol Sets

In binary input mode, the block processing follows this procedure.

1 Divide the input bits into k-length bit words and map each to an integer,L, in the range [0, M – 1].
Where k = log2(M) and M is the modulation order specified by the M-ary number parameter.
The binary word mapping options are natural binary-coded ordering or Gray-coded ordering, as
specified by the Symbol set ordering parameter.

2 Map each integer Lto signed integers, as 2L–(M–1).
3 Proceed with modulation processing as in the integer input mode.

Single-Rate Processing

In single-rate processing mode, the input and output signals have the same port sample time. In this
mode, the input to the block can be multiple symbols. The block implicitly implements the rate
change by making a size change at the output when compared to the input.

• When you set Input type to Integer, the input can be a scalar or a column vector with the
length equal to the number of input symbols.

• When you set Input type to Bit, the input width must be an integer multiple of the number of
bits per symbol.

The output width equals NSym × NSPS, where NSym is the number of symbols in the frame and NSPS is
the number of samples per symbol.

Multirate Processing

In multirate processing mode, the input and output signals have different port sample times. In this
mode, the input to the block must be one symbol.
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• When you set Input type to Integer, the input must be a scalar.
• When you set Input type to Bit, the input width must equal the number of bits per symbol.

The output sample time equals TSym / NSPS, where TSym is the symbol period and NSPS is the number of
samples per symbol.

Pair Block

CPM Demodulator Baseband — Demodulates continuous phase modulated data.

Version History
Introduced before R2006a

References
[1] Anderson, John B., Tor Aulin, and Carl-Erik Sundberg. Digital Phase Modulation. New York:

Plenum Press, 1986.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
CPM Demodulator Baseband | CPFSK Modulator Baseband | GMSK Modulator Baseband | MSK
Modulator Baseband

Objects
comm.CPMModulator

Topics
“Continuous-Phase Modulation”

 CPM Modulator Baseband

5-153



CPM Phase Recovery
(Removed) Recover carrier phase using 2P-Power method

Note CPM Phase Recovery has been removed. Use the Carrier Synchronizer block instead.

Library
Carrier Phase Recovery sublibrary of Synchronization

Description
The CPM Phase Recovery block recovers the carrier phase of the input signal using the 2P-Power
method. This feedforward, non-data-aided, clock-aided method is suitable for systems that use these
types of baseband modulation: continuous phase modulation (CPM), minimum shift keying (MSK),
continuous phase frequency shift keying (CPFSK), and Gaussian minimum shift keying (GMSK). This
block is suitable for use with blocks in the Baseband Continuous Phase Modulation library.

If you express the modulation index for CPM as a proper fraction, h = K / P, then P is the number to
which the name "2P-Power" refers. The observation interval parameter must be an integer multiple of
the input signal vector length.

The 2P-Power method assumes that the carrier phase is constant over a series of consecutive
symbols, and returns an estimate of the carrier phase for the series. The Observation interval
parameter is the number of symbols for which the carrier phase is assumed constant. This number
must be an integer multiple of the input signal's vector length.

Input and Output Signals

This block accepts a scalar or column vector input signal of type double or single. The input signal
represents a baseband signal at the symbol rate, so it must be complex-valued and must contain one
sample per symbol.

The outputs are as follows:

• The output port labeled Sig gives the result of rotating the input signal counterclockwise, where
the amount of rotation equals the carrier phase estimate. The Sig output is thus a corrected
version of the input signal, and has the same sample time and vector size as the input signal.

• The output port labeled Ph outputs the carrier phase estimate, in degrees, for all symbols in the
observation interval. The Ph output is a scalar signal.

Note Because the block internally computes the argument of a complex number, the carrier
phase estimate has an inherent ambiguity. The carrier phase estimate is between -90/P and 90/P
degrees and might differ from the actual carrier phase by an integer multiple of 180/P degrees.
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Delays and Latency

The block's algorithm requires it to collect symbols during a period of length Observation interval
before computing a single estimate of the carrier phase. Therefore, each estimate is delayed by
Observation interval symbols and the corrected signal has a latency of Observation interval
symbols, relative to the input signal.

Parameters
P

The denominator of the modulation index for CPM (h = K / P) when expressed as a proper
fraction.

Observation interval
The number of symbols for which the carrier phase is assumed constant. The observation interval
parameter must be an integer multiple of the input signal vector length.

When this parameter is exactly equal to the vector length of the input signal, then the block
always works. When the integer multiple is not equal to 1, on the Simulation tab, select Model
Settings. Then in the Solver > Solver selection section, choose Type: Fixed-step and clear
the Treat each discrete rate as a separate task checkbox.

Algorithm
If the symbols occurring during the observation interval are x(1), x(2), x(3),..., x(L), then the resulting
carrier phase estimate is

1
2Parg ∑

k = 1

L
(x(k))2P

where the arg function returns values between -180 degrees and 180 degrees.

References

[1] Mengali, Umberto, and Aldo N. D'Andrea, Synchronization Techniques for Digital Receivers, New
York, Plenum Press, 1997.

See Also
M-PSK Phase Recovery, CPM Modulator Baseband

Version History
Introduced before R2006a

CPM Phase Recovery has been removed
Errors starting in R2020a

CPM Phase Recovery has been removed. Use Carrier Synchronizer instead.

 CPM Phase Recovery
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Data Mapper
Map integer symbols from one coding scheme to another
Library: Communications Toolbox / Utility Blocks

Description
The Data Mapper block accepts integer inputs and maps them to integer outputs. The mapping types
include: binary to Gray coded, Gray coded to binary, and user defined. Additionally, a pass through
option is available.

Gray coding is an ordering of binary numbers such that all adjacent numbers differ by only one bit.

Input/Output Ports
Input

Port_1 — Input port
scalar | column vector | matrix

Input signal, specified as a scalar, vector, or matrix of integers. Elements of the input signal must be
nonnegative values. The block truncates noninteger values to integer values. When the input is a
matrix, the columns are treated as independent channels.
Data Types: double | single | int8 | int16 | int32 | uint8 | uint16 | uint32

Output

Port_2 — Output signal
scalar | column vector | matrix

Output signal, returned as a scalar, column vector, or matrix. The dimensions of the output signal
match those of the input signal.
Data Types: double | single | int8 | int16 | int32 | uint8 | uint16 | uint32

Parameters
Mapping mode — Mapping mode
Binary to Gray (default) | Gray to Binary | User Defined | Straight through

Mapping mode, specified as one of the four options. The mapping for the Binary to Gray and the
Gray to Binary modes are shown in the following table when the inputs range from 0 to 7.
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Binary to Gray Mode Gray to Binary Mode
Input Output Input Output
0 0 (000) 0 (000) 0
1 1 (001) 1 (001) 1
2 3 (011) 2 (010) 3
3 2 (010) 3 (011) 2
4 6 (110) 4 (100) 7
5 7 (111) 5 (101) 6
6 5 (101) 6 (110) 4
7 4 (100) 7 (111) 5

When you select the User Defined mode, you can use any arbitrary mapping by providing a vector
to specify the output ordering. When you select the Straight Through mode, the output equals the
input.

Symbol set size (M) — Symbol set size
8 (default) | positive integer

Symbol set size, specified as a positive integer. This parameter restricts the inputs and outputs to
integers in the range of 0 to M-1.

Mapping vector — Maps input elements to the output elements
[0 1 3 2 7 6 4 5] (default) | vector

Mapping vector, specified as vector of nonnegative integers whose length equals . This parameter
defines the relationship between the input and output integers. For example, the vector [1 5 0 4 2
3] defines the following mapping:

0 1
1 5
2 0
3 4
4 2
5 3

Block Characteristics
Data Types double | fixed point | integer | single
Multidimensional
Signals

no

Variable-Size Signals no

Version History
Introduced before R2006a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
bin2gray | gray2bin

Topics
“Phase Modulation”
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DBPSK Demodulator Baseband
Demodulate DBPSK-modulated data

Library
PM, in Digital Baseband sublibrary of Modulation

Description
The DBPSK Demodulator Baseband block demodulates a signal that was modulated using the
differential binary phase shift keying method. The input is a baseband representation of the
modulated signal.

The input must be a discrete-time complex signal. The block compares the current symbol to the
previous symbol. It maps phase differences of θ and π+θ, respectively, to outputs of 0 and 1,
respectively, where θ is the Phase rotation parameter. The first element of the block's output is the
initial condition of zero because there is no previous symbol with which to compare the first symbol.

This block accepts a scalar or column vector input signal. The input signal can be of data types
single and double. For information about the data types each block port supports, see “Supported
Data Types” on page 5-160.

Dialog Box

 DBPSK Demodulator Baseband
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Phase rotation (rad)
This phase difference between the current and previous modulated symbols results in an output
of zero.

Output data type
When the parameter is set to 'Inherit via internal rule' (default setting), the block will
inherit the output data type from the input port. The output data type will be the same as the
input data type if the input is of type single or double.

For additional information, see “Supported Data Types” on page 5-160.

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
Output • Double-precision floating point

• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Pair Block
DBPSK Modulator Baseband

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
M-DPSK Demodulator Baseband | DQPSK Demodulator Baseband | BPSK Demodulator Baseband
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DBPSK Modulator Baseband
Modulate using differential binary phase shift keying method

Library
PM, in Digital Baseband sublibrary of Modulation

Description
The DBPSK Modulator Baseband block modulates using the differential binary phase shift keying
method. The output is a baseband representation of the modulated signal.

This block accepts a scalar or column vector input signal. The input must be a discrete-time binary-
valued signal. For information about the data types each block port supports, see “Supported Data
Types” on page 5-162.

The following rules govern this modulation method when the Phase rotation parameter is θ:

• If the first input bit is 0 or 1, respectively, then the first modulated symbol is exp(jθ) or -exp(jθ),
respectively.

• If a successive input bit is 0 or 1, respectively, then the modulated symbol is the previous
modulated symbol multiplied by exp(jθ) or -exp(jθ), respectively.

Dialog Box

Phase rotation (rad)
The phase difference between the previous and current modulated symbols when the input is
zero.
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Output Data type
The output data type can be either single or double. By default, the block sets this to double.

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Output • Double-precision floating point
• Single-precision floating point

Pair Block
DBPSK Demodulator Baseband

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
DQPSK Modulator Baseband | BPSK Modulator Baseband
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Decision Feedback Equalizer
Equalize modulated signals using decision feedback filtering
Library: Communications Toolbox / Equalizers

Description
The Decision Feedback Equalizer block uses a decision feedback filter tap delay line with a weighted
sum to equalize modulated signals transmitted through a dispersive channel. Using an estimate of the
channel modeled as a finite input response (FIR) filter, the block processes input frames and outputs
the estimated signal.

This icon shows the block with all ports enabled for configurations that use the LMS or RLS adaptive
algorithm.

This icon shows the block with all ports enabled for configurations that use the CMA adaptive
algorithm.

Ports
Input

in — Input signal
column vector

Input signal, specified as a column vector. The vector length of in must be equal to an integer
multiple of the Number of input samples per symbol parameter. For more information, see
“Symbol Tap Spacing” on page 5-455.
Data Types: double
Complex Number Support: Yes

Desired — Training symbols
column vector

Training symbols, specified as a column vector. The vector length of Desired must be less than or
equal to the length of input in. The Desired input port is ignored when the Train input port is 0.
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Dependencies

To enable this port, set the Adaptive algorithm parameter to LMS or RLS.
Data Types: double
Complex Number Support: Yes

Train — Train equalizer flag
boolean scalar

Train equalizer flag, specified as 1 or 0. The block starts training when this value changes from 0 to 1
(at the rising edge). The block trains until all symbols in the Desired input port are processed.

Dependencies

To enable this port, set the Adaptive algorithm parameter to LMS or RLS and select the Enable
training control input parameter.
Data Types: Boolean

Update — Update tap weights flag
1 | 0

Update tap weights flag, specified as 1 or 0. The tap weights are updated when this value is 1.

Dependencies

To enable this port, set the Adaptive algorithm parameter to CMA and the Source of adapt weights
flag parameter to Input port.
Data Types: Boolean

Reset — Reset equalizer flag
1 | 0

Reset equalizer flag, specified as 1 or 0. If Reset is set to 1, the block resets the tap weights before
processing the incoming signal. The block performs initial training until all symbols in the Desired
input port are processed.

Dependencies

To enable this port, select the Enable reset input parameter.
Data Types: Boolean

Output

Out — Equalized symbols
column vector

Equalized symbols, returned as a column vector that has the same length as input signal in.

This port is unnamed until you select the Output error signal or Output taps weights parameter.

Err — Error signal
column vector

Error signal, returned as a column vector that has the same length as input signal in.

5 Blocks

5-164



w — Tap weights
column vector

Tap weights, returned as an NTaps-by-1 vector, where NTaps is equal to the sum of the Number of
forward taps and Number of feedback taps parameter values. w contains the tap weights from the
last tap weight update.

Parameters
Structure parameters

Number of forward taps — Number of forward equalizer taps

5 (default) | positive integer

Number of forward equalizer taps, specified as a positive integer. The number of forward equalizer
taps must be greater than or equal to the value of the Number of input samples per symbol
parameter.

Number of feedback taps — Number of feedback equalizer taps

3 (default) | positive integer

Number of feedback equalizer taps, specified as a positive integer.

Signal constellation — Signal constellation

pskmod(0:3,4,pi/4) (default) | vector

Signal constellation, specified as a vector. The default value is a QPSK constellation generated using
this code: pskmod(0:3,4,pi/4).

Number of input samples per symbol — Number of input samples per symbol

1 (default) | positive integer

Number of input samples per symbol, specified as a positive integer. Setting this parameter to any
number greater than 1 effectively creates a fractionally spaced equalizer. For more information, see
“Symbol Tap Spacing” on page 5-455.

Algorithm parameters

Adaptive algorithm — Adaptive algorithm

LMS (default) | RLS | CMA

Adaptive algorithm used for equalization, specified as one of these values:

• LMS — Update the equalizer tap weights using the “Least Mean Square (LMS) Algorithm” on page
5-456.

• RLS — Update the equalizer tap weights using the “Recursive Least Square (RLS) Algorithm” on
page 5-456.

• CMA — Update the equalizer tap weights using the “Constant Modulus Algorithm (CMA)” on page
5-457.
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Step size — Step size

0.01 (default) | positive scalar

Step size used by the adaptive algorithm, specified as a positive scalar. Increasing the step size
reduces the equalizer convergence time but causes the equalizer output estimates to be less stable.

Tunable: Yes

Dependencies

To enable this parameter, set Adaptive algorithm to LMS or CMA.

Forgetting factor — Forgetting factor

0.99 (default) | scalar in the range (0, 1]

Forgetting factor used by the adaptive algorithm, specified as a scalar in the range (0, 1]. Decreasing
the forgetting factor reduces the equalizer convergence time but causes the equalizer output
estimates to be less stable.

Tunable: Yes

Dependencies

To enable this parameter, set Adaptive algorithm to RLS.

Initial inverse correlation matrix — Initial inverse correlation matrix

0.1 (default) | scalar | matrix

Initial inverse correlation matrix, specified as a scalar or an NTaps-by-NTaps matrix. NTaps is equal to the
sum of the Number of forward taps and Number of feedback taps parameter values. If you
specify this value as a scalar, a, the equalizer sets the initial inverse correlation matrix to a times the
identity matrix: a(eye(NTaps)).

Dependencies

To enable this parameter, set Adaptive algorithm to RLS.

Control parameters

Reference tap — Reference tap

3 (default) | positive integer

Reference tap, specified as a positive integer less than or equal to the Number of forward taps
parameter value. The equalizer uses the reference tap location to track the main energy of the
channel.

Input signal delay (samples) — Input signal delay

0 (default) | nonnegative integer

Input signal delay in samples relative to the reset time of the equalizer, specified as a nonnegative
integer. If the input signal is a vector of length greater than 1, then the input delay is relative to the
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start of the input vector. If the input signal is a scalar, then the input delay is relative to the first call
of the block and to the first call of the block after the Reset input port toggles to 1.
Dependencies

To enable this parameter, set Adaptive algorithm to LMS or RLS.

Source of adapt weights flag — Source of adapt tap weights request

Property (default) | Input port

Source of the adapt tap weights request, specified as one of these values:

• Property — Specify this value to use the Adaptive algorithm parameter to control when the
block adapts tap weights.

• Input port — Specify this value to use the Update input port to control when the block adapts
tap weights.

Dependencies

To enable this parameter, set Adaptive algorithm to CMA.

Adapt tap weights — Adapt tap weights

on (default) | off

Select this parameter to adaptively update the equalizer tap weights. If this parameter is cleared, the
block keeps the equalizer tap weights unchanged.
Dependencies

To enable this parameter, set Adaptive algorithm to CMA and Source of adapt weights flag to
Property.

Initial tap weights source — Source for initial tap weights

Auto (default) | Property

Source for initial tap weights, specified as one of these values:

• Auto — Initialize the tap weights to the algorithm-specific default values, as described in the
Initial weights parameter.

• Property — Initialize the tap weights using the Initial weights parameter value.

Initial weights — Initial tap weights

0 or [0;0;1;0;0] (default) | scalar | column vector

Initial tap weights used by the adaptive algorithm, specified as a scalar or an NTaps-by-1 vector. NTaps
is equal to the sum of the Number of forward taps and Number of feedback taps parameter
values. The default is 0 when the Adaptive algorithm parameter is set to LMS or RLS. The default is
[0;0;1;0;0] when the Adaptive algorithm parameter is set to CMA.

If you specify Initial weights as a vector, the vector length must be NTaps. If you specify Initial
weights as a scalar, the equalizer uses scalar expansion to create a vector of length NTaps with all
values set to Initial weights.
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Dependencies

To enable this parameter, set Initial tap weights source to Property.

Tap weight update period (symbols) — Tap weight update period

1 (default) | positive integer

Tap weight update period in symbols, specified as a positive integer. The equalizer updates the tap
weights after processing this number of symbols.

Enable training control input — Enable training control input

off (default) | on

Select this parameter to enable input port Train. If this parameter is cleared, the block does not
reenter training mode after the initial tap training.

Dependencies

To enable this parameter, set Adaptive algorithm to LMS or RLS.

Update tap weights when not training — Update tap weights when not training

on (default) | off

Select this parameter to use decision directed mode to update equalizer tap weights. If this
parameter is cleared, the block keeps the equalizer tap weights unchanged after training.

Dependencies

To enable this parameter, set Adaptive algorithm to LMS or RLS.

Enable reset input — Enable reset input

off (default) | on

Select this parameter to enable input port Train. If this parameter is cleared, the block does not
reenter training mode after the initial tap training.

Diagnostic parameters

Output error signal — Enable error signal output

off (default) | on

Select this parameter to enable output port Err containing the equalizer error signal.

Output taps weights — Enable tap weights output

off (default) | on

Select this parameter to enable output port w containing tap weights from the last tap weight update.

Simulate using — Type of simulation to run
Code generation (default) | Interpreted execution
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Type of simulation to run, specified as Code generation or Interpreted execution.

• Code generation — Simulate the model by using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations unless the model changes. This option requires additional startup time, but the speed
of the subsequent simulations is faster than Interpreted execution.

• Interpreted execution — Simulate the model by using the MATLAB interpreter. This option
requires less startup time than the Code generation option, but the speed of subsequent
simulations is slower. In this mode, you can debug the source code of the block.

Block Characteristics
Data Types double | single
Multidimensional
Signals

no

Variable-Size Signals yes

More About
Symbol Tap Spacing

You can configure the equalizer to operate as a symbol-spaced equalizer or as a fractional symbol-
spaced equalizer.

• To operate the equalizer at a symbol-spaced rate, specify the number of samples per symbol as 1.
Symbol-rate equalizers have taps spaced at the symbol duration. Symbol-rate equalizers are
sensitive to timing phase.

• To operate the equalizer at a fractional symbol-spaced rate, specify the number of input samples
per symbol as an integer greater than 1 and provide an input signal oversampled at that sampling
rate. Fractional symbol-spaced equalizers have taps spaced at an integer fraction of the input
symbol duration. Fractional symbol-spaced equalizers are not sensitive to timing phase.

Algorithms
Decision Feedback Equalizers

A decision feedback equalizer (DFE) is a nonlinear equalizer that reduces intersymbol interference
(ISI) in frequency-selective channels. If a null exists in the frequency response of a channel, DFEs do
not enhance the noise. A DFE consists of a tapped delay line that stores samples from the input signal
and contains a forward filter and a feedback filter. The forward filter is similar to a linear equalizer.
The feedback filter contains a tapped delay line whose inputs are the decisions made on the equalized
signal. Once per symbol period, the equalizer outputs a weighted sum of the values in the delay line
and updates the weights to prepare for the next symbol period.

DFEs can be symbol-spaced or fractional symbol-spaced.

• For a symbol-spaced equalizer, the number of samples per symbol, K, is 1. The output sample rate
equals the input sample rate.
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• For a fractional symbol-spaced equalizer, the number of samples per symbol, K, is an integer
greater than 1. Typically, K is 4 for fractional symbol-spaced equalizers. The output sample rate is
1/T and the input sample rate is K/T. Tap weight updating occurs at the output rate.

This schematic shows a fractional symbol-spaced DFE with a total of N weights, a symbol period of T,
and K samples per symbol. The filter has L forward weights and N-L feedback weights. The forward
filter is at the top, and the feedback filter is at the bottom. If K is 1, the result is a symbol-spaced DFE
instead of a fractional symbol-spaced DFE.

In each symbol period, the equalizer receives K input samples at the forward filter and one decision
or training sample at the feedback filter. The equalizer then outputs a weighted sum of the values in
the forward and feedback delay lines and updates the weights to prepare for the next symbol period.

Note The algorithm for the Adaptive Algorithm block in the schematic jointly optimizes the forward
and feedback weights. Joint optimization is especially important for convergence in the recursive
least square (RLS) algorithm.

For more information, see “Equalization”.

Least Mean Square (LMS) Algorithm

For the LMS algorithm, in the previous schematic, w is a vector of all weights wi, and u is a vector of
all inputs ui. Based on the current set of weights, the LMS algorithm creates the new set of weights
as

wnew = wcurrent + (StepSize) ue*.

The step size used by the adaptive algorithm is specified as a positive scalar. Increasing the step size
reduces the equalizer convergence time but causes the equalized output signal to be less stable. To
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determine the maximum step size allowed when using the LMS adaptive algorithm, use the maxstep
object function. The * operator denotes the complex conjugate and the error calculation e = d - y.

Recursive Least Square (RLS) Algorithm

For the RLS algorithm, in the previous schematic, w is the vector of all weights wi, and u is the vector
of all inputs ui. Based on the current set of inputs, u, and the inverse correlation matrix, P, the RLS
algorithm first computes the Kalman gain vector, K, as

K = Pu
(ForgettingFactor) + uHPu

.

The forgetting factor used by the adaptive algorithm is specified as a scalar in the range (0, 1].
Decreasing the forgetting factor reduces the equalizer convergence time but causes the equalized
output signal to be less stable. H denotes the Hermitian transpose. Based on the current inverse
correlation matrix, the new inverse correlation matrix is

Pnew =
(1 − KuH)Pcurrent
ForgettingFactor .

Based on the current set of weights, the RLS algorithm creates the new set of weights as
wnew = wcurrent+K*e.

The * operator denotes the complex conjugate and the error calculation e = d - y.

Constant Modulus Algorithm (CMA)

For the CMA adaptive algorithm, in the previous schematic, w is the vector of all weights wi, and u is
the vector of all inputs ui. Based on the current set of weights, the CMA adaptive algorithm creates
the new set of weights as

wnew = wcurrent + (StepSize) u*e.

The step size used by the adaptive algorithm is specified as a positive scalar. Increasing the step size
reduces the equalizer convergence time but causes the equalized output signal to be less stable. To
determine the maximum step size allowed by the CMA adaptive algorithm, use the maxstep object
function. The * operator denotes the complex conjugate and the error calculation e = y(R - |y|2),
where R is a constant related to the signal constellation.

Version History
Introduced in R2019a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Linear Equalizer | MLSE Equalizer
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Objects
comm.DecisionFeedback

Topics
“Equalization”
“Adaptive Equalizers”
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Deinterlacer
Distribute elements of input vector alternately between two output vectors
Library: Communications Toolbox / Sequence Operations

Description
The Deinterlacer block accepts an even length column vector input signal. The block alternately
places the elements in two output vectors. As a result, each output vector size is half the input vector
size. The outputs inherit the sample time from the Sample time parameter of the input block.

Ports
Input

In — Input signal
column vector

Input signal, specified as an even length column vector.
Data Types: double | single

Output

O — Odd-numbered elements
vector

Odd-numbered elements of the input vector, returned as a vector. If the input is a vector of length N,
the output length is N/2.

E — Even-numbered elements
vector

Even-numbered elements of the input vector, returned as a vector. If the input is a vector of length N,
the output length is N/2.

Block Characteristics
Data Types Boolean | double | enumerated | fixed point | integer | single
Multidimensional
Signals

no

Variable-Size Signals no

Version History
Introduced before R2006a

 Deinterlacer

5-173



Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Demux | Interlacer
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Derepeat
Reduce sampling rate by averaging consecutive samples
Library: Communications Toolbox / Sequence Operations

Description
The Derepeat block resamples the discrete input at a rate 1/N times the input sample rate by
averaging N consecutive samples. N represents the Derepeat factor, N parameter.

Ports
Input

In — Input signal
scalar | vector | matrix

Input signal, specified as a scalar, vector, or matrix.
Data Types: double
Complex Number Support: Yes

Output

Out — Output signal
scalar | vector | matrix

Output signal, returned as a scalar or column vector.
Data Types: double
Complex Number Support: Yes

For more information on the processing rates, see “Single-Rate Processing” on page 5-176, and
“Multirate Processing” on page 5-177.

Parameters
Derepeat factor, N — Derepeat factor

5 (default) | integer

Derepeat factor, specified as an integer. The derepeat factor is the number of consecutive input
samples to average to produce each output sample.
Data Types: double

Input processing — Input processing control
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Columns as channels (frame based) (default) | Elements as channels (sample based)

Input processing control, specified as one of these options:

• Columns as channels (frame based) — The block treats each column of the input as a
separate channel.

• Elements as channels (sample based) — The block treats each element of the input as a
separate channel.

Rate options — Block processing rate

Allow multirate processing (default) | Enforce single-rate processing

Block processing rate, specified as one of these options:

• Allow multirate processing — The block downsamples the signal such that the output
sample rate is Derepeat factor, N times slower than the input sample rate. For more
information, see “Multirate Processing” on page 5-177.

• Enforce single-rate processing — The block maintains the input sample rate by
decreasing the output frame size by a factor equal to the Derepeat factor, N parameter value.
Also, in single-rate processing mode you can use this block in a triggered subsystem. For more
information, see “Single-Rate Processing” on page 5-176

Initial condition — Initial condition

0 (default) | scalar | vector | matrix

Initial condition, specified as a scalar, vector, or matrix. This parameter specifies values that are
output when it is too early for the input data to show up in the output. If the dimensions of the Initial
condition parameter match the output dimensions, then the parameter represents the initial output
value. If Initial condition is a scalar, then it represents the initial value of each element in the
output. The block does not support empty matrices for initial conditions.
Data Types: double

Block Characteristics
Data Types double | single
Multidimensional
Signals

no

Variable-Size Signals no

More About
Single-Rate Processing

The block derepeats each frame, treating distinct channels independently. Each element of the output
is the average of N consecutive elements along a column of the input matrix. N must be less than the
frame size. N represents the Derepeat factor, N parameter.

When you set the Rate options parameter to Enforce single-rate processing, the input and
output of the block have the same sample rate. The block reduces the sampling rate by using a
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proportionally smaller frame size than the input. To process all input values, N must be an integer
factor of the number of rows in the input vector or matrix. For derepetition by a factor of N, the
output frame size is 1/N times the input frame size, but the input and output frame rates are equal.
When you use this option, the Initial condition parameter does not apply and the block incurs
no delay, because the input data immediately shows up in the output.

For example, for a single-channel input with 64 elements that is derepeated by a factor of 4, the block
outputs 16 elements. The input and output frame periods are equal.

Also, in single-rate processing mode you can use this block in a triggered subsystem.

Multirate Processing

When you set the Rate options parameter to Allow multirate processing, the input and
output of the block are the same size, but the sample rate of the output is N times slower than the
input. N represents the Derepeat factor, N parameter.

• When you set the Input processing parameter to Elements as channels (sample
based), the block assumes that the input is a vector or matrix whose elements represent samples
from independent channels. The block averages samples from each channel independently over
time. The output period is N times the input period, and the input and output sizes are identical.
The output is delayed by one output period, and the first output value is the Initial condition
value. If you set Rate options to Enforce single-rate processing, the block generates
an error message.

• When you set the Input processing parameter to Columns as channels (frame based),
the block reduces the sampling rate by using a proportionally longer frame period at the output
port than at the input port. For derepetition by a factor of N, the output frame period is N times
the input frame period, but the input and output frame sizes are equal. The output is delayed by
one output frame, and the first output frame is the Initial condition value. The block
derepeats each frame, treating distinct channels independently. Each element of the output is the
average of N consecutive elements along a column of the input matrix. The derepeat factor must
be less than the frame size.

For example, for a single-channel input with a frame period of 1 second that is derepeated by a
factor of 4, the output has a frame period of 4 seconds. The input and output frame sizes are
equal.

Pair Block

Repeat — This block is one possible inverse operation.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.
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See Also
Blocks
Repeat | Downsample
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Descrambler
Descramble input signal
Library: Communications Toolbox / Sequence Operations

Description
The Descrambler block applies multiplicative descrambling to input data. It performs the inverse
operation of the Scrambler block used in the transmitter.

This schematic shows the multiplicative descrambler operation. The adders and subtracter operate
modulo N, where N is the value specified by the Calculation base parameter.

At each time step, the input causes the contents of the registers to shift sequentially. Using the
Scramble polynomial parameter, you specify the on or off state for each switch in the
descrambler. To make the Descrambler block reverse the operation of the Scrambler block, use the
same parameter settings in both blocks. If there is no signal delay between the scrambler and the
descrambler, then the Initial states in the two blocks must be the same.

To achieve repeatable initial descrambler conditions, you can use one of these optional input ports:

• Select the Reset on nonzero input via port parameter and reset the scrambler with Rst.
• Set the Initial states source parameter to Input port and provide the initial states with

ISt.

This block can accept input sequences that vary in length during simulation. For more information
about sequences that vary in length, see “Variable-Size Signal Basics” (Simulink).

Note To apply additive descrambling to input data, you can use the PN Sequence Generator block
and the Logical Operator block configured as an XOR logical operator. For an example, see “Additive
Scrambling of Input Data in Simulink”.
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Ports
Input

in — Input data signal
vector

Input data signal, specified as an NS-by-1 vector. NS represents the number of samples in the input
signal. The input values must be integers from 0 to Calculation base – 1.
Data Types: double

Rst — Reset scrambler
scalar

Reset scrambler, specified as a scalar. The scrambler is reset if a nonzero input is applied to the port.

Dependencies

To enable this port, set Initial states source to Dialog Parameter and select Reset on
nonzero input via port.

ISt — Initial states
scalar

Initial states of the descrambler registers when the simulation starts, specified as a nonnegative
integer vector. The length of ISt must equal the order of the Scramble polynomial parameter. The
vector element values must be integers from 0 to Calculation base – 1.

Dependencies

To enable this port, set Initial states source to Input port.

Output

Out1 — Output descrambled data
vector

Output descrambled data, returned as an NS-by-1 vector. NS equals the number of samples in the
input signal.
Data Types: double

Parameters
Calculation base — Calculation base

4 (default) | nonnegative integer

Calculation base used in the descrambler for modulo operations, specified as a nonnegative integer.
The input and output of this block are integers from 0 to Calculation base – 1.

Scramble polynomial — Polynomial that defines connections in descrambler

'1 + x^-1 + x^-2 + x^-4' (default) | character vector | integer vector | binary vector
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Polynomial that defines the connections in the descrambler, specified as a character vector, integer
vector, or binary vector. The Scramble polynomial parameter defines if each switch in the
descrambler is on or off. Specify the polynomial as:

• A character vector, such as '1 + x^-6 + x^-8'. For more details on specifying polynomials in
this way, see “Representation of Polynomials in Communications Toolbox”.

• An integer vector, such as [0 -6 -8], listing the descrambler coefficients in order of descending
powers of x-1, where p(x-1) = 1 + p1x-1 + p2x-2 + ...

• A binary vector, such as [1 0 0 0 0 0 1 0 1], listing the powers of x that appear in the
polynomial that has a coefficient of 1. In this case, the order of the descramble polynomial is one
less than the binary vector length.

Example: '1 + x^-6 + x^-8', [0 -6 -8], and [1 0 0 0 0 0 1 0 1] all represent this
polynomial:

p(x-1) = 1 + x-6 + x-8

Initial states source — Set the source for descrambler initial states

Dialog Parameter (default) | Input port

• Dialog Parameter – Specify descrambler initial states by using the Initial states
parameter.

• Input port – Specify descrambler initial states by using the ISt port.

Initial states — Initial states of descrambler registers

[0 1 2 3] (default) | nonnegative integer vector

Initial states of descrambler registers when the simulation starts, specified as a nonnegative integer
vector. The length of Initial states must equal the order of the Scramble polynomial parameter.
The vector element values must be integers from 0 to Calculation base – 1.

Dependencies

This parameter is available when Initial states source is set to Dialog Parameter.

Reset on nonzero input via port — Reset descrambler via input port

off (default) | on

Select this parameter to reset the Descrambler block via input port Rst.

Dependencies

This parameter is available when Initial states source is set to Dialog Parameter.

Block Characteristics
Data Types Boolean | double | integer
Multidimensional
Signals

no
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Variable-Size Signals no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Scrambler | PN Sequence Generator

Objects
comm.Descrambler
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Differential Decoder
Decode binary signal using differential coding

Library
Source Coding

Description
The Differential Decoder block decodes the binary input signal. The output is the logical difference
between the consecutive input element within a channel. More specifically, the block's input and
output are related by

m(i0) = d(i0) XOR Initial condition parameter value

m(ik) = d(ik) XOR d(ik-1)

where

• d is the differentially encoded input.
• m is the output message.
• ik is the kth element.
• XOR is the logical exclusive-or operator.

This block accepts a scalar, column vector, or matrix input signal and treats columns as channels.

Parameters
Initial conditions

The logical exclusive-or of this value with the initial input value forms the initial output value.

Supported Data Type
Port Supported Data Types
In • double

• single
• boolean
• integer
• fixed-point
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Port Supported Data Types
Out • double

• single
• boolean
• integer
• fixed-point

References

[1] Couch, Leon W., II, Digital and Analog Communication Systems, Sixth edition, Upper Saddle River,
N. J., Prentice Hall, 2001.

Pair Block
Differential Encoder

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Differential Encoder
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Differential Encoder
Encode binary signal using differential coding

Library
Source Coding

Description
The Differential Encoder block encodes the binary input signal within a channel. The output is the
logical difference between the current input element and the previous output element. More
specifically, the input and output are related by

d(i0) = m(i0) XOR Initial condition parameter value

d(ik) = d(ik-1) XOR m(ik)

where

• m is the input message.
• d is the differentially encoded output.
• ik is the kth element.
• XOR is the logical exclusive-or operator.

This block accepts a scalar or column vector input signal and treats columns as channels.

Parameters
Initial conditions

The logical exclusive-or of this value with the initial input value forms the initial output value.

Supported Data Type
Port Supported Data Types
In • Double-precision floating point

• Single-precision floating point
• Boolean
• Integer
• Fixed-point
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Port Supported Data Types
Out • Double-precision floating point

• Single-precision floating point
• Boolean
• Integer
• Fixed-Point

References

[1] Couch, Leon W., II, Digital and Analog Communication Systems, Sixth edition, Upper Saddle River,
N. J., Prentice Hall, 2001.

Pair Block
Differential Decoder

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Differential Decoder
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Discrete-Time VCO
(To be removed) Implement voltage-controlled oscillator in discrete time

Note Discrete-Time VCO will be removed in a future release. To design voltage-controlled oscillators
(VCOs) and phase-locked loops (PLLs), use the “Phase-Locked Loops” (Mixed-Signal Blockset) blocks.

Library
Components sublibrary of Synchronization

Description
The Discrete-Time VCO (voltage-controlled oscillator) block generates a signal whose frequency shift
from the Quiescent frequency parameter is proportional to the input signal. The input signal is
interpreted as a voltage. If the input signal is u(t), then the output signal is

y(t) = Accos 2πfct + 2πkc∫0 t
u(τ)dτ + φ

where Ac is the Output amplitude, fc is the Quiescent frequency, kc is the Input sensitivity, and
φ is the Initial phase

This block uses a discrete-time integrator to interpret the equation above.

This block accepts a scalar-valued input signal with a data type of single or double. The output
signal inherits its data type from the input signal. The block supports double precision only for code
generation.

Parameters
Output amplitude

The amplitude of the output.
Quiescent frequency (Hz)

The frequency of the oscillator output when the input signal is zero.
Input sensitivity

This value scales the input voltage and, consequently, the shift from the Quiescent frequency
value. The units of Input sensitivity are Hertz per volt.

Initial phase (rad)
The initial phase of the oscillator in radians.

Sample time
The calculation sample time.
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Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Continuous-Time VCO

Topics
“Phase-Locked Loops”
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DPD
Digital predistorter
Library: Communications Toolbox / RF Impairments Correction

Description
Apply digital predistortion (DPD) to a complex baseband signal using a memory polynomial to
compensate for nonlinearities in a power amplifier. For more information, see “Digital Predistortion”
on page 5-191.

This icon shows the block with all ports enabled.

Ports
Input

In — Input baseband signal
column vector

Input baseband signal, specified as a column vector. This port is unnamed until the Coefficient
source parameter is set to Input port.
Data Types: double
Complex Number Support: Yes

Coef — Memory-polynomial coefficients
matrix

Memory-polynomial coefficients, specified as a matrix. The number of rows in the matrix must equal
the memory depth of the memory polynomial.

• If the Polynomial type parameter is set to Memory polynomial, the number of columns in the
matrix is the degree of the memory polynomial.

• If Polynomial type is set to Cross-term memory polynomial, the number of columns in the
matrix must equal m(n-1)+1. m is the memory depth of the polynomial, and n is the degree of the
memory polynomial.

Example: complex([1 0 0 0 0; 0 0 0 0 0; 0 0 0 0 0])
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Dependencies

To enable this port, set the Coefficient source parameter to Input port.
Data Types: double
Complex Number Support: Yes

Output

Out — Predistorted baseband signal
column vector

Predistorted baseband signal, returned as a column vector of the same length as the input signal.

Parameters
Polynomial type — Polynomial type

Memory polynomial (default) | Cross-term memory polynomial

Polynomial type used for predistortion, specified as one of these values:

• Memory polynomial — Computes predistortion coefficients by using a memory polynomial
without cross terms

• Cross-term memory polynomial — Computes predistortion coefficients by using a memory
polynomial with cross terms

For more information, see “Digital Predistortion” on page 5-191.

Coefficient source — Source of memory-polynomial coefficients

Property (default) | Input port

Source of the memory polynomial coefficients, specified as one of these values:

• Property — Specify this value to use the Coefficients parameter to define the memory-
polynomial coefficients

• Input port — Specify this value to use the Coef input port to define the memory-polynomial
coefficients

Coefficients — Memory-polynomial coefficients

complex([1 0 0 0 0; 0 0 0 0 0; 0 0 0 0 0]) (default) | matrix

Memory-polynomial coefficients, specified as a matrix. The number of rows must equal the memory
depth of the memory polynomial.

• If the Polynomial type is set to Memory polynomial, the number of columns is the degree of
the memory polynomial.

• If the Polynomial type is set to Cross-term memory polynomial, the number of columns
must equal m(n-1)+1. m is the memory depth of the polynomial, and n is the degree of the
memory polynomial.

For more information, see “Digital Predistortion” on page 5-191.
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Dependencies

To enable this parameter, set Coefficient source to Property.
Data Types: double
Complex Number Support: Yes

Simulate using — Type of simulation to run
Code generation (default) | Interpreted execution

Type of simulation to run, specified as Code generation or Interpreted execution.

• Code generation — Simulate the model by using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations unless the model changes. This option requires additional startup time, but the speed
of the subsequent simulations is faster than Interpreted execution.

• Interpreted execution — Simulate the model by using the MATLAB interpreter. This option
requires less startup time than the Code generation option, but the speed of subsequent
simulations is slower. In this mode, you can debug the source code of the block.

Block Characteristics
Data Types double | single
Multidimensional
Signals

no

Variable-Size Signals yes

More About
Digital Predistortion

Wireless communication transmissions commonly require wide bandwidth signal transmission over a
wide signal dynamic range. To transmit signals over a wide dynamic range and achieve high
efficiency, RF power amplifiers (PAs) commonly operate in their nonlinear region. As this constellation
diagram shows, the nonlinear behavior of a PA causes signal constellation distortions that pinch the
amplitude (AM-AM distortion) and twist phase (AM-PM distortion) of constellation points proportional
to the amplitude of the constellation point.

 DPD

5-191



The goal of digital predistortion is to find a nonlinear function that linearizes the net effect of the PA
nonlinear behavior at the PA output across the PA operating range. When the PA input is x(n), and the
predistortion function is f(u(n)), where u(n) is the true signal to be amplified, the PA output is
approximately equal to G×u(n), where G is the desired amplitude gain of the PA.

The digital predistorter can be configured to use a memory polynomial with or without cross terms.

• The memory polynomial with cross terms predistorts the input signal as

x(n) = f (u(n)) ≜ ∑
m=0

M − 1
cm × u(n‐m) + ∑

m=0

M − 1
∑
j=0

M − 1
∑

k=0

K − 1
am jk × u(n‐m) × u(n‐ j) k .

The memory polynomial with cross terms has (M+M×M×(K-1)) coefficients for cm and amjk.
• The memory polynomial without cross terms predistorts the input signal as

x(n) = f (u(n)) ≜ ∑
m=0

M − 1
∑

k=0

K − 1
amk × u(n‐m) × u(n‐m) k .
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The polynomial without cross terms has M×K coefficients for amk.

Estimating Predistortion Function and Coefficients

The DPD coefficient estimation uses an indirect learning architecture to find function f(u(n)) to
predistort input signal u(n) which precedes the PA input.

The DPD coefficient estimation algorithm models nonlinear PA memory effects based on the work in
reference papers by Morgan, et al [1], and by Schetzen [2], using the theoretical foundation
developed for Volterra systems.

Specifically, the inverse mapping from the PA output normalized by the PA gain, {y(n)/G}, to the PA
input, {x(n)}, provides a good approximation to the function f(u(n)), needed to predistort {u(n)} to
produce {x(n)}.

Referring to the memory polynomial equations above, estimates are computed for the memory-
polynomial coefficients:

• cm and amjk for a memory polynomial with cross terms
• amk for a memory polynomial without cross terms

The memory-polynomial coefficients are estimated by using a least squares fit algorithm or a
recursive least squares algorithm. The least squares fit algorithm or a recursive least squares
algorithms use the memory polynomial equations above for a memory polynomial with or without
cross terms, by replacing {u(n)} with {y(n)/G}. The function order and dimension of the coefficient
matrix are defined by the degree and depth of the memory polynomial.

For an example that details the process of accurately estimating memory-polynomial coefficients and
predistorting a PA input signal, see “Digital Predistortion to Compensate for Power Amplifier
Nonlinearities”.

For background reference material, see the works listed in [1] and [2].

Version History
Introduced in R2019a

References
[1] Morgan, Dennis R., Zhengxiang Ma, Jaehyeong Kim, Michael G. Zierdt, and John Pastalan. "A

Generalized Memory Polynomial Model for Digital Predistortion of Power Amplifiers." IEEE
Transactions on Signal Processing. Vol. 54, Number 10, October 2006, pp. 3852–3860.

[2] M. Schetzen. The Volterra and Wiener Theories of Nonlinear Systems. New York: Wiley, 1980.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

 DPD

5-193



See Also
Blocks
DPD Coefficient Estimator

Objects
comm.DPD

Topics
“Digital Predistortion to Compensate for Power Amplifier Nonlinearities”
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DPD Coefficient Estimator
Estimate memory-polynomial coefficients for digital predistortion
Library: Communications Toolbox / RF Impairments Correction

Description
Estimate memory-polynomial coefficients for digital predistortion (DPD) of a nonlinear power
amplifier.

This icon shows the block with all ports enabled.

Ports
Input

PA In — Power amplifier baseband-equivalent input
column vector

Power amplifier baseband-equivalent input, specified as a column vector.
Data Types: double
Complex Number Support: Yes

PA Out — Power amplifier baseband-equivalent output
column vector

Power amplifier baseband-equivalent output, specified as a column vector of the same length as PA
In.
Data Types: double
Complex Number Support: Yes

Forgetting Factor — Forgetting factor
scalar in the range (0, 1]

Forgetting factor used by the recursive least squares algorithm, specified as a scalar in the range (0,
1]. Decreasing the forgetting factor reduces the convergence time but causes the output estimates to
be less stable.
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Dependencies

To enable this port, set Algorithm to Recursive least squares and set Forgetting factor
source to Input port.
Data Types: double

Output

Out — Memory-polynomial coefficients
matrix

Memory-polynomial coefficients, returned as a matrix. For more information, see “Digital
Predistortion” on page 5-198.

Parameters
Desired amplitude gain (dB) — Desired amplitude gain

10 (default) | scalar

Desired amplitude gain in dB, specified as a scalar. This parameter value expresses the desired signal
gain at the compensated amplifier output.

In addition to linearization, the DPD should make the combined gain between the DPD input and the
power amplifier output as close as possible to the expected gain. Therefore, set this parameter based
on the expected gain of the power amplifier that you obtain during PA characterization.

Tunable: Yes
Data Types: double

Polynomial type — Polynomial type

Memory polynomial (default) | Cross-term memory polynomial

Polynomial type used for predistortion, specified as one of these values:

• Memory polynomial — Computes predistortion coefficients by using a memory polynomial
without cross terms

• Cross-term memory polynomial — Computes predistortion coefficients by using a memory
polynomial with cross terms

For more information, see “Digital Predistortion” on page 5-198.

Degree — Memory-polynomial degree

5 (default) | positive integer

Memory-polynomial degree, specified as a positive integer.
Data Types: double

Memory depth — Memory-polynomial depth

3 (default) | positive integer
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Memory-polynomial depth in samples, specified as a positive integer.
Data Types: double

Algorithm — Estimation algorithm

Least squares (default) | Recursive least squares

Adaptive algorithm used for equalization, specified as one of these values:

• Least squares — Estimate the memory-polynomial coefficients by using a least squares
algorithm

• Recursive least squares — Estimate the memory-polynomial coefficients by using a
recursive least squares algorithm

For algorithm reference material, see the works listed in [1] and [2].
Data Types: char | string

Forgetting factor source — Source of forgetting factor

Property (default) | Input port

Source of the forgetting factor, specified as one of these values:

• Property — Specify this value to use the Forgetting factor parameter to specify the forgetting
factor.

• Input port — Specify this value to use the Forgetting Factor input port to specify the
forgetting factor.

Dependencies

To enable this parameter, set Algorithm to Recursive least squares.
Data Types: double

Forgetting factor — Forgetting factor

0.99 (default) | scalar in the range (0, 1]

Forgetting factor used by the recursive least squares algorithm, specified as a scalar in the range (0,
1]. Decreasing the forgetting factor reduces the convergence time but causes the output estimates to
be less stable.

Dependencies

To enable this parameter, set Algorithm to Recursive least squares and set Forgetting factor
source to Property.
Data Types: double

Initial coefficient estimate — Initial coefficient estimate

[] (default) | matrix

Initial coefficient estimate for the recursive least squares algorithm, specified as a matrix.
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• If you specify this value as an empty matrix, the initial coefficient estimate for the recursive least
squares algorithm is chosen automatically to correspond to a memory polynomial that is an
identity function, so that the output is equal to input.

• If you specify this value as a nonempty matrix, the number of rows must be equal to the Memory
depth parameter value.

• If the Polynomial type parameter is set to Memory polynomial, the number of columns is
the degree of the memory polynomial.

• If the Polynomial type parameter is set to Cross-term memory polynomial, the number
of columns must equal m(n-1)+1. m is the memory depth of the polynomial, and n is the degree
of the memory polynomial.

For more information, see “Digital Predistortion” on page 5-198.
Dependencies

To enable this parameter, set Algorithm to Recursive least squares.
Data Types: double
Complex Number Support: Yes

Simulate using — Type of simulation to run
Code generation (default) | Interpreted execution

Type of simulation to run, specified as Code generation or Interpreted execution.

• Code generation — Simulate the model by using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations unless the model changes. This option requires additional startup time, but the speed
of the subsequent simulations is faster than Interpreted execution.

• Interpreted execution — Simulate the model by using the MATLAB interpreter. This option
requires less startup time than the Code generation option, but the speed of subsequent
simulations is slower. In this mode, you can debug the source code of the block.

Block Characteristics
Data Types double | single
Multidimensional
Signals

no

Variable-Size Signals yes

More About
Digital Predistortion

Wireless communication transmissions commonly require wide bandwidth signal transmission over a
wide signal dynamic range. To transmit signals over a wide dynamic range and achieve high
efficiency, RF power amplifiers (PAs) commonly operate in their nonlinear region. As this constellation
diagram shows, the nonlinear behavior of a PA causes signal constellation distortions that pinch the
amplitude (AM-AM distortion) and twist phase (AM-PM distortion) of constellation points proportional
to the amplitude of the constellation point.
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The goal of digital predistortion is to find a nonlinear function that linearizes the net effect of the PA
nonlinear behavior at the PA output across the PA operating range. When the PA input is x(n), and the
predistortion function is f(u(n)), where u(n) is the true signal to be amplified, the PA output is
approximately equal to G×u(n), where G is the desired amplitude gain of the PA.

The digital predistorter can be configured to use a memory polynomial with or without cross terms.

• The memory polynomial with cross terms predistorts the input signal as

x(n) = f (u(n)) ≜ ∑
m=0

M − 1
cm × u(n‐m) + ∑

m=0

M − 1
∑
j=0

M − 1
∑

k=0

K − 1
am jk × u(n‐m) × u(n‐ j) k .

The memory polynomial with cross terms has (M+M×M×(K-1)) coefficients for cm and amjk.
• The memory polynomial without cross terms predistorts the input signal as

x(n) = f (u(n)) ≜ ∑
m=0

M − 1
∑

k=0

K − 1
amk × u(n‐m) × u(n‐m) k .
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The polynomial without cross terms has M×K coefficients for amk.

Estimating Predistortion Function and Coefficients

The DPD coefficient estimation uses an indirect learning architecture to find function f(u(n)) to
predistort input signal u(n) which precedes the PA input.

The DPD coefficient estimation algorithm models nonlinear PA memory effects based on the work in
reference papers by Morgan, et al [1], and by Schetzen [2], using the theoretical foundation
developed for Volterra systems.

Specifically, the inverse mapping from the PA output normalized by the PA gain, {y(n)/G}, to the PA
input, {x(n)}, provides a good approximation to the function f(u(n)), needed to predistort {u(n)} to
produce {x(n)}.

Referring to the memory polynomial equations above, estimates are computed for the memory-
polynomial coefficients:

• cm and amjk for a memory polynomial with cross terms
• amk for a memory polynomial without cross terms

The memory-polynomial coefficients are estimated by using a least squares fit algorithm or a
recursive least squares algorithm. The least squares fit algorithm or a recursive least squares
algorithms use the memory polynomial equations above for a memory polynomial with or without
cross terms, by replacing {u(n)} with {y(n)/G}. The function order and dimension of the coefficient
matrix are defined by the degree and depth of the memory polynomial.

For an example that details the process of accurately estimating memory-polynomial coefficients and
predistorting a PA input signal, see “Digital Predistortion to Compensate for Power Amplifier
Nonlinearities”.

For background reference material, see the works listed in [1] and [2].

Version History
Introduced in R2019a

References
[1] Morgan, Dennis R., Zhengxiang Ma, Jaehyeong Kim, Michael G. Zierdt, and John Pastalan. "A

Generalized Memory Polynomial Model for Digital Predistortion of Power Amplifiers." IEEE
Transactions on Signal Processing. Vol. 54, Number 10, October 2006, pp. 3852–3860.

[2] M. Schetzen. The Volterra and Wiener Theories of Nonlinear Systems. New York: Wiley, 1980.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.
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See Also
Blocks
DPD

Objects
comm.DPDCoefficientEstimator

Topics
“Digital Predistortion to Compensate for Power Amplifier Nonlinearities”
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DQPSK Demodulator Baseband
Demodulate DQPSK-modulated data

Library
PM, in Digital Baseband sublibrary of Modulation

Description
The DQPSK Demodulator Baseband block demodulates a signal that was modulated using the
differential quadrature phase shift keying method. The input is a baseband representation of the
modulated signal.

The input must be a discrete-time complex signal. The output depends on the phase difference
between the current symbol and the previous symbol. The first integer (or binary pair, if you set the
Output type parameter to Bit) at the block output is the initial condition of zero because there is no
previous symbol.

This block accepts either a scalar or column vector input signal. For information about the data types
each block port supports, see “Supported Data Types” on page 5-203.

Outputs and Constellation Types

When you set Output type parameter to Integer, the block maps a phase difference of

θ + πm/2

to m, where θ represents the Phase rotation parameter and m is 0, 1, 2, or 3.

When you set the Output type parameter to Bit, then the output contains pairs of binary values. The
reference page for the DQPSK Modulator Baseband block shows which phase differences map to each
binary pair, for the cases when the Constellation ordering parameter is either Binary or Gray.
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Dialog Box

Output type
Determines whether the output consists of integers or pairs of bits.

Constellation ordering
Determines how the block maps each integer to a pair of output bits.

Phase rotation (rad)
This phase difference between the current and previous modulated symbols results in an output
of zero.

Output data type
When the parameter is set to 'Inherit via internal rule' (default setting), the block will
inherit the output data type from the input port. The output data type will be the same as the
input data type if the input is of type single or double.

For integer outputs, this block can output the data types int8, uint8, int16, uint16, int32,
uint32, single, and double. For bit outputs, output can be int8, uint8, int16, uint16,
int32, uint32, boolean, single, or double.

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
Output • Double-precision floating point

• Single-precision floating point
• Boolean when Output type isBit
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers
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Pair Block
DQPSK Modulator Baseband

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
QPSK Demodulator Baseband | DBPSK Demodulator Baseband | M-DPSK Demodulator Baseband |
DQPSK Modulator Baseband

5 Blocks

5-204



DQPSK Modulator Baseband
Modulate using differential quadrature phase shift keying method

Library
PM, in Digital Baseband sublibrary of Modulation

Description
The DQPSK Modulator Baseband block modulates using the differential quadrature phase shift keying
method. The output is a baseband representation of the modulated signal.

The input must be a discrete-time signal. For information about the data types each block port
supports, see “Supported Data Types” on page 5-207.

Integer-Valued Signals and Binary-Valued Signals

When you set the Input type parameter to Integer, the valid input values are 0, 1, 2, and 3. In this
case, the block accepts a scalar or column vector input signal. If the first input is m, then the
modulated symbol is

exp(jθ + jπm/2)

where θ represents the Phase rotation parameter. If a successive input is m, then the modulated
symbol is the previous modulated symbol multiplied by exp(jθ + jπm/2).

When you set the Input type parameter to Bit, the input contains pairs of binary values. In this
case, the block accepts a column vector whose length is an even integer. The following figure shows
the complex numbers by which the block multiples the previous symbol to compute the current
symbol, depending on whether you set the Constellation ordering parameter to Binary or Gray.
The following figure assumes that you set the Phase rotation parameter to Π4 ; in other cases, the
two schematics would be rotated accordingly.
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The following figure shows the signal constellation for the DQPSK modulation method when you set
the Phase rotation parameter to Π4 . The arrows indicate the four possible transitions from each
symbol to the next symbol. The Binary and Gray options determine which transition is associated
with each pair of input values.

More generally, if the Phase rotation parameter has the form Πk for some integer k, then the signal
constellation has 2k points.

Dialog Box

Input type
Indicates whether the input consists of integers or pairs of bits.
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Constellation ordering
Determines how the block maps each pair of input bits to a corresponding integer, using either a
Binary or Gray mapping scheme.

Phase rotation (rad)
The phase difference between the previous and current modulated symbols when the input is
zero.

Output Data type
The output data type can be either single or double. By default, the block sets this to double.

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
• Boolean when Input type is Bit
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Output • Double-precision floating point
• Single-precision floating point

Pair Block
DQPSK Demodulator Baseband

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
M-DPSK Modulator Baseband | DBPSK Modulator Baseband | QPSK Modulator Baseband | DQPSK
Demodulator Baseband
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DSB AM Demodulator Passband
Demodulate DSB-AM-modulated data

Library
Analog Passband Modulation, in Modulation

Description
The DSB AM Demodulator Passband block demodulates a signal that was modulated using double-
sideband amplitude modulation. The block uses the envelope detection method. The input is a
passband representation of the modulated signal. Both the input and output signals are real scalar
signals.

In the course of demodulating, this block uses a filter whose order, coefficients, passband ripple and
stopband ripple are described by their respective lowpass filter parameters.

Typically, an appropriate Carrier frequency value is much higher than the highest frequency of the
input signal. By the Nyquist sampling theorem, the reciprocal of the model's sample time (defined by
the model's signal source) must exceed twice the Carrier frequency parameter.

This block works only with real inputs of type double. This block does not work inside a triggered
subsystem.

Parameters
Input signal offset

The same as the Input signal offset parameter in the corresponding DSB AM Modulator
Passband block.

Carrier frequency (Hz)
The frequency of the carrier in the corresponding DSB AM Modulator Passband block.

Initial phase (rad)
The initial phase of the carrier in radians.

Lowpass filter design method
The method used to generate the filter. Available methods are Butterworth, Chebyshev type I,
Chebyshev type II, and Elliptic.

Filter order
The order of the lowpass digital filter specified in the Lowpass filter design method field .

Cutoff frequency (Hz)
The cutoff frequency of the lowpass digital filter specified in the Lowpass filter design method
field in Hertz.
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Passband ripple (dB)
Applies to Chebyshev type I and Elliptic filters only. This is peak-to-peak ripple in the passband in
dB.

Stopband ripple (dB)
Applies to Chebyshev type II and Elliptic filters only. This is the peak-to-peak ripple in the
stopband in dB.

Pair Block
DSB AM Modulator Passband

Version History
Introduced before R2006a
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DSB AM Modulator Passband
Modulate using double-sideband amplitude modulation

Library
Analog Passband Modulation, in Modulation

Description
The DSB AM Modulator Passband block modulates using double-sideband amplitude modulation. The
output is a passband representation of the modulated signal. Both the input and output signals are
real scalar signals.

If the input is u(t) as a function of time t, then the output is

(u(t) + k)cos(2πfct + θ)

where:

• k is the Input signal offset parameter.
• fc is the Carrier frequency parameter.
• θ is the Initial phase parameter.

It is common to set the value of k to the maximum absolute value of the negative part of the input
signal u(t).

Typically, an appropriate Carrier frequency value is much higher than the highest frequency of the
input signal. By the Nyquist sampling theorem, the reciprocal of the model's sample time (defined by
the model's signal source) must exceed twice the Carrier frequency parameter.

This block works only with real inputs of type double. This block does not work inside a triggered
subsystem.

Parameters
Input signal offset

The offset factor k. This value should be greater than or equal to the absolute value of the
minimum of the input signal.

Carrier frequency (Hz)
The frequency of the carrier.

Initial phase (rad)
The initial phase of the carrier.
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Pair Block
DSB AM Demodulator Passband

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
DSB AM Demodulator Passband | DSBSC AM Modulator Passband | SSB AM Modulator Passband
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DSBSC AM Demodulator Passband
Demodulate DSBSC-AM-modulated data

Library
Analog Passband Modulation, in Modulation

Description
The DSBSC AM Demodulator Passband block demodulates a signal that was modulated using double-
sideband suppressed-carrier amplitude modulation. The input is a passband representation of the
modulated signal. Both the input and output signals are real scalar signals.

In the course of demodulating, this block uses a filter whose order, coefficients, passband ripple and
stopband ripple are described by the their respective lowpass filter parameters.

Typically, an appropriate Carrier frequency value is much higher than the highest frequency of the
input signal. By the Nyquist sampling theorem, the reciprocal of the model's sample time (defined by
the model's signal source) must exceed twice the Carrier frequency parameter.

This block works only with real inputs of type double. This block does not work inside a triggered
subsystem.

Parameters
Carrier frequency (Hz)

The carrier frequency in the corresponding DSBSC AM Modulator Passband block.
Initial phase (rad)

The initial phase of the carrier in radians.
Lowpass filter design method

The method used to generate the filter. Available methods are Butterworth, Chebyshev type I,
Chebyshev type II, and Elliptic.

Filter order
The order of the lowpass digital filter specified in the Lowpass filter design method field .

Cutoff frequency (Hz)
The cutoff frequency of the lowpass digital filter specified in the Lowpass filter design method
field in Hertz.

Passband Ripple (dB)
Applies to Chebyshev type I and Elliptic filters only. This is peak-to-peak ripple in the passband in
dB.
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Stopband Ripple (dB)
Applies to Chebyshev type II and Elliptic filters only. This is the peak-to-peak ripple in the
stopband in dB.

Pair Block
DSBSC AM Modulator Passband

See Also
DSB AM Demodulator Passband, SSB AM Demodulator Passband

Version History
Introduced before R2006a
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DSBSC AM Modulator Passband
Modulate using double-sideband suppressed-carrier amplitude modulation

Library
Analog Passband Modulation, in Modulation

Description
The DSBSC AM Modulator Passband block modulates using double-sideband suppressed-carrier
amplitude modulation. The output is a passband representation of the modulated signal. Both the
input and output signals are real scalar signals.

If the input is u(t) as a function of time t, then the output is

u(t)cos(2πfct + θ)

where fc is the Carrier frequency parameter and θ is the Initial phase parameter.

Typically, an appropriate Carrier frequency value is much higher than the highest frequency of the
input signal. By the Nyquist sampling theorem, the reciprocal of the model's sample time (defined by
the model's signal source) must exceed twice the Carrier frequency parameter.

This block works only with real inputs of type double. This block does not work inside a triggered
subsystem.

Parameters
Carrier frequency (Hz)

The frequency of the carrier.
Initial phase (rad)

The initial phase of the carrier in radians.

Pair Block
DSBSC AM Demodulator Passband

Version History
Introduced before R2006a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
DSBSC AM Demodulator Passband | DSB AM Modulator Passband | SSB AM Modulator Passband
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DVBS-APSK Demodulator Baseband
DVB-S2/S2X/SH standard-specific amplitude phase shift keying (APSK) demodulation
Library: Communications Toolbox / Modulation / Digital Baseband

Modulation / APM
Communications Toolbox / Modulation / Digital Baseband
Modulation / Standard-Compliant

Description
The DVBS-APSK Demodulator Baseband block demodulates the input signal using Digital Video
Broadcasting (“DVB-S2/S2X/SH” on page 5-221) standard-specific amplitude phase shift keying
(APSK) demodulation. For a description of DVB-compliant APSK demodulation, see “DVB Compliant
APSK Hard Demodulation” on page 5-221 and “DVB Compliant APSK Soft Demodulation” on page 5-
221.

This icon shows the block with all ports enabled: 

Ports
Input

In — DVB-S2/S2X/SH standard-specific APSK modulated signal
scalar | vector | matrix

DVB-S2/S2X/SH standard-specific APSK modulated signal, specified as a scalar, vector, or matrix.
When this input is a matrix, each column is treated as an independent channel. This port is unnamed
until the Var port is enabled.
Data Types: double | single
Complex Number Support: Yes

Var — Noise variance
positive scalar | vector of positive values

Noise variance, specified as a positive scalar or vector of positive values. When the noise variance or
signal power result in computations involving extreme positive or negative magnitudes, see “DVB
Compliant APSK Soft Demodulation” on page 5-221 for demodulation decision type considerations.

Dependencies

This parameter applies when Noise variance source is set to Input port.
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Data Types: double | single

Output

Out — Demodulated signal
scalar | vector | matrix

Demodulated signal, returned as a scalar, vector, or matrix. The dimensions of the demodulated signal
depend on the specified Output type and Decision type. This port is unnamed on the block.

Output
type

Decision
type

Demodulated Signal
Description

Dimensions of Demodulated Signal

Integer — Demodulated integer values
in the range [0, (M – 1)]

The output signal has the same
dimensions as the input signal.

Bit Hard
decision

Demodulated bits The number of rows in the output signal is
log2(M) times the number of rows in the
input signal. Each demodulated symbol is
mapped to a group of log2(M) elements in
a column, where the first element
represents the MSB and the last element
represents the LSB.

Log-
likelihood
ratio

Log-likelihood ratio value
for each bit

Approximat
e log-
likelihood
ratio

Approximate log-likelihood
ratio value for each bit

M is the value of Modulation order.

Use Output data type to specify the output data type.

Parameters
DVB standard suffix — Standard suffix
S2 | S2X | SH

Standard suffix for DVB modulation variant, specified as S2, S2X, or SH.

Frame length — Frame length
Normal (default) | Short

Frame length, specified as Normal or Short.

Dependencies

This parameter applies only when DVB standard suffix is set to S2 or S2X.

Modulation order — Modulation order
16 (default) | integer

Modulation order, specified as a power of two. The modulation order specifies the total number of
points in the constellation of the input signal. The list of valid modulation orders varies depending on
the setting for DVB standard suffix and Frame length.
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DVB standard suffix Frame length Modulation order Options
S2 Normal or Short 16 or 32
S2X Normal 8, 16, 32, 64, or 256

Short 16 or 32
SH Not applicable 16

Code identifier — Code identifier
2/3 | character vector

Code identifier, specified as a character vector. The list of valid code identifier values varies
depending on the setting for DVB standard suffix, Frame length, and Modulation order. This table
lists the available options for Code identifier values.

Modulation order DVB standard suffix Frame length Code identifier
Options

8 S2X Normal 100/180 or 104/180
16 S2 or S2X Normal 2/3, 3/4, 4/5, 5/6,

8/9, or 9/10
Short 2/3, 3/4, 4/5, 5/6, or

8/9
16 S2X Normal 26/45, 3/5, 28/45,

23/36, 25/36, 13/18,
140/180, 154/180,
100/180, 96/180,
90/180, 18/30, or
20/30

Short 7/15, 8/16, 26/45,
3/5, or 32/45

32 S2 or S2X Normal 3/4, 4/5, 5/6, 8/9, or
9/10

Short 3/4, 4/5, 5/6, or 8/9
32 S2X Normal 128/180, 132/180,

140/180, or 2/3
Short 2/3 or 32/45

64 S2X Normal 128/180 , 132/180,
7/9, 4/5, or 5/6

128 S2X Normal 135/180 or 140/180
256 S2X Normal 116/180, 124/180,

128/180, 20/30, or
135/180

For more information, refer to Tables 9 and 10 in the DVB-S2 standard [1] and Table 17a in the DVB-
S2X standard [2].
Dependencies

This parameter applies only when DVB standard suffix is set to S2 or S2X.
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Constellation scaling — Constellation scaling
Outer radius as 1 (default) | Unit average power

Constellation scaling, specified as Outer radius as 1 or Unit average power.

Dependencies

This input argument applies only when DVB standard suffix is set to S2 or S2X.

Output type — Output type
Integer (default) | Bit

Output type, specified as Integer or Bit.
Data Types: char | string

Decision type — Demodulation decision type
Hard decision (default) | Log-likelihood ratio | Approximate log-likelihood ratio

Demodulation decision type, specified as Hard decision, Log-likelihood ratio, or
Approximate log-likelihood ratio. See “DVB Compliant APSK Soft Demodulation” on page 5-
221 for algorithm selection considerations.

Dependencies

This parameter applies when Output type is set to Bit.

Noise variance source — Noise variance source
Property (default) | Input port

Noise variance source, specified as:

• Property — The noise variance is set using the Noise variance parameter.
• Input port — The noise variance is set using the Var input port.

Noise variance — Noise variance
1 (default) | positive scalar | vector of positive values

Noise variance, specified as a positive scalar or vector of positive values.

• When specified as a scalar, that value is used on all elements in the input signal.
• When specified as a vector, the vector length must be equal to the number of columns in the input

signal. Each noise variance vector element is applied to its corresponding column in the input
signal.

When the noise variance or signal power result in computations involving extreme positive or
negative magnitudes, see “DVB Compliant APSK Soft Demodulation” on page 5-221 for demodulation
decision type considerations.

Dependencies

This parameter applies when Noise variance source is set to Property and Decision type is set to
either Log-likelihood ratio or Approximate log-likelihood ratio.
Data Types: double
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Output data type — Output data type
double (default) | ...

Output data type, specified as one of the acceptable values from this table. Acceptable Output data
type values depend on the Output type and Decision type parameter values.

Output type Decision type Output data type Options
Integer Not applicable double, single, int8, uint8, int16, uint16, int32, or

uint32
Bit Hard decision double, single, int8, uint8, int16, uint16, int32,

uint32, or logical
Log-likelihood
ratio or
Approximate
log-likelihood
ratio

The output signal is the same data type as the input signal.

Dependencies

This parameter applies only when Output type is set to Integer or when Output type is set to Bit
and Decision type is set to Hard decision.

Simulate using — Type of simulation to run
Interpreted execution (default) | Code generation

Type of simulation to run, specified as:

• Code generation –– Simulate the model using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations as long as the model does not change. This option requires additional startup time.

• Interpreted execution –– Simulate the model using the MATLAB interpreter. This option
shortens startup time. In Interpreted execution mode, you can debug the source code of the
block.

For information on execution speed, see “Tips” on page 5-222.

Block Characteristics
Data Types Boolean | double | integer | single
Multidimensional
Signals

yes

Variable-Size Signals no
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More About
DVB-S2/S2X/SH

Digital video broadcasting (DVB) standards specify S2, S2X, and SH standard-specific amplitude
phase shift keying (APSK) modulation. For further information on the DVB-S2/S2X/SH standards, see
[1], [2], and [3], respectively.

DVB Compliant APSK Hard Demodulation

The hard demodulation algorithm applies amplitude phase decoding as described in [4].

DVB Compliant APSK Soft Demodulation

For soft demodulation, two soft-decision log-likelihood ratio (LLR) algorithms are available: exact LLR
and approximate LLR. The exact LLR algorithm is more accurate but has slower execution speed than
the approximate LLR algorithm. For further description of these algorithms, see the “Hard- vs. Soft-
Decision Demodulation” topic.

Note The exact LLR algorithm computes exponentials using finite precision arithmetic. For
computations involving very large positive or negative magnitudes, the exact LLR algorithm yields:
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• Inf or -Inf if the noise variance is a very large value
• NaN if the noise variance and signal power are both very small values

The approximate LLR algorithm does not compute exponentials. You can avoid Inf, -Inf, and NaN
results by using the approximate LLR algorithm.

Tips
• For faster execution of the DVBS-APSK Demodulator Baseband block, set the Simulate using

parameter to:

• Code generation when using hard decision demodulation.
• Interpreted execution when using soft decision demodulation.

Version History
Introduced in R2018b

References
[1] ETSI Standard EN 302 307 V1.4.1: Digital Video Broadcasting (DVB); Second generation framing

structure, channel coding and modulation systems for Broadcasting, Interactive Services,
News Gathering and other broadband satellite applications (DVB-S2), European
Telecommunications Standards Institute, Valbonne, France, 2005-03.

[2] ETSI Standard EN 302 307-2 V1.1.1: Digital Video Broadcasting (DVB); Second generation
framing structure, channel coding and modulation systems for Broadcasting, Interactive
Services, News Gathering and other broadband satellite applications (DVB-S2X), European
Telecommunications Standards Institute, Valbonne, France, 2015-02.

[3] ETSI Standard EN 302 583 V1.1.1: Digital Video Broadcasting (DVB); Framing structure, channel
coding and modulation for Satellite Services to Handheld devices (SH), European
Telecommunications Standards Institute, Valbonne, France, 2008-03.

[4] Sebesta, J. “Efficient Method for APSK Demodulation.” Selected Topics on Applied Mathematics,
Circuits, Systems, and Signals (P. Pardalos, N. Mastorakis, V. Mladenov, and Z. Bojkovic, eds.).
Vouliagmeni, Athens, Greece: WSEAS Press, 2009.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
DVBS-APSK Modulator Baseband | M-APSK Demodulator Baseband | MIL-188 QAM Demodulator
Baseband
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Functions
dvbsapskdemod
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DVBS-APSK Modulator Baseband
DVB-S2/S2X/SH standard-specific amplitude phase shift keying (APSK) modulation
Library: Communications Toolbox / Modulation / Digital Baseband

Modulation / APM
Communications Toolbox / Modulation / Digital Baseband
Modulation / Standard-Compliant

Description
The DVBS-APSK Modulator Baseband block modulates the input signal using Digital Video
Broadcasting (“DVB-S2/S2X/SH” on page 5-227) standard-specific amplitude phase shift keying
(APSK) modulation.

Ports
Input

In — Input signal
scalar | vector | matrix

Input signal, specified as a scalar, vector, or matrix. The input signal must be binary values or
integers in the range [0, (M – 1)], where M is the Modulation order. This port is unnamed on the
block.

Note To process the input signal as binary elements, set the Input type parameter value to Bit. For
binary inputs, the number of rows must be an integer multiple of log2(M). Groups of log2(M) bits in a
column are mapped onto a symbol, with the first bit representing the MSB and the last bit
representing the LSB.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean

Output

Out — DVB-S2/S2X/SH standard-specific APSK modulated signal
scalar | vector | matrix

DVB-S2/S2X/SH standard-specific APSK modulated signal, returned as a complex scalar, vector, or
matrix. The output signal dimensions depend on the specified Input type value. This port is unnamed
on the block.

Input type Dimensions of Output Signal
Integer The output signal has the same dimensions as the input signal.
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Input type Dimensions of Output Signal
Bit The number of rows in the output signal equals the number of rows in the

input signal divided by log2(M), where M is the Modulation order.

Use Output data type to specify the output data type.

Parameters
DVB standard suffix — Standard suffix
S2 (default) | S2X | SH

Standard suffix for DVB modulation variant, specified as S2, S2X, or SH.

Frame length — Frame length
Normal (default) | Short

Frame length, specified as Normal or Short.

Dependencies

This parameter applies only when DVB standard suffix is set to S2 or S2X.

Modulation order — Modulation order
16 (default) | 8 | 32 | 64 | 256

Modulation order, M, specified as a power of two. The modulation order specifies the total number of
points in the constellation of the output signal. The list of valid modulation orders varies depending
on the values of DVB standard suffix and Frame length.

DVB standard suffix Frame length Modulation order Options
S2 Normal or Short 16 or 32
S2X Normal 8, 16, 32, 64, or 256

Short 16 or 32
SH Not applicable 16

Code identifier — Code identifier
2/3 | character vector

Code identifier, specified as a character vector. The list of valid code identifier values varies
depending on the specified values of DVB standard suffix, Frame length, and Modulation order. This
table lists the options for Code identifier values.

Modulation order DVB standard suffix Frame length Code identifier
Options

8 S2X Normal 100/180 or 104/180
16 S2 or S2X Normal 2/3, 3/4, 4/5, 5/6,

8/9, or 9/10
Short 2/3, 3/4, 4/5, 5/6, or

8/9
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Modulation order DVB standard suffix Frame length Code identifier
Options

16 S2X Normal 26/45, 3/5, 28/45,
23/36, 25/36, 13/18,
140/180, 154/180,
100/180, 96/180,
90/180, 18/30, or
20/30

Short 7/15, 8/16, 26/45,
3/5, or 32/45

32 S2 or S2X Normal 3/4, 4/5, 5/6, 8/9, or
9/10

Short 3/4, 4/5, 5/6, or 8/9
32 S2X Normal 128/180, 132/180,

140/180, or 2/3
Short 2/3 or 32/45

64 S2X Normal 128/180 , 132/180,
7/9, 4/5, or 5/6

128 S2X Normal 135/180 or 140/180
256 S2X Normal 116/180, 124/180,

128/180, 20/30, or
135/180

For more information, refer to Tables 9 and 10 in the DVB-S2 standard [1] and Table 17a in the DVB-
S2X standard [2].

Dependencies

This parameter applies only when DVB standard suffix is set to S2 or S2X.

Constellation scaling — Constellation scaling
Outer radius as 1 (default) | Unit average power

Constellation scaling, specified as Outer radius as 1 or Unit average power.

Dependencies

This parameter applies only when DVB standard suffix is set to S2 or S2X.

Input type — Input type
Integer (default) | Bit

Input type, specified as Integer or Bit. To use Integer, the input signal must consist of integers in
the range [0, (M – 1)]. To use Bit, the input data must contain binary values, and the number of rows
must be an integer multiple of log2(M), where M is the Modulation order.

Output data type — Output data type
double (default) | single
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Output data type, specified as double or single.

View Constellation — Plot reference constellation
button

To plot the reference constellation, click the View Constellation button.

Simulate using — Type of simulation to run
Code generation (default) | Interpreted execution

Type of simulation to run, specified as:

• Code generation –– Simulate the model using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations as long as the model does not change. This option requires additional startup time.

• Interpreted execution –– Simulate the model using the MATLAB interpreter. This option
shortens startup time. In Interpreted execution mode, you can debug the source code of the
block.

Block Characteristics
Data Types Boolean | double | integer | single
Multidimensional
Signals

yes

Variable-Size Signals no

More About
DVB-S2/S2X/SH

Digital video broadcasting (DVB) standards specify S2, S2X, and SH standard-specific amplitude
phase shift keying (APSK) modulation. For further information on the DVB-S2/S2X/SH standards, see
[1], [2], and [3], respectively.

Version History
Introduced in R2018b

References
[1] ETSI Standard EN 302 307 V1.4.1: Digital Video Broadcasting (DVB); Second generation framing

structure, channel coding and modulation systems for Broadcasting, Interactive Services,
News Gathering and other broadband satellite applications (DVB-S2), European
Telecommunications Standards Institute, Valbonne, France, 2005-03.

[2] ETSI Standard EN 302 307-2 V1.1.1: Digital Video Broadcasting (DVB); Second generation
framing structure, channel coding and modulation systems for Broadcasting, Interactive
Services, News Gathering and other broadband satellite applications (DVB-S2X), European
Telecommunications Standards Institute, Valbonne, France, 2015-02.
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[3] ETSI Standard EN 302 583 V1.1.1: Digital Video Broadcasting (DVB); Framing structure, channel
coding and modulation for Satellite Services to Handheld devices (SH), European
Telecommunications Standards Institute, Valbonne, France, 2008-03.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
DVBS-APSK Demodulator Baseband | M-APSK Modulator Baseband | MIL-188 QAM Modulator
Baseband

Functions
dvbsapskmod

Topics
“Exact LLR Algorithm”
“Approximate LLR Algorithm”
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Error Rate Calculation
Compute bit error rate or symbol error rate of input data
Library: Communications Toolbox / Comm Sinks

Communications Toolbox HDL Support / Comm Sinks

Description
The Error Rate Calculation block compares input data from a transmitter with input data from a
receiver. The block calculates the error rate as a running statistic by dividing the total number of
unequal pairs of data elements by the total number of input data elements from one source.

You can use this block to compute the symbol or bit error rate because it does not consider the
magnitude of the difference between input data elements. If the inputs are bits, then the block
computes the bit error rate. If the inputs are symbols, then the block computes the symbol error rate.

This figure shows the block with all ports enabled.

Ports
Input

Tx — Transmitted data
scalar | column vector

Transmitted data, specified as a scalar or column vector.

Note If you specify the Tx or Rx input as a scalar, the object compares this value with all elements of
the other input. If you specify both inputs as vectors, they must have the same size and data type.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean

Rx — Received data
scalar | column vector

Received data, specified as a scalar or column vector.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean

Sel — Sample indices
positive integer | column vector of positive integers
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Indices of the samples to consider when comparing data, specified as a positive integer or column
vector of positive integers.
Dependencies

To enable this input, set the Computation mode parameter to Select samples from input
port.
Data Types: double

Rst — Reset error count
scalar

Reset error count, specified as a scalar.
Dependencies

To enable this input, set the Reset port parameter to on.
Data Types: double | Boolean

Output

Out — Difference between transmitted and received data
column vector

Difference between transmitted and received data, returned as a column vector of the form [R; N;
S], where:

• R is the error rate.
• N is the number of errors.
• S is the number of samples compared.

Dependencies

To enable this port, set the Output data parameter to Port.
Data Types: double

Parameters
Receive delay — Received signal delay

0 (default) | nonnegative integer

Number of samples by which the received data lags behind the transmitted data, specified as a
nonnegative integer. Use this parameter to align the samples for comparison in the transmitted and
received input data vectors.
Data Types: double

Computation delay — Computation delay

0 (default) | nonnegative scalar

Number of data samples that the object ignores at the beginning of the comparison, specified as a
nonnegative integer. Use this property to ignore the transient behavior of both input signals.
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Data Types: double

Computation mode — Samples to consider

Entire frame (default) | Select samples from mask | Select samples from port

Samples to consider, specified as one of these values.

• Entire frame — Compare all the samples of the received data to those of the transmitted frame.
• Select samples from mask — Set the indices of the samples to consider when making

comparisons in the Selected samples from frame parameter.
• Select samples from port — Set the indices of the samples to consider when making

comparisons in the Sel input port.

Selected samples from frame — Sample indices

[] (default) | positive integer | column vector of positive integers

Indices of the samples to consider when comparing data, specified as a positive integer or column
vector of positive integers. The default value, an empty vector, specifies that the block uses all
samples from the received frame.

Dependencies

To enable this parameter, set the Computation mode property to Select samples from mask.
Data Types: double

Output data — Output data location

Workspace (default) | Port

Output data location, specified as one of these options.

• Workspace — Send the output data to the workspace variable defined by the Variable name
parameter.

• Port — Add an output data port to the block and send the output data to that port.

Variable name — Output data variable name

ErrorVec (default) | character vector | string scalar

Output data variable name in the MATLAB workspace.

Dependencies

To enable this parameter, set the Output data variable to Workspace.
Data Types: char | string

Reset port — Option to add Rst input port

off (default) | on

Enable the Rst input port.
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Stop simulation — Option to stop simulation after specified number of errors or
comparisons

off (default) | on

Option to stop the simulation after the block detects the number of errors specified in the Target
number of errors parameter or performs the number of comparisons specified in the Maximum
number of symbols parameter.

Target number of errors — Option to stop simulation after specified number of errors

100 (default) | positive integer

Option to stop the simulation after detecting this number of errors, specified as a positive integer.

Dependencies

To enable this parameter, set the Stop simulation parameter to on.
Data Types: double

Maximum number of symbols — Option to stop simulation after comparing specified
number of symbols

1e6 (default) | positive integer

Option to stop the simulation after comparing this number of symbols, specified as a positive integer.

Note If you use the Simulink Coder rapid simulation (RSim) target to build an RSim executable, then
you can tune the Target number of errors and Maximum number of symbols parameters without
recompiling the model. This is useful for Monte Carlo simulations in which you run the simulation
multiple times (perhaps on multiple computers) with different amounts of noise.

Dependencies

To enable this parameter, set the Stop simulation parameter to on.
Data Types: double

Block Characteristics
Data Types Boolean | double | fixed point | integer | single
Multidimensional
Signals

no

Variable-Size Signals yes

Version History
Introduced before R2006a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

When you set the Output data parameter to Workspace, the block generates no code. Similarly, no
data is saved to the workspace if you set the Simulation mode parameter to Accelerator or
Rapid Accelerator. If you need error rate information in these cases, set the Output data
parameter to Port.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

This block can be used for simulation visibility in subsystems that generate HDL code, but is not
included in the hardware implementation.

See Also
Blocks
Find Delay | Delay

Objects
comm.ErrorRate
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EVM Measurement
Measure error vector magnitude (EVM)
Library: Communications Toolbox / Utility Blocks

Description
The EVM Measurement block measures the root mean squared (RMS) EVM, maximum EVM, and
percentile EVM of a received signal. EVM is an indication of modulator or demodulator performance.

This icon shows the block with all ports enabled.

Ports
Input

Ref — Reference signal
array

Reference signal, specified as an array of up to three dimensions. If you specify this input, the object
measures the EVM of the Rcv input by using this input as a reference constellation.

The dimensions of this input must match those of the Rcv input. The object uses each element of this
input as the reference symbol for the corresponding element of the Rcv input.

Dependencies

To enable this port, set the Reference signal parameter to Input port.
Data Types: single | double | fixed point

Rcv — Received signal
array

Received signal, specified as an array of up to three dimensions.
Data Types: single | double | fixed point
Complex Number Support: Yes

Output

RMS — Percentage RMS EVM
scalar in the range [0, 100]
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Percentage RMS EVM over the configured measurement interval, returned as a scalar in the range
[0, 100].
Data Types: double

max — Maximum percentage EVM
scalar in the range [0, 100]

Maximum percentage EVM over the configured measurement interval, returned as a scalar in the
range [0, 100].

Dependencies

To enable this port, set the Output maximum EVM parameter to On.
Data Types: double

X% — Value below which X% of EVM measurements fall
scalar in the range [0, 100]

Value below which X% of EVM measurements fall since the last reset, returned as a scalar in the
range [0, 100]. Set the value of X in the X-percentile value (%) parameter.

Dependencies

To enable this port, set the Output X-percentile EVM parameter to On.
Data Types: double

nSym — Number of symbols
positive integer

Number of symbols used to measure the X-percentile EVM, returned as a positive integer.

Dependencies

To enable this port, set the Output X-percentile EVM and Output the number of symbols
processed parameters to On.
Data Types: double

Parameters
Normalize RMS error vector by — Normalization method

Average reference signal power (default) | Average constellation power | Peak
constellation power

Normalization method used in EVM calculation, specified as Average reference signal power,
Average constellation power, or Peak constellation power. For more information, see
“Algorithms” on page 5-238.

Average constellation power — Average constellation power

1 (default) | positive scalar

Average constellation power in watts, specified as a positive scalar.
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Dependencies

To enable this parameter, set the Normalize RMS error vector parameter to Average
constellation power.
Data Types: single | double

Peak constellation power — Peak constellation power

1 (default) | positive scalar

Peak constellation power in watts, specified as a positive scalar.
Dependencies

To enable this parameter, set the Normalize RMS error vector parameter to Peak
constellation power.
Data Types: single | double

Reference signal — Reference signal source

Input port | Estimated from reference constellation

Reference signal source. To provide an explicit reference signal against which to measure received
signal, set this parameter to Input port. To measure the EVM of the received signal against a
reference constellation, set this parameter to Estimated from reference constellation.

Reference constellation — Reference constellation

constellation(comm.QPSKModulator) (default) | vector

Reference constellation points, specified as a vector.
Dependencies

To enable this parameter, set the Reference signal parameter to Estimated from reference
constellation.
Data Types: single | double
Complex Number Support: Yes

Measurement interval — Measurement interval source

Input length (default) | Entire history | Custom | Custom with periodic reset

Measurement interval source for RMS and maximum EVM measurements, specified as one of these
values.

• Input length — Measure the EVM using only the current samples.
• Entire history — Measure the EVM for all samples.
• Custom — Measure the EVM over an interval you specify and use a sliding window.
• Custom with periodic reset — Measure the EVM over an interval you specify and reset the

block after measuring over each interval.

Custom measurement interval — Custom measurement interval
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100 (default) | positive integer

Custom measurement interval in samples, specified as a positive integer.

Dependencies

To enable this parameter, set the Measurement interval parameter to Custom or Custom with
periodic reset.
Data Types: single | double

Averaging dimensions — Averaging dimensions

1 (default) | vector of integers in the range [1, 3]

Dimensions over which the block averages the EVM measurements, specified as an integer or row
vector of integers in the range [1, 3]. For example, to average across the rows, set this parameter to
2.

This block supports variable-size inputs of the dimensions across which the averaging takes place.
However, the input size for the non-averaged dimensions must remain constant. For example, if the
input has size [1000 3 2] and you set this parameter to [1 3], then the output size is [1 3 1]
and the number of elements in the second dimension must remain fixed at 3.
Data Types: single | double

Output maximum EVM — Option to add max port to output maximum EVM measurements

Off (default) | On

Option to add the max port to output maximum EVM measurements.

Output X-percentile EVM — Option to add X% port to output X-percentile EVM
measurements

Off (default) | On

Option to add the X% port to output X-percentile EVM measurements. When you set this parameter to
On, X-percentile EVM measurements persist until you reset the block. The block performs these
measurements by using all of the input frames since the last reset. You can set the value of X in the X-
percentile value (%) parameter.

X-percentile value (%) — Value below which X% of EVM measurements fall

95 (default) | scalar in the range [0, 100]

Value below which X% of EVM measurements fall, specified as a scalar in the range [0, 100].

Dependencies

To enable this parameter, set the Output X-percentile EVM parameter to On.
Data Types: single | double

Output the number of symbols processed — Option to add nSym port to output number
of symbols
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Off (default) | On

Option to add the nSym port to output number of symbols used to measure the X-percentile EVM.

Dependencies

To enable this parameter, set the Output X-percentile EVM parameter to On.

Simulate using — Type of simulation to run
Interpreted execution (default) | Code generation

Type of simulation to run, specified as Interpreted execution or Code generation.

• Interpreted execution — Simulate the model by using the MATLAB interpreter. This option
requires less startup time than the Code generation option, but the speed of subsequent
simulations is slower. In this mode, you can debug the source code of the block.

• Code generation — Simulate the model by using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations unless the model changes. This option requires additional startup time, but the speed
of the subsequent simulations is faster than Interpreted execution.

Block Characteristics
Data Types double | fixed point | integer | single
Multidimensional
Signals

yes

Variable-Size Signals yes

Algorithms
The implementation supports three normalization methods. You can normalize measurements
according to the average power of the reference signal, average constellation power, or peak
constellation power. Different industry standards follow one of these normalization methods.

The algorithm calculates the RMS EVM value differently for each normalization method.

EVM Normalization Method Algorithm
Reference signal

EVMRMS =

1
N ∑k = 1

N
(ek)

1
N ∑k = 1

N
(Ik2 + Qk

2)
× 100

Average power

EVMRMS(%) = 100

1
N ∑k = 1

N
(ek)

Pavg
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EVM Normalization Method Algorithm
Peak power

EVMRMS(%) = 100

1
N ∑k = 1

N
(ek)

Pmax

In these equations:

• ek = ek = (Ik− I k)2 + (Qk− Qk)2

• Ik is the in-phase measurement of the kth symbol in the burst.
• Qk is the quadrature phase measurement of the kth symbol in the burst.
• N is the input vector length.
• Pavg is the average constellation power.
• Pmax is the peak constellation power.
• Ik and Qk represent ideal (reference) values. I k and Qk represent measured (received) symbols.

The maximum EVM is the maximum EVM value in a frame or EVMmax = max
k ∈ [1, ..., N]

EVMk , where k

is the kth symbol in a burst of length N.

The definition for EVMk depends on which normalization method you select for computing
measurements. The implementation supports these algorithms.

EVM Normalization Method Algorithm
Reference signal

EVMk =
ek

1
N ∑k = 1

N
(Ik2 + Qk

2)
× 100

Average power
EVMk = 100

ek
Pavg

Peak power
EVMk = 100

ek
Pmax

The implementation computes the X-percentile EVM by creating a histogram of the incoming EVMk
values. This output provides the EVM value below which X% of the EVM values fall.

Version History
Introduced in R2009b

References
[1] IEEE Standard 802.16-2017. "Part 16: Air Interface for Broadband Wireless Access Systems."

March 2018.

[2] 3GPP TS 45.005 V8.1.0 (2008–05). "Radio Access Network: Radio transmission and reception".
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[3] IEEE Standard 802.11a™-1999. "Part 11: Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) specifications: High-speed Physical Layer in the 5 GHz Band." 1999.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

To generate code in a model using this block, you must enable Dynamic Memory Allocation in
MATLAB Functions. For more information, see “Dynamic memory allocation in MATLAB functions”
(Simulink).

See Also
Blocks
MER Measurement

Objects
comm.EVM

Topics
“Measure Modulation Accuracy”
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Eye Diagram
Display eye diagram of time-domain signal
Library: Communications Toolbox / Comm Sinks

Communications Toolbox HDL Support / Comm Sinks
Mixed-Signal Blockset / Utilities
SerDes Toolbox / Utilities

Description
The Eye Diagram block displays multiple traces of a modulated signal to produce an eye diagram. You
can use the block to reveal the modulation characteristics of the signal, such as the effects of pulse
shaping or channel distortions. For more information, see “Eye Diagram Analysis”.

The Eye Diagram block has one input port. This block accepts a column vector or scalar input signal.
The block accepts a signal with the following data types: double, single, base integer, and fixed point.
All data types are cast as double before the block displays results.

To modify the eye diagram display, select View > Configuration Properties or click the

Configuration Properties button ( ). Then select the Main, 2D color histogram, Axes, or
Export tabs and modify the settings.

 Eye Diagram

5-241



Ports
Input

In — Input signal
scalar | column vector

Input signal, specified as a scalar or column vector.
Data Types: double

Parameters
Main Tab

Display mode — Display mode

Line plot (default) | 2D color Histogram

Display mode of the eye diagram, specified as Line plot or 2D color histogram. Selecting 2D
color histogram makes the histogram tab available.

Tunable: Yes

Enable measurements — Enable measurements

off (default) | on
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Select this check box to enable eye measurements of the input signal.

Show horizontal (jitter) histogram — Display jitter histogram

off (default) | on

Select this radio button to display the jitter histogram. This can also be accessed by using the
histogram button drop down on the toolbar.

Dependencies

This parameter is available when Display mode is 2D color histogram and Enable
measurements is selected.

Show vertical (noise) histogram — Display noise histogram

off (default) | on

Select this radio button to display the noise histogram. This can also be accessed by using the
histogram button drop down on the toolbar.

Dependencies

This parameter is available when Display mode is 2D color histogram and Enable
measurements is selected.

Do not show horizontal or vertical histogram — Do not show horizontal or vertical
histogram
on (default) | off

Select this radio button to display neither the histogram noise nor the histogram jitter.

Dependencies

This parameter is available when Display mode is 2D color histogram and Enable
measurements is selected.

Show horizontal bathtub curve — Show horizontal bathtub curve
off (default) | on

Select this check box to display the horizontal bathtub curve. This can also be accessed by using the
bathtub curve button on the toolbar.

Dependencies

This parameter is available when Enable measurements is selected.

Show vertical bathtub curve — Show vertical bathtub curve
off (default) | on

Select this check box to display the vertical bathtub curve. This can also be accessed by using the
bathtub curve button on the toolbar.

Dependencies

This parameter is available when Enable measurements is selected.
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Eye diagram to display — Eye diagram to display

Real only (default) | Real and imaginary

Select either Real only or Real and imaginary to display one or both eye diagrams. To make
eye measurements, this parameter must be Real only.

Tunable: Yes

Color fading — Color fading

off (default) | on

Select this check box to fade the points in the display as the interval of time after they are first
plotted increases.

Tunable: Yes
Dependencies

This parameter is available only when the Display mode is Line plot.

Samples per symbol — Samples per symbol

8 (default) | positive integer

Number of samples per symbol, specified as a positive integer. Use with Symbols per trace to
determine the number of samples per trace.

Tunable: Yes

Sample offset — Sample offset

0 (default) | nonnegative integer

Sample offset, specified as a nonnegative integer smaller than the product of Samples per symbol
and Symbols per trace. The offset provides the number of samples to omit before plotting the first
point.

Tunable: Yes

Symbols per trace — Symbols per trace

2 (default) | positive integer

Number of symbols plotted per trace, specified as a positive integer.

Tunable: Yes

Traces to display — Number of traces to display

40 (default) | positive integer

Number of traces plotted, specified as a positive integer.

Tunable: Yes
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Dependencies

This parameter is available only when the Display mode is Line plot

Axes Tab

Title — Title label

None (default)

Label that appears above the eye diagram plot.

Tunable: Yes

Show grid — Toggle scope grid

on (default) | off

Toggle this check box to turn the grid on and off.

Tunable: Yes

Y-limits (Minimum) — Lower limit of y-axis

-1.1 (default) | scalar

Minimum value of the y-axis.

Tunable: Yes

Y-limits (Maximum) — Upper limit of y-axis

1.1 (default) | scalar

Maximum value of the y-axis.

Tunable: Yes

Real axis label — Real axis label

Real Amplitude (default)

Text that the scope displays along the real axis.

Tunable: Yes

Imaginary axis label — Imaginary axis label

Imaginary Amplitude (default)

Text that the scope displays along the imaginary axis.

Tunable: Yes
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2D Histogram Tab

The 2D histogram tab is available when you click the histogram button or when the display mode is
set to 2D color histogram.

Oversampling method — Oversampling method

None (default) | Input interpolation | Histogram interpolation

Oversampling method, specified as None, Input interpolation, or Histogram interpolation.

To plot eye diagrams as quickly as possible, set the Oversampling method to None. The drawback
to not oversampling is that the plots look pixelated when the number of samples per trace is small. To
create smoother, less-pixelated plots using a small number of samples per trace, set the
Oversampling method to Input interpolation or Histogram interpolation. Input
interpolation is the faster of the two interpolation methods and produces good results when the
signal-to-noise ratio (SNR) is high. With a lower SNR, this oversampling method is not recommended
because it introduces a bias to the centers of the histogram ranges. Histogram interpolation is
not as fast as the other techniques, but it provides good results even when the SNR is low.

Tunable: Yes

Color scale — Color scale

Linear (default) | Logarithmic

Color scale of the histogram plot, specified as either Linear or Logarithmic. Set Color scale to
Logarithmic if certain areas of the eye diagram include a disproportionate number of points.

Tunable: Yes

The toolbar contains a histogram reset button , which resets the internal histogram buffers and
clears the display. This button is not available when the display mode is set to Line plot.

Export Tab

Export measurements, histograms and bathtub curves — Export measurements,
histograms and bathtub curves

Off (default) | off

Select this check box export the eye diagram measurements to the MATLAB workspace.

Tunable: Yes

Variable name — Variable name

EyeData (default)

Specify the name of the variable to which the eye diagram measurements are saved. The data is
saved as a structure having these fields:

• MeasurementSettings
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• Measurements
• JitterHistogram
• NoiseHistogram
• HorizontalBathtub
• VerticalBathtub
• BlockName

Tunable: Yes

Style Dialog Box

In the Style dialog box, you can customize the style of the active display. You can change the color of
the figure containing the displays, the background and foreground colors of display axes, and
properties of lines in a display. To open this dialog box, select View > Style.

Figure color — Figure color
black (default)

Specify the background color of the scope figure.

Axes colors — Axes colors
black | gray (default)

Specify the fill and line colors for the axes.

Line — Line style, thickness and color for line plots
continuous | 0.5 | yellow (default)

Specify the line style, line width, and line color for the displayed signal.

Dependencies

This parameter is available only when the Display mode is Line plot.

Marker — Data point marker
None (default) | ...

Data point marker for the selected signal, specified as one of the choices in this table data point
markers. This parameter is similar to the Marker property for MATLAB Handle Graphics® plot
objects.

Specifier Marker Type
none No marker (default)

Circle
Square
Cross
Point
Plus sign
Asterisk

 Eye Diagram

5-247



Specifier Marker Type
Diamond
Downward-pointing triangle
Upward-pointing triangle
Left-pointing triangle
Right-pointing triangle
Five-pointed star (pentagram)
Six-pointed star (hexagram)

Dependencies

This parameter is available only when the Display mode is Line plot.

Colormap — Colormap for histograms
Hot (default) | Parula | Jet | HSV | Cool | SpringSummer | Autumn | Winter | Gray | Bone |
Copper | Pink | Lines | Custom

Specify the colormap of the histogram plots as one of these schemes: Parula, Jet, HSV, Hot, Cool,
Spring, Summer, Autumn, Winter, Gray, Bone, Copper, Pink, Lines, or Custom. If you select
Custom, a dialog box pops up from which you can enter code to specify your own colormap.

Dependencies

This parameter is available only when the Display mode is 2D color histogram.

Measurement Settings Pane

To change measurement settings, first select Enable measurements. Then, in the Eye
Measurements pane, click the arrow next to Settings. You can control these measurement settings.

Eye level boundaries — Time range for calculating eye levels
[40 60] (default) | two-element vector

Time range for calculating eye levels, specified as a two-element vector. These values are expressed
as a percentage of the symbol duration.

Tunable: Yes

Decision boundary — Amplitude level threshold
0 (default) | scalar

Amplitude level threshold in V, specified as a scalar. This parameter separates the different signaling
regions for horizontal (jitter) histograms. This parameter is tunable, but the jitter histograms reset
when the parameter changes.

For non-return-to-zero (NRZ) signals, set Decision boundary to 0. For return-to-zero (RZ) signals,
set Decision boundary to half the maximum amplitude.

Tunable: Yes

Rise/Fall thresholds — Amplitude levels of the rise and fall transitions
[10 90] (default) | two-element vector
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Amplitude levels of the rise and fall transitions, specified as a two-element vector. These values are
expressed as a percentage of the eye amplitude. This parameter is tunable, but the crossing
histograms of the rise and fall thresholds reset when the parameter changes.

Tunable: Yes

Hysteresis — Amplitude tolerance of the horizontal crossings
0 (default) | scalar

Amplitude tolerance of the horizontal crossings in V, specified as a scalar. Increase hysteresis to
provide more tolerance to spurious crossings due to noise. This parameter is tunable, but the jitter
and the rise and fall histograms reset when the parameter changes.

Tunable: Yes

BER threshold — BER used for eye measurements
1e-12 (default) | nonnegative scalar from 0 to 0.5

BER used for eye measurements, specified as a nonnegative scalar from 0 to 0.5. The value is used to
make measurements of random jitter, total jitter, horizontal eye openings, and vertical eye openings.

Tunable: Yes

Bathtub BERs — BER values used to calculate openings of bathtub curves
[0.5 0.1 0.01 0.001 0.0001 1e-05 1e-06 1e-07 1e-08 1e-09 1e-10 1e-11 1e-12]
(default) | vector

BER values used to calculate openings of bathtub curves, specified as a vector whose elements range
from 0 to 0.5. Horizontal and vertical eye openings are calculated for each of the values specified by
this parameter.

Tunable: Yes

Dependencies

To enable this parameter, select Show horizontal bathtub curve, Show vertical bathtub curve, or
both.

Measurement delay — Duration of initial data discarded from measurements
0 (default) | nonnegative scalar

Duration of initial data discarded from measurements, in seconds, specified as a nonnegative scalar.

Block Characteristics
Data Types Boolean | double | enumerated | fixed point | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no
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More About
Using Eye Diagram in Conditionally Executed Subsystems

When an Eye Diagram block is placed in a conditionally executed subsystem, for example in a
triggered or enabled subsystem:

• Input size must be an integer multiple of SamplesPerSymbol * SymbolsPerTrace
• Sample offset must be zero
• The rightmost part of the display is intentionally omitted. This figure compares typical eye

diagram display when placed in a normal system versus one placed in a conditionally executed
subsystem.

Eye Diagram Plot in Normal System Eye Diagram Plot in Conditionally
Executed Subsystem

In a regular Eye Diagram, the rightmost part
is a line between the last sample of a trace
and the first sample of the next trace.

In conditionally executed subsystems, these
traces may be non-contiguous, thus this
rightmost segment could corrupt the display
and is omitted.

Measurements

Measurements assume that the eye diagram object has valid data. A valid eye diagram has two
distinct eye crossing points and two distinct eye levels.

To open the measurements pane, click on the Eye Measurements button or select Tools >
Measurements > Eye Measurements from the toolbar menu.

Note

• For amplitude measurements, at least one bin per vertical histogram must reach 10 hits before the
measurement is taken, ensuring higher accuracy.

• For time measurements, at least one bin per horizontal histogram must reach 10 hits before the
measurement is taken.
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• When an eye crossing time measurement falls within the [-0.5/Fs, 0) seconds interval, the time
measurement wraps to the end of the eye diagram, i.e., the measurement wraps by 2×Ts seconds
(where Ts is the symbol time). For a complex signal case, the analyze method issues a warning if
the crossing time measurement of the in-phase branch wraps while that of the quadrature branch
does not (or vice versa). To avoid time-wrapping or a warning, add a half-symbol duration delay to
the current value in the MeasurementDelay property of the eye diagram object. This additional
delay repositions the eye in the approximate center of the scope.

Eye Levels - Amplitude level used to represent data bits
Eye level is the amplitude level used to represent data bits. For the displayed NRZ signal, the
levels are –1 V and +1 V. The eye levels are calculated by averaging the 2-D histogram within the
eye level boundaries. For example, when the EyeLevelBoundaries property is set to [40 60],
that is, 40% and 60% of the symbol duration, the eye levels are calculated by estimating the mean
value of the vertical histogram in this window marked by the eye level boundaries.

Eye Amplitude - Distance between eye levels
Eye amplitude is the distance in V between the mean value of two eye levels.
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Eye Height - Statistical minimum distance between eye levels

Eye height is the distance between μ – 3σ of the upper eye level and μ + 3σ of the lower eye level.
μ is the mean of the eye level, and σ is the standard deviation.

Vertical Opening - Distance between BER threshold points

The vertical opening is the distance between the two points that correspond to the BERThreshold
property. For example, for a BER threshold of 10–12, these points correspond to the 7σ distance
from each eye level.
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Eye SNR - Signal-to-noise ratio

The eye SNR is the ratio of the eye level difference to the difference of the vertical standard
deviations corresponding to each eye level:

SNR =
L1− L0
σ1− σ0

,

where L1 and L0 represent the means of the upper and lower eye levels and σ1 and σ0 represent
their standard deviations.

Q Factor - Quality factor

The Q factor is the quality factor and is calculated using the same formula as the eye SNR.
However, the standard deviations of the vertical histograms are replaced with those computed
with the dual-Dirac analysis.

Crossing Levels - Amplitude levels for eye crossings

The crossing levels are the amplitude levels at which the eye crossings occur.

The level at which the input signal crosses the amplitude value is specified by the
DecisionBoundary property.
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Crossing Times - Times for which crossings occur

The crossing times are the times at which the crossings occur. The times are computed as the
mean values of the horizontal (jitter) histograms.

Eye Delay - Mean time between eye crossings

Eye delay is the midpoint between the two crossing times.
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Eye Width - Statistical minimum time between eye crossings

Eye width is the horizontal distance between μ + 3σ of the left crossing time and μ – 3σ of the
right crossing time. μ is the mean of the jitter histogram, and σ is the standard deviation.

Horizontal Opening - Time between BER threshold points

The horizontal opening is the distance between the two points that correspond to the
BERThreshold property. For example, for a 10–12 BER, these two points correspond to the 7σ
distance from each crossing time.
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Rise Time - Time to transition from low to high

Rise time is the mean time between the low and high rise/fall thresholds defined in the eye
diagram. The default thresholds are 10% and 90% of the eye amplitude.

Fall Time - Time to transition from high to low
Fall time is the mean time between the high and low rise/fall thresholds defined in the eye
diagram. The default thresholds are 10% and 90% of the eye amplitude.
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Deterministic Jitter - Deterministic deviation from ideal signal timing
Jitter is the deviation of a signal’s timing event from its intended (ideal) occurrence in time [2].
Jitter can be represented with a dual-Dirac model. A dual-Dirac model assumes that the jitter has
two components: deterministic jitter (DJ) and random jitter (RJ).

DJ is the distance between the two peaks of the dual-Dirac histograms. The probability density
function (PDF) of DJ is composed of two delta functions.
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Random Jitter - Random deviation from ideal signal timing

RJ is the Gaussian unbounded jitter component. The random component of jitter is modeled as a
zero-mean Gaussian random variable with a specified standard-deviation of σ. The RJ is computed
as:

RJ = (QL + QR)σ ,

where

Q = 2erfc−1 2BER
ρ .

BER is the specified BER threshold. ρ is the amplitude of the left and right Dirac function, which
is determined from the bin counts of the jitter histograms.

Total Jitter - Deviation from ideal signal timing

Total jitter (TJ) is the sum of the deterministic and random jitter, such that TJ = DJ + RJ.
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The total jitter PDF is the convolution of the DJ PDF and the RJ PDF.
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RMS Jitter - Standard deviation of jitter

RMS jitter is the standard deviation of the jitter calculated in the horizontal (jitter) histogram at
the decision boundary.

Peak-to-Peak Jitter - Distance between extreme data points of histogram

Peak-to-peak jitter is the maximum horizontal distance between the left and right nonzero values
in the horizontal histogram of each crossing time.
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View Eye Diagram

Display the eye diagram of a filtered QPSK signal using the Eye Diagram block.

Load the doc_eye_diagram_scope model from the MATLAB command prompt.

doc_eye_diagram_scope

Run the model and observe that two symbols are displayed.
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Open the configuration parameters dialog box. Change the Symbols per trace parameter to 4. Run
the simulation and observe that four symbols are displayed.
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Try changing the Raised Cosine Transmit Filter parameters or changing additional Eye Diagram
parameters to see their effects on the eye diagram.

Histogram Plots

Display histogram plots of a noisy GMSK signal.

Load the doc_eye_diagram_gmsk model from the MATLAB command prompt.

doc_eye_diagram_gmsk
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Run the model. The eye diagram is configured to show a histogram without interpolation.
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The lack of interpolation results in a plot having piecewise-continuous behavior.

Open the 2D Histogram tab of the Configuration Properties dialog box. Set the Oversampling
method to Input interpolation. Run the model.

The interpolation smooths the eye diagram.

On the AWGN Channel block, change SNR (dB) from 25 to 10. Run the model.
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Observe that vertical striping is present in the eye diagram. This striping is the result of input
interpolation, which has limited accuracy in low-SNR conditions.

Set the Oversampling method to Histogram interpolation. Run the model.
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The eye diagram plot now renders accurately because the histogram interpolation method works for
all SNR values. This method is not as fast as the other techniques and results in increased execution
time.

Programmatic Configuration

You can programmatically configure the scope properties with callbacks or within scripts by using a
scope configuration object as describe in “Control Scope Blocks Programmatically” (Simulink).

Version History
Introduced in R2014a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block is excluded from the generated code when code generation is performed on a system
containing this block.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.
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This block can be used for simulation visibility in subsystems that generate HDL code, but is not
included in the hardware implementation.

See Also
Blocks
Constellation Diagram

Functions
eyediagram

Topics
“Eye Diagram Analysis”
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Find Delay
Find delay between two signals
Library: Communications Toolbox / Utility Blocks

Description
The Find Delay block finds the delay between a signal and a delayed, and possibly distorted, version
of itself. This is useful when you want to compare a transmitted and received signal to find the bit
error rate, but do not know the delay in the received signal. This block accepts a column vector or
matrix input signal. For a matrix input, the block outputs a row vector, and finds the delay in each
channel of the matrix independently. See “Delays” for more information about signal delays.

Ports
Input

sRef — Reference signal
vector | matrix

Original reference signal, specified as a vector or matrix. Dimensions and sample times of sRef and
sDel must match.
Data Types: double

sDel — Delayed signal
vector | matrix

Delayed or distorted version of reference signal, specified as a vector or matrix. Dimensions and
sample times of sRef and sDel must match.
Data Types: double

Output

delay — Delay output
scalar | vector

The output port labeled delay outputs the delay in units of samples.

For a matrix input, the output is a row vector, and finds the delay in each channel of the matrix
independently

The delay output is a nonnegative integer less than the Correlation window length.
Data Types: double

chg — Delay flag
0 | 1
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The chg output port outputs 1 when there is a change from the delay computed at the previous
sample, and 0 when there is no change

Dependencies

This output port becomes visible only when Include "change signal" output port is selected.
Data Types: Boolean

Parameters
Correlation window length (samples) — Number of samples

200 (default) | positive integer

The number of samples the block uses to calculate the cross-correlations of the two signals.

As the Correlation window length is increased, the reliability of the computed delay also increases.
However, the processing time to compute the delay increases as well.

Include "change signal" output port — Enable chg port

off (default) | on

If you select this option, then the block has an extra output port that emits a value of 1 when the
current computed delay differs from the previous computed delay and emits a value of 0 when there
is no delay.

Disable recurring updates — Disable recurring updates

off (default) | on

Selecting this option causes the block to stop computing the delay after it computes the same delay
value for a specified number of samples.

Number of constant delay outputs to disable updates — Number of constant delay
outputs to disable updates

3 (default) | positive integer

A positive integer specifying how many times the block must compute the same delay before ceasing
to update.

Dependencies

This field becomes visible only when Disable recurring updates is selected.

Block Characteristics
Data Types double | enumerated | integera | single
Multidimensional
Signals

no
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Variable-Size Signals no
a Signed integers only.

More About
Finding the Delay Before Calculating an Error Rate

A typical use of this block is to determine the correct Receive delay parameter in the Error Rate
Calculation block. This is illustrated in “Use the Find Delay Block”. In that example, the modulation/
demodulation operation introduces a computational delay into the received signal and the Find Delay
block determines that the delay is 6 samples. This value of 6 becomes a parameter in the Error Rate
Calculation block, which computes the bit error rate of the system.

Another example of this usage is in “Delays”.

Finding the Delay to Help Align Words

Another typical use of this block is to determine how to align the boundaries of frames with the
boundaries of codewords or other types of data blocks. “Delays” describes when such alignment is
necessary and also illustrates, in the “Aligning Words of a Block Code” discussion, how to use the
Find Delay block to solve the problem.

Tips for Using the Block Effectively
• Set Correlation window length sufficiently large so that the computed delay eventually

stabilizes at a constant value. When this occurs, the signal from the optional chg output port
stabilizes at the constant value of zero. If the computed delay is not constant, you should increase
Correlation window length. If the increased value of Correlation window length exceeds the
duration of the simulation, then you should also increase the duration of the simulation
accordingly. If you can roughly estimate the delay, then the Correlation window length will
produce a stable delay estimate at four times that value.

• If the cross-correlation between the two signals is broad, then the Correlation window length
value should be much larger than the expected delay, or else the algorithm might stabilize at an
incorrect value. For example, a CPM signal has a broad autocorrelation, so it has a broad cross-
correlation with a delayed version of itself. In this case, the Correlation window length value
should be much larger than the expected delay.

• If the block calculates a delay that is greater than 75 percent of the Correlation window length,
the signal sRef is probably delayed relative to the signal sDel. In this case, you should switch the
signal lines leading into the two input ports.

• You can make the Find Delay block stop updating the delay after it computes the same delay value
for a specified number of samples. To do so, select Disable recurring updates, and enter a
positive integer in the Number of constant delay outputs to disable updates field. For
example, if you set Number of constant delay outputs to disable updates to 20, the block will
stop recalculating and updating the delay after it calculates the same value 20 times in
succession. Disabling recurring updates causes the simulation to run faster after the target
number of constant delays occurs.
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Algorithms
The Find Delay block finds the delay by calculating the cross-correlations of the first signal with time-
shifted versions of the second signal, and then finding the index at which the cross-correlation is
maximized.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Error Rate Calculation

Functions
finddelay

Topics
“Use the Find Delay Block”

5 Blocks

5-272



FM Broadcast Demodulator Baseband
Demodulate broadcast FM-modulated signal

Library
Modulation > Analog Baseband Modulation

Description
The FM Broadcast Demodulator Baseband block demodulates a complex baseband FM signal by
using the conjugate delay method, and filters the signal by using a de-emphasis filter. To demodulate
stereo audio using 38 kHz, enable stereo demodulation. To demodulate RBDS signals from the 57 kHz
band, enable RBDS demodulation.

Parameters
Sample rate (Hz)

Specify the input signal sample rate as a positive real scalar.
Frequency deviation (Hz)

Specify the frequency deviation of the modulator in Hz as a positive real scalar. The system
bandwidth is equal to twice the sum of the frequency deviation and the message bandwidth. FM
broadcast standards specify a value of 75 kHz in the United States and 50 kHz in Europe.

De-emphasis filter time constant (s)
Specify the de-emphasis lowpass filter time constant in seconds as a positive real scalar. FM
broadcast standards specify a value of 75 μs in the United States and 50 μs in Europe.

Output audio sample rate (Hz)
Specify the output audio sample rate as a positive real scalar.

Play audio device
Select this check box to play sound from a default audio device.

Buffer size (samples)
Specify the buffer size the block uses to communicate with an audio device as a positive integer
scalar. This parameter is available only when the Play audio device check box is selected.

Stereo audio
Select this check box to enable demodulation of a stereo audio signal. If not selected, the audio
signal is assumed to be monophonic.
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RBDS demodulation
Select this check box to demodulate the RBDS signal from the input complex baseband FM signal.
By default, this check box is not selected.

Number of samples per RBDS symbol
Specify the number of samples of the RBDS output as a positive integer. The RBDS sample rate is
given by Number of samples per RBDS symbol × 1187.5 Hz. According to the RBDS
standard, the sample rate of each bit is 1187.5 Hz.

This parameter appears when you select the RBDS demodulation check box.

The default is 10.
RBDS Costas loop

Specify whether a Costas loop is used to recover the phase of the RBDS signal. Select this check
box for radio stations that do not lock the 57 kHz RBDS signal in phase with the third harmonic of
the 19 kHz pilot tone.

This parameter appears when you select the RBDS demodulation check box.

By default, this check box is not selected.
Simulate using

Select the type of simulation to run.

• Code generation. Simulate model using generate C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations, as long as the model does not change. This option requires additional startup
time but provides faster simulation speed than Interpreted execution.

• Interpreted execution. Simulate model using the MATLAB interpreter. This option
shortens startup time but has slower simulation speed than Code generation.

Examples

Modulate and Demodulate an Audio Signal

Load an audio input file, modulate and demodulate using the FM broadcast blocks. Compare the
input signal spectrum with the demodulated signal spectrum.

Open the doc_fmbroadcast model.
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Run the model. The spectrum of the baseband FM signal is attenuated at the higher frequencies
relative to the original waveform.
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Experiment with the model by changing the Frequency deviation (Hz) and the Pre-emphasis filter
time constant (s) parameters on the modulator and demodulator and observe the impact on the FM
signal spectrum.

Limitations
The input length must be an integer multiple of the audio decimation factor. If the RBDS
demodulation check box is selected, the input length must also be an integer multiple of the RBDS
decimation factor.

Supported Data Types
Port Supported Data Types
Signal Input • Double-precision floating point

• Single-precision floating point
Signal Output • Double-precision floating point

• Single-precision floating point

Algorithms
The FM Broadcast Demodulator Baseband block includes the functionality of the FM Demodulator
Baseband block, plus de-emphasis filtering and the ability to receive stereophonic signals.

Filtering

FM amplifies high-frequency noise and degrades the overall signal-to-noise ratio. To compensate, FM
broadcasters insert a pre-emphasis filter before FM modulation to amplify the high-frequency
content. The FM receiver has a reciprocal de-emphasis filter after the FM demodulator to attenuate
high-frequency noise and restore a flat signal spectrum. This figure shows the order of processing
operations.

The pre-emphasis filter has a highpass characteristic transfer function given by

Hp(f ) = 1 + j2πfτs ,

where τs is the filter time constant. The time constant is 75 μs in the United States and 50 μs in
Europe. Similarly, the transfer function for the lowpass de-emphasis filter is given by

Hd(f ) = 1
1 + j2πfτs

.

For an audio sample rate of 44.1 kHz, the de-emphasis filter has the response shown in this figure.
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Multiplexed Stereo and RDS (or RBDS) FM Signal

FM broadcast supports stereophonic and monophonic operations. To support stereo transmission:

• The Left+Right channel information is assigned to the mono portion of the spectrum (0 to 15 kHz).
• The Left-Right channel information is amplitude modulated onto the 23 to 53 kHz region of the

baseband spectrum using a 38 kHz subcarrier signal.

A pilot tone at 19 kHz in the multiplexed signal enables the FM receiver to coherently demodulate the
stereo and RDS (or RBDS) signals.

This figure shows the spectrum of the multiplex baseband signal.
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The multiplex message signal, m(t) is given by

m(t) = C0 L(t) + R(t) + C1cos(2π × 19kHz × t) + C0 L(t) − R(t) cos(2π × 38kHz × t) + C2RBDS(t
)cos(2π × 57kHz × t) ,

where C0, C1, and C2 are gains. To generate the appropriate modulation level, these gains scale the
amplitudes of the L(t)±R(t) signals, the 19 kHz pilot tone, and the RDS (or RBDS) subcarrier,
respectively.

The demodulator applies m(t) to three bandpass filters with center frequencies at 19, 38, and 57 kHz
and to a lowpass filter with a 3 dB cutoff frequency of 15 kHz. The 19 kHz bandpass filter extracts the
pilot tone from the modulated signal. The recovered pilot tone is doubled and tripled in frequency to
produce the 38 kHz and 57 kHz signals, which demodulate the (L – R) and RDS (or RBDS) signals,
respectively. To generate a scaled version of the left and right channels that produces the stereo
sound, the object adds and subtracts the (L + R) and (L – R) signals. To recover the RDS (or RBDS)
signal, m(t) is mixed with the 57 kHz signal.

This figure shows the multiplexing (MPX) decoder block diagram of the FM broadcast demodulator.
L(t) and R(t) are the left and right audio signal components of the time-domain waveforms. RBDS(t) is
the time-domain waveform of the RDS (or RBDS) signal.
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Version History
Introduced in R2015a

References
[1] Hatai, I., and I. Chakrabarti. “A New High-Performance Digital FM Modulator and Demodulator

for Software-Defined Radio and Its FPGA Implementation.” International Journal of
Reconfigurable Computing (December 25, 2011): 1–10. https://doi.org/10.1155/2011/342532.

[2] Taub, H., and D. Schilling. Principles of Communication Systems. McGraw-Hill Series in Electrical
Engineering. New York: McGraw-Hill, 1971, pp. 142–155.

[3] Der, Lawrence. "Frequency Modulation (FM) Tutorial". Silicon Laboratories Inc., pp. 4–8.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
FM Broadcast Modulator Baseband | FM Demodulator Baseband

Objects
comm.RBDSWaveformGenerator | comm.FMBroadcastDemodulator | comm.FMDemodulator
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Topics
“Analog Baseband Modulation”
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FM Broadcast Modulator Baseband
Modulate using broadcast FM method

Library
Modulation > Analog Baseband Modulation

Description
The FM Broadcast Modulator Baseband block pre-emphasizes an audio signal and modulates it onto a
baseband FM signal. If you select the Stereo audio check box, the block modulates the stereo audio
(L–R) at the 38 kHz band, in addition to the baseband (L+R). If you select the RBDS modulation
check box, the block also modulates a baseband RBDS signal at 57 kHz. For more details, see
“Algorithms” on page 5-284.

Parameters
Sample rate (Hz)

Specify the output signal sample rate as a positive real scalar.
Frequency deviation (Hz)

Specify the frequency deviation of the modulator in Hz as a positive real scalar. The system
bandwidth is equal to twice the sum of the frequency deviation and the message bandwidth. FM
broadcast standards specify a value of 75 kHz in the United States and 50 kHz in Europe.

Pre-emphasis filter time constant (s)
Specify the pre-emphasis highpass filter time constant as a positive real scalar. FM broadcast
standards specify a value of 75 μs in the United States and 50 μs in Europe.

Sample rate of audio input signal (Hz)
Specify the input audio sample rate as a positive real scalar.

Stereo audio
Select this check box if the input signal is a stereophonic audio signal.

RBDS modulation
Select this check box to modulate a baseband RBDS signal at 57 kHz. By default, this check box is
not selected.
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Oversampling factor of RBDS input
Specify the number of samples per RBDS symbol as a positive integer. The RBDS sample rate is
given by Oversampling factor of RBDS input × 1187.5 Hz. According to the RBDS standard,
the sample rate of each bit is 1187.5 Hz.

This parameter appears when you select the RBDS modulation check box.

The default is 10.
Simulate using

Select the type of simulation to run.

• Code generation. Simulate model using generate C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations, as long as the model does not change. This option requires additional startup
time but provides faster simulation speed than Interpreted execution.

• Interpreted execution. Simulate model using the MATLAB interpreter. This option
shortens startup time but has slower simulation speed than Code generation.

Limitations
• If you select the RBDS modulation check box, both the audio and RBDS inputs must satisfy the

following equation:

audioLength
audioSampleRate = RBDSLength

RBDSSampleRate
• The input length of the audio signal must be an integer multiple of the audio decimation factor.
• The input length of the RBDS signal must be an integer multiple of the RBDS decimation factor.

Examples

Modulate and Demodulate an Audio Signal

Load an audio input file, modulate and demodulate using the FM broadcast blocks. Compare the
input signal spectrum with the demodulated signal spectrum.

Open the doc_fmbroadcast model.
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Run the model. The spectrum of the baseband FM signal is attenuated at the higher frequencies
relative to the original waveform.
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Experiment with the model by changing the Frequency deviation (Hz) and the Pre-emphasis filter
time constant (s) parameters on the modulator and demodulator and observe the impact on the FM
signal spectrum.

Supported Data Types
Port Supported Data Types
Signal Input • Double-precision floating point

• Single-precision floating point
Signal Output • Double-precision floating point

• Single-precision floating point

Algorithms
The FM Broadcast Modulator Baseband block includes the functionality of the FM Modulator
Baseband block, plus de-emphasis filtering and the ability to receive stereophonic signals.

Filtering

FM amplifies high-frequency noise and degrades the overall signal-to-noise ratio. To compensate, FM
broadcasters insert a pre-emphasis filter before FM modulation to amplify the high-frequency
content. The FM receiver has a reciprocal de-emphasis filter after the FM demodulator to attenuate
high-frequency noise and restore a flat signal spectrum. This figure shows the order of processing
operations.

The pre-emphasis filter has a highpass characteristic transfer function given by

Hp(f ) = 1 + j2πfτs ,

where τs is the filter time constant. The time constant is 75 μs in the United States and 50 μs in
Europe. Similarly, the transfer function for the lowpass de-emphasis filter is given by

Hd(f ) = 1
1 + j2πfτs

.

For an audio sample rate of 44.1 kHz, the de-emphasis filter has the response shown in this figure.
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Multiplexed Stereo and RDS (or RBDS) FM Signal

FM broadcast supports stereophonic and monophonic operations. To support stereo transmission:

• The Left+Right channel information is assigned to the mono portion of the spectrum (0 to 15 kHz).
• The Left-Right channel information is amplitude modulated onto the 23 to 53 kHz region of the

baseband spectrum using a 38 kHz subcarrier signal.

A pilot tone at 19 kHz in the multiplexed signal enables the FM receiver to coherently demodulate the
stereo and RDS (or RBDS) signals.

This figure shows the spectrum of the multiplex baseband signal.
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The multiplex message signal, m(t) is given by

m(t) = C0 L(t) + R(t) + C1cos(2π × 19kHz × t) + C0 L(t) − R(t) cos(2π × 38kHz × t) + C2RBDS(t
)cos(2π × 57kHz × t) ,

where C0, C1, and C2 are gains. To generate the appropriate modulation level, these gains scale the
amplitudes of the L(t)±R(t) signals, the 19 kHz pilot tone, and the RDS (or RBDS) subcarrier,
respectively.

This figure shows the multiplexing (MPX) encoder block diagram of the FM broadcast modulator,
which is used to generate the multiplex baseband signal. L(t) and R(t) are the left and right audio
signal components of the time-domain waveforms. RBDS(t) is the time-domain waveform of the RDS
(or RBDS) signal.
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Version History
Introduced in R2015a

References
[1] Hatai, I., and I. Chakrabarti. “A New High-Performance Digital FM Modulator and Demodulator

for Software-Defined Radio and Its FPGA Implementation.” International Journal of
Reconfigurable Computing (December 25, 2011): 1–10. https://doi.org/10.1155/2011/342532.

[2] Taub, H., and D. Schilling. Principles of Communication Systems. McGraw-Hill Series in Electrical
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
FM Broadcast Demodulator Baseband | FM Modulator Baseband

Objects
comm.RBDSWaveformGenerator | comm.FMBroadcastDemodulator |
comm.FMBroadcastModulator | comm.FMModulator

Topics
“Analog Baseband Modulation”
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FM Demodulator Baseband
Demodulate using FM method
Library: Communications Toolbox / Modulation / Analog Baseband

Modulation

Description
The FM Demodulator Baseband block demodulates a complex input signal and returns a real output
signal.

Ports
Input

In — Input data signal
scalar | vector | matrix

Input signal, specified as a real scalar, vector, or matrix.
Data Types: double | single

Output

Out — Output data signal
scalar | vector | matrix

Output signal, returned as a real scalar, vector, or matrix. The data at this port has the same data
type and size as the input signal.
Data Types: double | single

Parameters
Frequency deviation (Hz) — Frequency deviation of demodulator
75e3 (default) | positive scalar

Frequency deviation of the demodulator, in Hz, specified as a positive scalar. The system bandwidth is
equal to twice the sum of the frequency deviation and the message bandwidth.

Simulate using — Type of simulation to run
Code generation (default) | Interpreted execution

Type of simulation to run, specified as Code generation or Interpreted execution.
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• Code generation — Simulate the model by using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations unless the model changes. This option requires additional startup time, but the speed
of the subsequent simulations is faster than Interpreted execution.

• Interpreted execution — Simulate the model by using the MATLAB interpreter. This option
requires less startup time than the Code generation option, but the speed of subsequent
simulations is slower. In this mode, you can debug the source code of the block.

Block Characteristics
Data Types double | single
Multidimensional
Signals

no

Variable-Size Signals no

Algorithms
A frequency-modulated passband signal, Y(t), is given as

Y(t) = Acos 2πfct + 2πfΔ∫0 t
x(τ)dτ ,

where:

• A is the carrier amplitude.
• fc is the carrier frequency.
• x(τ) is the baseband input signal.
• fΔ is the frequency deviation in Hz.

The frequency deviation is the maximum shift from fc in one direction, assuming |x(τ)| ≤ 1.

A baseband FM signal can be derived from the passband representation by downconverting the
passband signal by fc such that

ys(t) = Y(t)e− j2πfct = A
2 e j 2πfct + 2πfΔ∫0t

x(τ)dτ + e− j 2πfct + 2πfΔ∫0t
x(τ)dτ e− j2πfct

= A
2 e j2πfΔ∫0t

x(τ)dτ + e− j4πfct − j2πfΔ∫0t
x(τ)dτ .

Removing the component at -2fc from yS(t) leaves the baseband signal representation, y(t), which is
given as

y(t) = A
2 e j2πfΔ∫0t

x(τ)dτ .

The expression for y(t) can be rewritten as y(t) = A
2 e jϕ(t), where ϕ(t) = 2πfΔ∫0 t

x(τ)dτ. Expressing y(t)
this way implies that the input signal is a scaled version of the derivative of the phase, ϕ(t).

To recover the input signal from y(t), use a baseband delay demodulator, as this figure shows.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
FM Modulator Baseband

Objects
comm.FMDemodulator

Topics
“Analog Baseband Modulation”
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FM Modulator Baseband
Modulate using FM method
Library: Communications Toolbox / Modulation / Analog Baseband

Modulation

Description
The FM Modulator Baseband block applies frequency modulation to a real input signal and returns a
complex output signal.

Ports
Input

In — Input data signal
scalar | vector | matrix

Input signal, specified as a real scalar, vector, or matrix.
Data Types: double | single

Output

Out — Output data signal
scalar | vector | matrix

Output signal, returned as a real scalar, vector, or matrix. The data at this port has the same data
type and size as the input signal.
Data Types: double | single

Parameters
Frequency deviation (Hz) — Frequency deviation of modulator
75e3 (default) | positive scalar

Frequency deviation of the modulator, in Hz, specified as a positive scalar. The system bandwidth is
equal to twice the sum of the frequency deviation and the message bandwidth.

Simulate using — Type of simulation to run
Code generation (default) | Interpreted execution

Type of simulation to run, specified as Code generation or Interpreted execution.
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• Code generation — Simulate the model by using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations unless the model changes. This option requires additional startup time, but the speed
of the subsequent simulations is faster than Interpreted execution.

• Interpreted execution — Simulate the model by using the MATLAB interpreter. This option
requires less startup time than the Code generation option, but the speed of subsequent
simulations is slower. In this mode, you can debug the source code of the block.

Block Characteristics
Data Types double | single
Multidimensional
Signals

no

Variable-Size Signals no

Algorithms
A frequency-modulated passband signal, Y(t), is given as

Y(t) = Acos 2πfct + 2πfΔ∫0 t
x(τ)dτ ,

where:

• A is the carrier amplitude.
• fc is the carrier frequency.
• x(τ) is the baseband input signal.
• fΔ is the frequency deviation in Hz.

The frequency deviation is the maximum shift from fc in one direction, assuming |x(τ)| ≤ 1.

A baseband FM signal can be derived from the passband representation by downconverting the
passband signal by fc such that

ys(t) = Y(t)e− j2πfct = A
2 e j 2πfct + 2πfΔ∫0t

x(τ)dτ + e− j 2πfct + 2πfΔ∫0t
x(τ)dτ e− j2πfct

= A
2 e j2πfΔ∫0t

x(τ)dτ + e− j4πfct − j2πfΔ∫0t
x(τ)dτ .

Removing the component at -2fc from yS(t) leaves the baseband signal representation, y(t), which is
given as

y(t) = A
2 e j2πfΔ∫0t

x(τ)dτ .

The expression for y(t) can be rewritten as y(t) = A
2 e jϕ(t), where ϕ(t) = 2πfΔ∫0 t

x(τ)dτ. Expressing y(t)
this way implies that the input signal is a scaled version of the derivative of the phase, ϕ(t).

To recover the input signal from y(t), use a baseband delay demodulator, as this figure shows.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
FM Demodulator Baseband

Objects
comm.FMModulator

Topics
“Analog Baseband Modulation”
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FM Demodulator Passband
Demodulate FM-modulated data

Library
Analog Passband Modulation, in Modulation

Description
The FM Demodulator Passband block demodulates a signal that was modulated using frequency
modulation. The input is a passband representation of the modulated signal. Both the input and
output signals are real scalar signals.

For best results, use a carrier frequency which is estimated to be larger than 10% of the reciprocal of
your input signal's sample rate. This is due to the implementation of the Hilbert transform by means
of a filter.

In the following example, we sample a 10Hz input signal at 8000 samples per second. We then
designate a Hilbert Transform filter of order 100. Below is the response of the Hilbert Transform
filter as returned by fvtool.
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Note the bandwidth of the filter's magnitude response. By choosing a carrier frequency larger than
10% (but less than 90%) of the reciprocal of your input signal's sample time (8000 samples per
second, in this example) or equivalently, a carrier frequency larger than 400Hz, we ensure that the
Hilbert Transform Filter will be operating in the flat section of the filter's magnitude response (shown
in blue), and that our modulated signal will have the desired magnitude and form.

Typically, an appropriate Carrier frequency value is much higher than the highest frequency of the
input signal. By the Nyquist sampling theorem, the reciprocal of the model's sample time (defined by
the model's signal source) must exceed twice the Carrier frequency parameter.

This block works only with real inputs of type double. This block does not work inside a triggered
subsystem.

Parameters
Carrier frequency (Hz)

The frequency of the carrier.
Initial phase (rad)

The initial phase of the carrier in radians.
Frequency deviation (Hz)

The frequency deviation of the carrier frequency in Hertz. Sometimes it is referred to as the
"variation" in the frequency.

Hilbert transform filter order
The length of the FIR filter used to compute the Hilbert transform.

Pair Block
FM Modulator Passband

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
FM Modulator Passband
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FM Modulator Passband
Modulate using frequency modulation

Library
Analog Passband Modulation, in Modulation

Description
The FM Modulator Passband block modulates using frequency modulation. The output is a passband
representation of the modulated signal. The output signal's frequency varies with the input signal's
amplitude. Both the input and output signals are real scalar signals.

If the input is u(t) as a function of time t, then the output is

cos 2πfct + 2πKc∫0 t
u(τ)dτ + θ

where:

• fc represents the Carrier frequency parameter.
• θ represents the Initial phase parameter.
• Kc represents the Frequency deviation parameter.

Typically, an appropriate Carrier frequency value is much higher than the highest frequency of the
input signal.

By the Nyquist sampling theorem, the reciprocal of the model's sample time (defined by the model's
signal source) must exceed twice the Carrier frequency parameter.

This block works only with real inputs of type double. This block does not work inside a triggered
subsystem.

Parameters
Carrier frequency (Hz)

The frequency of the carrier.
Initial phase (rad)

The initial phase of the carrier in radians.
Frequency deviation (Hz)

The frequency deviation of the carrier frequency in Hertz. Sometimes it is referred to as the
"variation" in the frequency.
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Pair Block
FM Demodulator Passband

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
FM Demodulator Passband
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Free Space Path Loss
Apply free space path loss to complex signal
Library: Communications Toolbox / RF Impairments

Description
The Free Space Path Loss block applies a free space path loss to a complex signal. The block
simulates the loss of signal power due to the distance between the transmitter and receiver. The
Mode parameter indicates whether you specify the loss in decibels or as a computation that is based
on distance and the RF signal frequency.

Ports
Input

In1 — Complex signal
scalar | column vector

Complex signal, specified as a scalar or column vector.
Data Types: double | single
Complex Number Support: Yes

Output

Out1 — Output signal
scalar | vector

Output signal, returned as a scalar or column vector. This output is the same dimension and data type
as the input signal.

Parameters
Mode — Loss calculation mode

Decibels (default) | Distance and Frequency

Loss calculation mode, specified as one of these options.

• Decibels — The loss is specified using the Loss (dB) parameter.
• Distance and Frequency — The loss is computed using the Distance (km) and Carrier

frequency (MHz) parameters.

Loss (dB) — Power loss

10 (default) | scalar
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Power loss in decibels, specified as a scalar. The decibel amount shown on the block icon is rounded
for display purposes only.

Dependencies

To enable this parameter, set the Mode parameter to Decibels.

Distance (km) — Distance between transmitter and receiver

0.100 (default) | scalar

Distance between the transmitter and receiver in kilometers, specified as a scalar.

Dependencies

To enable this parameter, set the Mode parameter to Distance and Frequency.

Carrier frequency (MHz) — Carrier frequency

1920 (default) | scalar

Carrier frequency in megahertz, specified as a scalar.

Dependencies

To enable this parameter, set the Mode parameter to Distance and Frequency.

Block Characteristics
Data Types double | single
Multidimensional
Signals

no

Variable-Size Signals no

Algorithms
The free-space path loss, L, in decibels is:

L = 20log10(4πR/λ).

This formula assumes that the target is in the far-field of the transmitting element or array. In the
near-field, the free-space path loss formula is not valid and can result in a loss smaller than 0 dB,
equivalent to a signal gain. For this reason, the loss is set to 0 dB for range values R ≤ λ/4π.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.
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See Also
Functions
fspl

Blocks
I/Q Imbalance | Receiver Thermal Noise | Memoryless Nonlinearity | Phase Noise
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General Block Deinterleaver
Restore ordering of symbols in input vector

Library
Block sublibrary of Interleaving

Description
The General Block Deinterleaver block rearranges the elements of its input vector without repeating
or omitting any elements. If the input contains N elements, then the Permutation vector parameter
is a column vector of length N. The column vector indicates the indices, in order, of the output
elements that came from the input vector. That is, for each integer k between 1 and N,

Output(Permutation vector(k)) = Input(k)

The Permutation vector parameter must contain unique integers between 1 and N.

Both the input and the Permutation vector parameter must be column vector signals.

This block can output sequences that vary in length during simulation. For more information about
sequences that vary in length, or variable-size signals, see “Variable-Size Signal Basics” (Simulink).

This block accept the following data types: int8, uint8, int16, uint16, int32, uint32, boolean,
single, double, and fixed-point. The output signal inherits its data type from the input signal.

To use this block as an inverse of the General Block Interleaver block, use the same Permutation
vector parameter in both blocks. In that case, the two blocks are inverses in the sense that applying
the General Block Interleaver block followed by the General Block Deinterleaver block leaves data
unchanged.

Parameters
Permutation vector source

A selection that specifies the source of the permutation vector. The source can be either Dialog
or Input port. The default value is Dialog.

Permutation vector
A vector of length N that lists the indices of the output elements that came from the input vector.
This parameter is available only when Permutation vector source is set to Dialog.

Examples
This example reverses the operation in the example on the General Block Interleaver block reference
page. If you set Permutation vector to [4,1,3,2]' and you set the General Block Deinterleaver
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block input to [1;40;59;32], then the output of the General Block Deinterleaver block is
[40;32;59;1].

Pair Block
General Block Interleaver

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
General Block Interleaver

Functions
perms
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General Block Interleaver
Reorder symbols in input vector

Library
Block sublibrary of Interleaving

Description
The General Block Interleaver block rearranges the elements of its input vector without repeating or
omitting any elements. If the input contains N elements, then the Permutation vector parameter is
a column vector of length N. The column vector indicates the indices, in order, of the input elements
that form the length-N output vector; that is,

Output(k) = Input(Permutation vector(k))

for each integer k between 1 and N. The contents of Permutation vector must be integers between
1 and N, and must have no repetitions.

Both the input and the Permutation vector parameter must be column vector signals.

This block can output sequences that vary in length during simulation. For more information about
sequences that vary in length, or variable-size signals, see “Variable-Size Signal Basics” (Simulink).

This block accept the following data types: int8, uint8, int16, uint16, int32, uint32, boolean,
single, double, and fixed-point. The output signal inherits its data type from the input signal.

Parameters
Permutation vector source

A selection that specifies the source of the permutation vector. The source can be either Dialog
or Input port. The default value is Dialog.

Permutation vector
A vector of length N that lists the indices of the output elements that came from the input vector.
This parameter is available only when Permutation vector source is set to Dialog.

Examples
If Permutation vector is [4;1;3;2] and the input vector is [40;32;59;1], then the output vector
is [1;40;59;32]. Notice that all of these vectors have the same length and that the vector
Permutation vector is a permutation of the vector [1:4]'.
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Pair Block
General Block Deinterleaver

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
General Block Deinterleaver

Functions
perms
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General CRC Generator
Generate CRC code bits according to generator polynomial and append to input data frames
Library: Communications Toolbox / Error Detection and Correction /

CRC

Description
The General CRC Generator block generates cyclic redundancy check (CRC) code bits for each input
data frame and appends them to the frame. For more information, see “CRC Generator Operation” on
page 5-307.

Ports
Input

In — Input signal
binary column vector

Input signal, specified as a binary column vector. The length of the input frame must be a multiple of
the value of the Checksums per frame parameter.
Data Types: double | Boolean

Output

Out — Output codeword frame
binary column vector

Output codeword frame, returned as a binary column vector that inherits the data type of the input
signal. The output contains the input data frames with the CRC bit sequences appended to them.

The length of the output frame is m + k * r, where m is the size of the input frame, k is the number of
checksums per frame, and r is the degree of the generator polynomial.

Parameters
Generator polynomial — Generator polynomial

'z^16 + z^12 + z^5 + 1' (default) | polynomial character vector | binary row vector | integer
row vector

Generator polynomial for the CRC algorithm, specified as one of the following:

• A polynomial character vector such as 'z^3 + z^2 + 1'.
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• A binary row vector that represents the coefficients of the generator polynomial in order of
descending power. The length of this vector is (N+1), where N is the degree of the generator
polynomial. For example, [1 1 0 1] represents the polynomial x3+ z2+ 1.

• An integer row vector containing the exponents of z for the nonzero terms in the polynomial in
descending order. For example, [3 2 0] represents the polynomial z3 + z2 + 1.

For more information, see “Representation of Polynomials in Communications Toolbox”.

Some commonly used generator polynomials include:

CRC
method

Generator polynomial

CRC-32 'z^32 + z^26 + z^23 + z^22 + z^16 + z^12 + z^11 + z^10 + z^8 + z^7
+ z^5 + z^4 + z^2 + z + 1'

CRC-24 'z^24 + z^23 + z^14 + z^12 + z^8 + 1'
CRC-16 'z^16 + z^15 + z^2 + 1'
Reversed
CRC-16

'z^16 + z^14 + z + 1'

CRC-8 'z^8 + z^7 + z^6 + z^4 + z^2 + 1'
CRC-4 'z^4 + z^3 + z^2 + z + 1'

Example: 'z^7 + z^2 + 1', [1 0 0 0 0 1 0 1], and [7 2 0] represent the same polynomial,
p(z) = z 7 + z 2 + 1.

Initial states — Initial states of internal shift register

0 (default) | 1 | binary row vector

Initial states of the internal shift register, specified as a binary scalar or a binary row vector with a
length equal to the degree of the generator polynomial. A scalar value is expanded to a row vector of
equal length to the degree of the generator polynomial.

Direct method — Use direct algorithm for CRC checksum calculations

off (default) | on

Select to use the direct algorithm for CRC checksum calculations. When cleared, the block uses the
non-direct algorithm for CRC checksum calculations.

For more information on direct and non-direct algorithms, see “Error Detection and Correction”.

Reflect input bytes — Reflect input bytes

off (default) | on

Select to flip the input data on a bytewise basis before entering the data into the shift register. When
Reflect input bytes is selected, the input frame length divided by the value of the Checksums per
frame parameter must be an integer and a multiple of 8. When Reflect input bytes is cleared, the
block does not flip the input data.

Reflect checksums before final XOR — Reflect checksums before final XOR
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off (default) | on

Select to flip the CRC checksums around their centers after the input data are completely through
the shift register. When Reflect checksums before final XOR is cleared, the block does not flip the
CRC checksums.

Final XOR — Final XOR

0 (default) | 1 | binary row vector

Final XOR, specified as a binary scalar or a binary row vector with a length equal to the degree of the
generator polynomial. The XOR operation runs using the value of the Final XOR parameter the CRC
checksum before appending the CRC to the input data. A scalar value is expanded to a row vector of
equal length to the degree of the generator polynomial. A setting of 0 is equivalent to no XOR
operation.

Checksums per frame — Number of checksums calculated for each frame

1 (default) | positive integer

Number of checksums calculated for each frame, specified as a positive integer.

Block Characteristics
Data Types Boolean | double
Multidimensional
Signals

no

Variable-Size Signals yes

More About
Cyclic Redundancy Check Coding

Cyclic redundancy check (CRC) coding is an error-control coding technique for detecting errors that
occur when a data frame is transmitted. Unlike block or convolutional codes, CRC codes do not have
a built-in error-correction capability. Instead, when a communications system detects an error in a
received codeword, the receiver requests the sender to retransmit the codeword.

In CRC coding, the transmitter applies a rule to each data frame to create extra CRC bits, called the
checksum or syndrome, and then appends the checksum to the data frame. After receiving a
transmitted codeword, the receiver applies the same rule to the received codeword. If the resulting
checksum is nonzero, an error has occurred and the transmitter should resend the data frame.

When the number of checksums per frame is greater than 1, the input data frame is divided into
subframes, the rule is applied to each data subframe, and individual checksums are appended to each
subframe. The subframe codewords are concatenated to output one frame.

For a discussion of the supported CRC algorithms, see “Cyclic Redundancy Check Codes”.

CRC Generator Operation

The CRC generator appends CRC checksums to the input frame according to the specified generator
polynomial and number of checksums per frame.
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For a specific initial state of the internal shift register and k checksums per input frame:

1 The input signal is divided into k subframes of equal size.
2 Each of the k subframes are prefixed with the initial states vector.
3 The CRC algorithm is applied to each subframe.
4 The resulting checksums are appended to the end of each subframe.
5 The subframes are concatenated and output as a column vector.

For the scenario shown here, a 10-bit frame is input, a third degree generator polynomial computes
the CRC checksum, the initial state is 0, and the number of checksums per frame is 2.

The input frame is divided into two subframes of size 5 and checksums of size 3 are computed and
appended to each subframe. The initial states are not shown, because an initial state of [0] does not
affect the output of the CRC algorithm. The output transmitted codeword frame has the size 5 + 3 +
5 + 3 = 16.

Version History
Introduced before R2006a

References
[1] Sklar, Bernard. Digital Communications: Fundamentals and Applications. Englewood Cliffs, N.J.:

Prentice-Hall, 1988.

[2] Wicker, Stephen B. Error Control Systems for Digital Communication and Storage. Upper Saddle
River, N.J.: Prentice Hall, 1995.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Objects
comm.CRCGenerator

Blocks
General CRC Syndrome Detector | General CRC Generator HDL Optimized

Topics
“Cyclic Redundancy Check Codes”
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General CRC Generator HDL Optimized
Generate CRC code bits and append them to input data
Library: Communications Toolbox HDL Support / Error Detection and

Correction / CRC

Description
The General CRC Generator HDL Optimized block, which is similar to the General CRC Generator
block, generates a cyclic redundancy check (CRC) checksum and appends it to the input message.
The General CRC Generator HDL Optimized block processing is optimized for HDL code generation.
Instead of processing an entire frame at once, the block accepts and returns a data sample stream
with accompanying control signals. The control signals indicate the validity of the samples and the
boundaries of the frame. To achieve higher throughput, the block accepts vector data up to the CRC
length and implements a parallel architecture.

Ports
Input

dataIn — Input data
scalar | vector

Input data, specified as one of these options.

• Scalar – Specify an integer representing several bits. For this case, the block supports an
unsigned integer (uint8, uint16, or uint32) or fixdt(0,N,0) data type.

• Vector – Specify a vector of binary values. For this case, the block supports a double or Boolean
data type.

The data width must be less than or equal to the CRC length, and the CRC length must be divisible by
the data width. For CRC-CCITT/CRC-16, the valid data widths are 16, 8, 4, 2, and 1.
Example: The uint8 vector input [0 0 0 1 0 0 1 1] is equivalent to 19.
Data Types: double | uint8 | uint16 | uint32 | fixed point | Boolean

startIn — Start of input frame indicator
Boolean scalar

Start of input frame indicator, specified as a Boolean scalar.
Data Types: Boolean

endIn — End of input frame indicator
Boolean scalar

End of input frame indicator, specified as a Boolean scalar.
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Data Types: Boolean

validIn — Valid input data indicator
Boolean scalar

Valid input data indicator, specified as a Boolean scalar.

This is a control signal that indicates if the data on the dataIn port is valid.
Data Types: Boolean

Output

dataOut — Output data
scalar | vector

Output data with appended checksum, returned as a scalar or vector. The output data type and size
are the same as the input data.
Data Types: double | uint8 | uint16 | uint32 | Boolean | fixed point

startOut — Start of output frame indicator
scalar

Start of output frame indicator, returned as a Boolean scalar.
Data Types: Boolean

endOut — End of output frame indicator
scalar

End of output frame indicator, returned as a Boolean scalar.
Data Types: Boolean

validOut — Valid output data indicator
scalar

Valid output data indicator, returned as a Boolean scalar.

This port is a control signal that indicates if the data on the dataOut port is valid.
Data Types: Boolean

Parameters
Polynomial — Generator polynomial

[1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1] (default) | binary vector

Specify the generator polynomial as a binary vector with coefficients in descending order of powers.
The vector length is equal to the degree of the polynomial plus 1.

Initial state — Initial conditions of shift register

0 (default) | binary scalar | binary vector
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Specify initial conditions of the internal shift register as a binary, double-precision, or single-precision
scalar or vector. For vector inputs, the length of the initial state must be equal to the degree of the
generator polynomial.

Direct method — Method of calculating checksum

off (default) | on

Specify the direct or indirect method for calculating the checksum.

• Select this parameter for the block to use the direct algorithm for CRC checksum calculations.
• Clear this parameter for the block to use the nondirect algorithm for CRC checksum calculations.

For more information about direct and nondirect algorithms, see “Cyclic Redundancy Check Codes”.

Reflect input — Input byte order

off (default) | on

Specify the input byte order.

• Select this parameter for the block to flip each input byte before it enters the shift register.
• Clear this parameter for the block to pass the message data to the shift register unchanged.

The input data width must be a multiple of 8.

Reflect CRC checksum — Checksum byte order

off (default) | on

Specify the checksum byte order.

• Select this parameter for the block to flip each checksum byte before passing it to the final XOR
stage.

• Clear this parameter for the block to pass the checksum byte to the final XOR stage unchanged.

The input data width must be a multiple of 8.

Final XOR value — Checksum

0 (default) | binary scalar | binary vector

Specify the checksum as a binary, double-precision, or single-precision data type scalar or vector. The
block performs XOR operation on the CRC checksum with this value before appending it to the input
data.

If you specify a vector input, the vector length must be equal to the degree of the generator
polynomial.

Algorithms
When you use a vector or integer input, the block implements a parallel CRC algorithm [1].

To provide high throughput for modern communications systems, the block implements the CRC
algorithm with a parallel architecture. This architecture recursively calculates M bits of a CRC
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checksum for each W input bits. At the end of the frame, the final checksum result is appended to the
message. For a polynomial length of M, the recursive checksum calculation for W bits in parallel is

X′ = FW( × )X( + )D .

FW is an M-by-M matrix that selects elements of the current state for the polynomial calculation with
the new input bits. D is an M-element vector that provides the new input bits, ordered in relation to
the generator polynomial and padded with zeros. The block implements the (×) with logical AND and
(+) with logical XOR.

Timing Diagram

This waveform shows streaming data and the accompanying control signals for a CRC16 with an 8-bit
binary vector input. To insert the checksum word, input frames must have enough space between
them.

This waveform diagram shows continuous input data. The block also supports noncontinuous data.
The output valid signal matches the input valid pattern.
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Initial Delay

The General CRC Generator HDL Optimized block introduces a latency on the output. Assuming the
input data is continuous, you can compute the latency by using the equation.

initialdelay = (CRC length/input data width) + 2.

Version History
Introduced in R2012a

References
[1] Campobello, G., G. Patane, and M. Russo. “Parallel Crc Realization.” IEEE Transactions on

Computers 52, no. 10 (October 2003): 1312–19. https://doi.org/10.1109/TC.2003.1234528.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Not recommended for production code.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).
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See Also
General CRC Syndrome Detector HDL Optimized | General CRC Generator |
comm.HDLCRCGenerator
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General CRC Syndrome Detector
Detect errors in received codeword frames according to generator polynomial
Library: Communications Toolbox / Error Detection and Correction /

CRC

Description
The General CRC Syndrome Detector block computes cyclic redundancy check (CRC) checksums for
received codeword frames. For successful CRC detection in a communications system link, you must
align the parameter settings of the General CRC Syndrome Detector block with the paired General
CRC Generator block.

For more information, see “CRC Syndrome Detector Operation” on page 5-319.

Ports
Input

In — Received codeword
binary column vector

Received codeword, specified as a binary column vector.
Data Types: double | Boolean

Output

Out — Output frame
binary column vector

Output frame, returned as a binary column vector that inherits the data type of the input signal. The
output frame contains the received codeword with the checksums removed.

The length of the output frame is n - k * r bits, where n is the size of the received codeword, k is the
number of checksums per frame, and r is the degree of the generator polynomial.

Err — Checksum error signal
binary column vector

Checksum error signal, returned as a binary column vector that inherits the data type of the input
signal. The length of Err equals the value of Checksums per frame. For each checksum
computation, an element value of 0 in Err indicates no checksum error, and an element value of 1 in
Err indicates a checksum error.
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Parameters
Generator polynomial — Generator polynomial

'z^16 + z^12 + z^5 + 1' (default) | polynomial character vector | binary row vector | integer
row vector

Generator polynomial for the CRC algorithm, specified as one of the following:

• A polynomial character vector such as 'z^3 + z^2 + 1'.
• A binary row vector that represents the coefficients of the generator polynomial in order of

descending power. The length of this vector is (N+1), where N is the degree of the generator
polynomial. For example, [1 1 0 1] represents the polynomial x3+ z2+ 1.

• An integer row vector containing the exponents of z for the nonzero terms in the polynomial in
descending order. For example, [3 2 0] represents the polynomial z3 + z2 + 1.

For more information, see “Representation of Polynomials in Communications Toolbox”.

Some commonly used generator polynomials include:

CRC
method

Generator polynomial

CRC-32 'z^32 + z^26 + z^23 + z^22 + z^16 + z^12 + z^11 + z^10 + z^8 + z^7
+ z^5 + z^4 + z^2 + z + 1'

CRC-24 'z^24 + z^23 + z^14 + z^12 + z^8 + 1'
CRC-16 'z^16 + z^15 + z^2 + 1'
Reversed
CRC-16

'z^16 + z^14 + z + 1'

CRC-8 'z^8 + z^7 + z^6 + z^4 + z^2 + 1'
CRC-4 'z^4 + z^3 + z^2 + z + 1'

Example: 'z^7 + z^2 + 1', [1 0 0 0 0 1 0 1], and [7 2 0] represent the same polynomial,
p(z) = z 7 + z 2 + 1.

Initial states — Initial states of internal shift register

0 (default) | 1 | binary row vector

Initial states of the internal shift register, specified as a binary scalar or a binary row vector with a
length equal to the degree of the generator polynomial. A scalar value is expanded to a row vector of
equal length to the degree of the generator polynomial.

Direct method — Use direct algorithm for CRC checksum calculations

off (default) | on

Select to use the direct algorithm for CRC checksum calculations. When cleared, the block uses the
non-direct algorithm for CRC checksum calculations.

For more information on direct and non-direct algorithms, see “Error Detection and Correction”.
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Reflect input bytes — Reflect input bytes

off (default) | on

Select to flip the received codeword on a bytewise basis before entering the data into the shift
register. When Reflect input bytes is selected, the received codeword length divided by the value of
the Checksums per frame parameter must be an integer and a multiple of 8. When Reflect input
bytes is cleared, the block does not flip the input data.

Reflect checksums before final XOR — Reflect checksums before final XOR

off (default) | on

Select Reflect checksums before final XOR to flip the CRC checksums around their centers after
the input data are completely through the shift register. When Reflect checksums before final XOR
is cleared, the block does not flip the CRC checksums.

Final XOR — Final XOR

0 (default) | 1 | binary row vector

Final XOR, specified as a binary scalar or a binary row vector with a length equal to the degree of the
generator polynomial. The XOR operation runs using the value of the Final XOR parameter and the
CRC checksum before comparing with the input checksum. A scalar value is expanded to a row vector
of equal length to the degree of the generator polynomial. A setting of 0 is equivalent to no XOR
operation.

Checksums per frame — Number of checksums calculated for each frame

1 (default) | positive integer

Number of checksums calculated for each frame, specified as a positive integer.

Block Characteristics
Data Types Boolean | double
Multidimensional
Signals

no

Variable-Size Signals yes

More About
Cyclic Redundancy Check Coding

Cyclic redundancy check (CRC) coding is an error-control coding technique for detecting errors that
occur when a data frame is transmitted. Unlike block or convolutional codes, CRC codes do not have
a built-in error-correction capability. Instead, when a communications system detects an error in a
received codeword, the receiver requests the sender to retransmit the codeword.

In CRC coding, the transmitter applies a rule to each data frame to create extra CRC bits, called the
checksum or syndrome, and then appends the checksum to the data frame. After receiving a
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transmitted codeword, the receiver applies the same rule to the received codeword. If the resulting
checksum is nonzero, an error has occurred and the transmitter should resend the data frame.

When the number of checksums per frame is greater than 1, the input data frame is divided into
subframes, the rule is applied to each data subframe, and individual checksums are appended to each
subframe. The subframe codewords are concatenated to output one frame.

For a discussion of the supported CRC algorithms, see “Cyclic Redundancy Check Codes”.

CRC Syndrome Detector Operation

The CRC syndrome detector outputs the received message frame and a checksum error vector
according to the specified generator polynomial and number of checksums per frame.

The checksum bits are removed from each subframe, so that the resulting the output frame length is
n - k × r, where n is the size of the received codeword, k is the number of checksums per frame, and r
is the degree of the generator polynomial. The input frame must be evenly divisible by k.

For a specific initial state of the internal shift register:

1 The received codeword is divided into k equal sized subframes.
2 The CRC is removed from each of the k subframes and compared to the checksum calculated on

the received codeword subframes.
3 The output frame is assembled by concatenating the subframe bits of the k subframes and then

output as a column vector.
4 The checksum error is output as a binary column vector of length k. An element value of 0

indicates an error-free received subframe, and an element value of 1 indicates an error occurred
in the received subframe.

For the scenario shown here, a 16-bit codeword is received, a third degree generator polynomial
computes the CRC checksum, the initial state is 0, and the number of checksums per frame is 2.
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Since the number of checksums per frame is 2 and the generator polynomial degree is 3, the received
codeword is split in half and two checksums of size 3 are computed, one for each half of the received
codeword. The initial states are not shown, because an initial state of [0] does not affect the output
of the CRC algorithm. The output frame contains the concatenation of the two halves of the received
codeword as a single vector of size 10. The checksum error signal output contains a 2-by-1 binary
frame vector whose entries depend on whether the computed checksums are zero. As shown in the
figure, the first checksum is nonzero and the second checksum is zero, indicating an error occurred
in reception of the first half of the codeword.

Version History
Introduced before R2006a

References
[1] Sklar, Bernard. Digital Communications: Fundamentals and Applications. Englewood Cliffs, N.J.:

Prentice-Hall, 1988.

[2] Wicker, Stephen B. Error Control Systems for Digital Communication and Storage. Upper Saddle
River, N.J.: Prentice Hall, 1995.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.
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See Also
Objects
comm.CRCDetector

Blocks
General CRC Generator | General CRC Syndrome Detector HDL Optimized

Topics
“Cyclic Redundancy Check Codes”
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General CRC Syndrome Detector HDL Optimized
Detect errors in input data using CRC
Library: Communications Toolbox HDL Support / Error Detection and

Correction / CRC

Description
The General CRC Syndrome Detector HDL Optimized block performs a cyclic redundancy check
(CRC) on data and compares the resulting checksum with the appended checksum. The General CRC
Syndrome Detector HDL Optimized block processing is optimized for HDL code generation. If the two
checksums do not match, the block reports an error. Instead of processing an entire frame at once,
the block accepts and returns a data sample stream with accompanying control signals. The control
signals indicate the validity of the samples and the boundaries of the frame. To achieve higher
throughput, the block accepts vector data up to the CRC length and implements a parallel
architecture.

Ports
Input

dataIn — Input data
scalar | vector

Input data, specified as one of these options.

• Scalar – Specify an integer representing several bits. For this case, the block supports an
unsigned integer (uint8, uint16, or uint32) or fixdt(0,N,0) data type.

• Vector – Specify a vector of binary values. For this case, the block supports a double or Boolean
data type.

The data width must be less than or equal to the CRC length, and the CRC length must be divisible by
the data width. For CRC-CCITT/CRC-16, the valid data widths are 16, 8, 4, 2, and 1.
Example: The uint8 vector input [0 0 0 1 0 0 1 1] is equivalent to 19.
Data Types: double | uint8 | uint16 | uint32 | fixed point | Boolean

startIn — Start of input frame indicator
scalar

Start of input frame indicator, specified as a Boolean scalar.
Data Types: Boolean

endIn — End of input frame indicator
scalar
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End of input frame indicator, specified as a Boolean scalar.
Data Types: Boolean

validIn — Valid input data indicator
scalar

Valid input data indicator, specified as a Boolean scalar.

This a control signal that indicates if the data on the dataIn port is valid.
Data Types: Boolean

Output

dataOut — Output data
scalar | vector

Output data, returned as a scalar or vector. The output data type and size are the same as the input
data.
Data Types: double | uint8 | uint16 | uint32 | Boolean | fixed point

startOut — Start of output frame indicator
scalar

Start of output frame indicator, returned as a Boolean scalar.
Data Types: Boolean

endOut — End of output frame indicator
scalar

End of output frame indicator, returned as a Boolean scalar.
Data Types: Boolean

validOut — Valid output data indicator
scalar

Valid output data indicator, returned as a Boolean scalar.

This is a control signal that indicates if the data on the dataOut port is valid.
Data Types: Boolean

err — Error indicator
scalar

Error indicator for the corruption of the received data, returned as a Boolean scalar.

When this value is 1, the message contains at least one error. When this value is 0, the message
contains zero errors.
Data Types: Boolean
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Parameters
Polynomial — Generator polynomial

[1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1] (default) | binary vector

Specify the generator polynomial as a binary vector with coefficients in descending order of powers.
The vector length is equal to the degree of the polynomial plus 1.

Initial state — Initial conditions of shift register

0 (default) | binary scalar | binary vector

Specify initial conditions of the internal shift register as a binary, double-precision, or single-precision
scalar or vector. For vector inputs, the length of the initial state must be equal to the degree of the
generator polynomial.

Direct method — Method of calculating checksum

off (default) | on

Specify the method of calculating checksum as a Boolean scalar.

• Select this parameter to use the direct algorithm for CRC checksum calculations.
• Clear this parameter to use the nondirect algorithm for CRC checksum calculations.

To learn about the direct and non-direct algorithms, see “Cyclic Redundancy Check Codes”.

Reflect input — Input byte order

off (default) | on

Specify the input byte order.

• Select this parameter for the block to flip each input byte before it enters the shift register.
• Clear this parameter for the block to pass the message data to the shift register unchanged.

The input data width must be a multiple of 8.

Reflect CRC checksum — Checksum byte order

off (default) | on

Specify the checksum byte order.

• Select this parameter for the block to flip each checksum byte before passing it to the final XOR
stage.

• Clear this parameter for the block to pass the checksum byte to the final XOR stage unchanged.

The input data width must be a multiple of 8.

Final XOR value — Checksum

0 (default) | binary scalar | binary vector
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Specify the checksum as a binary, double-precision, or single-precision data type scalar or vector. The
block performs XOR operation on the CRC checksum with this value before appending it to the input
data.

If you specify a vector input, the vector length must be equal to the degree of the generator
polynomial.

Algorithms
When you use vector or integer input, the block implements a parallel CRC algorithm [1].

To provide high throughput for modern communications systems, the block implements the CRC
algorithm with a parallel architecture. This architecture recursively calculates M bits of a CRC
checksum for each W input bits. At the end of the frame, the final checksum result is appended to the
message. For a polynomial length of M, the recursive checksum calculation for W bits in parallel is

X′ = FW( × )X( + )D .

FW is an M-by-M matrix that selects elements of the current state for the polynomial calculation with
the new input bits. D is an M-element vector that provides the new input bits, ordered in relation to
the generator polynomial and padded with zeros. The block implements the (×) with logical AND and
(+) with logical XOR.

Timing Diagram

This waveform shows streaming data and the accompanying control signals for a CRC16 with 8-bit
binary vector input. The input frames are contiguous. The output frames include space between them
because the detector block removes the checksum word.
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This waveform diagram shows continuous input data. Non-continuous data is also supported.

Initial Delay

The General CRC Syndrome Detector HDL Optimized block introduces a latency on the output. This
latency can be computed with the following equation, assuming the input data is continuous:

initialdelay = 3 * (CRC length/input data width) + 2.

Version History
Introduced in R2012b

References
[1] Campobello, G., G. Patane, and M. Russo. “Parallel Crc Realization.” IEEE Transactions on

Computers 52, no. 10 (October 2003): 1312–19. https://doi.org/10.1109/TC.2003.1234528.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Not recommended for production code.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.
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HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

See Also
General CRC Generator HDL Optimized | General CRC Syndrome Detector | comm.HDLCRCDetector
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General Multiplexed Deinterleaver
Restore ordering of symbols using specified-delay shift registers

Library
Convolutional sublibrary of Interleaving

Description
The General Multiplexed Deinterleaver block restores the original ordering of a sequence that was
interleaved using the General Multiplexed Interleaver block.

In typical usage, the parameters in the two blocks have the same values. As a result, the Interleaver
delay parameter, V, specifies the delays for each shift register in the corresponding interleaver, so
that the delays of the deinterleaver's shift registers are actually max(V)-V.

This block accepts a scalar or column vector input signal, which can be real or complex. The output
signal has the same sample time as the input signal.

The block can accept the data types int8, uint8, int16, uint16, int32, uint32, boolean,
single, double, and fixed-point. The data type of the output will be the same as that of the input
signal.

Parameters
Interleaver delay (samples)

A vector that lists the number of symbols that fit in each shift register of the corresponding
interleaver. The length of this vector is the number of shift registers.

Initial conditions
The values that fill each shift register when the simulation begins.

Pair Block
General Multiplexed Interleaver

References

[1] Heegard, Chris and Stephen B. Wicker. Turbo Coding. Boston: Kluwer Academic Publishers, 1999.

Version History
Introduced before R2006a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

The implementation for the General Multiplexed Deinterleaver block is shift register based. If you
want to suppress generation of reset logic, set the implementation parameter ResetType tonone.

When you set ResetType to none, reset is not applied to the shift registers. When registers are not
fully loaded, mismatches between Simulink and the generated code occur for some number of
samples during the initial phase. To avoid spurious test bench errors, determine the number of
samples required to fill the shift registers. Set the Ignore output data checking (number of
samples) option accordingly. (If you are using the command-line interface, you can use the
IgnoreDataChecking property for this purpose.)

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

ResetType Suppress reset logic generation. The default is default, which generates
reset logic. See also “ResetType” (HDL Coder).

See Also
Objects
comm.MultiplexedInterleaver | comm.MultiplexedDeinterleaver

Blocks
General Multiplexed Interleaver | Convolutional Deinterleaver | Helical Deinterleaver

Topics
“Interleaving”
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General Multiplexed Interleaver
Permute input symbols using set of shift registers with specified delays

Library
Convolutional sublibrary of Interleaving

Description
The General Multiplexed Interleaver block permutes the symbols in the input signal. Internally, it
uses a set of shift registers, each with its own delay value.

This block accepts a scalar or column vector input signal, which can be real or complex. The input
and output signals have the same sample time.

The block can accept the data types int8, uint8, int16, uint16, int32, uint32, boolean,
single, double, and fixed-point. The output signal has the same data type as the input signal.

Parameters
Interleaver delay (samples)

A column vector listing the number of symbols that fit into each shift register. The length of this
vector is the number of shift registers. (In sample-based mode, it can also be a row vector.)

Initial conditions
The values that fill each shift register at the beginning of the simulation.

If Initial conditions is a scalar, then its value fills all shift registers. If Initial conditions is a
column vector, then each entry fills the corresponding shift register. (In sample-based mode,
Initial conditions can also be a row vector.) If a given shift register has zero delay, then the
value of the corresponding entry in the Initial conditions vector is unimportant.

Pair Block
General Multiplexed Deinterleaver

References

[1] Heegard, Chris and Stephen B. Wicker. Turbo Coding. Boston: Kluwer Academic Publishers, 1999.

Version History
Introduced before R2006a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

The implementation for the General Multiplexed Interleaver block is shift register based. If you want
to suppress generation of reset logic, set the implementation parameter ResetType to'none'.

When you set ResetType to'none', reset is not applied to the shift registers. Mismatches between
Simulink and the generated code occur for some number of samples during the initial phase, when
registers are not fully loaded. To avoid spurious test bench errors, determine the number of samples
required to fill the shift registers. Then, set the Ignore output data checking (number of
samples) option accordingly. (You can use the IgnoreDataChecking property for this purpose, if
you are using the command-line interface.)

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

ResetType Suppress reset logic generation. The default is default, which generates
reset logic. See also “ResetType” (HDL Coder).

See Also
Objects
comm.MultiplexedInterleaver | comm.MultiplexedDeinterleaver

Blocks
Convolutional Interleaver | General Multiplexed Deinterleaver | Helical Interleaver

Topics
“Interleaving”
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General QAM Demodulator Baseband
Demodulate QAM-modulated data

Library
AM, in Digital Baseband sublibrary of Modulation

Description
The General QAM Demodulator Baseband block demodulates a signal that was modulated using
quadrature amplitude modulation. The input is a baseband representation of the modulated signal.

The input must be a discrete-time complex signal. The Signal constellation parameter defines the
constellation by listing its points in a length-M vector of complex numbers. The block maps the mth
point in the Signal constellation vector to the integer m-1.

This block accepts a scalar or column vector input signal. For information about the data types each
block port supports, see the “Supported Data Types” on page 5-338 table on this page.

Parameters
Signal constellation

A real or complex vector that lists the constellation points.
Output type

Determines whether the block produces integers or binary representations of integers.

If you set this parameter to Integer, the block produces integers.

If you set this parameter to Bit, the block produces a group of K bits, called a binary word, for
each symbol, when Decision type is set to Hard decision. If Decision type is set to Log-
likelihood ratio or Approximate log-likelihood ratio, the block outputs bitwise LLR
and approximate LLR, respectively.

Decision type
Specifies the use of hard decision, LLR, or approximate LLR during demodulation. For more
information, see “Hard- vs. Soft-Decision Demodulation”.

To enable this parameter, set Output type to Bit.
Variance source

When you set this parameter to Dialog, you can then specify the noise variance in the Variance
parameter. When you set this option to Port, a port appears on the block through which the noise
variance can be input.
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To enable this parameter, set Decision type to Approximate log-likelihood ratio or
Log-likelihood ratio.

Variance
This parameter appears when the Variance source is set to Dialog and specifies the noise
variance in the input signal. This parameter is tunable in normal mode, Accelerator mode, and
Rapid Accelerator mode. This parameter is nontunable for fixed-point inputs.

If you use the Simulink Coder rapid simulation (RSIM) target to build an RSIM executable, then
you can tune the parameter without recompiling the model. This is useful for Monte Carlo
simulations in which you run the simulation multiple times (perhaps on multiple computers) with
different amounts of noise.

The exact LLR algorithm computes exponentials using finite precision arithmetic. For
computations involving very large positive or negative magnitudes, the exact LLR algorithm
yields:

• Inf or -Inf if the noise variance is a very large value
• NaN if the noise variance and signal power are both very small values

The approximate LLR algorithm does not compute exponentials. You can avoid Inf, -Inf, and
NaN results by using the approximate LLR algorithm.

Fixed-Point Signal Flow Diagrams

Fixed-Point Signal Flow Diagram for Hard Decision Mode

Note In the figure above, M represents the size of the Signal constellation.

The general QAM Demodulator Baseband block supports fixed-point operations for computing hard
decision (Output type set to Bit and Decision type is set to Hard decision) and approximate
LLR (Output type is set to Bit and Decision type is set to Approximate log-likelihood
ratio) output values. The input values must have fixed-point data type for fixed-point operations.

Note Fixed-point operations are NOT yet supported for exact LLR output values.
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Fixed-Point Signal Flow Diagram for Approximate LLR Mode

Note In the figure above, M represents the size of the Signal constellation.

Fixed-Point Signal Flow Diagram for Approximate LLR Mode: Noise Variance Operation
Modes
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Note If Variance source is set to Dialog, the block performs the operations shown inside the
dotted line once during initialization. The block also performs these operations if the Variance value
changes during simulation.

Data Types Attributes
Output

The block supports the following Output options:

When you set the parameter to Inherit via internal rule (default setting), the block
inherits the output data type from the input port. The output data type is the same as the input
data type if the input is of type single or double.

For integer outputs, you can set this block's output to Inherit via internal rule (default
setting), Smallest unsigned integer, int8, uint8, int16, uint16, int32, uint32,
single, and double.

For bit outputs, when you set Decision type to Hard decision, you can set the output to
Inherit via internal rule, Smallest unsigned integer, int8, uint8, int16,
uint16, int32, uint32, boolean, single, or double.

When you set Decision type to Hard decision or Approximate log-likelihood ratio
and the input is a floating point data type, then the output inherits its data type from the input.
For example, if the input is of data type double, the output is also of data type double. When
you set Decision type to Hard decision or Approximate log-likelihood ratio, and the
input is a fixed-point signal, the Output parameter, located in the Fixed-Point algorithm
parameters region of the Data-Type tab, specifies the output data type.

When you set the parameter to Smallest unsigned integer, the output data type is selected
based on the settings used in the Hardware Implementation pane of the Configuration
Parameters dialog box. If you select ASIC/FPGA in the Hardware Implementation pane, the
output data type is the ideal minimum size, i.e., ufix(1) for bit outputs, and uf ix log2M  for
integer outputs. For all other choices, the Output data type is an unsigned integer with the
smallest available word length large enough to fit the ideal minimum size, usually corresponding
to the size of a char (e.g., uint8).

Rounding Mode Parameter
Use this parameter to specify the rounding method to be used when the result of a fixed-point
calculation does not map exactly to a number representable by the data type and scaling storing
the result.

For more information, see “Rounding Modes” or “Rounding Mode: Simplest” (Fixed-Point
Designer).

Saturate on integer overflow
Use this parameter to specify the method to be used if the magnitude of a fixed-point calculation
result does not fit into the range of the data type and scaling that stores the result:

• Saturate represents positive overflows as the largest positive number in the range being used,
and negative overflows as the largest negative number in the range being used.

• Wrap uses modulo arithmetic to cast an overflow back into the representable range of the data
type. See Modulo Arithmetic (Fixed-Point Designer) for more information.
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For more information, see the Saturate on integer overflow parameter subsection of “Specify
Fixed-Point Attributes for Blocks”.

Signal constellation
Use this parameter to define the data type of the Signal constellation parameter.

• When you select Same word length as input the word length of the Signal
constellation parameter matches that of the input to the block. The fraction length is
computed to provide the best precision for given signal constellation values.

• Select Specify word length, to enable Word Length parameter, and then you can modify
the word length. The fraction length is computed to provide the best precision for given signal
constellation values.

Accumulator 1
Use this parameter to specify the data type for Accumulator 1:

• When you select Inherit via internal rule, the block automatically calculates the
output word and fraction lengths. For more information, see “Inherit via Internal Rule”.

• When you select Binary point scaling, you can enter the word length and the fraction
length of Accumulator 1, in bits.

Product Input
Use this parameter to specify the data type for Product input.

• When you select Same as accumulator 1, the Product Input characteristics match those
of Accumulator 1.

• When you select Binary point scaling you can enter the word length and the fraction
length of Product input, in bits.

Product Output
Use this parameter to select the data type for Product output.

• When you select Inherit via internal rule, the block automatically calculates the
output signal type. For more information, see Inherit via Internal Rule.

• When you select Binary point scaling enter the word length and the fraction length for
Product output, in bits.

Accumulator 2
Use this parameter to specify the data type for Accumulator 2:

• When you select Inherit via internal rule, the block automatically calculates the
accumulator data type. The internal rule calculates the ideal, full-precision word length and
fraction length as follows:

WLideal accumulator 2 = WLinput to accumulator 2

FLideal accumulator 2 = FL input to accumulator 2

After the full-precision result is calculated, your particular hardware may still affect the final
word and fraction lengths set by the internal rule. For more information, see The Effect of the
Hardware Implementation Pane on the Internal Rule.

The internal rule always sets the sign of data-type to Unsigned .
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• When you select Binary point scaling, you are able to enter the word length and the
fraction length of Accumulator 2, in bits.

The settings for the following fixed-point parameters only apply when you set Decision type to
Approximate log-likelihood ratio.

Accumulator 3
When you select Inherit via internal rule, the block automatically calculates the
accumulator data type. The internal rule first calculates ideal, full-precision word length and
fraction length as follows:

WLideal accumulator 3 = WLinput to accumulator 3 + 1

FL ideal accumulator 3 = FL input to accumulator 3.

After the full-precision result is calculated, your particular hardware may still affect the final
word and fraction lengths set by the internal rule. For more information, see The Effect of the
Hardware Implementation Pane on the Internal Rule.

The internal rule always sets the sign of data-type to Signed.
Noise scaling input

• When you select Same as accumulator 3, the Noise scaling input characteristics match
those of Accumulator 3.

• When you select Binary point scaling you are able to enter the word length and the
fraction length of Noise scaling input, in bits.

Inverse noise variance
To enable this parameter, set Variance source to Dialog. This parameter appears in the Data
Types tab.

• When you select Same word length as input the word length of the Inverse noise
variance parameter matches that of the input to the block. The fraction length is computed to
provide the best precision for a given inverse noise variance value.

• When you select Specify word length, the Word Length parameter appears, and then
you can modify the word length. The fraction length is computed to provide the best precision
for a given inverse noise variance value.

Output
When you select Inherit via internal rule , the Output data type is automatically set for
you.

If you set the Variance source parameter to Dialog, the output is a result of product operation
as shown in the Noise Variance Operation Modes Signal Flow Diagram “Fixed-Point Signal Flow
Diagram for Approximate LLR Mode: Noise Variance Operation Modes” on page 5-334. In this
case, it follows the internal rule for Product data types specified in the Inherit via Internal Rule
topic.

If the Variance source parameter is set to Port, the output is a result of division operation as
shown in the signal flow diagram. In this case, the internal rule calculates the ideal, full-precision
word length and fraction length as follows:

WL output = max(WL Noise scaling input, WL Noise variance)
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FL output = FL Noise scaling input (dividend)– FL Noise variance (divisor) .

After the full-precision result is calculated, your particular hardware may still affect the final
word and fraction lengths set by the internal rule. For more information, see “The Effect of the
Hardware Implementation Pane on the Internal Rule”.

The internal rule for Output always sets the sign of data-type to Signed.

For additional information about the parameters pertaining to fixed-point applications, see “Specify
Fixed-Point Attributes for Blocks”.

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
• Signed fixed–point when Output type is Integer or Output type is Bit and Decision

type is either Hard decision or Approximate log-likelihood ratio
Var • Double-precision floating point

• Single-precision floating point
Output • Double-precision floating point

• Single-precision floating point
• Boolean when Output type is Bit and Decision type is Hard decision.
• 8-, 16-, and 32-bit signed integers when Output type is Integer or Output type is Bit

and Decision type is Hard decision
• 8-, 16-, and 32-bit unsigned integers when Output type is Integer or Output type is Bit

and Decision type is Hard decision
• ufix(1) in ASIC/FPGA when Output type is Bit and Decision type is Hard decision
• uf ix log2M  in ASIC/FPGA when Output type is Integer
• Signed fixed-point when Output type is Bit and Decision type is Approximate log-

likelihood ratio

Pair Block
General QAM Modulator Baseband

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Usage notes and limitations:
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• When using code generation, the Variance parameter is nontunable for fixed-point inputs.

See Also
Blocks
General QAM Modulator Baseband | Rectangular QAM Demodulator Baseband

Topics
“Digital Baseband Modulation”
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General QAM Modulator Baseband
Modulate using quadrature amplitude modulation

Library
AM, in Digital Baseband sublibrary of Modulation

Description
The General QAM Modulator Baseband block modulates using quadrature amplitude modulation. The
output is a baseband representation of the modulated signal.

The Signal constellation parameter defines the constellation by listing its points in a length-M
vector of complex numbers. The input signal values must be integers in the range [0, (M-1)]. The
block maps an input integer m to the (m+1)st value in the Signal constellation vector.

This block accepts a scalar or column vector input signal. For information about the data types each
block port supports, see the “Supported Data Types” on page 5-341 table on this page.

Parameters
Signal constellation

A real or complex vector that lists the constellation points.
Output data type

The output data type can be set to double, single, Fixed-point, User-defined, or Inherit
via back propagation.

Setting this to Fixed-point or User-defined will enable fields in which you can further
specify details. Setting this to Inherit via back propagation, sets the output data type and
scaling to match the following block.

Output word length
Specify the word length, in bits, of the fixed-point output data type. This parameter is only visible
when you select Fixed-point for the Output data type parameter.

User-defined data type
Specify any signed built-in or signed fixed-point data type. You can specify fixed-point data types
using the fixdt function. This parameter is only visible when you select User-defined for the
Output data type parameter.

Set output fraction length to
Specify the scaling of the fixed-point output by either of the following two methods:

• Choose Best precision to have the output scaling automatically set such that the output
signal has the best possible precision.
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• Choose User-defined to specify the output scaling in the Output fraction length
parameter.

This parameter is only visible when you select Fixed-point for the Output data type
parameter, or when you select User-defined and the specified output data type is a fixed-point
data type.

Output fraction length
For fixed-point output data types, specify the number of fractional bits, or bits to the right of the
binary point. This parameter is only visible when you select Fixed-point or User-defined for
the Output data type parameter and User-defined for the Set output fraction length to
parameter.

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
• 8-, 16-, 32-bit signed integers
• 8-, 16-, 32-bit unsigned integers
• uf ix log2M

Output • Double-precision floating point
• Single-precision floating point
• Signed fixed-point

More About
Constellation Visualization

Click View Constellation on the block mask to visualize a signal constellation for the specified block
parameters. Parameter settings must be applied before viewing a constellation. For more information,
see “View Constellation of Modulator Block”.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
General QAM Demodulator Baseband | Rectangular QAM Modulator Baseband | M-PSK Modulator
Baseband | QPSK Modulator Baseband
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Objects
comm.GeneralQAMModulator
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General TCM Decoder
Decode trellis-coded modulation data, mapped using arbitrary constellation

Library
TCM, in Digital Baseband sublibrary of Modulation

Description
The General TCM Decoder block uses the Viterbi algorithm to decode a trellis-coded modulation
(TCM) signal that was previously modulated using an arbitrary signal constellation.

The Trellis structure and Signal constellation parameters in this block should match those in the
General TCM Encoder block, to ensure proper decoding. In particular, the Signal constellation
parameter must be in set-partitioned order.

Input and Output Signals

This block accepts a column vector input signal containing complex numbers. The input signal must
be double or single. The reset port signal must be double or Boolean. For information about the
data types each block port supports, see “Supported Data Types” on page 5-344.

If the convolutional encoder described by the trellis structure represents a rate k/n code, then the
General TCM Decoder block's output is a binary column vector whose length is k times the vector
length of the input signal.

Operation Modes

The block has three possible methods for transitioning between successive frames. The Operation
mode parameter controls which method the block uses. This parameter also affects the range of
possible values for the Traceback depth parameter, D.

• In Continuous mode, the block initializes all state metrics to zero at the beginning of the
simulation, waits until it accumulates D symbols, and then uses a sequence of D symbols to
compute each of the traceback paths. D can be any positive integer. At the end of each frame, the
block saves its internal state metric for use with the next frame.

If you select Enable the reset input port, the block displays another input port, labeled Rst.
This port receives an integer scalar signal. Whenever the value at the Rst port is nonzero, the
block resets all state metrics to zero and sets the traceback memory to zero.

• In Truncated mode, the block treats each frame independently. The traceback path starts at the
state with the lowest metric. D must be less than or equal to the vector length of the input.

• In Terminated mode, the block treats each frame independently. The traceback path always
starts at the all-zeros state. D must be less than or equal to the vector length of the input. If you
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know that each frame of data typically ends at the all-zeros state, then this mode is an appropriate
choice.

Decoding Delay

If you set Operation mode to Continuous, then this block introduces a decoding delay equal to
Traceback depth*k bits for a rate k/n convolutional code. The decoding delay is the number of zeros
that precede the first decoded bit in the output.

The block incurs no delay for other values of Operation mode.

Parameters
Trellis structure

MATLAB structure that contains the trellis description of the convolutional encoder.
Signal constellation

A complex vector that lists the points in the signal constellation in set-partitioned order.
Traceback depth

The number of trellis branches (equivalently, the number of symbols) the block uses in the Viterbi
algorithm to construct each traceback path.

Operation mode
The operation mode of the Viterbi decoder. The choices are Continuous, Truncated, and
Terminated.

Enable the reset input port
When you select this check box, the block has a second input port labeled Rst. Providing a
nonzero value to this port causes the block to set its internal memory to the initial state before
processing the input data. This field appears only if you set Operation mode to Continuous.

Output data type
Select the data type for the block output signal as boolean or single. By default, the block sets
this to double.

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
Reset • Double-precision floating point

• Boolean
Output • Double-precision floating point

• Boolean

Pair Block
General TCM Encoder
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References

[1] Biglieri, E., D. Divsalar, P. J. McLane, and M. K. Simon, Introduction to Trellis-Coded Modulation
with Applications, New York, Macmillan, 1991.

[2] Proakis, John G., Digital Communications, Fourth edition, New York, McGraw-Hill, 2001.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
General TCM Encoder | M-PSK TCM Decoder | Rectangular QAM TCM Decoder

Functions
poly2trellis
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General TCM Encoder
Convolutionally encode binary data and map using arbitrary constellation

Library
TCM, in Digital Baseband sublibrary of Modulation

Description
The General TCM Encoder block implements trellis-coded modulation (TCM) by convolutionally
encoding the binary input signal and mapping the result to an arbitrary signal constellation. The
Signal constellation parameter lists the signal constellation points in set-partitioned order. This
parameter is a complex vector with a length, M, equal to the number of possible output symbols from
the convolutional encoder. (That is, log2M is equal to n for a rate k/n convolutional code.)

Input Signals and Output Signals

If the convolutional encoder represents a rate k/n code, then the General TCM Encoder block's input
must be a binary column vector with a length of L*k for some positive integer L.

This block accepts a binary-valued input signal. The output signal is a complex column vector of
length L. For information about the data types each block port supports, see “Supported Data Types”
on page 5-348.

Specifying the Encoder

To define the convolutional encoder, use the Trellis structure parameter. This parameter is a
MATLAB structure whose format is described in “Trellis Description of a Convolutional Code”. You
can use this parameter field in two ways:

• If you want to specify the encoder using its constraint length, generator polynomials, and possibly
feedback connection polynomials, then use a poly2trellis command within the Trellis
structure field. For example, to use an encoder with a constraint length of 7, code generator
polynomials of 171 and 133 (in octal numbers), and a feedback connection of 171 (in octal), set the
Trellis structure parameter to

poly2trellis(7,[171 133],171)
• If you have a variable in the MATLAB workspace that contains the trellis structure, then enter its

name as the Trellis structure parameter. This way is faster because it causes Simulink software
to spend less time updating the diagram at the beginning of each simulation, compared to the
usage in the previous bulleted item.

The encoder registers begin in the all-zeros state. You can configure the encoder so that it resets its
registers to the all-zeros state during the course of the simulation. To do this, set the Operation
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mode to Reset on nonzero input via port. The block then opens a second input port, labeled Rst.
The signal at the Rst port is a scalar signal. When it is nonzero, the encoder resets before processing
the data at the first input port.

Signal Constellations

The trellis-coded modulation technique partitions the constellation into subsets called cosets so as to
maximize the minimum distance between pairs of points in each coset.

Note When you set the Signal constellation parameter, you must ensure that the constellation
vector is already in set-partitioned order. Otherwise, the block might produce unexpected or
suboptimal results.

As an example, the diagram below shows one way to devise a set-partitioned order for the points for
an 8-PSK signal constellation. The figure at the top of the tree is the entire 8-PSK signal constellation,
while the eight figures at the bottom of the tree contain one constellation point each. Each level of
the tree corresponds to a different bit in a binary sequence (b3,b2,b1), while each branch in a given
level of the tree corresponds to a particular value for that bit. Listing the constellation points using
the sequence at the bottom of the tree leads to the vector

exp(2*pi*j*[0 4 2 6 1 5 3 7]/8)

which is a valid value for the Signal constellation parameter in this block.

For other examples of signal constellations in set-partitioned order, see [1] or the reference pages for
the M-PSK TCM Encoder and Rectangular QAM TCM Encoder blocks.

Coding Gains

Coding gains of 3 to 6 decibels, relative to the uncoded case can be achieved in the presence of
AWGN with multiphase trellis codes [3].
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Parameters
Trellis structure

MATLAB structure that contains the trellis description of the convolutional encoder.
Operation mode

In Continuous mode (default setting), the block retains the encoder states at the end of each
frame, for use with the next frame.

In Truncated (reset every frame) mode, the block treats each frame independently. I.e.,
the encoder states are reset to all-zeros state at the start of each frame.

In Terminate trellis by appending bits mode, the block treats each frame
independently. For each input frame, extra bits are used to set the encoder states to all-zeros
state at the end of the frame. The output length is given by y = n ⋅ (x + s)/k, where x is the
number of input bits, and s = constraint length − 1 (or, in the case of multiple constraint lengths,
s =sum(ConstraintLength(i)-1)). The block supports this mode for column vector input
signals.

In Reset on nonzero input via port mode, the block has an additional input port, labeled
Rst. When the Rst input is nonzero, the encoder resets to the all-zeros state.

Signal constellation
A complex vector that lists the points in the signal constellation in set-partitioned order.

Output data type
The output type of the block can be specified as a single or double. By default, the block sets
this to double.

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers
• ufix(1)

Output • Double-precision floating point
• Single-precision floating point

Pair Block
General TCM Decoder

References

[1] Biglieri, E., D. Divsalar, P. J. McLane, and M. K. Simon, Introduction to Trellis-Coded Modulation
with Applications, New York, Macmillan, 1991.
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[2] Proakis, John G., Digital Communications, Fourth edition, New York, McGraw-Hill, 2001.

[3] Ungerboeck, G., “Channel Coding with Multilevel/Phase Signals”, IEEE Trans. on Information
Theory, Vol IT28, Jan. 1982, pp. 55–67.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
General TCM Decoder | M-PSK TCM Encoder | Rectangular QAM TCM Encoder

Functions
poly2trellis

 General TCM Encoder

5-349



GMSK Demodulator Baseband
Demodulate GMSK-modulated data

Library
CPM, in Digital Baseband sublibrary of Modulation

Description
The GMSK Demodulator Baseband block uses a Viterbi algorithm to demodulate a signal that was
modulated using the Gaussian minimum shift keying method. The input to this block is a baseband
representation of the modulated signal.

Integer-Valued Signals and Binary-Valued Signals

This block accepts a scalar-valued or column vector input signal with a data type of single or
double. If you set the Output type parameter to Integer, then the block produces values of 1 and
-1. If you set the Output type parameter to Bit, then the block produces values of 0 and 1.

Single-Rate Processing

In single-rate processing mode, the input and output signals have the same port sample time. The
block implicitly implements the rate change by making a size change at the output when compared to
the input. The input width must be an integer multiple of the Samples per symbol parameter value,
and the input can be a column vector.

• When you set Output type to Bit, the output width is two times the number of input symbols.
• When you set Output type to Integer, the output width is the number of input symbols.

For a column vector input signal, the width of the input equals the product of the number of symbols
and the value for the Samples per symbol parameter.

Multirate Processing

In multirate processing mode, the input and output signals have different port sample times. The
input must be a scalar. The output symbol time is the product of the input sample time and the
Samples per symbol parameter value.

• When you set Output type to Bit, the output width equals the number of bits per symbol.
• When you set Output type to Integer, the output is a scalar.

Traceback Depth and Output Delays

Internally, this block creates a trellis description of the modulation scheme and uses the Viterbi
algorithm. The Traceback depth parameter, D, in this block is the number of trellis branches used to
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construct each traceback path. D influences the output delay, which is the number of zero symbols
that precede the first meaningful demodulated value in the output.

• When you set the Rate options parameter to Allow multirate processing, and the model
uses a variable-step solver or a fixed-step solver with the Tasking Mode parameter set to
SingleTasking, then the delay consists of D+1 zero symbols.

• When you set the Rate options parameter to Enforce single-rate processing, then the
delay consists of D zero symbols.

The optimal Traceback depth parameter value is dependent on minimum squared Euclidean
distance calculations. Alternatively, a typical value, dependent on the number of states, can be chosen
using the five-times-the-constraint-length rule, which corresponds to 5log2(numStates. The number of
states is determined by the following equation:

numStates =
p ⋅ 2(L− 1), f or even m

2p ⋅ 2(L− 1), f or odd m

where:

• h = m/p is the modulation index in proper rational form

• m = numerator of modulation index
• p = denominator of modulation index

• L is the Pulse length

Parameters
Output type

Determines whether the output consists of bipolar or binary values.
BT product

The product of bandwidth and time.
Pulse length (symbol intervals)

The length of the frequency pulse shape.
Symbol prehistory

A scalar or vector value that specifies the data symbols the block uses before the start of the
simulation, in reverse chronological order.

• A scalar value expands to a vector of length LP – 1. LP represents the pulse length, which is
specified by the Pulse length (symbol intervals) parameter.

• For a vector, the length must be LP – 1.

Phase offset (rad)
The initial phase of the modulated waveform.

Samples per symbol
The number of input samples that represent each modulated symbol, which must be a positive
integer. For more information, see “Signal Upsampling and Rate Changes” in Communications
Toolbox User's Guide.
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Rate options
Select the rate processing method for the block.

• Enforce single-rate processing — When you select this option, the input and output
signals have the same port sample time. The block implements the rate change by making a
size change at the output when compared to the input. The output width is the number of
symbols (which is given by dividing the input length by the Samples per symbol parameter
value when the Output type parameter is set to Integer).

• Allow multirate processing — When you select this option, the input and output signals
have different port sample times. The output period is the same as the symbol period and
equals the product of the input period and the Samples per symbol parameter value.

For more information, see Single-Rate Processing and Multirate Processing in the Description
section of this page.

Traceback depth
The number of trellis branches that the GMSK Demodulator Baseband block uses to construct
each traceback path.

Output data type
The output data type can be boolean, int8, int16, int32, or double.

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
Output • Double-precision floating point

• Boolean (When Output type set to Bit)
• 8-, 16-, and 32-bit signed integers (When Output type set to Integer)

Pair Block
GMSK Modulator Baseband

References

[1] Anderson, John B., Tor Aulin, and Carl-Erik Sundberg. Digital Phase Modulation. New York:
Plenum Press, 1986.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.
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See Also
Blocks
Viterbi Decoder | CPM Demodulator Baseband | GMSK Modulator Baseband
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GMSK Modulator Baseband
Modulate using Gaussian minimum shift keying method

Library
CPM, in Digital Baseband sublibrary of Modulation

Description
The GMSK Modulator Baseband block modulates using the Gaussian minimum shift keying method.
The output is a baseband representation of the modulated signal.

The BT product parameter represents bandwidth multiplied by time. This parameter is a
nonnegative scalar. It is used to reduce the bandwidth at the expense of increased intersymbol
interference. The Pulse length parameter measures the length of the Gaussian pulse shape, in
symbol intervals. For an explanation of the pulse shape, see the work by Anderson, Aulin, and
Sundberg among the references on page 5-356 listed below. The frequency pulse shape is defined by
the following equations.

g(t) = 1
2T Q 2πBb

t − T
2

ln(2) − Q 2πBb
t + T

2
ln(2)

Q(t) = ∫
t

∞
1
2πe−τ2/2dτ

For this block, an input symbol of 1 causes a phase shift of π/2 radians.

The group delay is the number of samples between the start of a filter's response and its peak. The
group delay that the block introduces is Pulse length/2 * Samples per symbol (using a reference of
output sample periods). For GMSK, Pulse length denotes the truncated frequency pulse length in
symbols. The net delay effect at the receiver (demodulator) is due to the Traceback depth
parameter, which in most cases would be larger than the group delay.

Integer-Valued Signals and Binary-Valued Signals

When you set the Input type parameter to Integer, then the block accepts values of 1 and -1.

When you set the Input type parameter to Bit, then the block accepts values of 0 and 1.

This block accepts a scalar-valued or column vector input signal. For a column vector input signal,
the width of the output equals the product of the number of symbols and the value for the Samples
per symbol parameter.
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Single-Rate Processing

In single-rate processing mode, the input and output signals have the same port sample time. The
block implicitly implements the rate change by making a size change at the output when compared to
the input. In this mode, the input to the block can be multiple symbols.

• When you set Input type to Integer, the input can be a column vector, the length of which is the
number of input symbols.

• When you set Input type to Bit, the input width must be an integer multiple of 2.

The output width equals the product of the number of input symbols and the Samples per symbol
parameter value.

Multirate Processing

In multirate processing mode, the input and output signals have different port sample times. In this
mode, the input to the block must be one symbol.

• When you set Input type to Integer, the input must be a scalar.
• When you set Input type to Bit, the input width must equal the number of bits per symbol.

The output sample time equals the symbol period divided by the Samples per symbol parameter
value.

Parameters
Input type

Indicates whether the input consists of bipolar or binary values.
BT product

The product of bandwidth and time.

The block uses this parameter to reduce bandwidth at the expense of increased intersymbol
interference. Enter a nonnegative scalar value for this parameter.

Pulse length (symbol intervals)
The length of the frequency pulse shape.

Symbol prehistory
A scalar or vector value that specifies the data symbols the block uses before the start of the
simulation, in reverse chronological order.

• A scalar value expands to a vector of length LP – 1. LP represents the pulse length, which is
specified by the Pulse length (symbol intervals) parameter.

• For a vector, the length must be LP – 1.

Phase offset (rad)
The initial phase of the output waveform, measured in radians.
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Samples per symbol
The number of output samples that the block produces for each integer or bit in the input, which
must be a positive integer. For all non-binary schemes, as defined by the pulse shapes, this value
must be greater than 1.

For more information, see “Signal Upsampling and Rate Changes”.
Rate options

Select the rate processing option for the block.

• Enforce single-rate processing — When you select this option, the input and output
signals have the same port sample time. The block implements the rate change by making a
size change at the output when compared to the input. The output width equals the product of
the number of symbols and the Samples per symbol parameter value.

• Allow multirate processing — When you select this option, the input and output signals
have different port sample times. The output sample time equals the symbol period divided by
the Samples per symbol parameter value.

Output data type
The output type of the block can be specified as a single or double. By default, the block sets
this to double.

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Boolean (When Input type set to Bit)
• 8-, 16-, and 32-bit signed integers (When Input type set to Integer)

Output • Double-precision floating point
• Single-precision floating point

Pair Block
GMSK Demodulator Baseband

References

[1] Anderson, John B., Tor Aulin, and Carl-Erik Sundberg. Digital Phase Modulation. New York:
Plenum Press, 1986.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.
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See Also
Blocks
CPM Modulator Baseband | GMSK Demodulator Baseband

Topics
“Compare GMSK and MSK Signals in Simulink”
“Soft Decision GMSK Demodulator”
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Gold Sequence Generator
Generate Gold sequence from set of sequences
Library: Communications Toolbox / Comm Sources / Sequence

Generators

Description
The Gold Sequence Generator block generates a binary sequence with small periodic cross-
correlation properties from a bounded set of sequences. For more information, see “Gold Sequences”
on page 5-362.

This block can output sequences that vary in length during simulation. For more information about
variable-size signals, see “Variable-Size Signal Basics” (Simulink).

These icons shows the block with all ports enabled.

Ports
Input

oSiz — Current output size
scalar | two-element row vector

Current output size, specified as a scalar or a two-element row vector. The second element of the
vector must be 1.
Example: [10 1] indicates the current output column vector will be of size 10-by-1.
Dependencies

To enable this port select the Output variable-size signals parameter and set Maximum output
size source to Dialog parameter.
Data Types: double

Ref — Reference input signal
scalar | column vector

Reference input signal, specified as a scalar, column vector.
Dependencies

To enable this port select the Output variable-size signals parameter and set Maximum output
size source to Inherit from reference input.
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Data Types: double

Rst — Reset signal
scalar | column vector

Reset signal, specified in one of these forms.

• When the output size is variable specify as a scalar.
• Otherwise, specify as a scalar or a 2-D column vector with a length equal to Samples per frame.

The output signal resets for nonzero Rst input values. For more information, see “Reset Behavior” on
page 5-365
Dependencies

To enable this port, select the Reset on nonzero input parameter.
Data Types: double

Output

Out — Output signal
binary column vector

Output signal, returned as a binary column vector. At least one element of the Initial states (1) or
Initial states (2) vector must be nonzero in order for the block to generate a nonzero sequence.
Data Types: double

Parameters
Preferred polynomial (1) — First sequence polynomial
'z^6 + z + 1' (default) | polynomial character vector | binary row vector | integer row vector

First sequence polynomial, specified in one of these forms.

• Character vector or string scalar of a polynomial whose constant term is 1. For more information,
see “Representation of Polynomials in Communications Toolbox”.

• Binary-valued row vector that represents the coefficients of the polynomial in order of descending
powers. The length of this vector must be N + 1, where N is the degree of the polynomial. The
first and last entries must be 1, indicating the leading term with degree N and a constant term of
1.

• Integer-valued row vector of elements that represent the exponents for the nonzero terms of the
polynomial in order of descending powers. The last entry must be 0, indicating a constant term of
1.

This property determines the feedback connections for the shift register of the first preferred PN
sequence generator. The degree of the first generator polynomial must equal the degree of the
second generator polynomial specified by the Preferred polynomial (2) parameter. For more
information, see “Preferred Pairs of Sequences” on page 5-364.
Example: 'z^8 + z^2 + 1', [1 0 0 0 0 0 1 0 1], and [8 2 0] represent the same
polynomial, p(z) = z8 + z2 + 1.

Initial states (1) — Initial states for first sequence polynomial
[0 0 0 0 0 1] (default) | binary vector
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Initial states of the shift register for first sequence polynomial of the preferred pair, specified as a
binary vector with length equal to the degree of Preferred polynomial (1).

Note For the block to generate a nonzero sequence, at least one element of the initial conditions for
the first or second preferred PN sequence generator must be nonzero. Specifically, the initial state of
at least one of the shift registers must be nonzero.

Preferred polynomial (2) — Second sequence polynomial
'z^6 + z^5 + z^2 + z + 1' (default) | polynomial character vector | binary row vector | integer
row vector

Second sequence polynomial, specified in one of these forms.

• Character vector or string scalar of a polynomial whose constant term is 1. For more information,
see “Representation of Polynomials in Communications Toolbox”.

• Binary-valued row vector that represents the coefficients of the polynomial in order of descending
powers. The length of this vector must be N + 1, where N is the degree of the polynomial. The
first and last entries must be 1, indicating the leading term with degree N and a constant term of
1.

• Integer-valued row vector of elements that represent the exponents for the nonzero terms of the
polynomial in order of descending powers. The last entry must be 0, indicating a constant term of
1.

This property determines the feedback connections for the shift register of the first preferred PN
sequence generator. The degree of the second generator polynomial must equal the degree of the
first generator polynomial specified by the Preferred polynomial (1) parameter. For more
information, see “Preferred Pairs of Sequences” on page 5-364.
Example: 'z^8 + z^2 + 1', [1 0 0 0 0 0 1 0 1], and [8 2 0] represent the same
polynomial, p(z) = z8 + z2 + 1.

Initial states (2) — Initial states for second sequence polynomial
[0 0 0 0 0 1] (default) | binary vector

Initial states of the shift register for second sequence polynomial of the preferred pair, specified as a
binary vector with length equal to the degree of Preferred polynomial (2).

Note For the block to generate a nonzero sequence, at least one element of the initial conditions for
the first or second preferred PN sequence generator must be nonzero. Specifically, the initial state of
at least one of the shift registers must be nonzero.

Sequence index — Sequence index
0 (default) | integer scalar in the range [–2, 2n–2]

Sequence index of the output sequence from the set of sequences, specified as an integer scalar in
the range [–2, 2n–2]. n is the degree of the preferred polynomials. For more information, see “Gold
Sequences” on page 5-362.

Shift — Offset of Gold sequence
0 (default) | integer scalar
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Offset of Gold sequence from the initial time, specified as an integer scalar.

Output variable-size signals — Option to output variable-length signals

off (default) | on

Select this parameter to enable variable-length output sequences during simulation. When you clear
this parameter, the block outputs fixed-length sequences. When you select this parameter, the block
can output variable-length sequences. For information about variable-size signals, see “Variable-Size
Signal Basics” (Simulink).

Maximum output size source — Maximum output size source

Dialog parameter (default) | Inherit from reference port

Select how to specify the maximum sequence output size.

• Dialog parameter — Select this value to configure the block to use the Maximum output size
parameter setting as the maximum permitted output sequence length. The oSiz input port
specifies the current size of the output signal, and the block output inherits the sample time from
the input signal. The input value of oSiz must be less than or equal to the Maximum output size
parameter.

• Inherit from reference port — Select this value to enable the Ref input port and configure
the block to inherit the sample time, maximum size, and current output size from the variable-
sized signal at the Ref input port. These set the maximum permitted output sequence length.

Dependencies

To enable this parameter, select Output variable-size signals.

Maximum output size — Maximum output size

[10 1] (default) | vector of the form [n 1]

Specify the maximum output size for the block. n is a positive scalar.
Example: [10 1] specifies a 10-by-1 maximum size for the output signal.

Dependencies

To enable this parameter, select Output variable-size signals and set Maximum output size
source to Dialog parameter.
Data Types: double

Sample time — Output sample time
1 (default)

Positive scalars specify the time in seconds between each sample of the output signal. If you set the
Sample time to -1, the output signal inherits the sample time from downstream. For information on
the relationship between the Sample time and Samples per frame parameters, see “Sample
Timing” on page 5-362.

Dependencies

To enable this parameter do not select Output variable-size signals.
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Samples per frame — Samples per frame
1 (default) | positive integer

Samples per frame, specified as a positive integer indicating the number of samples per frame in one
channel of the output data. For information on the relationship between Sample time and Samples
per frame, see “Sample Timing” on page 5-362.

Dependencies

To enable this parameter do not select Output variable-size signals.

Reset on nonzero input — Reset output signal
off (default) | on

Select this parameter to enable the Rst port. When a nonzero value is input at the Rst port, the
internal shift registers are reset to the original values of the Initial states (1) and Initial states (2)
parameters.

Output data type — Output data type
double (default) | boolean | Smallest unsigned integer

Output data type, specified as boolean, double, or Smallest unsigned integer.

When set to Smallest unsigned integer, the output data type is selected based on the settings
used in the “Hardware Implementation Pane” (Simulink) of the Configuration Parameters dialog box
of the model. If ASIC/FPGA is selected in the Hardware Implementation pane, the output data type is
the ideal minimum one-bit size (ufix(1)). For all other selections, it is an unsigned integer with the
smallest available word length large enough to fit one bit, usually corresponding to the size of a char
(uint8).

Block Characteristics
Data Types Boolean | double | fixed point
Multidimensional
Signals

no

Variable-Size Signals yes

More About
Sample Timing

The time between output updates is equal to the product of the Samples per frame and Sample
time parameter values. For example, if Sample time and Samples per frame each equal 1, the
block outputs a sample every second. If you increase Samples per frame to 10, then the block
outputs a 10-by-1 vector every 10 seconds. This ensures that the equivalent output rate is not
dependent on the Samples per frame parameter.

Gold Sequences

The characteristic cross-correlation properties of Gold sequences make them useful when multiple
devices are broadcasting in the same frequency range. The Gold sequences are defined using a
specified pair of sequences u and v, called a preferred pair, as defined in “Preferred Pairs of
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Sequences” on page 5-364. The u and v pair of sequences has a period N = 2n – 1, where n is the
degree of the generator polynomials specified by the parameter. The set G(u, v) of Gold sequences is
defined by

G(u, v) = u, v, u⊕ v, u⊕ Tv, u⊕ T2v, ..., u⊕ TN − 1v

T represents the operator that shifts vectors cyclically to the left by one place, and ⊕ represents
addition modulo 2. G(u,v) contains N + 2 sequences of period N.

Gold sequences have the property that the cross-correlation between any two, or between shifted
versions of them, takes on one of three values: –t(n), –1, or t(n) – 2, where

t(n) =
1 + 2(n + 1)/2 n even

1 + 2(n + 2)/2 n odd

The block uses two PN sequence generators to generate the preferred pair of sequences. The block
then XORs these sequences to produce the output Gold sequence, as shown in this figure.

The Preferred polynomial (1) and Preferred polynomial (2) parameters determine the preferred
pair of sequences and the feedback connections for the shift registers used by the PN sequence
generators to generate their output. For more details on PN sequence generation, see the “Simple
Shift Register Generator” on page 5-653 section on the PN Sequence Generator block reference
page.

This table provides examples of preferred pairs.

Degree of
Generator
Polynomials (n)

Pair of Sequences
Period (N)

Preferred Polynomial (1)
parameter value

Preferred Polynomial (2)
parameter value

5 31 [5 2 0] [5 4 3 2 0]
6 63 [6 1 0] [6 5 2 1 0]
7 127 [7 3 0] [7 3 2 1 0]
9 511 [9 4 0] [9 6 4 3 0]
10 1023 [10 3 0] [10 8 3 2 0]
11 2047 [11 2 0] [11 8 5 2 0]
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The Initial states (1) and Initial states (2) parameters are vectors specifying the initial values of
the registers corresponding to Preferred polynomial (1) and Preferred polynomial (2),
respectively.

Note At least one element of the initial states vectors ( Initial states (1) or Initial states (2)) must
be nonzero in order for the block to generate a nonzero sequence. Specifically, the initial state of at
least one of the registers must be nonzero.

You can shift the starting point of the Gold sequence with the Shift parameter, which is an integer
representing the length of the shift.

You can use an external signal to reset the values of the internal shift register to the initial state by
selecting Reset on nonzero input. This creates an input port for the external signal in the block.
The way the block resets the internal shift register depends on whether its output signal and the
reset signal are scalar or vector. For more information, see “Reset Behavior” on page 5-365.

Preferred Pairs of Sequences

Preferred pairs of sequences, u and v, comprise the set of Gold sequences G(u, v).

For a pair of sequences, u and v, of period N = 2n–1 to be a preferred pair, they must satisfy these
requirements:

• n is the degree of the generator polynomials specified by the Preferred polynomial (1) and
Preferred polynomial (2) parameters.

• n is not divisible by 4.
• v = u[q], where

• q is odd.
• q = 2k+1 or q = 22k–2k+1.
• v is obtained by sampling every qth symbol of u.

•
gcd(n, k) =

1 n ≡ 1mod2
2 n ≡ 2mod4

Sequence Index

The Sequence index parameter specifies which Gold sequence in the set G(u, v) is output. The range
of Sequence index is [–2, –1, 0, 1, 2, ..., 2n–2], where n is the degree of the generator polynomials
specified by the Preferred polynomial (1) and Preferred polynomial (2) parameters. This table
shows the correspondence between Sequence index and the output sequence.

The sequence index specified by the Sequence index parameter specifies which Gold sequence in
the set G(u, v) is output.

The set of available Gold sequences is

G(u, v) = u, v, u⊕ v, u⊕ Tv, u⊕ T2v, ..., u⊕ TN − 1v

u and v are the two preferred PN sequences, T is the operator that shifts vectors cyclically to the left
by one place, and ⊕ represents addition modulo 2. G(u,v) contains N+2 Gold sequences of period N =
2n–1.
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The range of Sequence index is [–2, 2n–2], where n is the degree of the generator polynomials
specified by the Preferred polynomial (1) and Preferred polynomial (2) parameters. The index
values -2 and -1 correspond to the first and second preferred PN sequences as generated by
Preferred polynomial (1) and Preferred polynomial (2), respectively. This table shows the
correspondence between the sequence index and the output sequence.

Sequence Index Output Sequence
–2 u
–1 v
0 u⊕ v
1 u⊕ Tv
2 u⊕ T2v
... ...
2 n –2

u⊕ T2n− 2v

Reset Behavior

Before you can reset the generator sequence, you must select the Reset on nonzero input
parameter to enable the Rst input port. Suppose that the Gold Sequence Generator block outputs [1
0 0 1 1 0 1 1] when no reset exists. This table shows the effect on the Gold Sequence Generator
block output for the parameter values indicated.

Reset Signal Reset Signal
Settings

Gold Sequence
Generator block

Reset Signal and Output
Signal

No reset • Sample time is
1

• Samples per
frame is 1

• Rst is [0 0 0 0
0 0 0 0]

• Sample time is
1

• Samples per
frame is 1

• Out is [1 0 0
1 1 0 1 1]

Scalar reset signal • Sample time is
1

• Samples per
frame is 1

• Rst is [0 0 0 1
0 0 0 0]

• Sample time =
1

• Samples per
frame is 1

Vector reset signal • Sample time is
1

• Samples per
frame is 8

• Rst is [0 0 0 1
0 0 0 0]

• Sample time is
1

• Samples per
frame is 8

For the no-reset case, the block outputs the sequence without resetting it. For the scalar and vector
reset signal cases, the block inputs the reset signal [0 0 0 1 0 0 0 0] to the Rst port. Because
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the fourth bit of the reset signal is a 1 and Sample time is 1, the block resets the sequence output at
the fourth bit.

For variable-sized outputs, the block supports only scalar reset signal inputs.

The “Gold Sequence Generator Reset Behavior” example demonstrates the reset behavior in a
Simulink model.

Version History
Introduced before R2006a

Existing models automatically update this block to current version
Behavior changed in R2020a

Starting in R2020a, Simulink no longer allows you to use the Gold Sequence Generator block version
available before R2015b.

Existing models automatically update to load the current Gold Sequence Generator block version. For
more information on block forwarding, see “Maintain Compatibility of Library Blocks Using
Forwarding Tables” (Simulink).

References
[1] Proakis, John G. Digital Communications. 5th ed. New York: McGraw Hill, 2007.

[2] Gold, R. “Maximal Recursive Sequences with 3-Valued Recursive Cross-Correlation Functions
(Corresp.).” IEEE Transactions on Information Theory 14, no. 1 (January 1968): 154–56.
https://doi.org/10.1109/TIT.1968.1054106.

[3] Gold, R. “Optimal Binary Sequences for Spread Spectrum Multiplexing (Corresp.).” IEEE
Transactions on Information Theory 13, no. 4 (October 1967): 619–21. https://doi.org/
10.1109/TIT.1967.1054048.

[4] Sarwate, D.V., and M.B. Pursley. “Crosscorrelation Properties of Pseudorandom and Related
Sequences.” Proceedings of the IEEE 68, no. 5 (1980): 593–619. https://doi.org/10.1109/
PROC.1980.11697.

[5] Dixon, Robert C. Spread Spectrum Systems: With Commercial Applications. 3rd ed. New York:
Wiley, 1994.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Kasami Sequence Generator | PN Sequence Generator
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Objects
comm.GoldSequence

 Gold Sequence Generator

5-367



Hadamard Code Generator
Generate Hadamard code from orthogonal set of codes

Library
Sequence Generators sublibrary of Comm Sources

Description
The Hadamard Code Generator block generates a Hadamard code from a Hadamard matrix, whose
rows form an orthogonal set of codes. Orthogonal codes can be used for spreading in communication
systems in which the receiver is perfectly synchronized with the transmitter. In these systems, the
despreading operation is ideal, as the codes are decorrelated completely.

The Hadamard codes are the individual rows of a Hadamard matrix. Hadamard matrices are square
matrices whose entries are +1 or -1, and whose rows and columns are mutually orthogonal. If N is a
nonnegative power of 2, theN-by-N Hadamard matrix, denoted HN, is defined recursively as follows.

H1 = 1

H2N =
HN HN
HN −HN

The N-by-N Hadamard matrix has the property that

HNHN
T = NIN

where IN is the N-by-N identity matrix.

The Hadamard Code Generator block outputs a row of HN. The output is bipolar. You specify the
length of the code, N,by the Code length parameter. The Code length must be a power of 2. You
specify the index of the row of the Hadamard matrix, which is an integer in the range [0, 1, ... , N-1],
by the Code index parameter.

Parameters
Code length

A positive integer that is a power of two specifying the length of the Hadamard code.
Code index

An integer between 0 and N-1, where N is the Code length, specifying a row of the Hadamard
matrix.

Sample time
Positive scalars specify the time in seconds between each sample of the output signal. If you set
the Sample time to -1, the output signal inherits the sample time from downstream. For
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information on the relationship between the Sample time and Samples per frame parameters,
see “Sample Timing” on page 5-371.

Samples per frame
Samples per frame, specified as a positive integer indicating the number of samples per frame in
one channel of the output data. For information on the relationship between Sample time and
Samples per frame, see “Sample Timing” on page 5-371.

Output data type
The output type of the block can be specified as an int8 or double. By default, the block sets
this to double.

Simulate using
Select the simulation mode.
Code generation

On the first model run, simulate and generate code. If the structure of the block does not
change, subsequent model runs do not regenerate the code.

If the simulation mode is Code generation, System objects corresponding to the blocks
accept a maximum of nine inputs.

Interpreted execution
Simulate model without generating code. This option results in faster start times but can slow
subsequent simulation performance.

Examples
Orthogonal Spreading for Multiuser System in Single-Path Channel

This model compares data recovery for a single-user system versus a two-user system. Transmission
data passes through a single-path AWGN channel in two data streams that are independently spread
by different orthogonal codes.

The model uses random binary data, which is BPSK modulated (real), spread by orthogonal codes of
length 64, and then transmitted over an AWGN channel. The receiver consists of a despreader
followed by a BPSK demodulator.
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Using the same transmission data, the model calculates the BER performance for recovery of the
single-user and two-user transmissions through identically configured AWGN channels.

The bit error rate results are exactly the same for the individual users in both cases. The matching
error rates result from perfect despreading due to the ideal cross-correlation properties of the
orthogonal codes selected.

To experiment further, open the model. Modify the settings to see how the performance varies with
different Hadamard codes for the individual users.

Orthogonal Spreading for Single-User System in Multipath Channel

This model simulates orthogonal spreading for a single-user system in a multipath transmission
environment. This is similar to a mobile channel environment where the signals are received over
multiple paths. Each path can have different amplitudes and delays. The receiver combines the
independent paths coherently by using diversity reception to realize gains from the multipath
transmissions received. The modeled system does not simulate fading effects and the receiver gets
perfect knowledge of the number of paths and their respective delays.

The model uses random binary data, which is BPSK modulated (real), spread by orthogonal codes of
length 64, and then transmitted over a multipath AWGN channel. The receiver consists of a
despreader, a diversity combiner, and a BPSK demodulator.
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The non-ideal, auto-correlation values of the chosen orthogonal spreading codes prevent perfect
resolution of the individual paths. As a consequence, BER performance is not improved by using
diversity combining in the receiver. For a multipath example that uses PN sequences when spreading
user data and uses diversity combining in the receiver, see “PN Spreading for Single-User System in
Multipath Channel”.

To experiment further, open the model. Modify the settings to see how the performance varies for
different path delays or with different Hadamard codes.

More About
Sample Timing

The time between output updates is equal to the product of the Samples per frame and Sample
time parameter values. For example, if Sample time and Samples per frame each equal 1, the
block outputs a sample every second. If you increase Samples per frame to 10, then the block
outputs a 10-by-1 vector every 10 seconds. This ensures that the equivalent output rate is not
dependent on the Samples per frame parameter.

Version History
Introduced before R2006a

Existing models automatically update this block to current version
Behavior changed in R2020a

Starting in R2020a, Simulink no longer allows you to use the Hadamard Code Generator block
version available before R2015b.

Existing models automatically update to load the Hadamard Code Generator block version announced
in “Source blocks output frames of contiguous time samples but do not use the frame attribute” in the
R2015b Release Notes. For more information on block forwarding, see “Maintain Compatibility of
Library Blocks Using Forwarding Tables” (Simulink).

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.
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Does not support integer only code generation.

See Also
Blocks
OVSF Code Generator | Walsh Code Generator
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Hamming Decoder
Decode Hamming code to recover binary vector data

Library
Block sublibrary of Error Detection and Correction

Description
The Hamming Decoder block recovers a binary message vector from a binary Hamming codeword
vector. For proper decoding, the parameter values in this block should match those in the
corresponding Hamming Encoder block.

If the Hamming code has message length K and codeword length N, then N must have the form 2M-1
for some integer M greater than or equal to 3. Also, K must equal N-M.

This block accepts a column vector input signal of length N. The output signal is a column vector of
length K.

The coding scheme uses elements of the finite field GF(2M). You can either specify the primitive
polynomial that the algorithm should use, or you can rely on the default setting:

• To use the default primitive polynomial, simply enter N and K as the first and second dialog
parameters, respectively. The algorithm uses gfprimdf(M) as the primitive polynomial for
GF(2M).

• To specify the primitive polynomial, enter N as the first parameter and a binary vector as the
second parameter. The vector represents the primitive polynomial by listing its coefficients in
order of ascending exponents. You can create primitive polynomials using the Communications
Toolbox gfprimfd function.

• In addition, you can specify the primitive polynomial as a character vector, for example, 'D^3 +
D + 1'.

For information about the data types each block port supports, see the “Supported Data Type” on
page 5-374 table on this page.

Parameters
Codeword length N

The codeword length N, which is also the input vector length.
Message length K, or M-degree primitive polynomial

The message length, which is also the input vector length or a binary vector that represents a
primitive polynomial for GF(2M) or a polynomial character vector.
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Supported Data Type
Port Supported Data Types
In • Double-precision floating point

• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers
• Fixed-point

Out • Double-precision floating point
• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers
• Fixed-point

Pair Block
Hamming Encoder

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Hamming Encoder

Functions
hammgen
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Hamming Encoder
Create Hamming code from binary vector data

Library
Block sublibrary of Error Detection and Correction

Description
The Hamming Encoder block creates a Hamming code with message length K and codeword length
N. The number N must have the form 2M-1, where M is an integer greater than or equal to 3. Then K
equals N-M.

This block accepts a column vector input signal of length K. The output signal is a column vector of
length N.

The coding scheme uses elements of the finite field GF(2M). You can either specify the primitive
polynomial that the algorithm should use, or you can rely on the default setting:

• To use the default primitive polynomial, simply enter N and K as the first and second dialog
parameters, respectively. The algorithm uses gfprimdf(M) as the primitive polynomial for
GF(2M).

• To specify the primitive polynomial, enter N as the first parameter and a binary vector as the
second parameter. The vector represents the primitive polynomial by listing its coefficients in
order of ascending exponents. You can create primitive polynomials using the Communications
Toolbox gfprimfd function.

• In addition, you can specify the primitive polynomial as a character vector, for example, 'D^3 +
D + 1'.

For information about the data types each block port supports, see the “Supported Data Type” on
page 5-376 table on this page.

Parameters
Codeword length N

The codeword length, which is also the output vector length.
Message length K, or M-degree primitive polynomial

The message length, which is also the input vector length or a binary vector that represents a
primitive polynomial for GF(2M) or a polynomial character vector.
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Supported Data Type
Port Supported Data Types
In • Double-precision floating point

• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers
• Fixed-point

Out • Double-precision floating point
• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers
• Fixed-point

Pair Block
Hamming Decoder

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Hamming Decoder

Functions
hammgen
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Helical Deinterleaver
Restore ordering of symbols permuted by helical interleaver

Library
Convolutional sublibrary of Interleaving

Description
The Helical Deinterleaver block permutes the symbols in the input signal by placing them in an array
row by row and then selecting groups in a helical fashion to send to the output port.

The block uses the array internally for its computations. If C is the Number of columns in helical
array parameter, then the array has C columns and unlimited rows. If N is the Group size parameter,
then the block accepts an input of length C·N at each time step and inserts them into the next N rows
of the array. The block also places the Initial condition parameter into certain positions in the top
few rows of the array (not only to accommodate the helical pattern but also to preserve the vector
indices of symbols that pass through the Helical Interleaver and Helical Deinterleaver blocks in turn).

The output consists of consecutive groups of N symbols. Counting from the beginning of the
simulation, the block selects the kth output group in the array from column k mod C. The selection is
helical because of the reduction modulo C and because the first symbol in the kth group is in row 1+
(k-1)*s, where s is the Helical array step size parameter.

This block accepts a column vector input signal containing C·N elements.

The block can accept the data types int8, uint8, int16, uint16, int32, uint32, boolean,
single, double, and fixed-point. The data type of this output will be the same as that of the input
signal.

Delay of Interleaver-Deinterleaver Pair

After processing a message with the Helical Interleaver block and the Helical Deinterleaver block,
the deinterleaved data lags the original message by

CN s(C− 1)
N

samples. Before this delay elapses, the deinterleaver output is either the Initial condition parameter
in the Helical Deinterleaver block or the Initial condition parameter in the Helical Interleaver
block.

If your model incurs an additional delay between the interleaver output and the deinterleaver input,
then the restored sequence lags the original sequence by the sum of the additional delay and the
amount in the formula above. For proper synchronization, the delay between the interleaver and
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deinterleaver must be m· C · N for some nonnegative integer m. You can use the DSP System Toolbox
Delay block to adjust delays manually, if necessary.

Parameters
Number of columns in helical array

The number of columns, C, in the helical array.
Group size

The size, N, of each group of symbols. The input width is C times N.
Helical array step size

The number of rows of separation between consecutive output groups as the block selects them
from their respective columns of the helical array.

Initial conditions
A scalar that fills the array before the first input is placed.

Pair Block
Helical Interleaver

References

[1] Berlekamp, E. R. and P. Tong. "Improved Interleavers for Algebraic Block Codes." U. S. Patent
4559625, Dec. 17, 1985.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Helical Interleaver | General Multiplexed Deinterleaver
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Helical Interleaver
Permute input symbols using helical array

Library
Convolutional sublibrary of Interleaving

Description
The Helical Interleaver block permutes the symbols in the input signal by placing them in an array in
a helical fashion and then sending rows of the array to the output port.

The block uses the array internally for its computations. If C is the Number of columns in helical
array parameter, then the array has C columns and unlimited rows. If N is the Group size parameter,
then the block accepts an input of length C·N at each time step and partitions the input into
consecutive groups of N symbols. Counting from the beginning of the simulation, the block places the
kth group in the array along column k mod C. The placement is helical because of the reduction
modulo C and because the first symbol in the kth group is in row 1+(k-1)· s, where s is the Helical
array step size parameter. Positions in the array that do not contain input symbols have default
contents specified by the Initial condition parameter.

The block sends C·N symbols from the array to the output port by reading the next N rows
sequentially. At a given time step, the output symbols might be the Initial condition parameter
value, symbols from that time step's input vector, or symbols left in the array from a previous time
step.

This block accepts a column vector input signal containing C·N elements.

The block can accept the data types int8, uint8, int16, uint16, int32, uint32, boolean,
single, double, and fixed-point. The data type of this output will be the same as that of the input
signal.

Parameters
Number of columns in helical array

The number of columns, C, in the helical array.
Group size

The size, N, of each group of input symbols. The input width is C times N.
Helical array step size

The number of rows of separation between consecutive input groups in their respective columns
of the helical array.
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Initial conditions
A scalar that fills the array before the first input is placed.

Examples
Suppose that C = 3, N = 2, the Helical array step size parameter is 1, and the Initial condition
parameter is -1. After receiving inputs of [1:6]', [7:12]', and [13:18]', the block's internal
array looks like the schematic below. The coloring of the inputs and the array indicate how the input
symbols are placed within the array. The outputs at the first three time steps are
[1; -1; -1; 2; 3; -1], [7; 4; 5; 8; 9; 6], and [13; 10; 11; 14; 15; 12]. (The
outputs are not color-coded in the schematic.)

Pair Block
Helical Deinterleaver

References

[1] Berlekamp, E. R. and P. Tong. "Improved Interleavers for Algebraic Block Codes." U. S. Patent
4559625, Dec. 17, 1985.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.
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See Also
Blocks
Helical Deinterleaver | General Multiplexed Interleaver
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Ideal Rectangular Pulse Filter
Shape input signal using ideal rectangular pulses

Library
Comm Filters

Description
The Ideal Rectangular Pulse Filter block upsamples and shapes the input signal using rectangular
pulses. The block replicates each input sample N times, where N is the Pulse length parameter.
After replicating input samples, the block can also normalize the output signal and/or apply a linear
amplitude gain.

If the Pulse delay parameter is nonzero, then the block outputs that number of zeros at the
beginning of the simulation, before starting to replicate any of the input values.

This block accepts a scalar, column vector, or matrix input signal. For information about the data
types each block port supports, see the “Supported Data Type” on page 5-385 table on this page.

The vector size, the pulse length, and the pulse delay are mutually independent. They do not need to
satisfy any conditions with respect to each other.

Single-Rate Processing

When you set the Rate options parameter to Enforce single-rate processing, the input and
output of the block have the same sample rate. To generate the output while maintaining the input
sample rate, the block resamples the data in each column of the input such that the frame size of the
output (Mo) is L times larger than that of the input (Mo = Mi*L), where L is the Pulse length
(number of samples) parameter value.

Multirate Processing

When you set the Rate options parameter to Allow multirate processing, the input and output
of the block are the same size. However, the sample rate of the output is L times faster than that of
the input (i.e. the output sample time is 1/N times the input sample time). When the block is in
multirate processing mode, you must also specify a value for the Input processing parameter:

• When you set the Input processing parameter to Elements as channels (sample based),
the block treats an M-by-N matrix input as M*N independent channels, and processes each
channel over time. The output sample period (Tso) is L times shorter than the input sample period
(Tso = Tsi/L), while the input and output sizes remain identical.

• When you set the Input processing parameter to Columns as channels (frame based), the
block treats an Mi-by-N matrix input as N independent channels. The block processes each column
of the input over time by keeping the frame size constant (Mi=Mo), while making the output frame
period (Tfo) L times shorter than the input frame period (Tfo = Tfi/L).
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Normalization Methods

You determine the block's normalization behavior using the Normalize output signal and Linear
amplitude gain parameters.

• If you clear Normalize output signal, then the block multiplies the set of replicated values by
the Linear amplitude gain parameter. This parameter must be a scalar.

• If you select Normalize output signal, then the Normalization method parameter appears.
The block scales the set of replicated values so that one of these conditions is true:

• The sum of the samples in each pulse equals the original input value that the block replicated.
• The energy in each pulse equals the energy of the original input value that the block

replicated. That is, the sum of the squared samples in each pulse equals the square of the input
value.

After the block applies the scaling specified in the Normalization method parameter, it multiplies
the scaled signal by the constant scalar value specified in the Linear amplitude gain parameter.

The output is scaled by N. If the output of this block feeds the input to the AWGN Channel block,
specify the AWGN signal power parameter to be 1/N.

Parameters
Pulse length (number of samples)

The number of samples in each output pulse; that is, the number of times the block replicates
each input value when creating the output signal.

Pulse delay (number of samples)
The number of zeros that appear in the output at the beginning of the simulation, before the
block replicates any input values.

Input processing
Specify how the block processes the input signal. You can set this parameter to one of the
following options:

• Columns as channels (frame based) — When you select this option, the block treats
each column of the input as a separate channel.

• Elements as channels (sample based) — When you select this option, the block treats
each element of the input as a separate channel.

Rate options
Specify the method by which the block should upsample and shape the input signal. You can
select one of the following options:

• Enforce single-rate processing — When you select this option, the block maintains the
input sample rate, and processes the signal by increasing the output frame size by a factor of
L. To select this option, you must set the Input processing parameter to Columns as
channels (frame based).

• Allow multirate processing — When you select this option, the block processes the
signal such that the output sample rate is L times faster than the input sample rate.
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Normalize output signal
If you select this, then the block scales the set of replicated values before applying the linear
amplitude gain.

Normalization method
The quantity that the block considers when scaling the set of replicated values. Choices are Sum
of samples and Energy per pulse. This field appears only if you select Normalize method.

Linear amplitude gain
A positive scalar used to scale the output signal.

Rounding mode
Use this parameter to specify the rounding method to be used when the result of a fixed-point
calculation does not map exactly to a number representable by the data type and scaling storing
the result. The filter coefficients do not obey this parameter; they always round to Nearest.

For more information, see Rounding Modes or “Rounding Mode: Simplest” (Fixed-Point
Designer).

Saturate on integer overflow
Select the overflow mode for fixed-point operations. The filter coefficients do not obey this
parameter; they are always saturated.

Coefficients
Choose how you specify the word length and the fraction length of the filter coefficients
(numerator and/or denominator). See “Filter Structure Diagrams” in DSP System Toolbox
Reference Guide for illustrations depicting the use of the coefficient data types in this block:

• When you select Same word length as input, the word length of the filter coefficients
match that of the input to the block. In this mode, the fraction length of the coefficients is
automatically set to the binary-point only scaling that provides you with the best precision
possible given the value and word length of the coefficients.

• When you select Specify word length, you are able to enter the word length of the
coefficients, in bits. In this mode, the fraction length of the coefficients is automatically set to
the binary-point only scaling that provides you with the best precision possible given the value
and word length of the coefficients.

• When you select Binary point scaling, you are able to enter the word length and the
fraction length of the coefficients, in bits. If applicable, you are able to enter separate fraction
lengths for the numerator and denominator coefficients.

• When you select Slope and bias scaling, you are able to enter the word length, in bits,
and the slope of the coefficients. If applicable, you are able to enter separate slopes for the
numerator and denominator coefficients. This block requires power-of-two slope and a bias of
zero.

• The filter coefficients do not obey the Rounding mode and the Saturate on integer
overflow parameters; they are always saturated and rounded to Nearest.

Product output
Use this parameter to specify how you would like to designate the product output word and
fraction lengths. See “Filter Structure Diagrams” and “Multiplication Data Types” in DSP System
Toolbox Reference Guide for illustrations depicting the use of the product output data type in this
block:
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• When you select Same as input, these characteristics match those of the input to the block.
• When you select Binary point scaling, you are able to enter the word length and the

fraction length of the product output, in bits.
• When you select Slope and bias scaling, you are able to enter the word length, in bits,

and the slope of the product output. This block requires power-of-two slope and a bias of zero.

Accumulator
Use this parameter to specify how you would like to designate the accumulator word and fraction
lengths. See “Filter Structure Diagrams” and “Multiplication Data Types” for illustrations
depicting the use of the accumulator data type in this block:

• When you select Same as input, these characteristics match those of the input to the block.
• When you select Same as product output, these characteristics match those of the

product output.
• When you select Binary point scaling, you are able to enter the word length and the

fraction length of the accumulator, in bits.
• When you select Slope and bias scaling, you are able to enter the word length, in bits,

and the slope of the accumulator. This block requires power-of-two slope and a bias of zero.

Output
Choose how you specify the output word length and fraction length:

• When you select Same as input, these characteristics match those of the input to the block.
• When you select Same as accumulator, these characteristics match those of the

accumulator.
• When you select Binary point scaling, you are able to enter the word length and the

fraction length of the output, in bits.
• When you select Slope and bias scaling, you are able to enter the word length, in bits,

and the slope of the output. This block requires power-of-two slope and a bias of zero.

Lock scaling against changes by the autoscaling tool
Select this check box to prevent any fixed-point scaling you specify in the block mask from being
overridden by the autoscaling tool in the Fixed-Point Tool.

Supported Data Type
Port Supported Data Types
In • Double-precision floating point

• Single-precision floating point
• Fixed-point

Out • Double-precision floating point
• Single-precision floating point
• Signed fixed-point
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Examples
If Pulse length is 4 and Pulse delay is the scalar 3, then the table below shows how the block treats
the beginning of a ramp (1, 2, 3,...) in several situations. (The values shown in the table do not reflect
vector sizes but merely indicate numerical values.)

Normalization Method, If Any Linear Amplitude Gain First Several Output Values
None (Normalize output
signal cleared)

1 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3,
3, 3,...

None (Normalize output
signal cleared)

10 0, 0, 0, 10, 10, 10, 10, 20, 20,
20, 20, 30, 30, 30, 30,...

Sum of samples 1 0, 0, 0, 0.25, 0.25, 0.25,
0.25, 0.5, 0.5, 0.5, 0.5,
0.75, 0.75, 0.75, 0.75,...,
where 0.25*4=1

Sum of samples 10 0, 0, 0, 2.5, 2.5, 2.5, 2.5, 5,
5, 5, 5, 7.5, 7.5, 7.5, 7.5, ...

Energy per pulse 1 0, 0, 0, 0.5, 0.5, 0.5, 0.5,
1.0, 1.0, 1.0, 1.0, 1.5, 1.5,
1.5, 1.5,..., where
(0.5)^2*4=1^2

Energy per pulse 10 0, 0, 0, 5, 5, 5, 5, 10, 10, 10,
10, 15, 15, 15, 15,...

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Integrate and Dump | Upsample
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Insert Zero
(To be removed) Distribute input elements in output vector

Note  will be removed in a future release. Use MATLAB® code in a MATLAB Function block instead.
For more information, see “Compatibility Considerations”.

Library
Sequence Operations

Description
The Insert Zero block constructs an output vector by inserting zeros among the elements of the input
vector. The input signal can be real or complex. Both the input signal and the Insert zero vector
parameter are column vector signals. The number of 1s in the Insert zero vector parameter must be
evenly divisible by the input data length. If the input vector length is greater than the number of 1s in
the Insert zero vector parameter, then the block repeats the insertion pattern until it has placed all
input elements in the output vector.

The block determines where to place the zeros by using the Insert zero vector parameter.

• For each 1 the block places the next element of the input vector in the output vector
• For each 0 the block places a 0 in the output vector

The block accepts the following data types: int8, uint8, int16, uint16, int32, uint32, boolean,
single, double, and fixed-point. The output signal inherits its data type from the input signal.

To implement punctured coding using the Puncture and Insert Zero blocks, use the same vector for
the Insert zero vector parameter in this block and for the Puncture vector parameter in the
Puncture block.

Parameters
Insert zero vector

A binary vector with a pattern of 0s and 1s that indicate where the block places either 0s or input
vector elements in the output vector.

Version History
Introduced before R2006a
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Insert Zero will be removed
Warns starting in R2021a

• Insert Zero will be removed in a future release. Use MATLAB code in a MATLAB Function block
instead.

• This code can be used in a MATLAB Function block to insert zeros into a data stream.

function y = fcn(u,insertZeroVector)
    numSeg = length(u)/sum(insertZeroVector);
    c = zeros(length(insertZeroVector), numSeg,'like',u);
    c(logical(insertZeroVector),:) = reshape(u,[],numSeg);
    y = c(:);
end

As with Insert Zero, the input length must be an integer multiple of the number of ones in the
Insert zero vector parameter.

• For an example using this code, see “Insert Zeros into Random Number Stream”.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Puncture

Topics
“Insert Zeros into Random Number Stream”
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Integer-Input RS Encoder
Create Reed-Solomon code from integer vector data
Library: Communications Toolbox / Error Detection and Correction /

Block

Description
The Integer-Input RS Encoder block creates a Reed-Solomon code.

The symbols for the code are integers between 0 and 2M-1, which represent elements of the finite
field GF(2M). The default value of M is the smallest integer that is greater than or equal to log2(N+1),
that is, ceil(log2(N+1)). You can change the default value of M by specifying the primitive
polynomial for GF(2M), as described in “Specify the Primitive Polynomial” on page 5-393 below.
Restrictions on M and N are described in “Restrictions on M and the Codeword Length N” on page 5-
393.

The input and output are integer-valued signals that represent messages and codewords, respectively.
For more information, see “Input and Output Signal Length in RS Blocks” on page 5-392.

An (N, K) Reed-Solomon code can correct up to floor((N-K)/2) symbol errors (not bit errors) in
each codeword.

Suppose M = 3, N = 23-1 = 7, and K = 5. Then a message is a vector of length 5 whose entries are
integers between 0 and 7. A corresponding codeword is a vector of length 7 whose entries are
integers between 0 and 7. The following figure illustrates possible input and output signals to this
block when Codeword length N is set to 7, Message length K is set to 5, and the default primitive
and generator polynomials are used.

Ports
Input

In — Message
integer column vector
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Message, specified as one of the following:

• When there is no message shortening, a (NC×K)-by-1 integer column vector.
• When there is message shortening, a (NC×S)-by-1 integer column vector.

NC is the number of message words, K is the Message length K, and S is the Shortened message
length S.

Note The number of decoded message words equals the number of codewords.

For more information, see “Input and Output Signal Length in RS Blocks” on page 5-392.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Output

Out — Reed-Solomon codeword
integer column vector

Reed-Solomon codeword, returned as an (NC×(N – K + S – P)-by-1 integer column vector. NC is the
number of codewords, N is the Codeword length N, K is the Message length K, S is the
Shortened message length S, P is the number of punctures per codeword.

For more information, see “Input and Output Signal Length in RS Blocks” on page 5-392.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

For more information, see “Supported Data Types” on page 5-394.

Parameters
Codeword length N — Codeword length

7 (default) | integer

Codeword length, specified as an integer.

For more information, see “Restrictions on M and the Codeword Length N” on page 5-393 and “Input
and Output Signal Length in RS Blocks” on page 5-392.

Message length K — Message word length

3 (default) | integer

Message word length, specified as an integer in the range [1, N–2], where N is the codeword length.

Shortened message length S — Shortened message word length

3 (default) | integer

Shortened message word length, specified as an integer, such that S ≤ K. When Shortened message
length S < Message length K, the Reed-Solomon code is shortened.
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You still specify N and K values for the full-length (N, K) code but the decoding is shortened to an (N–
K+S, S) code.

Dependencies

To enable this parameter, select Specify shortened message length.

Generator polynomial — Generator polynomial

rsgenpoly(7, 3, [], [], 'double') (default) | polynomial character vector | binary row vector
| binary Galois row vector

Generator polynomial with values in the range [0 to 2M–1], in order of descending power, specified as
one of the following:

• A polynomial character vector. For more information, see “Representation of Polynomials in
Communications Toolbox”.

• An integer row vector that represents the coefficients of the generator polynomial in order of
descending power.

• An integer Galois row vector that represents the coefficients of the generator polynomial in order
of descending power.

Each coefficient is an element of the Galois field defined by the primitive polynomial. For more
information, see “Specify the Generator Polynomial” on page 5-393.
Example: [1 3 1 2 3], which is equivalent to rsgenpoly(7,3)

Dependencies

To enable this parameter, select Specify generator polynomial.

Primitive polynomial — Primitive polynomial

'X^3 + X + 1' (default) | polynomial character vector | binary row vector

Primitive polynomial in order of descending power. This polynomial is of order M and defines the
finite Galois field GF(2M) corresponding to the integers that form message words and codewords.
Specify the primitive polynomial as one of the following:

• A polynomial character vector. For more information, see “Representation of Polynomials in
Communications Toolbox”.

• A binary row vector that represents the coefficients of the generator polynomial.

For more information, see “Specify the Primitive Polynomial” on page 5-393.
Example: 'X^3 + X + 1', which is the primitive polynomial used for a (7,3) code, ppoly =
primpoly(3,'nodisplay'); int2bit(ppoly,ceil(log2(max(ppoly))))'

Dependencies

To enable this parameter, select Specify primitive polynomial.

Puncture vector — Puncture vector

[ones(2,1); zeros(2,1)] (default) | binary column vector
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Puncture vector, specified as an (N–K)-by-1 binary column vector. Element indices with 1s represent
data symbol indices that pass through the block unaltered. Element indices with 0s represent data
symbol indices that get punctured, or removed, from the data stream. For more information, see
“Puncturing and Erasures” on page 5-394.

Note If the encoder is processing multiple codewords per frame, then the same puncture pattern
holds for all codewords.

Dependencies

To enable this parameter, select Puncture code.

Block Characteristics
Data Types double | integer | single
Multidimensional
Signals

no

Variable-Size Signals no

More About
Input and Output Signal Length in RS Blocks

The Reed-Solomon code has a message word length, K, or shortened message word length, S. The
codeword length is N – K + S – P, where N is the full codeword length and P is the number of
punctures per codeword. When there is no message shortening, the codeword length expression
reduces to N – P, because K = S. If the decoder is processing multiple codewords per frame, then the
same puncture pattern holds for all codewords.

This table provides expressions for the input and output signal lengths for the Reed-Solomon encoder
and decoder.

The notation y = NC × x denotes that y is an integer multiple of x.

 Input, Erasure, and Output Vector Lengths
RS Block Coder No Message Shortening Used Message Shortening Used
Integer-Input RS Encoder Input Length (symbols):

NC × K

Output Length (symbols):

NC × (N–P)

Input Length (symbols):

NC × S

Output Length (symbols):

NC × (N–K+S–P)
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 Input, Erasure, and Output Vector Lengths
RS Block Coder No Message Shortening Used Message Shortening Used
Integer-Output RS Decoder Input Length (symbols):

NC × (N–P)

Erasures Length (symbols):

NC × (N–P)

Output Length (symbols):

NC × K

Input Length (symbols):

NC × (N–K+S–P)

Erasures Length (symbols):

NC × (N–K+S–P)

Output Length (symbols):

NC × S

• N is the codeword length.
• K is the message word length.
• S is the shortened message word length.
• NC is the number of codewords (and message words).
• P is the number of punctures, and is equal to the number of zeros in the puncture vector.
• M is the degree of the primitive polynomial. Each group of M bits represents an integer between 0

and 2M–1 that belongs to the finite Galois field GF(2M).

For more information on representing data for Reed-Solomon codes, see “Integer Format (Reed-
Solomon Only)”.

Restrictions on M and the Codeword Length N

• If you do not select Specify primitive polynomial, valid values for the codeword length, N, are
from 7 to 65535. In this case, the block uses the default primitive polynomial of degree M =
ceil(log2(N+1)). You can display the default primitive polynomial by running
primpoly(ceil(log2(N+1))).

• If you select Specify primitive polynomial, valid values for the primitive polynomial degree, M,
are from 3 to 16. The valid values for N in this case are from 7 to 2M–1. Selecting Specify
primitive polynomial enables you to specify the primitive polynomial that defines the finite field
GF(2M), which corresponds to the values that form message words and codewords.

Specify the Primitive Polynomial

You can specify the primitive polynomial that defines the finite field GF(2M), corresponding to the
integers that form messages and codewords. To do so, first select Specify primitive polynomial.
Then, in the Primitive polynomial text box, enter a binary row vector that represents a primitive
polynomial over GF(2M), in descending order of powers. For example, to specify the polynomial x3+x
+1, enter the vector [1 0 1 1].

If you do not select Specify primitive polynomial, the block uses the default primitive polynomial of
degree M = ceil(log2(N+1)). You can display the default polynomial by entering
primpoly(ceil(log2(N+1))) at the MATLAB prompt.

Specify the Generator Polynomial

Select Specify generator polynomial to enable the Generator polynomial parameter for
specifying the generator polynomial of the Reed-Solomon code. Enter an integer row vector with
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element values from 0 to 2M-1. The vector represents a polynomial, in descending order of powers,
whose coefficients are elements of GF(2M) represented in integer format. For more information about
integer and binary format, see “Integer Format (Reed-Solomon Only)”. The generator polynomial
must be equal to a polynomial with this factored form:

g(x) = (x+αb)(x+αb+1)(x+αb+2)...(x+αb+N-K-1)

α is the primitive element of the Galois field over which the input message is defined, and b is an
integer.

If you do not select Specify generator polynomial, the block uses the default generator polynomial,
corresponding to b=1, for Reed-Solomon encoding. You can display the default generator polynomial
by running rsgenpoly.

• If you are using the default primitive polynomial (Specify primitive polynomial is not selected),
the default generator polynomial is rsgenpoly(N,K), where N = 2M-1.

• If you are not using the default primitive polynomial (Specify primitive polynomial is selected)
and you specify the primitive polynomial as poly, the generator polynomial is
rsgenpoly(N,K,poly).

Note The degree of the generator polynomial is N − K, where N is the codeword length and K is the
message word length.

Puncturing and Erasures

1s and 0s have precisely opposite meanings for the puncture and erasure vectors.

In a puncture vector,

• 1 means that the data symbol is passed through the block unaltered.
• 0 means that the data symbol is to be punctured, or removed, from the data stream.

In an erasure vector,

• 1 means that the data symbol is to be replaced with an erasure symbol.
• 0 means that the data symbol is passed through the block unaltered.

These conventions apply to both the encoder and the decoder. For more information, see “Shortening,
Puncturing, and Erasures”.

Supported Data Types

Port Supported Data Types
In • Double-precision floating point

• Single-precision floating point
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers
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Port Supported Data Types
Out • Double-precision floating point

• Single-precision floating point
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Pair Block

Integer-Output RS Decoder

Algorithms
This object implements the algorithm, inputs, and outputs described in “Algorithms for BCH and RS
Errors-only Decoding”.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Integer-Output RS Decoder | Binary-Input RS Encoder

Objects
comm.RSEncoder

Functions
rsenc | rsgenpoly | primpoly
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Integer-Input RS Encoder HDL Optimized
Encode data using a Reed-Solomon encoder
Library: Communications Toolbox HDL Support / Error Detection and

Correction / Block

Description
The Integer-Input RS Encoder HDL Optimized block encodes data using the RS encoder. The RS
encoding follows the same standards as any other cyclic redundancy code. Use this block to model
communications system forward error correction (FEC) codes. The block provides an architecture
suitable for HDL code generation and hardware deployment.

For more information about the RS encoder, see the Integer-Input RS Encoder block. For more
information on representing data for RS codes, see “Integer Format (Reed-Solomon Only)”.

Ports
Input

dataIn — Input data
scalar

Input data, specified as a scalar representing one symbol. For binary point scaling, the input data
type must be an integer or fixdt. The word length of each symbol must be equal to
ceil(log2(Codeword length) + 1. The double data type is allowed for simulation, but not for HDL
code generation.
Data Types: double | int8 | int16 | int32 | int64 | fixed point

startIn — Start of input frame indicator
scalar

Start of input frame indicator, specified as a Boolean scalar.
Data Types: Boolean

endIn — End of input frame indicator
scalar

End of input frame indicator, specified as a Boolean scalar.
Data Types: Boolean

validIn — Valid input data indicator
scalar

Valid input data indicator, specified as a Boolean scalar.
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This is a control signal that indicates if the data on the dataIn port is valid.
Data Types: Boolean

Output

dataOut — Output data
scalar

Output data, returned as a scalar. This output data width is the same as the input data width.
Data Types: double | int8 | int16 | int32 | int64 | fixed point

startOut — Start of output frame indicator
scalar

Start of output frame indicator, returned as a Boolean scalar.
Data Types: Boolean

endOut — End of output frame indicator
scalar

End of output frame indicator, returned as a Boolean scalar.
Data Types: Boolean

validOut — Valid output data indicator
scalar

Valid output data indicator, returned as a Boolean scalar.

This is a control signal that indicates if the data on the dataOut port is valid.
Data Types: Boolean

Parameters
Codeword length — Length of codeword

7 (default) | range from 7 to 65, 535

Specify the codeword length.

The codeword length N must be an integer equal to 2M – 1, where M is an integer in the range from 3
to 16. For more information on representing data for RS codes, see “Integer Format (Reed-Solomon
Only)”.

Message length — Length of message

3 (default) | positive integer

Specify the length of the message.

For more information on representing data for RS codes, see “Integer Format (Reed-Solomon Only)”.
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Each input frame, that is, the number of valid data samples between startIn and endIn port values,
must contain more than N– K symbols and less than or equal to K symbols. A shortened code is
inferred anytime the number of input data samples in a frame is less than K.

Source of primitive polynomial — Primitive polynomial source

Auto (default) | Property

Specify the source of the primitive polynomial.

• Select Auto to specify the primitive polynomial based on the Codeword length parameter value.
The degree of the primitive polynomial is calculated as M = ceil(log2(Codeword length). .

• Select Property to specify the primitive polynomial using the Primitive polynomial parameter.

Primitive polynomial — Primitive polynomial provider

[ 1 0 1 1 ] (default) | binary row vector

Specify a binary row vector representing the primitive polynomial in descending order of powers.

For more information on how to specify a primitive polynomial, see “Primitive Polynomials and
Element Representations”.

Dependencies

To enable this parameter, set the Source of primitive polynomial parameter to Property.

Source of puncture pattern — Puncture pattern source

None (default) | Property

Select Property to enable the Puncture pattern vector parameter.

Puncture pattern vector — Puncture vector

[ones(2,1); zeros(2,1)] (default) | binary column vector

Specify a column vector of length N–K. In a puncture vector, a value of 1 represents that the data
symbol passes unaltered. A value of 0 represents that the data symbol is punctured, or removed, from
the data stream.

Dependencies

To enable this parameter, set the Source of puncture pattern parameter to Property.

Source of B, the starting power for roots of the primitive polynomial —
Starting power for roots of primitive polynomial

Auto (default) | Property

Specify the source of the starting power for roots of the primitive polynomial.

• Select Property to enable the B value parameter.
• Select Auto, to use the B value parameter default value of 1.
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B value — Starting exponent of roots

1 (default) | positive integer

The starting exponent of the roots.

Dependencies

To enable this parameter, set the Source of B, the starting power for roots of the primitive
polynomial parameter to Property.

Algorithms
This figure shows a sample output of the Integer-Input RS Encoder HDL Optimized block with a
default configuration.

Version History
Introduced in R2012b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Not recommended for production code.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).
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InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Restrictions

You cannot generate HDL for this block inside a Resettable Synchronous Subsystem.

See Also
Blocks
Integer-Input RS Encoder | Integer-Output RS Decoder HDL Optimized

Objects
comm.HDLRSEncoder
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Integer-Output RS Decoder
Decode Reed-Solomon code to recover integer vector data
Library: Communications Toolbox / Error Detection and Correction /

Block

Description
The Integer-Output RS Decoder block recovers a message vector from a Reed-Solomon codeword
vector. For proper decoding, the parameter values in this block must match those in the
corresponding Integer-Input RS Encoder block.

The Reed-Solomon code has message length K, and codeword length N – number of punctures. You
specify N and K directly in the block dialog. The symbols for the code are integers in the range [0,
2M-1], which represent elements of the finite field GF(2M). Restrictions on M and N are described in
“Restrictions on the M and the Codeword Length N” on page 5-406 below.

This icon shows optional ports.

The input and output are integer-valued signals that represent codewords and messages, respectively.
For more information, see “Input and Output Signal Length in RS Blocks” on page 5-405. The block
inherits the output data type from the input data type. For information about the data types each
block port supports, see “Supported Data Types” on page 5-407.

For more information on representing data for Reed-Solomon codes, see the section “Integer Format
(Reed-Solomon Only)”.

If the decoder is processing multiple codewords per frame, then the same puncture pattern holds for
all codewords.

The default value of M is ceil(log2(N+1)), that is, the smallest integer greater than or equal to
log2(N+1). You can change the value of M from the default by specifying the primitive polynomial for
GF(2M), as described in “Specify the Primitive Polynomial” on page 5-406 below.

You can also specify the generator polynomial for the Reed-Solomon code, as described in “Specify
the Generator Polynomial” on page 5-406.

An (N, K) Reed-Solomon code can correct up to floor((N-K)/2) symbol errors (not bit errors) in
each codeword.

If decoding fails, the message portion of the decoder input is returned unchanged as the decoder
output.
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The sample times of the input and output signals are equal.

Ports
Input

In — Reed-Solomon codeword
integer column vector

Reed-Solomon codeword, specified as an (NC×(N – K + S – P)-by-1 integer column vector. NC is the
number of codewords, N is the Codeword length N, K is the Message length K, S is the
Shortened message length S, P is the number of punctures per codeword.

For more information, see “Input and Output Signal Length in RS Blocks” on page 5-405.
Data Types: single | double | integer

Era — Erasure vector
binary column vector

Erasure vector, specified as a binary column vector input signal with the same size as the input Reed-
Solomon codeword.

Erasure values of 1 correspond to erased bits in the same position in the codeword. Values of 0
correspond to bits that are not erased. For more information, see “Puncturing and Erasures” on page
5-407.
Dependencies

To enable this port, select Enable erasures input port.
Data Types: double | Boolean

Output

Out — Decoded message
integer column vector

Decoded message, returned as one of the following:

• When there is no message shortening, a (NC×K)-by-1 integer column vector.
• When there is message shortening, a (NC×S)-by-1 integer column vector.

NC is the number of message words, K is the Message length K (symbols), and S is the Shortened
message length S (symbols).

Note The number of decoded message words equals the number of codewords.

For more information, see “Input and Output Signal Length in RS Blocks” on page 5-405.

Err — Decoding errors
integer vector

Symbol decoding errors, returned as an integer vector with NC elements, where NC is the number of
codewords. This port indicates the number of symbol errors detected during decoding of each
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codeword. A negative integer indicates that the block detected more errors than it could correct by
using the specified coding scheme.

Note An (N,K) Reed-Solomon code can correct up to floor((N-K)/2) symbol errors (not bit errors)
in each codeword. When a received codeword contains more than (N-K)/2 symbol errors, a decoding
failure occurs.

Dependencies

To enable this port, select Output number of corrected symbol errors.
Data Types: double

For more information, see “Supported Data Types” on page 5-407.

Parameters
Codeword length N — Codeword length

7 (default) | integer

Codeword length, specified as an integer.

For more information, see“Restrictions on the M and the Codeword Length N” on page 5-406 and
“Input and Output Signal Length in RS Blocks” on page 5-405.

Message length K — Message word length

3 (default) | integer

Message word length, specified as an integer in the range [1, N–2], where N is the codeword length.

Shortened message length S — Shortened message word length

3 (default) | integer

Shortened message word length, specified as an integer, such that S ≤ K. When Shortened message
length S < Message length K, the Reed-Solomon code is shortened.

You still specify N and K values for the full-length (N, K) code but the decoding is shortened to an (N–
K+S, S) code.

Dependencies

To enable this parameter, select Specify shortened message length.

Generator polynomial — Generator polynomial

rsgenpoly(7, 3, [], [], 'double') (default) | polynomial character vector | binary row vector
| binary Galois row vector

Generator polynomial with values in the range [0, 2M–1], in order of descending power, specified as
one of the following:
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• A polynomial character vector. For more information, see “Representation of Polynomials in
Communications Toolbox”.

• An integer row vector that represents the coefficients of the generator polynomial in order of
descending power.

• An integer Galois row vector that represents the coefficients of the generator polynomial in order
of descending power.

Each coefficient is an element of the Galois field defined by the primitive polynomial. For more
information, see “Specify the Generator Polynomial” on page 5-393.
Example: [1 3 1 2 3], which is equivalent to rsgenpoly(7,3)

Dependencies

To enable this parameter, select Specify generator polynomial.

Primitive polynomial — Primitive polynomial

'X^3 + X + 1' (default) | polynomial character vector | binary row vector

Primitive polynomial in order of descending power. This polynomial is of order M and defines the
finite Galois field GF(2M) corresponding to the integers that form message words and codewords.
Specify the primitive polynomial as one of the following:

• A polynomial character vector. For more information, see “Representation of Polynomials in
Communications Toolbox”.

• A binary row vector that represents the coefficients of the generator polynomial.

For more information, see “Specify the Primitive Polynomial” on page 5-393.
Example: 'X^3 + X + 1', which is the primitive polynomial used for a (7,3) code, ppoly =
primpoly(3,'nodisplay'); int2bit(ppoly,ceil(log2(max(ppoly))))'

Dependencies

To enable this parameter, select Specify primitive polynomial.

Puncture vector — Puncture vector

[ones(2,1); zeros(2,1)] (default) | binary column vector

Puncture vector, specified as an (N–K)-by-1 binary column vector. Element indices with 1s represent
data symbol indices that pass through the block unaltered. Element indices with 0s represent data
symbol indices that get punctured, or removed, from the data stream. For more information, see
“Puncturing and Erasures” on page 5-407.

Note If the encoder is processing multiple codewords per frame, then the same puncture pattern
holds for all codewords.

Dependencies

To enable this parameter, select Puncture code.
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Enable erasures input port — Enable erasures input port

off (default) | on

Selecting this check box enables the erasures port, Era. For more information, see “Puncturing and
Erasures” on page 5-407.

Output number of corrected symbol errors — Enable port to output number of
corrected symbol errors

off (default) | on

Selecting this check box enables an additional output port, Err, which indicates the number of
symbol errors the block corrected in the input codeword.

Block Characteristics
Data Types double | integer | single
Multidimensional
Signals

no

Variable-Size Signals no

More About
Input and Output Signal Length in RS Blocks

The Reed-Solomon code has a message word length, K, or shortened message word length, S. The
codeword length is N – K + S – P, where N is the full codeword length and P is the number of
punctures per codeword. When there is no message shortening, the codeword length expression
reduces to N – P, because K = S. If the decoder is processing multiple codewords per frame, then the
same puncture pattern holds for all codewords.

This table provides expressions for the input and output signal lengths for the Reed-Solomon encoder
and decoder.

The notation y = NC × x denotes that y is an integer multiple of x.

 Input, Erasure, and Output Vector Lengths
RS Block Coder No Message Shortening Used Message Shortening Used
Integer-Input RS Encoder Input Length (symbols):

NC × K

Output Length (symbols):

NC × (N–P)

Input Length (symbols):

NC × S

Output Length (symbols):

NC × (N–K+S–P)
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 Input, Erasure, and Output Vector Lengths
RS Block Coder No Message Shortening Used Message Shortening Used
Integer-Output RS Decoder Input Length (symbols):

NC × (N–P)

Erasures Length (symbols):

NC × (N–P)

Output Length (symbols):

NC × K

Input Length (symbols):

NC × (N–K+S–P)

Erasures Length (symbols):

NC × (N–K+S–P)

Output Length (symbols):

NC × S

• N is the codeword length.
• K is the message word length.
• S is the shortened message word length.
• NC is the number of codewords (and message words).
• P is the number of punctures, and is equal to the number of zeros in the puncture vector.
• M is the degree of the primitive polynomial. Each group of M bits represents an integer between 0

and 2M–1 that belongs to the finite Galois field GF(2M).

For more information on representing data for Reed-Solomon codes, see “Integer Format (Reed-
Solomon Only)”.

Restrictions on the M and the Codeword Length N

• If you do not select Specify primitive polynomial, valid values for the codeword length, N, are
from 7 to 65535. In this case, the block uses the default primitive polynomial of degree M =
ceil(log2(N+1)). You can display the default primitive polynomial by running
primpoly(ceil(log2(N+1))).

• If you select Specify primitive polynomial, valid values for the primitive polynomial degree, M,
are from 3 to 16. The valid values for N in this case are from 7 to 2M–1. Selecting Specify
primitive polynomial enables you to specify the primitive polynomial that defines the finite field
GF(2M), which corresponds to the values that form message words and codewords.

Specify the Primitive Polynomial

You can specify the primitive polynomial that defines the finite field GF(2M), corresponding to the
integers that form messages and codewords. To do so, first select Specify primitive polynomial.
Then, in the Primitive polynomial text box, enter a binary row vector that represents a primitive
polynomial over GF(2M), in descending order of powers. For example, to specify the polynomial x3+x
+1, enter the vector [1 0 1 1].

If you do not select Specify primitive polynomial, the block uses the default primitive polynomial of
degree M = ceil(log2(N+1)). You can display the default polynomial by entering
primpoly(ceil(log2(N+1))) at the MATLAB prompt.

Specify the Generator Polynomial

Select Specify generator polynomial to enable the Generator polynomial parameter for
specifying the generator polynomial of the Reed-Solomon code. Enter an integer row vector with
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element values from 0 to 2M-1. The vector represents a polynomial, in descending order of powers,
whose coefficients are elements of GF(2M) represented in integer format. For more information about
integer and binary format, see “Integer Format (Reed-Solomon Only)”. The generator polynomial
must be equal to a polynomial with this factored form:

g(x) = (x+αb)(x+αb+1)(x+αb+2)...(x+αb+N-K-1)

α is the primitive element of the Galois field over which the input message is defined, and b is an
integer.

If you do not select Specify generator polynomial, the block uses the default generator polynomial,
corresponding to b=1, for Reed-Solomon encoding. You can display the default generator polynomial
by running rsgenpoly.

• If you are using the default primitive polynomial (Specify primitive polynomial is not selected),
the default generator polynomial is rsgenpoly(N,K), where N = 2M-1.

• If you are not using the default primitive polynomial (Specify primitive polynomial is selected)
and you specify the primitive polynomial as poly, the generator polynomial is
rsgenpoly(N,K,poly).

Note The degree of the generator polynomial is N − K, where N is the codeword length and K is the
message word length.

Puncturing and Erasures

1s and 0s have precisely opposite meanings for the puncture and erasure vectors.

In a puncture vector,

• 1 means that the data symbol is passed through the block unaltered.
• 0 means that the data symbol is to be punctured, or removed, from the data stream.

In an erasure vector,

• 1 means that the data symbol is to be replaced with an erasure symbol.
• 0 means that the data symbol is passed through the block unaltered.

These conventions apply to both the encoder and the decoder. For more information, see “Shortening,
Puncturing, and Erasures”.

Supported Data Types

Port Supported Data Types
In • Double-precision floating point

• Single-precision floating point
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers
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Port Supported Data Types
Out • Double-precision floating point

• Single-precision floating point
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Era • Double-precision floating point
• Boolean

Err • Double-precision floating point
• Single-precision floating point
• 8-, 16-, and 32-bit signed integers
• If the input is uint8, uint16, or uint32, then the number of errors

output datatype is int8, int16, or int32, respectively.

Pair Block

Integer-Input RS Encoder

Algorithms
This block uses the Berlekamp-Massey decoding algorithm. For information about this algorithm, see
“Algorithms for BCH and RS Errors-only Decoding”.

Version History
Introduced before R2006a

References
[1] Wicker, Stephen B., Error Control Systems for Digital Communication and Storage. Upper Saddle

River, N.J.: Prentice Hall, 1995.

[2] Berlekamp, Elwyn R., Algebraic Coding Theory, New York: McGraw-Hill, 1968.

[3] Clark, George C., Jr., and J. Bibb Cain. Error-Correction Coding for Digital Communications, New
York: Plenum Press, 1981.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Binary-Output RS Decoder

Objects
comm.RSDecoder
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Functions
rsdec | rsgenpoly | primpoly
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Integer-Output RS Decoder HDL Optimized
Decode data using Reed-Solomon (RS) decoder
Library: Communications Toolbox HDL Support / Error Detection and

Correction / Block

Description
The Integer-Output RS Decoder HDL Optimized block decodes data using RS decoder. The RS
decoding follows the same standards as any other cyclic redundancy code. Use this block to model
communications system forward error correction (FEC) codes. The block provides an architecture
suitable for HDL code generation and hardware deployment.

For more information about the RS decoder, see the Integer-Output RS Decoder block. For more
information on representing data for RS codes, see “Integer Format (Reed-Solomon Only)”.

Ports
Input

dataIn — Input data
scalar

Input data, specified as a scalar representing one symbol. For binary point scaling, the input data
type must be an integer or fixdt. The double data type is allowed for simulation, but not for HDL
code generation.
Data Types: double | int8 | int16 | int32 | int64 | fixed point

startIn — Start of input frame indicator
scalar

Start of input frame indicator, specified as a Boolean scalar.
Data Types: Boolean

endIn — End of input frame indicator
scalar

End of input frame indicator, specified as a Boolean scalar.
Data Types: Boolean

validIn — Valid input data indicator
scalar

Valid input data indicator, specified as a Boolean scalar.
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This is a control signal that indicates if the data on the dataIn port is valid.
Data Types: Boolean

Output

dataOut — Decoded message data
scalar

Decoded message data, returned as a scalar. This output data width is the same as the input data
width.
Data Types: double | int8 | int16 | int32 | int64 | fixed point

startOut — Start of output frame indicator
scalar

Start of output frame indicator, returned as a Boolean scalar.
Data Types: Boolean

endOut — End of output frame indicator
scalar

End of output frame indicator, returned as a Boolean scalar.
Data Types: Boolean

validOut — Valid output data indicator
scalar

Valid output data indicator, returned as a Boolean scalar.

This is a control signal that indicates if the data on the dataOut port is valid.
Data Types: Boolean

errOut — Indications of corruption of received data
scalar

Indications of corruption of the received data, returned as a Boolean scalar.

When this value is 1 (true) , the output contains at least one error. When this value is 0 (false), the
output contains zero errors.

If the number of errors in the input codeword is greater than (Codeword length – Message
length)/2, the block outputs data without correcting the errors and sets the errOut port to 1 (true)
to indicate that errors that cannot be corrected exist in the input codeword.
Data Types: Boolean

numErrors — Number of corrected errors
nonnegative scalar

Number of corrected errors, returned as a nonnegative scalar.

The maximum number of errors an RS code can correct is equal to (Codeword length – Message
length)/2. If the number of errors in the input codeword is greater than (Codeword length –
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Message length)/2, the block outputs data without correcting the errors and sets the numErrors
port to 0 to indicate that none of those errors can be corrected.

Dependencies

To enable this port, select the Output number of corrected symbol errors parameter.
Data Types: uint8

Parameters
Codeword length — Length of codeword

7 (default) | range from 7 to 65, 535

Specify the codeword length.

The codeword length N must be an integer equal to 2M – 1, where M is an integer in the range from 3
to 16. For more information on representing data for RS codes, see “Integer Format (Reed-Solomon
Only)”.

Message length — Length of message

3 (default) | positive integer

Specify the message length.

For more information on representing data for RS codes, see “Integer Format (Reed-Solomon Only)”.

Source of primitive polynomial — Primitive polynomial source

Auto (default) | Property

Specify the source of the primitive polynomial.

• Select Auto to specify the primitive polynomial based on the Codeword length parameter value.
The degree of the primitive polynomial is calculated as M = ceil(log2(Codeword length). .

• Select Property to specify the primitive polynomial using the Primitive polynomial parameter.

Primitive polynomial — Primitive polynomial

[ 1 0 1 1 ] (default) | binary row vector

Specify a binary row vector representing the primitive polynomial in descending order of powers.

For more information on how to specify a primitive polynomial, see “Primitive Polynomials and
Element Representations”.

Dependencies

To enable this parameter, set the Source of primitive polynomial parameter to Property.

Source of B, the starting power for roots of the primitive polynomial — Source
of starting power for roots of primitive polynomial
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Auto (default) | Property

Specify the source of the starting power for roots of the primitive polynomial.

• Select Property to enable the B value parameter.
• Select Auto, to use the B value parameter default value of 1.

B value — Starting exponent of roots

1 (default) | positive integer

The starting exponent of the roots.

Dependencies

To enable this parameter, set the Source of B, the starting power for roots of the primitive
polynomial parameter to Property.

Output number of corrected symbol errors — Number of corrected symbol errors

off (default) | on

Select this parameter to enable the numErrors output port. This port outputs the number of
corrected errors.

Algorithms
This figure shows a sample output of the Integer-Output RS Decoder HDL Optimized block with a
default configuration.

Troubleshooting

• Each input frame must contain more than (N–K) x 2 symbols and less than or equal to N symbols.
A shortened code is inferred when the number of valid data samples between startIn and endIn
is less than N. A shortened code still requires N cycles to perform the Chien search. If the input is
less than N symbols, leave a guard interval of at least N– input size inactive cycles before starting
the next frame.

• The decoder can operate on up to four messages at a time. If the block receives the start of a fifth
message before completely decoding the first message, the block drops data samples from the
first message. To avoid this issue, increase the number of inactive cycles between input messages.

• The generator polynomial is not specified explicitly. However, it is defined by the codeword length,
message length, and the B value for the starting exponent of the roots.
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Version History
Introduced in R2012b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Not recommended for production code.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Restrictions

You cannot generate HDL for this block inside a Resettable Synchronous Subsystem.

See Also
Blocks
Integer-Output RS Decoder | Integer-Input RS Encoder HDL Optimized

Objects
comm.HDLRSDecoder
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Integrate and Dump
Integrate discrete-time signal, resetting to zero periodically

Library
Comm Filters

Description
The Integrate and Dump block creates a cumulative sum of the discrete-time input signal, while
resetting the sum to zero according to a fixed schedule. When the simulation begins, the block
discards the number of samples specified in the Offset parameter. After this initial period, the block
sums the input signal along columns and resets the sum to zero every N input samples, where N is
the Integration period parameter value. The reset occurs after the block produces its output at that
time step.

Receiver models often use the integrate-and-dump operation when the system's transmitter uses a
simple square-pulse model. Fiber optics and in spread-spectrum communication systems, such as
CDMA (code division multiple access) applications, also use the operation.

This block accepts a scalar, column vector, or matrix input signal. When the input signal is not a
scalar value, it must contain k·N rows for some positive integer k. For these input signals, the block
processes each column independently.

Selecting Output intermediate values affects the contents, dimensions, and sample time as follows:

• If you clear the check box, then the block outputs the cumulative sum at each reset time.

• If the input is a scalar value, then the output sample time is N times the input sample time and
the block experiences a delay whose duration is one output sample period. In this case, the
output dimensions match the input dimensions.

• If the input is a (k·N)-by-n matrix, then the output is k-by-n. In this case, the block experiences
no delay and the output period matches the input period.

• If you select the check box, then the block outputs the cumulative sum at each time step. The
output has the same sample time and the same matrix dimensions as the input.

Transients and Delays

A nonzero value in the Offset parameter causes the block to output one or more zeros during the
initial period while it discards input samples. If the input is a matrix with n columns and the Offset
parameter is a length-n vector, then the mth element of the Offset vector is the offset for the mth

column of data. If Offset is a scalar, then the block applies the same offset to each column of data.
The output of initial zeros due to a nonzero Offset value is a transient effect, not a persistent delay.

 Integrate and Dump

5-415



When you clear Output intermediate values, the block's output is delayed, relative to its input,
throughout the simulation:

• If the input is a scalar value, then the output is delayed by one sample after any transient effect is
over. That is, after removing transients from the input and output, you can see the result of the mth

integration period in the output sample indexed by m+1.
• If the input is a column vector or matrix and the Offset parameter is nonzero, then after the

transient effect is over, the result of each integration period appears in the output frame
corresponding to the last input sample of that integration period. This is one frame later than the
output frame corresponding to the first input sample of that integration period, in cases where an
integration period spans two input frames. For an example of this situation, see “Example of
Transient and Delay” on page 5-418.

Parameters
Integration period

The number of input samples between resets.
Offset

A nonnegative integer vector or scalar specifying the number of input samples to discard from
each column of input data at the beginning of the simulation.

Output intermediate values
Determines whether the block outputs the intermediate cumulative sums between successive
resets.

Fixed-Point Signal Flow Diagram

Fixed-Point Attributes

The settings for the following parameters only apply when block inputs are fixed-point signals.

Rounding mode
Use this parameter to specify the rounding method to be used when the result of a fixed-point
calculation does not map exactly to a number representable by the data type and scaling storing
the result.

For more information, see “Rounding Modes” or “Rounding Mode: Simplest” (Fixed-Point
Designer).
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Saturate on integer overflow
Use this parameter to specify the method to be used if the magnitude of a fixed-point calculation
result does not fit into the range of the data type and scaling that stores the result:

• Saturate represents positive overflows as the largest positive number in the range being used,
and negative overflows as the largest negative number in the range being used.

• Wrap uses modulo arithmetic to cast an overflow back into the representable range of the data
type. See “Modulo Arithmetic” (Fixed-Point Designer) for more information.

Accumulator—Mode
Use the Accumulator—Mode parameter to specify how you would like to designate the
accumulator word and fraction lengths:

• When you select Inherit via internal rule, the block automatically calculates the
accumulator output word and fraction lengths.

• When you select Same as input, these characteristics match those of the input to the block.
• When you select Binary point scaling, you are able to enter the word length and the

fraction length of the accumulator, in bits.
• When you select Slope and bias scaling, you are able to enter the word length, in bits,

and the slope of the accumulator.

Output
Use the Output parameter to choose how you specify the word length and fraction length of the
output of the block:

• When you select Same as accumulator, these characteristics match those of the
accumulator.

• When you select Same as input, these characteristics match those of the input to the block.
• When you select Binary point scaling, enter the word length and the fraction length of

the output, in bits.
• When you select Slope and bias scaling, enter the word length, in bits, and the slope of

the output.

For additional information about the parameters pertaining to fixed-point applications, see “Specify
Fixed-Point Attributes for Blocks”.

Supported Data Type
Port Supported Data Types
In • Double-precision floating point

• Single-precision floating point
• Fixed-point

Out • Double-precision floating point
• Single-precision floating point
• Fixed-point
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Examples
If Integration period is 4 and Offset is the scalar 3, then the table below shows how the block
treats the beginning of a ramp (1, 2, 3, 4,...) in several situations. (The values shown in the table do
not reflect vector sizes but merely indicate numerical values.)

Output intermediate
values Check Box

Input Signal Properties First Several Output Values

Cleared Scalar 0, 0, 4+5+6+7, and 8+9+10+11, where one
0 is an initial transient value and the other
0 is a delay value that results from the
cleared check box and scalar value input.

Cleared Column vector of length 4 0, 4+5+6+7, and 8+9+10+11, where 0 is an
initial delay value that results from the
nonzero offset. The output is a scalar value.

Selected Scalar 0, 0, 0, 4, 4+5, 4+5+6, 4+5+6+7, 8, 8+9,
8+9+10, 8+9+10+11, and 12, where the
three 0s are initial transient values.

Selected Column vector of length 4 0, 0, 0, 4, 4+5, 4+5+6, 4+5+6+7, 8, 8+9,
8+9+10, 8+9+10+11, and 12, where the
three 0s are initial transient values. The
output is a column vector of length 4.

In all cases, the block discards the first three input samples (1, 2, and 3).

Example of Transient and Delay

The figure below illustrates a situation in which the block exhibits both a transient effect for three
output samples, as well as a one-sample delay in alternate subsequent output samples for the rest of
the simulation. The figure also indicates how the input and output values are organized as column
vectors. In each vector in the figure, the last sample of each integration period is underlined,
discarded input samples are white, and transient zeros in the output are white.

The transient effect lasts for ceil(13/5) output samples because the block discards 13 input
samples and the integration period is 5. The first output sample after the transient effect is over, 80,
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corresponds to the sum 14+15+16+17+18 and appears at the time of the input sample 18. The next
output sample, 105, corresponds to the sum 19+20+21+22+23 and appears at the time of the input
sample 23. Notice that the input sample 23 is one frame later than the input sample 19; that is, this
five-sample integration period spans two input frames. As a result, the output of 105 is delayed
compared to the first input (19) that contributes to that sum.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Windowed Integrator | Discrete-Time Integrator | Ideal Rectangular Pulse Filter
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Interlacer
Alternately select elements from two input vectors to generate output vector
Library: Communications Toolbox / Sequence Operations

Description
The Interlacer block accepts two vector with the size, complexity, and sample time. It produces one
output vector by alternating elements from the first input (labeled O for odd) and the second input
(labeled E for even) .

Ports
Input

O — Odd-numbered elements
vector

Odd-numbered elements, specified as a vector. The complexity of inputs O and E must match.
Data Types: double | single

E — Even-numbered elements
vector

Even-numbered elements, specified as a vector. The complexity of inputs O and E must match.
Data Types: double | single

Output

Out — Output signal
column vector

Output signal, returned as an even length column vector. Odd numbered elements in the output
vector contain the elements from input O and even numbered elements in the output vector contain
the elements from input E. The output vector has the same data type and sample time as the input.

Block Characteristics
Data Types Boolean | double | enumerated | fixed point | integer | single
Multidimensional
Signals

no

Variable-Size Signals no
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Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Deinterlacer | General Block Interleaver | Mux
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I/Q Imbalance
Apply I/Q imbalances to complex signal
Library: Communications Toolbox / RF Impairments

Description
The I/Q Imbalance block applies in-phase and quadrature imbalances to a complex signal. This block
applies an amplitude imbalance, a phase imbalance, and a DC offset to the in-phase and quadrature
signal components. For more information, see “I/Q Imbalance Implementation” on page 5-423 and
“Algorithms” on page 5-424.

Ports
Input

In1 — Complex signal
scalar | vector

Complex signal, specified as a scalar or vector.
Data Types: double | single
Complex Number Support: Yes

Output

Out1 — Output signal
scalar | vector

Output signal, returned as a scalar or vector. This output is the same dimension and data type as the
input signal.

Parameters
I/Q amplitude imbalance (dB) — I/Q amplitude imbalance

0 (default) | scalar

I/Q amplitude imbalance in decibels of signal power, specified as a scalar. For more information, see
“Algorithms” on page 5-424.

I/Q phase imbalance (deg) — I/Q phase imbalance

0 (default) | scalar

I/Q amplitude imbalance in degrees, specified as a scalar.
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I dc offset — In-phase component DC offset

0 (default) | scalar

In-phase component DC offset, specified as a scalar.

Q dc offset — Quadrature component DC offset

0 (default) | scalar

Quadrature component DC offset, specified as a scalar.

Block Characteristics
Data Types double | single
Multidimensional
Signals

no

Variable-Size Signals no

More About
I/Q Imbalance Implementation

The I/Q Imbalance block applies amplitude imbalance, phase imbalance, and DC offsets to the in-
phase and quadrature components of the complex input signal.

The block performs these operations consecutively, as shown by the subsystem in this model diagram.
You can view the subsystem by right-clicking the block and selecting Mask > Look under mask.

To apply the impairments, the block follows this workflow.

1 Separate the signal into its in-phase and quadrature components.
2 Apply amplitude imbalance, specified by the I/Q amplitude imbalance (dB) parameter.
3 Apply phase imbalance, specified by the I/Q phase imbalance (deg) parameter.
4 Recombine the in-phase and quadrature components into a complex signal.
5 Apply an in-phase DC offset, specified by the I dc offset parameter, and a quadrature DC offset,

specified by the Q dc offset parameter, to the signal.

For more information, see “Algorithms” on page 5-424.
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Algorithms
The I/Q amplitude imbalance, I/Q phase imbalance, and DC offset impairments are described
sequentially in the section.

1 For an I/Q amplitude imbalance, Ia, the impairment is applied to the input signal, xr+ jxi and y
AmplitudeImbalance is an intermediate output.

y AmplitudeImbalance ≜ y rAmplitudeImbalance
 + jyiAmplitudeImbalance

y AmplitudeImbalance = 10(0.5Ia/20)xr + j 10( − 0.5Ia/20)xi

2 For an I/Q phase imbalance, Ip, the impairment is applied to y AmplitudeImbalance and yPhaseImbalance is
an intermediate output.

yPhaseImbalance ≜ yrPhaseImbalance
 + jyiPhaseImbalance

yPhaseImbalance = e j −0.5π
Ip

180 yrAmplitudeImbalance + e j π
2 + 0.5π

Ip
180 yrAmplitudeImbalance

3 For DC offsets, IDC and QDC, the impairment is applied to y PhaseImbalance and y is the final output.

y = (yrPhaseImbalance
 + IDC) + j(yiPhaseImbalance

 + QDC)

Variables for these calculations are defined in this list.

• I a is the I/Q amplitude imbalance.
• Ip is the I/Q phase imbalance.
• IDC is the in-phase DC offset.
• QDC is the quadrature DC offset.
• x is the complex input signal and is given by xr + jxi.

• xr and xi are the real and imaginary parts, respectively, of x.
• y is the complex output signal and is given by yr + jyi.

• yr and yi are the real and imaginary parts, respectively, of y.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
I/Q Compensator Coefficient to Imbalance | I/Q Imbalance Compensator | Free Space Path Loss |
Memoryless Nonlinearity | Phase Noise | Receiver Thermal Noise
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Functions
iqimbal
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I/Q Compensator Coefficient to Imbalance
Convert compensator coefficient into amplitude and phase imbalance

Library
RF Impairments Correction

Description
The I/Q Compensator Coefficient to Imbalance block converts a compensator coefficient into its
equivalent amplitude and phase imbalance.

This block has a single input port, which accepts a complex coefficient or a vector of coefficients.
There are amplitude and phase imbalance output ports both of which are real. The amplitude
imbalance is expressed in dB while the phase imbalance is expressed in degrees.

Algorithms
See the iqcoef2imbal function reference page for more information on the inputs, outputs, and
algorithms.

Supported Data Types
Port Supported Data Types
Compensator Coefficient • Double-precision, complex floating point

• Single-precision, complex floating point
Amplitude Imbalance (dB) • Double-precision floating point

• Single-precision floating point
Phase Imbalance (deg) • Double-precision floating point

• Single-precision floating point

Version History
Introduced in R2014b
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
I/Q Imbalance Compensator

Functions
iqcoef2imbal
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I/Q Imbalance Compensator
Compensate for imbalance between in-phase and quadrature components

Library
RF Impairments Correction

Description
The I/Q Imbalance Compensator mitigates the effects of an amplitude and phase imbalance between
the in-phase and quadrature components of a modulated signal. The supported modulation schemes
include OFDM, M-PSK, and M-QAM, where M > 2.

This block accepts up to three input ports, of which one is the input signal. When you set the Source
of compensator coefficient parameter to Estimated from input signal, two additional input
ports are enabled. The first is enabled when you set the Source of adaptation step size parameter
to Input port and the second is enabled when you check the Coefficient adaptation input port
box. The two options are independent. Additionally, you can check the Estimated coefficient output
port box to create an optional output port from which the estimated compensator coefficients are
made available.

When you set the Source of compensator coefficient parameter to Input port, only one possible
configuration is possible (input signal port, coefficient input port, and output signal port).

Parameters
Source of compensator coefficient

Specify the source of the compensator coefficients as Estimated from input signal or
Input port. If set to Estimated from input signal, the compensator calculates the
coefficients from the input signal. If set to Input port, all other properties are disabled and you
must provide the coefficients through the input port. The default value is Estimated from
input signal.

Initial compensator coefficient
Specify the initial coefficient used by the internal algorithm to compensate for the I/Q imbalance.
The default value is 0+0j.

Source of adaptation step size
Specify the source of the adaptation step size as Property or Input port. If set to Property,
specify the step size in the Adaptation step size field. If set to Input port, you must specify
the step size through an input port. The default value is Property.
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Adaptation step size
Specify the step size of the adaptation algorithm as a real scalar. This parameter is available only
when Source of adaptation step size is set to Property. The default value is 0.00001.

Coefficient adaptation input port
Select this check box to create an input port that permits a signal to control the adaptation
process. If the check box is selected and if the input signal is true, the estimated compensation
coefficients are updated. If the adaptation port is not enabled or if the input signal is false, the
compensation coefficients do not change. By default, the check box is not selected.

Estimated coefficient output port
Select this check box to provide the estimated compensation coefficients to an output port. By
default, the check box is not selected.

Algorithms
This block implements the algorithm, inputs, and outputs described on the
comm.IQImbalanceCompensator reference page. The object properties correspond to the block
parameters.

Supported Data Types
Port Supported Data Types
Signal Input • Double-precision floating point

• Single-precision floating point
Signal Output • Double-precision floating point

• Single-precision floating point
Step Size • Double-precision floating point

• Single-precision floating point
Adaptation • Logical
Input Coefficients • Double-precision floating point

• Single-precision floating point
Output Coefficients • Double-precision floating point

• Single-precision floating point

Version History
Introduced in R2014b

References
[1] Anttila, L., M. Valkama and M. Renfors. "Blind Compensation of Frequency-Selective I/Q

Imbalances in Quadrature Radio Receivers: Circularity-Based Approach." Proc. IEEE ICASSP.
2007, pp. III-245 -III-248.
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[2] Kiayani, A., L. Anttila, Y. Zou, and M. Valkama, "Advanced Receiver Design for Mitigating Multiple
RF Impairments in OFDM Systems: Algorithms and RF Measurements." Journal of Electrical
and Computer Engineering. Vol. 2012.

See Also
Blocks
I/Q Imbalance | I/Q Compensator Coefficient to Imbalance

Functions
iqcoef2imbal | iqimbal2coef

Objects
comm.IQImbalanceCompensator

Topics
“Compensate I/Q Imbalance”
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I/Q Imbalance to Compensator Coefficient
Converts amplitude and phase imbalance into I/Q compensator coefficient

Library
RF Impairments Correction

Description
The I/Q Imbalance to Compensator Coefficient block returns a complex coefficient to compensate for
amplitude and phase imbalance.

This block has an amplitude imbalance input port and a phase imbalance input port, where the
amplitude imbalance is a real number expressed in dB and the phase imbalance is a real number
expressed in degrees. The imbalance inputs are vectors. The complex coefficients are returned from a
single output port.

Algorithms
See iqimbal2coef for more information on the inputs, outputs, and algorithms.

Supported Data Types
Port Supported Data Types
Compensator Coefficient • Double-precision, complex floating point

• Single-precision, complex floating point
Amplitude Imbalance (dB) • Double-precision floating point

• Single-precision floating point
Phase Imbalance (deg) • Double-precision floating point

• Single-precision floating point

Version History
Introduced in R2014b
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
I/Q Imbalance Compensator

Functions
iqimbal2coef
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Kasami Sequence Generator
Generate Kasami sequence from set of Kasami sequences
Library: Communications Toolbox / Comm Sources / Sequence

Generators

Description
The Kasami Sequence Generator block generates a sequence from a set of Kasami sequences. The
Kasami sequences are a set of sequences that have good cross-correlation properties. For more
information, see “Kasami Sequences” on page 5-437.

This block can output sequences that vary in length during simulation. For more information about
variable-size signals, see “Variable-Size Signal Basics” (Simulink).

These icons show the block with oSiz, Ref and Rst ports enabled.

Ports
Input

oSiz — Current output size
scalar | vector

Current output size, specified as a scalar or a vector of the form [n,1], where n is the number of
elements in the output sequence.
Example: [10 1] a specifies a current output column vector of size 10-by-1.
Dependencies

To enable this port, set the Maximum output size source parameter to Dialog parameter.
Data Types: double

Ref — Reference input signal
scalar | column vector

Reference input signal, specified as a scalar, or a column vector.
Dependencies

To enable this port, set the Maximum output size source parameter to Inherit from
reference input.
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Data Types: double

Rst — Reset signal
scalar | vector

Reset signal, specified as a scalar or vector, depending on the output size.

• When the output size is variable, specify this port as a scalar.
• Otherwise, specify this port as a scalar or a column vector of length equal to the Samples per

frame parameter value.

The output signal resets for nonzero Rst input values. For more information, see “Reset Behavior” on
page 5-439.
Dependencies

To enable this port, select the Reset on nonzero input parameter.
Data Types: double

Output

Out — Output Signal
vector

Output signal, returned as a binary-valued column vector. At least one element of the Initial states
parameter vector must be nonzero for the block to generate a nonzero sequence.
Data Types: double

Parameters
Generator polynomial — Generator polynomial
'z^6 + z + 1' (default) | polynomial character vector | string scalar | binary-valued row vector |
integer-valued row vector

Specify the generator polynomial, which determines the connections in the shift register that
generates the sequence, as one of these options.

• A polynomial character vector or string scalar that includes the number 1 (for example, 'z^4 + z
+ 1'). For more information, see “Representation of Polynomials in Communications Toolbox”.

• A binary-valued row vector that lists the coefficients of a polynomial in order of descending
powers. The first and last entries must be 1. The length of this vector must be one more than the
degree of the generator polynomial.

• An integer-valued row vector containing the exponents of the nonzero terms of a polynomial in
order of descending powers. The last entry must be 0.

For example, 'z^8 + z^2 + 1', [1 0 0 0 0 0 1 0 1], and [8 2 0] represent the same
polynomial p(z) = z8 + z2 + 1.

Initial states — Initial states
[0 0 0 0 0 1] (default) | binary-valued scalar | binary-valued row vector

The initial states of the shift register generate the sequence. If you specify a binary-valued row
vector, the length must equal the degree of the generator polynomial specified by the Generator
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polynomial parameter. If you specify a binary-valued scalar, the block expands the scalar to a row
vector of length equal to the degree of the generator polynomial. All entries of the resulting vector
equal the scalar.

Sequence index(es) — Sequence index
0 (default) | integer | vector of the form [k m]

Specify an integer or vector of the form [k m] to select a Kasami sequence of interest from the set of
possible sequences. Two classes of Kasami sequences exist: those obtained from a small set and those
obtained from a large set. You can choose a Kasami sequence from the small set by setting this
parameter to an integer in the range [0, 2n/2–2]. You can choose a sequence from the large set by
setting this parameter to a vector of the form [k m]. k must be an integer in the range [–2, 2n–2], and
m must be an integer in the range [–1, 2n/2–2]. For more information, see “Sequence Index” on page 5-
438.

Shift — Sequence offset from starting point
0 (default) | integer

Specify the offset of the Kasami sequence from the initial time.

You can use an external signal to reset the values of the internal shift register to the initial state by
selecting the Reset on nonzero input parameter. This selection creates an input port for the
external signal in this block. The way the block resets the internal shift register depends on whether
its output signal and reset signal are sample-based or frame-based. For an example, see “Reset
Behavior” on page 5-439.

Output variable-size signals — Option to output variable-length signals

off (default) | on

Select this parameter to enable variable-length output sequences during simulation. When you clear
this parameter, the block outputs fixed-length sequences. When you select this parameter, the block
can output variable-length sequences. For information about variable-size signals, see “Variable-Size
Signal Basics” (Simulink).

Maximum output size source — Maximum output size source

Dialog parameter (default) | Inherit from reference port

Select how to specify the maximum sequence output size.

• Dialog parameter — Select this value to configure the block to use the Maximum output size
parameter setting as the maximum permitted output sequence length. The oSiz input port
specifies the current size of the output signal, and the block output inherits the sample time from
the input signal. The input value of oSiz must be less than or equal to the Maximum output size
parameter.

• Inherit from reference port — Select this value to enable the Ref input port and configure
the block to inherit the sample time, maximum size, and current output size from the variable-
sized signal at the Ref input port. These set the maximum permitted output sequence length.

Dependencies

To enable this parameter, select Output variable-size signals.
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Maximum output size — Maximum output size

[10 1] (default) | vector of the form [n 1]

Specify the maximum output size for the block. n is a positive scalar.
Example: [10 1] specifies a 10-by-1 maximum size for the output signal.

Dependencies

To enable this parameter, select Output variable-size signals and set Maximum output size
source to Dialog parameter.
Data Types: double

Sample time — Output sample time
1 (default) | -1 | positive scalar

Positive scalars specify the time in seconds between each sample of the output signal. If you set the
Sample time to -1, the output signal inherits the sample time from downstream. For information on
the relationship between the Sample time and Samples per frame parameters, see “Sample
Timing” on page 5-437.

Dependencies

To enable this parameter clear Output variable-size signals.

Samples per frame — Samples per frame
1 (default) | positive integer

Specify the number of samples per frame in one channel of the output data. For information on the
relationship between the Sample time and Samples per frame parameters, see “Sample Timing”
on page 5-437.

Reset on nonzero input — Option to reset output signal
off (default) | on

Select this parameter to enable the Rst input port. Use that port to specify an input signal that resets
the internal shift registers to the original values of the Initial states parameter value.

Output data type — Output data type
double (default) | boolean

Specify the output data type of the block.

Block Characteristics
Data Types Boolean | double
Multidimensional
Signals

no

Variable-Size Signals yes

5 Blocks

5-436



More About
Sample Timing

The time between output updates is equal to the product of the Samples per frame and Sample
time parameter values. For example, if Sample time and Samples per frame each equal 1, the
block outputs a sample every second. If you increase Samples per frame to 10, then the block
outputs a 10-by-1 vector every 10 seconds. This ensures that the equivalent output rate is not
dependent on the Samples per frame parameter.

Kasami Sequences

Two sets of Kasami sequences exist: the small set and the large set. The large set contains all of the
sequences in the small set. Only the small set is optimal in the sense of matching Welch's lower bound
for correlation functions.

Kasami sequences have a period of N = 2n – 1, where n is a nonnegative even integer. Let u be a
binary sequence of length N, and let w be the sequence obtained by decimating u by 2n/2 + 1. This
piecewise function defines the small set of Kasami sequences. T is the left shift operator, m is the shift
parameter for w, and ⊕ denotes addition modulo 2.

Ks(u, n, m) =
u m = − 1

u⊕ Tmw m = 0, ..., 2n/2− 2

The small set contains 2n/2 sequences.

For mod(n, 4) = 2, this piecewise function defines the large set of Kasami sequences. Let v be the
sequence formed by decimating the sequence u by 2(n/2 + 1) + 1. k and m are the shift parameters for
the sequences v and w, respectively.

KL(u, n, k, m) =

u k = − 2;  m = − 1
v k = − 1;  m = − 1

u⊕ Tkv k = 0, ..., 2n− 2;  m = − 1

u⊕ Tmw k = − 2;  m = 0, ..., 2n/2− 2

v⊕ Tmw k = − 1;  m = 0, ..., 2n/2− 2

u⊕ Tkv⊕ Tmw k = 0, ..., 2n− 2;  m = 0, ..., 2n/2− 2

The sequences described in the first three rows of KL correspond to the Gold sequences for mod(n, 4)
= 2. For a description of Gold sequences, see the comm.GoldSequence System object reference
page. However, the Kasami sequences form a larger set than the Gold sequences alone.

The correlation functions for the sequences take on the values

{–t(n), –s(n), –1, s(n) – 2, t(n) – 2},

where

t(n) = 1 + 2(n + 2)/2, when n is even and

s(n) = 1
2 t(n) + 1 .
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Polynomials for Generating Kasami sequences

Kasami sequences have a period of N = 2n – 1, where n is a nonnegative even integer. This table lists
some of the polynomials that you can use to generate the set of Kasami sequences.

n N Polynomial Set
4 15 'z^4 + z +1' Small
6 63 'z^6 + z +1' Large
8 255 'z^8 + z^4 + z^3 +

z^2 +1'
Small

10 1023 'z^10 + z^3 +1' Large
12 4095 'z^12 + z^6 + z^4 + z

+1'
Small

Sequence Index

The Sequence index(es) parameter specifies the shifts of the sequences v and w used to generate
the output sequence. You can specify the parameter in one of these two ways.

• To generate sequences from the small set, when n is even, you can specify Sequence index(es)
as an integer m in the range [–1, 2n/2 – 2]. This table describes the output sequences
corresponding to Sequence index(es) values.

Sequence
index(es) Value

Range of Indices Output Sequence

-1 m = –1 u
m m = 0, 2n/2 – 2 u⊕ Tmw

• To generate sequences from the large set for mod (n, 4) = 2, where n is the degree of the
generator polynomial (set by the Generator polynomial parameter), you can specify Sequence
index(es) as a vector of the form [k m]. In this case, the output sequence is from the large set k is
an integer in the range [–2, 2n – 2], and m is an integer in the range [–1, 2n/2 – 2]. This table
describes the output sequences corresponding to Sequence index(es) values.

Sequence index(es)
Value

Range of Indices Output Sequence

[-2 -1] k = –2

m = –1

u

[-1 -1] k = –1

m = –1

v

[k –1] k = 0, 1, ..., 2n – 2

m = –1

u⊕ Tkv

[-2 m] k = – 2

m = 0, 1, ..., 2n/2 – 2

u⊕ Tmw
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Sequence index(es)
Value

Range of Indices Output Sequence

[-1 m] k = –1

m = 0, ..., 2n/2 –2

v⊕ Tmw

[k m] k = 0, ..., 2n –2

m = 0, ..., 2n/2 –2

u⊕ Tkv⊕ Tmw

Reset Behavior

Before you can reset the generator sequence, you must select the Reset on nonzero input
parameter to enable the Rst input port. Suppose that the Kasami Sequence Generator block outputs
[1 0 0 1 1 0 1 1] when no reset exists. This table shows the effect on the Kasami Sequence
Generator block output for the parameter values indicated.

Reset Signal Reset Signal
Settings

Kasami Sequence
Generator block

Reset Signal and Output
Signal

No reset • Sample time is
1

• Samples per
frame is 1

• Rst is [0 0 0 0
0 0 0 0]

• Sample time is
1

• Samples per
frame is 1

• Out is [1 0 0
1 1 0 1 1]

Scalar reset signal • Sample time is
1

• Samples per
frame is 1

• Rst is [0 0 0 1
0 0 0 0]

• Sample time =
1

• Samples per
frame is 1

Vector reset signal • Sample time is
1

• Samples per
frame is 8

• Rst is [0 0 0 1
0 0 0 0]

• Sample time is
1

• Samples per
frame is 8

For the no-reset case, the block outputs the sequence without resetting it. For the scalar and vector
reset signal cases, the block inputs the reset signal [0 0 0 1 0 0 0 0] to the Rst port. Because
the fourth bit of the reset signal is a 1 and Sample time is 1, the block resets the sequence output at
the fourth bit.

For variable-sized outputs, the block supports only scalar reset signal inputs.

Version History
Introduced before R2006a
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Existing models automatically update this block to current version
Behavior changed in R2020a

Starting in R2020a, Simulink no longer allows you to use the Kasami Sequence Generator block
version available before R2015b.

Existing models automatically update to load the Kasami Sequence Generator block version
announced in “Source blocks output frames of contiguous time samples but do not use the frame
attribute” in the R2015b Release Notes. For more information on block forwarding, see “Maintain
Compatibility of Library Blocks Using Forwarding Tables” (Simulink).

References
[1] Peterson, W. Wesley, and E. J. Weldon. Error-correcting Codes.1972.

[2] Proakis, John G. Digital Communications. 4th ed. New York: McGraw Hill, 2001.

[3] Sarwate, D.V., and M.B. Pursley. “Crosscorrelation Properties of Pseudorandom and Related
Sequences.” Proceedings of the IEEE 68, no. 5 (1980): 593–619. https://doi.org/10.1109/
PROC.1980.11697.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Gold Sequence Generator | PN Sequence Generator | Hadamard Code Generator

Objects
comm.KasamiSequence
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LDPC Decoder
Decode binary low-density parity-check (LDPC) code
Library: Communications Toolbox / Error Detection and Correction /

Block

Description
The LDPC Decoder block uses the belief propagation algorithm to decode a binary LDPC code, which
is input to the block as the soft-decision output (log-likelihood ratio of received bits) from
demodulation. The block decodes generic binary LDPC codes where no patterns in the parity-check
matrix are assumed. For more information, see “Belief Propagation Decoding” on page 5-444.

The input and output are discrete-time signals. The ratio of the output sample time to the input
sample time is:

• N/K when only the information-part of the codeword is decoded
• 1 when the entire codeword is decoded

N is the length of the received signal and must be in the range (0, 231). K is the length of the uncoded
message and must be less than N.

This icon shows all ports, including optional ports, for the LDPC Decoder block.

Ports
Input

In — Log-likelihood ratios
column vector

Log-likelihood ratios, specified as an N-by-1 column vector containing the soft-decision output from
demodulation. N is the number of bits in the LDPC codeword before modulation. Each element is the
log-likelihood ratio for a received bit and the value is more likely to be 0 if the log-likelihood ratio is
positive. The first K elements correspond to the information-part of the input message.
Data Types: double

Output

Out — Decoded data
column vector
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Decoded data, returned as a column vector. The Decision type parameter specifies whether the
block outputs hard decisions or soft decisions (log-likelihood ratios).

• If the Output format parameter is set to Information part, the output includes only the
information-part of the received codeword.

• If the Output format parameter is set to Whole codeword, the output includes the whole log-
likelihood ratio vector.

Data Types: double | Boolean

Iter — Number of executed decoding iterations
positive integer

Number of executed decoding iterations, returned as a positive integer.

Dependencies

To enable this port, select the Output number of iterations executed parameter.
Data Types: double

ParChk — Final parity checks
column vector

Final parity checks after decoding the input LDPC code, returned as an (N-K)-by-1 column vector. N is
the number of bits in the LDPC codeword before modulation. K is the length of the uncoded message.

Dependencies

To enable this port, select the Output final parity checks parameter.

Parameters
Parity-check matrix (sparse binary (N-K)-by-N matrix) — Parity-check matrix

dvbs2ldpc(1/2) (default) | sparse binary matrix | nonsparse index matrix

Parity-check matrix, specified as a sparse (N – K)-by-N binary-valued matrix. N is the length of the
received signal and must be in the range (0, 231). K is the length of the uncoded message and must be
less than N. The last (N – K) columns in the parity-check matrix must be an invertible matrix in the
Galois field of order 2, gf(2).

You can also specify the parity-check matrix as a two-column nonsparse index matrix, I, that defines
the row and column indices of the 1s in the parity-check matrix such that
sparse(I(:,1),I(:,2),1).

This parameter accepts numeric data types. When you set this parameter to a sparse binary matrix,
this parameter also accepts the Boolean data type.

The default value uses the dvbs2ldpc function to configure a sparse parity-check matrix for half-rate
LDPC coding, as specified in the DVB-S.2 standard.
Example: dvbs2ldpc(R,'indices') configures the index matrix for the DVB-S.2 standard, where R
is the code rate, and 'indices' specifies the output format of dvbs2ldpc as a two-column double-
precision matrix that defines the row and column indices of the 1s in the parity-check matrix.
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Data Types: double | Boolean

Output format — Output value format

Information part (default) | Whole codeword

Output value format, specified as one of these values:

• Information part — The block outputs a K-by-1 column vector containing only the information-
part of the received log-likelihood ratio vector. K is the length of the uncoded message.

• Whole codeword — The block outputs an N-by-1 column vector containing the whole log-
likelihood ratio vector. N is the length of the received signal.

N and K must align with the dimension of the (N–K)-by-K parity-check matrix.

Decision type — Decision method

Hard decision (default) | Soft decision

Decision method used for decoding, specified as one of these values:

• Hard decision — The block outputs decoded data of data type double or boolean. Specify this
data type using the Output data type parameter.

• Soft decision — The block outputs log-likelihood ratios of data type double.

Output data type — Output value data type

double (default) | boolean

Output value data type, specified as double or boolean.

Dependencies

To enable this parameter, set the Decision type parameter to Hard decision.

Number of iterations — Maximum number of decoding iterations

50 (default) | positive integer

Maximum number of decoding iterations, specified as a positive integer.

Stop iterating when all parity-checks are satisfied — Condition for iteration
termination

off (default) | on

Select this parameter to terminate decoding after all parity checks are satisfied. If not all parity
checks are satisfied, decoding terminates after the number of iterations specified by the Number of
iterations parameter.

Output number of iterations executed — Output number of iterations executed

off (default) | on

Select this parameter to enable the Iter output port.
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Output final parity-checks — Output number of iterations executed

off (default) | on

Select this parameter to enable the ParChk output port.

Block Characteristics
Data Types Boolean | double
Multidimensional
Signals

no

Variable-Size Signals no

Algorithms
This block performs LDPC decoding using the belief propagation algorithm, also known as a message-
passing algorithm.

Belief Propagation Decoding

The implementation of the belief propagation algorithm is based on the decoding algorithm presented
by Gallager [2].

For transmitted LDPC-encoded codeword c = c0, c1, …, cn-1, the input to the LDPC decoder is the log-

likelihood ratio (LLR) value L(ci) = log
Pr(ci = 0 channel output for ci)
Pr(ci = 1 channel output for ci)

.

In each iteration, the key components of the algorithm are updated based on these equations:

L(r ji) = 2 atanh ∏
i′ ∈ V j\i

tanh 1
2L(qi′ j) ,

L(qi j) = L(ci) + ∑
j′ ∈ Ci\ j

L(r j′i), initialized as L(qi j) = L(ci) before the first iteration, and

L(Qi) = L(ci) + ∑
j′ ∈ Ci

L(r j′i).

At the end of each iteration, L(Qi) contains the updated estimate of the LLR value for transmitted bit
ci. The value L(Qi) is the soft-decision output for ci. If L(Qi) < 0, the hard-decision output for ci is 1.
Otherwise, the hard-decision output for ci is 0.

If decoding is configured to stop when all of the parity checks are satisfied, the algorithm verifies the
parity-check equation (H c' = 0) at the end of each iteration. When all of the parity checks are
satisfied, or if the maximum number of iterations is reached, decoding stops.
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Index sets Ci\ j and V j\i are based on the parity-check matrix (PCM). Index sets Ci and Vj correspond
to all nonzero elements in column i and row j of the PCM, respectively.

This figure shows the computation of these index sets in a given PCM for i = 5 and j = 3.

To avoid infinite numbers in the algorithm equations, atanh(1) and atanh(–1) are set to 19.07 and –
19.07, respectively. Due to finite precision, MATLAB returns 1 for tanh(19.07) and –1 for tanh(-19.07).

Version History
Introduced in R2007a

References
[1] Gallager, Robert G. Low-Density Parity-Check Codes. Cambridge, MA: MIT Press, 1963.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
LDPC Encoder

Objects
ldpcDecoderConfig

Functions
ldpcDecode | ldpcQuasiCyclicMatrix | dvbs2ldpc
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LDPC Encoder
Encode binary low-density parity-check (LDPC) code
Library: Communications Toolbox / Error Detection and Correction /

Block

Description
The LDPC Encoder block applies LDPC coding to a binary input message. LDPC codes are linear
error control codes with sparse parity-check matrices and long block lengths that can attain
performance near the Shannon limit.

The input and output are discrete-time signals. The ratio of the output sample time to the input
sample time is K/N, where:

• N is the length of the received signal and must be in the range (0, 231).
• K is the length of the uncoded message and must be less than N.

Ports
Input

In — Input message
binary column vector

Input message, specified as a K-by-1 column vector containing binary-valued elements. K is the length
of the uncoded message.
Data Types: double | Boolean

Output

Out — LDPC codeword
column vector

LDPC codeword, returned as an N-by-1 column vector. N is the number of bits in the LDPC codeword.
The output signal inherits its data type from the input signal. The LDPC codeword output is a solution
to the parity-check equation. The input message comprises the first K bits of the LDPC codeword
output, and the parity check comprises the remaining (N – K) bits.
Data Types: double | Boolean

Parameters
Parity-check matrix (sparse binary (N-K)-by-N matrix) — Parity-check matrix

dvbs2ldpc(1/2) (default) | sparse binary matrix | nonsparse index matrix
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Parity-check matrix, specified as a sparse (N – K)-by-N binary-valued matrix. N is the length of the
output LDPC codeword and must be in the range (0, 231). K is the length of the uncoded message and
must be less than N. The last (N – K) columns in the parity-check matrix must be an invertible matrix
in the Galois field of order 2, gf(2).

You can also specify the parity-check matrix as a two-column nonsparse index matrix, I, that defines
the row and column indices of the 1s in the parity-check matrix such that
sparse(I(:,1),I(:,2),1).

This parameter accepts numeric data types. When you set this parameter to a sparse binary matrix,
this parameter also accepts the Boolean data type.

The default value uses the dvbs2ldpc function to configure a sparse parity-check matrix for half-rate
LDPC coding, as specified in the DVB-S.2 standard.

Note

• When the last (N – K) columns of the parity-check matrix form a triangular matrix, forward or
backward substitution is performed to solve the parity-check equation.

• When the last (N – K) columns of the parity-check matrix do not form a triangular matrix, a matrix
inversion is performed to solve the parity-check equation. If a large matrix needs to be inverted,
initializations or updates take more time.

Example: dvbs2ldpc(R,'indices') configures the index matrix for the DVB-S.2 standard, where R
is the code rate, and 'indices' specifies the output format of dvbs2ldpc as a two-column double-
precision matrix that defines the row and column indices of the 1s in the parity-check matrix.
Data Types: double | Boolean

Block Characteristics
Data Types Boolean | double | integer | single
Multidimensional
Signals

no

Variable-Size Signals no

Version History
Introduced in R2007a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
LDPC Decoder
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Objects
comm.LDPCEncoder

Functions
dvbs2ldpc
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Linear Equalizer
Equalize modulated signals using linear filtering
Library: Communications Toolbox / Equalizers

Description
The Linear Equalizer block uses a tapped delay line filter to equalize a linearly modulated signal
through a dispersive channel. Using an estimate of the channel modeled as a finite input response
(FIR) filter, the block processes input frames and outputs the estimated signal.

This icon shows the block with all ports enabled for configurations that use the LMS or RLS adaptive
algorithm.

This icon shows the block with all ports enabled for configurations that use the CMA adaptive
algorithm.

Ports
Input

in — Input signal
column vector

Input signal, specified as a column vector. The vector length of in must be equal to an integer
multiple of the Number of input samples per symbol parameter. For more information, see
“Symbol Tap Spacing” on page 5-455.
Data Types: double
Complex Number Support: Yes

Desired — Training symbols
column vector

Training symbols, specified as a column vector. The vector length of Desired must be less than or
equal to the length of input in. The Desired input port is ignored when the Train input port is 0.

 Linear Equalizer

5-449



Dependencies

To enable this port, set the Adaptive algorithm parameter to LMS or RLS.
Data Types: double
Complex Number Support: Yes

Train — Train equalizer flag
1 | 0

Train equalizer flag, specified as 1 or 0. The block starts training when this value changes from 0 to 1
(at the rising edge). The block trains until all symbols in the Desired input port are processed.

Dependencies

To enable this port, set the Adaptive algorithm parameter to LMS or RLS and select the Enable
training control input parameter.
Data Types: Boolean

Update — Update tap weights flag
1 | 0

Update tap weights flag, specified as 1 or 0. The tap weights are updated when this value is 1.

Dependencies

To enable this port, set the Adaptive algorithm parameter to CMA and the Source of adapt weights
flag parameter to Input port.
Data Types: Boolean

Reset — Reset equalizer flag
1 | 0

Reset equalizer flag, specified as 1 or 0. If Reset is set to 1, the block resets the tap weights before
processing the incoming signal. The block performs initial training until all symbols in the Desired
input port are processed.

Dependencies

To enable this port, select the Enable reset input parameter.
Data Types: Boolean

Output

Out — Equalized symbols
column vector

Equalized symbols, returned as a column vector that has the same length as input signal in.

This port is unnamed until you select the Output error signal or Output taps weights parameter.

Err — Error signal
column vector

Error signal, returned as a column vector that has the same length as input signal in.
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w — Tap weights
column vector

Tap weights, returned as an NTaps-by-1 vector, where NTaps is the value of the Number of Taps
parameter. w contains the tap weights from the last tap weight update.

Parameters
Structure parameters

Number of taps — Number of equalizer taps

5 (default) | positive integer

Number of equalizer taps, specified as a positive integer. The number of equalizer taps must be
greater than or equal to the value of the Number of input samples per symbol parameter.

Signal constellation — Signal constellation

pskmod(0:3,4,pi/4) (default) | vector

Signal constellation, specified as a vector. The default value is a QPSK constellation generated using
this code: pskmod(0:3,4,pi/4).

Number of input samples per symbol — Number of input samples per symbol

1 (default) | positive integer

Number of input samples per symbol, specified as a positive integer. Setting this parameter to any
number greater than 1 effectively creates a fractionally spaced equalizer. For more information, see
“Symbol Tap Spacing” on page 5-455.

Algorithm parameters

Adaptive algorithm — Adaptive algorithm

LMS (default) | RLS | CMA

Adaptive algorithm used for equalization, specified as one of these values:

• LMS — Update the equalizer tap weights using the “Least Mean Square (LMS) Algorithm” on page
5-456.

• RLS — Update the equalizer tap weights using the “Recursive Least Square (RLS) Algorithm” on
page 5-456.

• CMA — Update the equalizer tap weights using the “Constant Modulus Algorithm (CMA)” on page
5-457.

Step size — Step size

0.01 (default) | positive scalar

Step size used by the adaptive algorithm, specified as a positive scalar. Increasing the step size
reduces the equalizer convergence time but causes the equalizer output estimates to be less stable.
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Tunable: Yes

Dependencies

To enable this parameter, set Adaptive algorithm to LMS or CMA.

Forgetting factor — Forgetting factor

0.99 (default) | scalar in the range (0, 1]

Forgetting factor used by the adaptive algorithm, specified as a scalar in the range (0, 1]. Decreasing
the forgetting factor reduces the equalizer convergence time but causes the equalizer output
estimates to be less stable.

Tunable: Yes

Dependencies

To enable this parameter, set Adaptive algorithm to RLS.

Initial inverse correlation matrix — Initial inverse correlation matrix

0.1 (default) | scalar | matrix

Initial inverse correlation matrix, specified as a scalar or an NTaps-by-NTaps matrix. NTaps is equal to the
Number of Taps parameter value. If you specify this value as a scalar, a, the equalizer sets the initial
inverse correlation matrix to a times the identity matrix: a(eye(NTaps)).

Dependencies

To enable this parameter, set Adaptive algorithm to RLS.

Control parameters

Reference tap — Reference tap

3 (default) | positive integer

Reference tap, specified as a positive integer less than or equal to the Number of Taps parameter
value. The equalizer uses the reference tap location to track the main energy of the channel.

Input signal delay (samples) — Input signal delay

0 (default) | nonnegative integer

Input signal delay in samples relative to the reset time of the equalizer, specified as a nonnegative
integer. If the input signal is a vector of length greater than 1, then the input delay is relative to the
start of the input vector. If the input signal is a scalar, then the input delay is relative to the first call
of the block and to the first call of the block after the Reset input port toggles to 1.

Dependencies

To enable this parameter, set Adaptive algorithm to LMS or RLS.

Source of adapt weights flag — Source of adapt tap weights request

Property (default) | Input port
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Source of the adapt tap weights request, specified as one of these values:

• Property — Specify this value to use the Adaptive algorithm parameter to control when the
block adapts tap weights.

• Input port — Specify this value to use the Update input port to control when the block adapts
tap weights.

Dependencies

To enable this parameter, set Adaptive algorithm to CMA.

Adapt tap weights — Adapt tap weights

on (default) | off

Select this parameter to adaptively update the equalizer tap weights. If this parameter is cleared, the
block keeps the equalizer tap weights unchanged.
Dependencies

To enable this parameter, set Adaptive algorithm to CMA and Source of adapt weights flag to
Property.

Initial tap weights source — Source for initial tap weights

Auto (default) | Property

Source for initial tap weights, specified as one of these values:

• Auto — Initialize the tap weights to the algorithm-specific default values, as described in the
Initial weights parameter.

• Property — Initialize the tap weights using the Initial weights parameter value.

Initial weights — Initial tap weights

0 or [0;0;1;0;0] (default) | scalar | column vector

Initial tap weights used by the adaptive algorithm, specified as a scalar or an NTaps-by-1 vector. NTaps
is equal to the Number of Taps parameter value. The default is 0 when the Adaptive algorithm
parameter is set to LMS or RLS. The default is [0;0;1;0;0] when the Adaptive algorithm
parameter is set to CMA.

If you specify Initial weights as a vector, the vector length must be equal to the Number of Taps
parameter value. If you specify Initial weights as a scalar, the equalizer uses scalar expansion to
create a vector of length Number of Taps with all values set to Initial weights.
Dependencies

To enable this parameter, set Initial tap weights source to Property.

Tap weight update period (symbols) — Tap weight update period

1 (default) | positive integer

Tap weight update period in symbols, specified as a positive integer. The equalizer updates the tap
weights after processing this number of symbols.
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Enable training control input — Enable training control input

off (default) | on

Select this parameter to enable input port Train. If this parameter is cleared, the block does not
reenter training mode after the initial tap training.
Dependencies

To enable this parameter, set Adaptive algorithm to LMS or RLS.

Update tap weights when not training — Update tap weights when not training

on (default) | off

Select this parameter to use decision directed mode to update equalizer tap weights. If this
parameter is cleared, the block keeps the equalizer tap weights unchanged after training.
Dependencies

To enable this parameter, set Adaptive algorithm to LMS or RLS.

Enable reset input — Enable reset input

off (default) | on

Select this parameter to enable input port Train. If this parameter is cleared, the block does not
reenter training mode after the initial tap training.

Diagnostic parameters

Output error signal — Enable error signal output

off (default) | on

Select this parameter to enable output port Err containing the equalizer error signal.

Output taps weights — Enable tap weights output

off (default) | on

Select this parameter to enable output port w containing tap weights from the last tap weight update.

Simulate using — Type of simulation to run
Code generation (default) | Interpreted execution

Type of simulation to run, specified as Code generation or Interpreted execution.

• Code generation — Simulate the model by using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations unless the model changes. This option requires additional startup time, but the speed
of the subsequent simulations is faster than Interpreted execution.

• Interpreted execution — Simulate the model by using the MATLAB interpreter. This option
requires less startup time than the Code generation option, but the speed of subsequent
simulations is slower. In this mode, you can debug the source code of the block.
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Block Characteristics
Data Types double | single
Multidimensional
Signals

no

Variable-Size Signals yes

More About
Symbol Tap Spacing

You can configure the equalizer to operate as a symbol-spaced equalizer or as a fractional symbol-
spaced equalizer.

• To operate the equalizer at a symbol-spaced rate, specify the number of samples per symbol as 1.
Symbol-rate equalizers have taps spaced at the symbol duration. Symbol-rate equalizers are
sensitive to timing phase.

• To operate the equalizer at a fractional symbol-spaced rate, specify the number of input samples
per symbol as an integer greater than 1 and provide an input signal oversampled at that sampling
rate. Fractional symbol-spaced equalizers have taps spaced at an integer fraction of the input
symbol duration. Fractional symbol-spaced equalizers are not sensitive to timing phase.

Algorithms
Linear Equalizers

Linear equalizers can remove intersymbol interference (ISI) when the frequency response of a
channel has no null. If a null exists in the frequency response of a channel, linear equalizers tend to
enhance the noise. In this case, use decision feedback equalizers to avoid enhancing the noise.

A linear equalizer consists of a tapped delay line that stores samples from the input signal. Once per
symbol period, the equalizer outputs a weighted sum of the values in the delay line and updates the
weights to prepare for the next symbol period.

Linear equalizers can be symbol-spaced or fractional symbol-spaced.

• For a symbol-spaced equalizer, the number of samples per symbol, K, is 1. The output sample rate
equals the input sample rate.

• For a fractional symbol-spaced equalizer, the number of samples per symbol, K, is an integer
greater than 1. Typically, K is 4 for fractionally spaced equalizers. The output sample rate is 1/T
and the input sample rate is K/T, where T is the symbol period. Tap-weight updating occurs at the
output rate.

This schematic shows a linear equalizer with L weights, a symbol period of T, and K samples per
symbol. If K is 1, the result is a symbol-spaced linear equalizer instead of a fractional symbol-spaced
linear equalizer.
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In each symbol period, the equalizer receives K input samples at the tapped delay line. The equalizer
then outputs a weighted sum of the values in the tapped delay line and updates the weights to
prepare for the next symbol period.

For more information, see “Equalization”.

Least Mean Square (LMS) Algorithm

For the LMS algorithm, in the previous schematic, w is a vector of all weights wi, and u is a vector of
all inputs ui. Based on the current set of weights, the LMS algorithm creates the new set of weights
as

wnew = wcurrent + (StepSize) ue*.

The step size used by the adaptive algorithm is specified as a positive scalar. Increasing the step size
reduces the equalizer convergence time but causes the equalized output signal to be less stable. To
determine the maximum step size allowed when using the LMS adaptive algorithm, use the maxstep
object function. The * operator denotes the complex conjugate and the error calculation e = d - y.

Recursive Least Square (RLS) Algorithm

For the RLS algorithm, in the previous schematic, w is the vector of all weights wi, and u is the vector
of all inputs ui. Based on the current set of inputs, u, and the inverse correlation matrix, P, the RLS
algorithm first computes the Kalman gain vector, K, as

K = Pu
(ForgettingFactor) + uHPu

.

The forgetting factor used by the adaptive algorithm is specified as a scalar in the range (0, 1].
Decreasing the forgetting factor reduces the equalizer convergence time but causes the equalized
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output signal to be less stable. H denotes the Hermitian transpose. Based on the current inverse
correlation matrix, the new inverse correlation matrix is

Pnew =
(1 − KuH)Pcurrent
ForgettingFactor .

Based on the current set of weights, the RLS algorithm creates the new set of weights as
wnew = wcurrent+K*e.

The * operator denotes the complex conjugate and the error calculation e = d - y.

Constant Modulus Algorithm (CMA)

For the CMA adaptive algorithm, in the previous schematic, w is the vector of all weights wi, and u is
the vector of all inputs ui. Based on the current set of weights, the CMA adaptive algorithm creates
the new set of weights as

wnew = wcurrent + (StepSize) u*e.

The step size used by the adaptive algorithm is specified as a positive scalar. Increasing the step size
reduces the equalizer convergence time but causes the equalized output signal to be less stable. To
determine the maximum step size allowed by the CMA adaptive algorithm, use the maxstep object
function. The * operator denotes the complex conjugate and the error calculation e = y(R - |y|2),
where R is a constant related to the signal constellation.

Version History
Introduced in R2019a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Decision Feedback Equalizer | MLSE Equalizer

Objects
comm.LinearEqualizer

Topics
“Equalization”
“Adaptive Equalizers”
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Linearized Baseband PLL
(To be removed) Implement linearized version of baseband phase-locked loop

Note  will be removed in a future release. To design voltage-controlled oscillators (VCOs) and phase-
locked loops (PLLs), use the “Phase-Locked Loops” (Mixed-Signal Blockset) blocks.

Library
Components sublibrary of Synchronization

Description
The Linearized Baseband PLL block is a feedback control system that automatically adjusts the phase
of a locally generated signal to match the phase of an input signal. Unlike the Phase-Locked Loop
block, this block uses a baseband model method. Unlike the Baseband PLL block, which uses a
nonlinear model, this block simplifies the computations by using x to approximate sin(x). The
baseband PLL model depends on the amplitude of the incoming signal but does not depend on a
carrier frequency.

This PLL has these three components:

• An integrator used as a phase detector.
• A filter. You specify the filter's transfer function using the Lowpass filter numerator and

Lowpass filter denominator parameters. Each is a vector that gives the respective polynomial's
coefficients in order of descending powers of s.

To design a filter, you can use functions such as butter, cheby1, and cheby2 in Signal
Processing Toolbox software. The default filter is a Chebyshev type II filter whose transfer
function arises from the command below.

[num, den] = cheby2(3,40,100,'s')
• A voltage-controlled oscillator (VCO). You specify the sensitivity of the VCO signal to its input

using the VCO input sensitivity parameter. This parameter, measured in Hertz per volt, is a scale
factor that determines how much the VCO shifts from its quiescent frequency.

This block accepts a sample-based scalar input signal. The input signal represents the received
signal. The three output ports produce:

• The output of the filter
• The output of the phase detector
• The output of the VCO

For more information, “Phase-Locked Loops”.
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Parameters
Lowpass filter numerator

The numerator of the lowpass filter transfer function, represented as a vector that lists the
coefficients in order of descending powers of s.

Lowpass filter denominator
The denominator of the lowpass filter transfer function, represented as a vector that lists the
coefficients in order of descending powers of s.

VCO input sensitivity (Hz/V)
This value scales the input to the VCO and, consequently, the shift from the VCO's quiescent
frequency.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Topics
“Phase-Locked Loops”
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Matrix Deinterleaver
Permute input symbols by filling matrix by columns and emptying it by rows

Library
Block sublibrary of Interleaving

Description
The Matrix Deinterleaver block performs block deinterleaving by filling a matrix with the input
symbols column by column and then sending the matrix contents to the output port row by row. The
Number of rows and Number of columns parameters are the dimensions of the matrix that the
block uses internally for its computations.

This block accepts a column vector input signal. The length of the input vector must be Number of
rows times Number of columns.

The block accepts the following data types: int8, uint8, int16, uint16, int32, uint32, boolean,
single, double, and fixed-point. The output signal inherits its data type from the input signal.

Parameters
Number of rows

The number of rows in the matrix that the block uses for its computations.
Number of columns

The number of columns in the matrix that the block uses for its computations.

Examples
If the Number of rows and Number of columns parameters are 2 and 3, respectively, then the
deinterleaver uses a 2-by-3 matrix for its internal computations. Given an input signal of
[1; 2; 3; 4; 5; 6], the block produces an output of [1; 3; 5; 2; 4; 6].

Pair Block
Matrix Interleaver

Version History
Introduced before R2006a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Matrix Interleaver | General Block Deinterleaver
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Matrix Helical Scan Deinterleaver
Restore ordering of input symbols by filling matrix along diagonals

Library
Block sublibrary of Interleaving

Description
The Matrix Helical Scan Deinterleaver block performs block deinterleaving by filling a matrix with
the input symbols in a helical fashion and then sending the matrix contents to the output port row by
row. The Number of rows and Number of columns parameters are the dimensions of the matrix
that the block uses internally for its computations.

Helical fashion means that the block places input symbols along diagonals of the matrix. The number
of elements in each diagonal matches the Number of columns parameter, after the block wraps past
the edges of the matrix when necessary. The block traverses diagonals so that the row index and
column index both increase. Each diagonal after the first one begins one row below the first element
of the previous diagonal.

The Array step size parameter is the slope of each diagonal, that is, the amount by which the row
index increases as the column index increases by one. This parameter must be an integer between
zero and the Number of rows parameter. If the Array step size parameter is zero, then the block
does not deinterleave and the output is the same as the input.

This block accepts a column vector input signal. The number of elements of the input vector must be
the product of Number of rows and Number of columns.

The block accepts the following data types: int8, uint8, int16, uint16, int32, uint32, boolean,
single, double, and fixed-point. The output signal inherits its data type from the input signal.

Parameters
Number of rows

The number of rows in the matrix that the block uses for its computations.
Number of columns

The number of columns in the matrix that the block uses for its computations.
Array step size

The slope of the diagonals that the block writes.
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Pair Block
Matrix Helical Scan Interleaver

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Matrix Helical Scan Interleaver | General Block Deinterleaver
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Matrix Helical Scan Interleaver
Permute input symbols by selecting matrix elements along diagonals

Library
Block sublibrary of Interleaving

Description
The Matrix Helical Scan Interleaver block performs block interleaving by filling a matrix with the
input symbols row by row and then sending the matrix contents to the output port in a helical fashion.
The Number of rows and Number of columns parameters are the dimensions of the matrix that
the block uses internally for its computations.

Helical fashion means that the block selects output symbols by selecting elements along diagonals of
the matrix. The number of elements in each diagonal matches the Number of columns parameter,
after the block wraps past the edges of the matrix when necessary. The block traverses diagonals so
that the row index and column index both increase. Each diagonal after the first one begins one row
below the first element of the previous diagonal.

The Array step size parameter is the slope of each diagonal, that is, the amount by which the row
index increases as the column index increases by one. This parameter must be an integer between
zero and the Number of rows parameter. If the Array step size parameter is zero, then the block
does not interleave and the output is the same as the input.

This block accepts a column vector input signal. The number of elements of the input vector must be
the product of Number of rows and Number of columns.

The block accepts the following data types: int8, uint8, int16, uint16, int32, uint32, boolean,
single, double, and fixed-point. The output signal inherits its data type from the input signal.

Parameters
Number of rows

The number of rows in the matrix that the block uses for its computations.
Number of columns

The number of columns in the matrix that the block uses for its computations.
Array step size

The slope of the diagonals that the block reads.
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Examples
If the Number of rows and Number of columns parameters are 6 and 4, respectively, then the
interleaver uses a 6-by-4 matrix for its internal computations. If the Array step size parameter is 1,
then the diagonals are as shown in the figure below. Positions with the same color form part of the
same diagonal, and diagonals with darker colors precede those with lighter colors in the output
signal.

Given an input signal of [1:24]', the block produces an output of

[1; 6; 11; 16; 5; 10; 15; 20; 9; 14; 19; 24; 13; 18; 23;...
4; 17; 22; 3; 8; 21; 2; 7; 12]

Pair Block
Matrix Helical Scan Deinterleaver

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Matrix Helical Scan Deinterleaver | General Block Interleaver
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Matrix Interleaver
Permute input symbols by filling matrix by rows and emptying it by columns

Library
Block sublibrary of Interleaving

Description
The Matrix Interleaver block performs block interleaving by filling a matrix with the input symbols
row by row and then sending the matrix contents to the output port column by column.

The Number of rows and Number of columns parameters are the dimensions of the matrix that
the block uses internally for its computations.

This block accepts a column vector input signal. The number of elements of the input vector must be
the product of Number of rows and Number of columns.

The block accepts the following data types: int8, uint8, int16, uint16, int32, uint32, boolean,
single, double, and fixed-point. The output signal inherits its data type from the input signal.

Parameters
Number of rows

The number of rows in the matrix that the block uses for its computations.
Number of columns

The number of columns in the matrix that the block uses for its computations.

Examples
If the Number of rows and Number of columns parameters are 2 and 3, respectively, then the
interleaver uses a 2-by-3 matrix for its internal computations. Given an input signal of
[1; 2; 3; 4; 5; 6], the block produces an output of [1; 4; 2; 5; 3; 6].

Pair Block
Matrix Deinterleaver

Version History
Introduced before R2006a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Matrix Deinterleaver | General Block Interleaver
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M-DPSK Demodulator Baseband
Demodulate DPSK-modulated data

Library
PM, in Digital Baseband sublibrary of Modulation

Description
The M-DPSK Demodulator Baseband block demodulates a signal that was modulated using the M-ary
differential phase shift keying method. The input is a baseband representation of the modulated
signal. The input and output for this block are discrete-time signals. This block accepts a scalar-
valued or column vector input signal. For information about the data types each block port supports,
see the “Supported Data Types” on page 5-470 table on this page.

The M-ary number parameter, M, is the number of possible output symbols that can immediately
follow a given output symbol. The block compares the current symbol to the previous symbol. The
block's first output is the initial condition of zero (or a group of zeros, if the Output type parameter
is set to Bit) because there is no previous symbol.

Integer-Valued Signals and Binary-Valued Signals

If you set the Output type parameter to Integer, then the block demodulates a phase difference of

θ + 2πk/M

to k, where θ represents the Phase rotation parameter and k represents an integer between 0 and
M-1.

When you set the Output type parameter to Bit, the block outputs binary-valued signals that
represent integers. The block represents each integer using a group of K = log2(M) bits, where K
represents the number of bits per symbol. The output vector length must be an integer multiple of K.

In binary output mode, the symbols can be either binary-demapped or Gray-demapped. The
Constellation ordering parameter indicates how the block maps an integer to a corresponding
group of K output bits. See the reference pages for the M-DPSK Modulator Baseband and M-PSK
Modulator Baseband blocks for details.

5 Blocks

5-468



Dialog Box

M-ary number
The number of possible modulated symbols that can immediately follow a given symbol.

Output type
Determines whether the output consists of integers or groups of bits.

Constellation ordering
Determines how the block maps each integer to a group of output bits.

Phase rotation (rad)
This phase difference between the current and previous modulated symbols that results in an
output of zero.

Output data type
When the parameter is set to 'Inherit via internal rule' (default setting), the block will
inherit the output data type from the input port. The output data type will be the same as the
input data type if the input is of type single or double.

For integer outputs, this block can output the data types int8, uint8, int16, uint16, int32,
uint32, single, and double. For bit outputs, output can be int8, uint8, int16, uint16,
int32, uint32, boolean, single, or double.

 M-DPSK Demodulator Baseband
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Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
Output • Double-precision floating point

• Single-precision floating point
• Boolean when Output type set to Bit
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Pair Block
M-DPSK Modulator Baseband

References

[1] Pawula, R. F., "On M-ary DPSK Transmission Over Terrestrial and Satellite Channels," IEEE
Transactions on Communications, Vol. COM-32, July 1984, 752-761.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
M-DPSK Modulator Baseband | DBPSK Demodulator Baseband | DQPSK Demodulator Baseband | M-
PSK Demodulator Baseband
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M-DPSK Modulator Baseband
Modulate using M-ary differential phase shift keying method

Library
PM, in Digital Baseband sublibrary of Modulation

Description
The M-DPSK Modulator Baseband block modulates using the M-ary differential phase shift keying
method. The output is a baseband representation of the modulated signal. The M-ary number
parameter, M, is the number of possible output symbols that can immediately follow a given output
symbol.

The input must be a discrete-time signal. For integer inputs, the block can accept the data types
int8, uint8, int16, uint16, int32, uint32, single, and double. For bit inputs, the block can
accept int8, uint8, int16, uint16, int32, uint32, boolean, single, and double.

The input can be either bits or integers, which are binary-mapped or Gray-mapped into symbols.

This block accepts column vector input signals. For a bit input, the input width must be an integer
multiple of the number of bits per symbol.

Integer-Valued Signals and Binary-Valued Signals

If you set the Input type parameter to Integer, then valid input values are integers between 0 and
M-1. In this case, the input can be either a scalar or a frame-based column vector. If the first input is
k1, then the modulated symbol is

exp jθ + j2π
k1
m

where θ represents the Phase rotation parameter. If a successive input is k, then the modulated
symbol is

exp jθ + j2π k
m ⋅ (previous modulated symbol)

When you set the Input type parameter to Bit, the block accepts binary-valued inputs that
represent integers. The block collects binary-valued signals into groups of K = log2(M) bits

where

K represents the number of bits per symbol.
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The input vector length must be an integer multiple of K. In this configuration, the block accepts a
group of K bits and maps that group onto a symbol at the block output. The block outputs one
modulated symbol for each group of K bits.

The input can be a column vector with a length that is an integer multiple of K.

In binary input mode, the Constellation ordering parameter indicates how the block maps a group
of K input bits to a corresponding phase difference. The Binary option uses a natural binary-to-
integer mapping, while the Gray option uses a Gray-coded assignment of phase differences. For
example, the following table indicates the assignment of phase difference to three-bit inputs, for both
the Binary and Gray options. θ is the Phase rotation parameter. The phase difference is between
the previous symbol and the current symbol.

Current Input Binary-Coded Phase
Difference

Gray-Coded Phase Difference

[0 0 0] jθ jθ
[0 0 1] jθ + jπ/4 jθ + jπ/4
[0 1 0] jθ + jπ2/4 jθ + jπ3/4
[0 1 1] jθ + jπ3/4 jθ + jπ2/4
[1 0 0] jθ + jπ4/4 jθ + jπ7/4
[1 0 1] jθ + jπ5/4 jθ + jπ6/4
[1 1 0] jθ + jπ6/4 jθ + jπ4/4
[1 1 1] jθ + jπ7/4 jθ + jπ5/4

For more details about the Binary and Gray options, see the reference page for the M-PSK
Modulator Baseband block. The signal constellation for that block corresponds to the arrangement of
phase differences for this block.
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Dialog Box

M-ary number
The number of possible output symbols that can immediately follow a given output symbol.

Input type
Indicates whether the input consists of integers or groups of bits. If this parameter is set to Bit,
then the M-ary number parameter must be 2K for some positive integer K.

Constellation ordering
Determines how the block maps each group of input bits to a corresponding integer.

Phase rotation (rad)
The phase difference between the previous and current modulated symbols when the input is
zero.

Output data type
The output data type can be either single or double. By default, the block sets this to double.
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Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
• Boolean (binary input mode only)
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Output • Double-precision floating point
• Single-precision floating point

Pair Block
M-DPSK Demodulator Baseband

References

[1] Pawula, R. F., "On M-ary DPSK Transmission Over Terrestrial and Satellite Channels," IEEE
Transactions on Communications, Vol. COM-32, July 1984, 752-761.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
M-DPSK Demodulator Baseband | DBPSK Modulator Baseband | M-PSK Modulator Baseband |
DQPSK Modulator Baseband
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Memoryless Nonlinearity
Apply memoryless nonlinearity to complex baseband signal
Library: Communications Toolbox / RF Impairments

Description
The Memoryless Nonlinearity block applies memoryless nonlinear impairments to a complex
baseband signal. Use this block to model memoryless nonlinear impairments caused by signal
amplification in the radio frequency (RF) transmitter or receiver. For more information, see
“Memoryless Nonlinear Impairments” on page 5-479.

Note All values of power assume a nominal impedance of 1 ohm.

Ports
Input

In1 — Input RF baseband signal
scalar | column vector

Input RF baseband signal, specified as a scalar or column vector. Values in this input must be
complex.
Data Types: double
Complex Number Support: Yes

Output

Out1 — Output RF baseband signal
scalar | column vector

Output RF baseband signal, returned as a scalar or column vector. The output is of the same data
type as the input.

Parameters
Method — Nonlinearity modeling method

Cubic polynomial (default) | Hyperbolic tangent | Saleh model | Ghorbani model | Rapp
model

Nonlinearity modeling method, specified as Cubic polynomial, Hyperbolic tangent, Saleh
model, Ghorbani model, Rapp model, or Lookup table. For more information, see “Memoryless
Nonlinear Impairments” on page 5-479.
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Linear gain (dB) — Linear gain

0 (default) | scalar

Linear gain in decibels, specified as a scalar. This parameter scales the power gain of the output
signal.

Tunable: Yes

Dependencies

To enable this parameter, set the Method to Cubic polynomial, Hyperbolic tangent, or Rapp
model.
Data Types: double

IIP3 (dBm) — Third-order input intercept point

30 (default) | scalar

Third-order input intercept point in dBm, specified as a scalar.

Tunable: Yes

Dependencies

To enable this parameter, set the Method to Cubic polynomial or Hyperbolic tangent.
Data Types: double

AM/PM conversion (degrees per dB) — AM/PM conversion factor

10 (default) | scalar

AM/PM conversion factor in degrees per decibel, specified as a scalar. For more information, see
“Cubic Polynomial and Hyperbolic Tangent Model Methods” on page 5-480.

Tunable: Yes

Dependencies

To enable this parameter, set the Method to Cubic polynomial or Hyperbolic tangent.
Data Types: double

Lower input power limit for AM/PM conversion (dBm) — Input power lower limit

10 (default) | scalar

Input power lower limit in dBm, specified as a scalar less than the Upper input power limit for
AM/PM conversion (dBm) parameter value. The AM/PM conversion scales linearly for input power
values in the range [Lower input power limit for AM/PM conversion (dBm), Upper input power
limit for AM/PM conversion (dBm)]. If the input signal power is below the input power lower limit,
the phase shift resulting from AM/PM conversion is zero. For more information, see “Cubic
Polynomial and Hyperbolic Tangent Model Methods” on page 5-480.

Tunable: Yes
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Dependencies

To enable this parameter, set the Method to Cubic polynomial or Hyperbolic tangent.
Data Types: double

Upper input power limit for AM/PM conversion (dBm) — Input power upper limit

inf (default) | scalar

Input power upper limit in dBm, specified as a scalar greater than the Lower input power limit for
AM/PM conversion (dBm) parameter value. The AM/PM conversion scales linearly for input power
values in the range [Lower input power limit for AM/PM conversion (dBm), Upper input power
limit for AM/PM conversion (dBm)]. If the input signal power is below the input power lower limit,
the phase shift resulting from AM/PM conversion is zero. For more information, see “Cubic
Polynomial and Hyperbolic Tangent Model Methods” on page 5-480.

Tunable: Yes

Dependencies

To enable this parameter, set the Method to Cubic polynomial or Hyperbolic tangent.
Data Types: double

Input scaling (dB) — Input signal scaling factor

0 (default) | scalar

Input signal scaling factor in decibels, specified as a scalar. This parameter scales the power gain of
the input signal.

Tunable: Yes

Dependencies

To enable this parameter, set the Method to Saleh model or Ghorbani model.
Data Types: double

AM/AM parameters [alpha beta] — AM/AM parameters for Saleh model

[2.1587 1.1517] (default) | two-element vector

AM/AM parameters for Saleh model, used to compute the amplitude gain for an input signal,
specified as a two-element vector. For more information, see “Saleh Model Method” on page 5-481.

Tunable: Yes

Dependencies

To enable this parameter, set the Method to Saleh model.
Data Types: double

AM/PM parameters [alpha beta] — AM/PM parameters for Saleh model

[4.0033 9.1040] (default) | two-element vector
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AM/PM parameters for Saleh model, used to compute the phase change for an input signal, specified
as a two-element vector. For more information, see “Saleh Model Method” on page 5-481.

Tunable: Yes

Dependencies

To enable this parameter, set the Method to Saleh model.

AM/AM parameters [x1 x2 x3 x4] — AM/AM parameters for Ghorbani model

[8.1081 1.5413 6.5202 -0.0718] (default) | four-element vector

AM/AM parameters for Ghorbani model, used to compute the amplitude gain for an input signal,
specified as a four-element vector. For more information, see “Ghorbani Model Method” on page 5-
482.

Tunable: Yes

Dependencies

To enable this parameter, set the Method to Ghorbani model.
Data Types: double

AM/PM parameters [y1 y2 y3 y4] — AM/PM parameters for Ghorbani model

[4.6645 2.0965 10.88 -0.003] (default) | four-element vector

AM/PM parameters for Ghorbani model, used to compute the phase change for an input signal,
specified as a four-element vector. For more information, see “Ghorbani Model Method” on page 5-
482.

Tunable: Yes

Dependencies

To enable this parameter, set the Method to Ghorbani model.
Data Types: double

Output scaling (dB) — Output signal scaling factor

0 (default) | scalar

Output signal scaling factor in decibels, specified as a scalar. This parameter scales the power gain of
the output signal.

Tunable: Yes

Dependencies

To enable this parameter, set the Method to Saleh model or Ghorbani model.
Data Types: double

Smoothness factor — Smoothness factor
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0.5 (default) | scalar

Smoothness factor, specified as a scalar. For more information, see “Rapp Model Method” on page 5-
483.

Tunable: Yes

Dependencies

To enable this parameter, set the Method to Rapp model.
Data Types: double

Output saturation level — Output saturation level

1 (default) | scalar

Output saturation level, specified as a scalar. For more information, see “Rapp Model Method” on
page 5-483.

Tunable: Yes

Dependencies

To enable this parameter, set the Method to Rapp model.
Data Types: double

Block Characteristics
Data Types double | single
Multidimensional
Signals

no

Variable-Size Signals no

More About
Memoryless Nonlinear Impairments

Memoryless nonlinear impairments distort the input signal amplitude and phase. The amplitude
distortion is amplitude-to-amplitude modulation (AM/AM) and the phase distortion is amplitude-to-
phase modulation (AM/PM).

Model Method Memoryless Nonlinear Impairment
Cubic polynomial AM/AM and AM/PM
Hyperbolic tangent
Saleh model
Ghorbani model
Rapp model AM/AM only
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The modeled impairments apply the AM/AM and AM/PM distortions differently, according to the
model method you specify. The models apply the memoryless nonlinear impairment to the input signal
by following these steps.

1 Multiply the signal by an input gain factor.

Note You can normalize the signal to 1 by setting the input scaling gain to the inverse of the
input signal amplitude.

2 Split the complex signal into its magnitude and angle components.
3 Apply an AM/AM distortion to the magnitude of the signal, according to the selected model

method, to produce the magnitude of the output signal.
4 Apply an AM/PM distortion to the phase of the signal, according to the selected model method, to

produce the angle of the output signal.

Note This step does not apply for the Rapp model.
5 Combine the new magnitude and angle components into a complex signal. Then, multiply the

result by an output gain factor.

The first four model methods (cubic polynomial, hyperbolic tangent, Saleh model, and Ghorbani
model) apply AM/AM and AM/PM impairments as shown in this figure.

The Rapp model method applies AM/AM distortion as shown in this figure.

Cubic Polynomial and Hyperbolic Tangent Model Methods

This figure shows the AM/PM conversion behavior for the cubic polynomial and hyperbolic tangent
model methods.
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The AM/PM conversion scales linearly with an input power value between the lower and upper limits
of the input power level. Outside this range, the AM/PM conversion is constant at the values
corresponding to the lower and upper input power limits, which are zero and (AM/PM conversion) ×
(upper input power limit – lower input power limit), respectively.

Saleh Model Method

This figure shows the AM/AM behavior (output voltage versus input voltage for the AM/AM distortion)
and the AM/PM behavior (output phase versus input voltage for the AM/PM distortion) for the Saleh
model method.
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The AM/AM parameters, αAMAM and βAMAM, are used to compute the amplitude distortion of the input
signal by using

FAMAM(u) =
αAMAM × u

1 + βAMAM × u2 ,

where u is the magnitude of the scaled signal.

The AM/PM parameters, αAMPM and βAMPM, are used to compute the phase distortion of the input
signal by using

FAMPM(u) =
αAMPM × u2

1 + βAMPM × u2 ,

where u is the magnitude of the scaled signal. The α and β parameters for AM/AM and AM/PM are
similarly named but distinct.

Ghorbani Model Method

The Ghorbani model method applies AM/AM and AM/PM distortion as described in this section.

The AM/AM parameters (x1, x2, x3, and x4) are used to compute the amplitude distortion of the input
signal by using

FAMAM(u) =
x1ux2

1 + x3ux2
+ x4u,
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where u is the magnitude of the scaled signal.

The AM/PM parameters (y1, y2, y3, and y4) are used to compute the phase distortion of the input
signal by using

FAMPM(u) =
y1uy2

1 + y3uy2
+ y4u,

where u is the magnitude of the scaled signal.

Rapp Model Method

The Rapp model method applies AM/AM distortion as described in this section. The Rapp model does
not apply AM/PM distortion to the input signal.

The smoothness factor and output saturation level are used to compute the amplitude distortion of
the input signal given by

FAMAM(u) =
glin × u

1 +
glin × u

Osat

2S 1/2S ,

where

• u is the magnitude of the scaled signal.
• S is the smoothness factor.
• Osat is the output saturation level.

Version History
Introduced before R2006a

References
[1] Saleh, A.A.M. “Frequency-Independent and Frequency-Dependent Nonlinear Models of TWT
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https://doi.org/10.1109/TCOM.1981.1094911.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.
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See Also
Blocks
Amplifier | I/Q Imbalance

Objects
comm.MemorylessNonlinearity
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M-FSK Demodulator Baseband
Demodulate FSK-modulated data

Library
FM, in Digital Baseband sublibrary of Modulation

Description
The M-FSK Demodulator Baseband block demodulates a signal that was modulated using the M-ary
frequency shift keying method. The input is a baseband representation of the modulated signal. The
input and output for this block are discrete-time signals. This block accepts a scalar value or column
vector input signal of type single or double. For information about the data types each block port
supports, see “Supported Data Types” on page 5-488.

The M-ary number parameter, M, is the number of frequencies in the modulated signal. The
Frequency separation parameter is the distance, in Hz, between successive frequencies of the
modulated signal.

The M-FSK Demodulator Baseband block implements a non-coherent energy detector. To obtain the
same BER performance as that of coherent FSK demodulation, use the CPFSK Demodulator
Baseband block.

Integer-Valued Signals and Binary-Valued Signals

When you set the Output type parameter to Integer, the block outputs integer values between 0
and M-1. M represents the M-ary number block parameter.

When you set the Output type parameter to Bit, the block outputs binary-valued signals that
represent integers. The block represents each integer using a group of K = log2(M) bits, where K
represents the number of bits per symbol. The output vector length must be an integer multiple of K.

The Symbol set ordering parameter indicates how the block maps a symbol to a group of K output
bits. When you set the parameter to Binary, the block maps the integer, I, to [u(1) u(2) ... u(K)] bits,
where the individual u(i) are given by

I = ∑
i = 1

K
u(i)2K − i

u(1) is the most significant bit.

For example, if M = 8, you set Symbol set ordering to Binary, and the demodulated integer symbol
value is 6, then the binary output word is [1 1 0].

When you set Symbol set ordering to Gray, the block assigns bit outputs from points of a
predefined Gray-coded signal constellation. The predefined M-ary Gray-coded signal constellation
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assigns the bit representation in the pth row of bit matrix b to the pth integer, where the left-most bit
is the most significant bit (MSB).

M = 8; P = [0:M-1]';
nBits = log2(M);
b = int2bit(bitxor(P,floor(P/2)),nBits);
b = reshape(b,[],8)';

The typical Binary to Gray mapping for M = 8 is shown in the following tables.

Binary to Gray Mapping for Bits

Binary Code Gray Code
000 000
001 001
010 011
011 010
100 110
101 111
110 101
111 100

Binary to Gray Mapping for Integers

Binary Code Gray Code
0 0
1 1
2 3
3 2
4 6
5 7
6 5
7 4

Whether the output is an integer or a binary representation of an integer, the block maps the highest
frequency to the integer 0 and maps the lowest frequency to the integer M-1. In baseband simulation,
the lowest frequency is the negative frequency with the largest absolute value.

Single-Rate Processing

In single-rate processing mode, the input and output signals have the same port sample time. The
block implicitly implements the rate change by making a size change at the output when compared to
the input. The input width must be an integer multiple of the Samples per symbol parameter value,
and the input can be a column vector.

• When you set Output type to Bit, the output width is K times the number of input symbols and
the M-ary number value must be a power of two.

• When you set Output type to Integer, the output width is the number of input symbols.
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Multirate Processing

In multirate processing mode, the input and output signals have different port sample times. The
input must be a scalar. The output symbol time is the product of the input sample time and the
Samples per symbol parameter value.

• When you set Output type to Bit, the output width equals the number of bits per symbol and the
M-ary number value must be a power of two.

• When you set Output type to Integer, the output is a scalar.

To run the M-FSK Demodulator block in multirate mode, clear the Treat each discrete rate as a
separate task checkbox (in Simulation > Configuration Parameters > Solver).

Parameters
M-ary number

Number of frequencies in the modulated signal, specified as a positive integer ≥ 2.
Output type

Determines whether the output consists of integers or groups of bits. If this parameter is set to
Bit, then the M-ary number parameter must be a power of two.

Symbol set ordering
Determines how the block maps each integer to a group of output bits.

Note When you set Symbol set ordering to Gray, the M-ary number value must be a power of
two.

Frequency separation (Hz)
The distance between successive frequencies in the modulated signal.

Samples per symbol
The number of input samples that represent each modulated symbol.

Rate options
Select the rate processing method for the block.

• Enforce single-rate processing — When you select this option, the input and output
signals have the same port sample times. The block implements the rate change by making a
size change at the output when compared to the input. The output width is the number of
symbols (which is given by dividing the input length by the Samples per symbol parameter
value when the Output type parameter is set to Integer).

• Allow multirate processing — When you select this option, the input and output signals
have different port sample times. The output period is the same as the symbol period and
equals the product of the input period and the Samples per symbol parameter value.

For more information, see Single-Rate Processing and Multirate Processing in the Description
section of this page.

Output data type
The output type of the block can be specified here as boolean, int8, uint8, int16, uint16,
int32, uint32, or double. By default, the block sets this to double.
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Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
Output • Double-precision floating point

• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Pair Block
M-FSK Modulator Baseband

Version History
Introduced before R2006a

References
[1] Sklar, Bernard. Digital Communications: Fundamentals and Applications. Upper Saddle River, NJ:

Prentice-Hall, 2001.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
M-FSK Modulator Baseband | CPFSK Demodulator Baseband
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M-FSK Modulator Baseband
Modulate using M-ary frequency shift keying method

Library
FM, in Digital Baseband sublibrary of Modulation

Description
The M-FSK Modulator Baseband block modulates using the M-ary frequency shift keying method. The
output is a baseband representation of the modulated signal. For information about the data types
each block port supports, see “Supported Data Types” on page 5-492.

To prevent aliasing from occurring in the output signal, set the sampling frequency greater than the
product of M and the Frequency separation parameter. Sampling frequency is Samples per
symbol divided by the input symbol period (in seconds).

Integer-Valued Signals and Binary-Valued Signals

The input and output signals for this block are discrete-time signals.

When you set the Input type parameter to Integer, the block accepts integer values between 0 and
M-1. M represents the M-ary number block parameter.

When you set the Input type parameter to Bit, the block accepts binary-valued inputs that
represent integers. The block collects binary-valued signals into groups of K = log2(M) bits

where

K represents the number of bits per symbol.

The input vector length must be an integer multiple of K. In this configuration, the block accepts a
group of K bits and maps that group onto a symbol at the block output. The block outputs one
modulated symbol, oversampled by the Samples per symbol parameter value, for each group of K
bits.

The Symbol set ordering parameter indicates how the block maps a group of K input bits to a
corresponding symbol. When you set the parameter to Binary, the block maps [u(1) u(2) ... u(K)] to
the integer

∑
i = 1

K
u(i)2K − i

and assumes that this integer is the input value. u(1) is the most significant bit.
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If you set M = 8, Symbol set ordering to Binary, and the binary input word is [1 1 0], the block
converts [1 1 0] to the integer 6. The block produces the same output when the input is 6 and the
Input type parameter is Integer.

When you set Symbol set ordering to Gray, the block uses a Gray-coded arrangement and assigns
binary inputs to points of a predefined Gray-coded signal constellation. The predefined M-ary Gray-
coded signal constellation assigns the binary representation.

M = 8;
k = log2(M);
P = [0:M-1];
reshape(int2bit(bitxor(P,floor(P/2)),k),k,[])'

to the Pth integer.

The following tables show the typical Binary to Gray mapping for M = 8.

Binary to Gray Mapping for Bits

Binary Code Gray Code
000 000
001 001
010 011
011 010
100 110
101 111
110 101
111 100

Binary to Gray Mapping for Integers

Binary Code Gray Code
0 0
1 1
2 3
3 2
4 6
5 7
6 5
7 4

Single-Rate Processing

In single-rate processing mode, the input and output signals have the same port sample time. The
block implicitly implements the rate change by making a size change at the output when compared to
the input. In this mode, the input to the block can be multiple symbols.
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• When you set Input type to Integer, the input can be a column vector, the length of which is the
number of input symbols.

• When you set Input type to Bit, the input width must be an integer multiple of K, the number of
bits per symbol and the M-ary number value must be a power of two.

The output width equals the product of the number of input symbols and the Samples per symbol
parameter value.

Multirate Processing

In multirate processing mode, the input and output signals have different port sample times. In this
mode, the input to the block must be one symbol.

• When you set Input type to Integer, the input must be a scalar.
• When you set Input type to Bit, the input width must equal the number of bits per symbol and

the M-ary number value must be a power of two.

The output sample time equals the symbol period divided by the Samples per symbol parameter
value.

To run the M-FSK Modulator block in multirate mode, clear the Treat each discrete rate as a
separate task checkbox (in Simulation > Configuration Parameters > Solver).

Parameters
M-ary number

Number of frequencies in the modulated signal, specified as a positive integer ≥ 2.
Input type

Indicates whether the input consists of integers or groups of bits. If you set this parameter to
Bit, then the M-ary number parameter must be 2K for some positive integer K.

Symbol set ordering
Determines how the block maps each group of input bits to a corresponding integer.

Note When you set Symbol set ordering to Gray, the M-ary number value must be a power of
two.

Frequency separation (Hz)
The distance between successive frequencies in the modulated signal.

Phase continuity
Determines whether the modulated signal changes phases in a continuous or discontinuous way.

If you set the Phase continuity parameter to Continuous, then the modulated signal maintains
its phase even when it changes its frequency. If you set the Phase continuity parameter to
Discontinuous, then the modulated signal comprises portions of M sinusoids of different
frequencies. Thus, a change in the input value sometimes causes a change in the phase of the
modulated signal.
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Samples per symbol
The number of output samples that the block produces for each integer or binary word in the
input.

Rate options
Select the rate processing option for the block.

• Enforce single-rate processing — When you select this option, the input and output
signals have the same port sample time. The block implements the rate change by making a
size change at the output when compared to the input. The output width equals the product of
the number of symbols and the Samples per symbol parameter value.

• Allow multirate processing — When you select this option, the input and output signals
have different port sample times. The output sample time equals the symbol period divided by
the Samples per symbol parameter value.

Output data type
You can specify the output type of the block as either a double or a single. By default, the block
sets this value to double.

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Boolean (bit input mode only)
• 8-, 16-, and 32-bit signed integers (integer input mode only)
• 8-, 16-, and 32-bit unsigned integers (integer input mode only)

Output • Double-precision floating point
• Single-precision floating point

Pair Block
M-FSK Demodulator Baseband

Version History
Introduced before R2006a

References
[1] Sklar, Bernard. Digital Communications: Fundamentals and Applications. Upper Saddle River, NJ:

Prentice-Hall, 2001.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.
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See Also
Blocks
M-FSK Demodulator Baseband | CPFSK Modulator Baseband

Topics
“Digital Baseband Modulation”
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MIL-188 QAM Demodulator Baseband
MIL-STD-188-110 B/C standard-specific quadrature amplitude demodulation
Library: Communications Toolbox / Modulation / Digital Baseband

Modulation / AM
Communications Toolbox / Modulation / Digital Baseband
Modulation / Standard-Compliant

Description
The MIL-188 QAM Demodulator Baseband block demodulates the input signal using “MIL-
STD-188-110” on page 5-497 standard-specific quadrature amplitude modulation (QAM). For a
description of MIL-STD-188 compliant demodulation, see “MIL-STD-188-110 QAM Hard
Demodulation” on page 5-497 and “MIL-STD-188-110 QAM Soft Demodulation” on page 5-498.

This icon shows the block with all ports enabled: 

Ports
Input

In — MIL-STD-188 standard-specific QAM modulated signal
scalar | vector | matrix

MIL-STD-188 standard-specific QAM modulated signal, specified as a scalar, vector, or matrix. When
this input is a matrix, each column is treated as an independent channel. This port is unnamed until
the Var port is enabled.
Data Types: single | double
Complex Number Support: Yes

Var — Noise variance
positive scalar | vector of positive values

Noise variance, specified as a positive scalar or vector of positive values. When the noise variance or
signal power result in computations involving extreme positive or negative magnitudes, see “MIL-
STD-188-110 QAM Soft Demodulation” on page 5-498 for demodulation decision type considerations.

Dependencies

To enable this port set the Noise variance source parameter to Input port.
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Output

Out — Demodulated signal
scalar | vector | matrix

Demodulated signal, returned as a scalar, vector, or matrix. The dimensions of the demodulated signal
depend on the specified Output type and Decision type parameter values. This port is unnamed on the
block.

Output
type

Decision
type

Demodulated Signal
Description

Dimensions of Demodulated Signal

Integer — Demodulated integer values
in the range [0, (M – 1)]

The output signal has the same
dimensions as input signal.

Bit Hard
decision

Demodulated bits The number of rows in the output signal is
log2(M) times the number of rows in the
input signal. Each demodulated symbol is
mapped to a group of log2(M) elements in
a column, where the first element
represents the MSB, and the last element
represents the LSB.

Log-
likelihood
ratio

Log-likelihood ratio value
for each bit

Approximat
e log-
likelihood
ratio

Approximate log-likelihood
ratio value for each bit

M is the value of Modulation order.

Use Output data type to specify the output data type.

Parameters
Modulation order — Modulation order
16 (default) | 32 | 64 | 256

Modulation order, M, specified as 16, 32, 64, or 256. The modulation order specifies the total number
of points in the constellation of the input signal.

Constellation scaling — Constellation scaling
As specified in standard (default) | Unit average power

Constellation scaling preference, specified as:

• As specified in standard – The block scales the constellation based on specifications in the
relevant standard [1].

• Unit average power – The block scales the constellation to an average power of 1 watt
referenced to 1 ohm.

Output type — Input type
Integer (default) | Bit

Output type, specified as Integer or Bit. To use Integer, the input signal must consist of integers
in the range [0, (M – 1)]. To use Bit, the input signal must contain binary values, and the number of
rows must be an integer multiple of log2(M), where M is the Modulation order.
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Decision type — Demodulation decision type
Hard decision (default) | Log-likelihood ratio | Approximate log-likelihood ratio

Demodulation decision type, specified as Hard decision, Log-likelihood ratio, or
Approximate log-likelihood ratio. See “MIL-STD-188-110 QAM Soft Demodulation” on page
5-498 for algorithm selection considerations.

Dependencies

This parameter applies when Output type is set to Bit.

Noise variance source — Noise variance source
Property (default) | Input port

Noise variance source, specified as:

• Property — The noise variance is set using the Noise variance parameter.
• Input port — The noise variance is set using the Var input port.

Dependencies

This parameter applies only when Decision type is set to either Log-likelihood ratio or
Approximate log-likelihood ratio.

Noise variance — Noise variance
1 (default) | positive scalar | vector of positive values

Noise variance, specified as a positive scalar or vector of positive values.

• When specified as a scalar, that value is used on all elements in the input signal.
• When specified as a vector, the vector length must be equal to the number of columns in the input

signal. Each noise variance vector element is applied to its corresponding column in the input
signal.

When the noise variance or signal power result in computations involving extreme positive or
negative magnitudes, see “MIL-STD-188-110 QAM Soft Demodulation” on page 5-498 for
demodulation decision type considerations.

Dependencies

This parameter applies only when Noise variance is set to Property and Decision type is set to
either Log-likelihood ratio or Approximate log-likelihood ratio.
Data Types: double

Output data type — Output data type
double (default) | ...

Output data type, specified as one of the acceptable values from this table. Acceptable Output data
type values depend on the Output type and Decision type parameter values.

Output type Decision type Output data type Options
Integer Not applicable double, single, int8, uint8, int16, uint16, int32, or

uint32
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Output type Decision type Output data type Options
Bit Hard decision double, single, int8, uint8, int16, uint16, int32,

uint32, or logical
Log-likelihood
ratio or
Approximate
log-likelihood
ratio

The output signal is the same data type as the input signal.

Dependencies

This parameter applies only when Output type is set to Integer or when Output type is set to Bit
and Decision type is set to Hard decision.

Simulate using — Type of simulation to run
Interpreted execution (default) | Code generation

Type of simulation to run, specified as:

• Code generation –– Simulate the model using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations as long as the model does not change. This option requires additional startup time.

• Interpreted execution –– Simulate the model using the MATLAB interpreter. This option
shortens startup time. In Interpreted execution mode, you can debug the source code of the
block.

For information on execution speed, see “Tips” on page 5-498.

Block Characteristics
Data Types Boolean | double | integer | single
Multidimensional
Signals

yes

Variable-Size Signals no

More About
MIL-STD-188-110

MIL-STD-188-110 is a US Department of Defense standard for HF communications using serial PSK
mode of both data and voice signals.

The standard specifies physical layer modulation schemes for tactical and long-haul communications.
The modulation scheme specified by the standard is a mix of QAM and APSK. For a detailed
description of the modulation scheme, see [1].

MIL-STD-188-110 QAM Hard Demodulation

The hard demodulation algorithm uses optimum decision region-based demodulation. Since all the
constellation points are equally probable, maximum a posteriori probability (MAP) detection reduces
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to a maximum likelihood (ML) detection. The ML detection rule is equivalent to choosing the closest
constellation point to the received symbol. The decision region for each constellation point is
designed by drawing perpendicular bisectors between adjacent points. A received symbol is mapped
to the proper constellation point based on which decision region it lies in.

Since all MIL-STD constellations are quadrant-based symmetric, for each symbol the optimum
decision region-based demodulation:

• Maps the received symbol into the first quadrant
• Chooses the decision region for the symbol
• Maps the constellation point back to its original quadrant using the sign of real and imaginary

parts of the received symbol

MIL-STD-188-110 QAM Soft Demodulation

For soft demodulation, two soft-decision log-likelihood ratio (LLR) algorithms are available: exact LLR
and approximate LLR. The exact LLR algorithm is more accurate but has slower execution speed than
the approximate LLR algorithm. For further description of these algorithms, see the “Hard- vs. Soft-
Decision Demodulation” topic.

Note The exact LLR algorithm computes exponentials using finite precision arithmetic. For
computations involving very large positive or negative magnitudes, the exact LLR algorithm yields:

• Inf or -Inf if the noise variance is a very large value
• NaN if the noise variance and signal power are both very small values

The approximate LLR algorithm does not compute exponentials. You can avoid Inf, -Inf, and NaN
results by using the approximate LLR algorithm.

Tips
• For faster execution of the MIL-188 QAM Demodulator Baseband block, set the Simulate using

parameter to:

• Code generation when using hard decision demodulation.
• Interpreted execution when using soft decision demodulation.

Version History
Introduced in R2018b

References
[1] MIL-STD-188-110B & C: "Interoperability and Performance Standards for Data Modems."

Department of Defense Interface Standard, USA.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.
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See Also
Blocks
MIL-188 QAM Modulator Baseband | DVBS-APSK Demodulator Baseband | M-APSK Demodulator
Baseband

Functions
mil188qamdemod

Topics
“Hard- vs. Soft-Decision Demodulation”
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MIL-188 QAM Modulator Baseband
MIL-STD-188-110 B/C standard-specific quadrature amplitude modulation (QAM)
Library: Communications Toolbox / Modulation / Digital Baseband

Modulation / AM
Communications Toolbox / Modulation / Digital Baseband
Modulation / Standard-Compliant

Description
The MIL-188 QAM Modulator Baseband block modulates the input signal using “MIL-STD-188-110”
on page 5-502 standard-specific quadrature amplitude modulation (QAM).

Ports
Input

In — Input signal
scalar | vector | matrix

Input signal, specified as a scalar, vector, or matrix. The input signal must be binary values or
integers in the range [0, (M – 1)], where M is the Modulation order. This port is unnamed on the
block.

Note To process the input signal as binary elements, set the Input type parameter value to Bit. For
binary inputs, the number of rows must be an integer multiple of log2(M). Groups of log2(M) bits in a
column are mapped onto a symbol, with the first bit representing the MSB and the last bit
representing the LSB.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean

Output

Out — MIL-STD-188 standard-specific QAM modulated signal
scalar | vector | matrix

MIL-STD-188 standard-specific QAM modulated signal, returned as a complex scalar, vector, or
matrix. The output signal dimensions depend on the specified Input type parameter value. This port is
unnamed on the block.

Input type Dimensions of Output Signal
Integer The output signal has the same dimensions as the input signal.
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Input type Dimensions of Output Signal
Bit The number of rows in the output signal equals the number of rows in the

input signal divided by log2(M), where M is the Modulation order.

Parameters
Modulation order — Modulation order
16 (default) | 32 | 64 | 256

Modulation order, M, specified as 16, 32, 64, or 256. The modulation order specifies the total number
of points in the constellation of the output signal.

Constellation scaling — Constellation scaling
As specified in standard (default) | Unit average power

Constellation scaling preference, specified as:

• As specified in standard – The block scales the constellation based on specifications in the
relevant standard [1].

• Unit average power – The block scales the constellation to an average power of 1 watt
referenced to 1 ohm.

Input type — Input type
Integer (default) | Bit

Input type, specified as Integer or Bit. To use Integer, the input signal must consist of integers in
the range [0, (M – 1)]. To use Bit, the input signal must contain binary values, and the number of
rows must be an integer multiple of log2(M), where M is the Modulation order.

Output data type — Output data type
double (default) | single

Output data type, specified as double or single.

View Constellation — Plot reference constellation
button

To plot the reference constellation, click the View Constellation button.

Simulate using — Type of simulation to run
Code generation (default) | Interpreted execution

Type of simulation to run, specified as:

• Code generation –– Simulate the model using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations as long as the model does not change. This option requires additional startup time,
but the speed of the subsequent simulations is comparable to Interpreted execution.
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• Interpreted execution –– Simulate the model using the MATLAB interpreter. This option
shortens startup time and has a simulation speed comparable to Code generation. In
Interpreted execution mode, you can debug the source code of the block.

Block Characteristics
Data Types Boolean | double | integer | single
Multidimensional
Signals

yes

Variable-Size Signals no

More About
MIL-STD-188-110

MIL-STD-188-110 is a US Department of Defense standard for HF communications using serial PSK
mode of both data and voice signals.

The standard specifies physical layer modulation schemes for tactical and long-haul communications.
The modulation scheme specified by the standard is a mix of QAM and APSK. For a detailed
description of the modulation scheme, see [1].

Version History
Introduced in R2018b

References
[1] MIL-STD-188-110B & C: "Interoperability and Performance Standards for Data Modems."

Department of Defense Interface Standard, USA.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
DVBS-APSK Modulator Baseband | M-APSK Modulator Baseband | MIL-188 QAM Demodulator
Baseband

Functions
mil188qammod
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MIMO Fading Channel
Filter input signal through MIMO multipath fading channel
Library: Communications Toolbox / Channels

Communications Toolbox / MIMO

Description
The MIMO Fading Channel block filters an input signal using a multi-input/multi-output (MIMO)
multipath fading channel. This block models both Rayleigh and Rician fading and employs the
Kronecker model for modeling the spatial correlation between the links. For processing details, see
the Algorithms on page 5-513 section.

Signal Dimensions

The availability and dimensions of input and output port signals depends on:

• The Antenna selection parameter setting on the Main tab
• The Initial time source parameter setting on the Realization tab
• The Output channel path gains selection on the Realization tab

Antenna
Selection
Parameter

Signal
Input (in)

Transmit
Selection
Input (Tx
Sel)

Receive
Selection
Input (Rx
Sel)

Initial Time
Offset Input
(Init Time)

Signal
Output
(Out1)

Optional
Channel
Gain
Output
(Gain)

Off NS-by-NT N/A N/A nonnegative
scalar

NS-by-NR NS-by-NP-by-
NT-by-NRTx NS-by-NST 1-by-NT N/A NS-by-NR

Rx NS-by-NT N/A 1-by-NR NS-by-NSR

Tx and Rx NS-by-NST 1-by-NT 1-by-NR NS-by-NSR

• NS represents the number of samples in the input signal.
• NT represents the number of transmit antennas, as determined by:

• Transmit spatial correlation when Specify spatial correlation is set to Separate Tx Rx
• Number of transmit antennas when Specify spatial correlation is set to None or Combined

• NR represents the number of receive antennas, as determined by:

• Receive spatial correlation when Specify spatial correlation is set to Separate Tx Rx
• Number of receive antennas when Specify spatial correlation is set to None
• Combined spatial correlation and Number of transmit antennas when Specify spatial

correlation is set to Combined
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• NP represents the number of channel paths, as determined by the Discrete path delays (s) or
Average path gains (dB).

• NST represents the number of selected transmit antennas, as determined by the number of
elements set to 1 in the vector provided to the Tx Sel input port.

• NSR represents the number of selected receive antennas, as determined by the number of
elements set to 1 in the vector provided to the Rx Sel input port.

Ports
Input

in — Input data signal
vector

Input data signal, specified as an NS-by-NT or NS-by-NST matrix.

• NS represents the number of samples in the input signal.
• NT represents the number of transmit antennas.
• NST represents the number of selected transmit antennas.

Data Types: double | single
Complex Number Support: Yes

Tx Sel — Select active transmit antennas
binary vector

Select active transmit antennas, specified as a 1-by-NT binary vector. NT represents the number of
transmit antennas. Elements set to 1 identify selected antenna indices and 0 identify nonselected
antenna indices.

Dependencies

To enable this port, on the Main tab, set Antenna selection to Tx or Tx and Rx.
Data Types: double

Rx Sel — Select active receive antennas
binary vector

Select active receive antennas, specified as a 1-by-NR binary vector. NR represents the number of
receive antennas. Elements set to 1 identify selected antenna indices and 0 identify nonselected
antenna indices.

Dependencies

To enable this port, on the Main tab, set Antenna selection to Rx or Tx and Rx.
Data Types: double

Init Time — Initial time offset
nonnegative scalar

Initial time offset for the fading model in seconds, specified as a nonnegative scalar.
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Init Time must be greater than the last frame end time. When Init Time is not a multiple of 1/
Sample Rate (Hz), it is rounded up to the nearest sample position.

Dependencies

To enable this port, on the Realization tab, set Initial time source to Input port.
Data Types: double

Output

Out1 — Output data signal for fading channel
vector

Output data signal for the fading channel, returned as an NS-by-NR or NS-by-NSR matrix.

• NS represents the number of samples in the input signal.
• NR represents the number of receive antennas.
• NSR represents the number of selected receive antennas.

Gain — Discrete path gains
4-D array

Discrete path gains of the underlying fading process, returned as an NS-by-NP-by-NT-by-NR array.

• NS represents the number of samples in the input signal.
• NP represents the number of channel paths.
• NT represents the number of transmit antennas.
• NR represents the number of receive antennas.

Entries for nonselected paths are filled with NaN.

Dependencies

To enable this port, on the Realization tab, select Output channel path gains.

Parameters
Main Tab

Multipath parameters (frequency selectivity)

Inherit sample rate from input — Option to inherit the sample rate from input

on (default) | off

Select this parameter to use the sample rate of the input signal when processing. When Inherit
sample rate from input is selected, the sample rate is NS/TS, where NS is the number of input
samples, and TS is the model sample time.

Sample rate (Hz) — Input signal sample rate

1 (default) | positive scalar
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Input signal sample rate, specified in hertz as a positive scalar. To match the model settings, set the
sample rate to NS/TS, where NS is the number of input samples, and TS is the model sample time.
Dependencies

This parameter appears when Inherit sample rate from input is not selected.
Data Types: double

Discrete path delays (s) — Delays for each discrete path

0 (default) | nonnegative scalar | row vector

Delays for each discrete path in seconds, specified as a nonnegative scalar or row vector.

• When you set Discrete path delays (s) to a scalar, the MIMO channel is frequency flat.
• When you set Discrete path delays (s) to a vector, the MIMO channel is frequency selective.

Data Types: double

Average path gains (dB) — Average gain for each discrete path

0 (default) | scalar | row vector

Average gain for each discrete path in decibels, specified as a scalar or row vector. Average path
gains (dB) must have the same size as Discrete path delays (s).
Data Types: double

Normalize average path gains to 0 dB — Option to normalize average path gains to 0
dB

on (default) | off

Select this parameter to normalize the fading processes so that the total power of the path gains,
averaged over time, is 0 dB.

Fading distribution — Fading distribution of channel

Rayleigh (default) | Rician

Select the fading distribution of the channel, either Rayleigh or Rician.

K-factors — K-factor of Rician fading channel

3 (default) | positive scalar | row vector of nonnegative values

K-factor of a Rician fading channel, specified as a positive scalar or a 1-by-NP vector of nonnegative
values. NP equals the value of the Discrete path delays (s) parameter.

• If you set K-factors to a scalar, the first discrete path is a Rician fading process with a Rician K-
factor of K-factors. Any remaining discrete paths are independent Rayleigh fading processes.

• If you set K-factors to a row vector, the discrete path corresponding to a positive element of the
K-factors vector is a Rician fading process with a Rician K-factor specified by that element. The
discrete path corresponding to any zero-valued elements of the K-factors vector are Rayleigh
fading processes. At least one element value must be nonzero.
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Dependencies

This parameter appears when Fading distribution is Rician.
Data Types: double

LOS path Doppler shifts (Hz) — Doppler shifts for line-of-sight components

0 (default) | scalar | row vector

Doppler shifts for the line-of-sight components of the Rician fading channel in hertz, specified as a
scalar or row vector. This parameter must have the same size as K-factors.

• If you set LOS path Doppler shifts (Hz) to a scalar, it represents the line-of-sight component
Doppler shift of the first discrete path that is a Rician fading process.

• If you set LOS path Doppler shifts (Hz) to a row vector, the discrete path that is a Rician fading
process has its line-of-sight component Doppler shift specified by the elements of LOS path
Doppler shifts (Hz) that correspond to positive elements in the K-factors vector.

Dependencies

This parameter appears when Fading distribution is Rician.
Data Types: double

LOS path initial phases (rad) — Initial phases for line-of-sight components

0 (default) | scalar | row vector

Initial phases for the line-of-sight component of the Rician fading channel in radians, specified as a
scalar or row vector. This parameter must have the same size as K-factors.

• If you set LOS path initial phases (rad) to a scalar, it is the line-of-sight component initial phase
of the first discrete path that is a Rician fading process.

• If you set LOS path initial phases (rad) to a row vector, the discrete path that is a Rician fading
process has its line-of-sight component initial phase specified by the elements of LOS path initial
phases (rad) that correspond to positive elements in the K-factors vector.

Dependencies

This parameter appears when Fading distribution is Rician.
Data Types: double

Doppler parameters (time dispersion)

Maximum Doppler shift (Hz) — Maximum Doppler shift for all channel paths

0.001 (default) | nonnegative scalar

Maximum Doppler shift for all channel paths in hertz, specified as a nonnegative scalar.

Maximum Doppler shift (Hz) must be smaller than (Sample Rate (Hz)/10)/fc for each path, where fc
is the cutoff frequency factor of the path. For more information, see “Cutoff Frequency Factor” on
page 5-513.
Data Types: double
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Doppler spectrum — Doppler spectrum shape for all channel paths

doppler('Jakes') (default) | doppler('Flat') | doppler('Rounded', ...) |
doppler('Bell', ...) | doppler('Asymmetric Jakes', ...) | doppler('Restricted
Jakes', ...) | doppler('Gaussian', ...) | doppler('BiGaussian', ...)

Doppler spectrum shape for all channel paths, specified as a single Doppler spectrum structure
returned from the doppler function or a 1-by-NP cell array of such structures. The default value of
this parameter is the Jakes Doppler spectrum (doppler('Jakes')).

• If you assign a single call to doppler, all paths have the same specified Doppler spectrum.
• If you assign a 1-by-NP cell array of calls to doppler using any of the specified syntaxes, each

path has the Doppler spectrum specified by the corresponding Doppler spectrum structure in the
array. In this case, NP equals the value of the Discrete path delays (s) parameter.

Dependencies

This parameter applies when Maximum Doppler shift (Hz) is greater than zero.

If the Technique for generating fading samples parameter is set to Sum of sinusoids, Doppler
spectrum must be doppler('Jakes').

Antenna parameters (spatial dispersion)

Specify spatial correlation — Spatial correlation mode

None (default) | Separate Tx Rx | Combined

Select the spatial correlation mode: None, Separate Tx Rx, or Combined.

• Choose 'None' to specify the number of transmit and receive antennas.
• Choose 'Spatial Tx Rx' to specify the transmit and receive spatial correlation matrices

separately. The number of transmit (NT) and receive (NR) antennas are derived from the
dimensions of the Transmit spatial correlation and Receive spatial correlation parameters,
respectively.

• Choose 'Combined' to specify a single correlation matrix for the whole channel. The product of
NT and NR is derived from the dimension of Combined spatial correlation.

Number of transmit antennas — Number of transmit antennas

2 (default) | positive integer

Number of transmit antennas, specified as a positive integer.

Dependencies

This parameter appears when Specify spatial correlation is None or Combined.
Data Types: double

Number of receive antennas — Number of receive antennas

2 (default) | positive integer

Number of receive antennas, specified as a positive integer.
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Dependencies

This parameter appears when Specify spatial correlation is None.
Data Types: double

Transmit spatial correlation — Spatial correlation of transmitter

[1 0; 0 1] (default) | matrix | 3-D array

Specify the spatial correlation of the transmitter as an NT-by-NT matrix or NT-by-NT-by-NP array. NT is
the number of transmit antennas, and NP equals the value of the Discrete path delays (s) parameter.

• If Discrete path delays (s) is a scalar, the channel is frequency flat, and Transmit spatial
correlation is an NT-by-NT Hermitian matrix. The magnitude of any off-diagonal element must be
no larger than the geometric mean of the two corresponding diagonal elements.

• If Discrete path delays (s) is a vector, the channel is frequency selective, and you can specify
Transmit spatial correlation as a matrix. Each path has the same transmit spatial correlation
matrix.

• Alternatively, you can specify Transmit spatial correlation as an NT-by-NT-by-NP array, where
each path can have its own different transmit spatial correlation matrix.

Dependencies

This parameter appears when Specify spatial correlation is Separate Tx Rx.
Data Types: double
Complex Number Support: Yes

Receive spatial correlation — Spatial correlation of receiver

[1 0; 0 1] (default) | matrix | 3-D array

Specify the spatial correlation of the receiver as an NR-by-NR matrix or NR-by-NR-by-NP array. NR is
the number of receive antennas, and NP equals the value of the Discrete path delays (s) parameter.

• If Discrete path delays (s) is a scalar, the channel is frequency flat, and Receive spatial
correlation is an NR-by-NR Hermitian matrix. The magnitude of any off-diagonal element must be
no larger than the geometric mean of the two corresponding diagonal elements.

• If Discrete path delays (s) is a vector, the channel is frequency selective, and you can specify
Receive spatial correlation as a matrix. Each path has the same receive spatial correlation
matrix.

• Alternatively, you can specify Receive spatial correlation as an NR-by-NR-by-NP array, where
each path can have its own different receive spatial correlation matrix.

Dependencies

This parameter appears when Specify spatial correlation is Separate Tx Rx.
Data Types: double
Complex Number Support: Yes

Combined spatial correlation — Combined spatial correlation matrix

[1 0 0 0; 0 1 0 0; 0 0 1 0; 0 0 0 1] (default) | matrix | 3-D array
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Specify the combined spatial correlation matrix as an NTR-by-NTR matrix or NTR-by-NTR-by-NP array,
where NTR = (NT ✕ NR), and NP equals the number of delay paths specified by the Discrete path
delays (s) parameter.

• If Discrete path delays (s) is a scalar, the channel is frequency flat, and Combined spatial
correlation is an NTR-by-NTR Hermitian matrix. The magnitude of any off-diagonal element must
be no larger than the geometric mean of the two corresponding diagonal elements.

• If Discrete path delays (s) is a vector, the channel is frequency selective, and you can specify
Combined spatial correlation as a matrix. Each path has the same spatial correlation matrix.

• Alternatively, you can specify Combined spatial correlation as an NTR-by-NTR-by-NP array, where
each path can have its own different combined spatial correlation matrix.

Dependencies

This parameter appears when Specify spatial correlation is Combined.
Data Types: double

Normalize outputs by number of receive antennas — Normalize channel output

on (default) | off

Select this parameter to normalize the channel outputs by the number of receive antennas.

Simulate using — Compilation type

Interpreted execution (default) | Code generation

Compilation type, specified as Interpreted execution or Code generation.

Antenna selection — Antenna mode

Off (default) | Tx | Rx | Tx and Rx

The antenna mode you select corresponds to additional input ports on the block.

Antenna selection Setting Input Ports Added
Off None
Tx Tx Sel
Rx Rx Sel
Tx and Rx Tx Sel, Rx Sel

Realization Tab

Technique for generating fading samples — Channel modeling technique

Filtered Gaussian noise (default) | Sum of sinusoids

Select the channel modeling technique, either Filtered Gaussian noise or Sum of sinusoids.

Number of sinusoids — Number of sinusoids used

48 (default) | positive integer
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Number of sinusoids used to model the fading process, specified as a positive integer.

Dependencies

This parameter appears when Technique for generating fading samples is Sum of sinusoids.

Initial time source — Source of initial time offset

Property (default) | Input port

Indicate the source of the initial time offset for the fading model, either Property or Input port.

• When you set Initial time source to Property, use Initial time (s) to set the initial time offset.
• When you set Initial time source to Input port, use the input port Init Time to set the initial

time offset.

Dependencies

This parameter appears when Technique for generating fading samples is Sum of sinusoids.

Initial time (s) — Initial time offset

0 (default) | nonnegative scalar

Initial time offset for the fading model, specified as a nonnegative scalar.

When Initial time (s) is not a multiple of 1/Sample Rate (Hz), it is rounded up to the nearest
sample position.

Dependencies

This parameter appears when Technique for generating fading samples is Sum of sinusoids and
Initial time source is set to Property.

Initial seed — Random number generator initial seed

73 (default) | nonnegative integer

Random number generator initial seed for this block, specified as a nonnegative integer.

Output channel path gains — Option to output channel path gains

off (default) | on

Select this parameter to add the Gain output port to the block and output the channel path gains of
the underlying fading process.

Visualization Tab

Channel visualization — Select the channel visualization

Off (default) | Impulse response | Frequency response | Doppler spectrum | Impulse and
frequency responses

Select the channel visualization: Off, Impulse response, Frequency response, Doppler
spectrum, or Impulse and frequency responses. When visualization is on, the selected
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channel characteristics, such as impulse response or Doppler spectrum, display in a separate window.
For more information, see Channel Visualization.

Dependencies

To enable this parameter set the Technique for generating fading samples parameter to
Filtered Gaussian noise.

Antenna pair to display — Transmit-receive antenna pair to display

[1,1] (default) | vector

Transmit-receive antenna pair to display, specified as a 1-by-2 vector, where the first element
corresponds to the desired transmit antenna and the second corresponds to the desired receive
antenna. At this time, only a single pair can be displayed.

Dependencies

This parameter appears when Channel visualization is not Off.

Percentage of samples to display — Percentage of samples to display

25% (default) | 10% | 50% | 100%

Select the percentage of samples to display: 10%, 25%, 50%, or 100%. Increasing the percentage
improves display accuracy at the expense of simulation speed.

Dependencies

This parameter appears when Channel visualization is Impulse response, Frequency response,
or Impulse and frequency responses.

Path for Doppler spectrum display — Path for which Doppler spectrum is displayed

1 (default) | positive integer

Path for which the Doppler spectrum is displayed, specified as a positive integer from 1 to NP, where
NP equals the value of the Discrete path delays (s) parameter.

Dependencies

This parameter appears when Channel visualization is Doppler spectrum.

Block Characteristics
Data Types double | single
Multidimensional
Signals

yes

Variable-Size Signals yes
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Algorithms
The fading processing per link is described in Methodology for Simulating Multipath Fading Channels
and assumes the same parameters for all (NT × NR) links of the MIMO channel. Each link comprises
all multipaths for that link.

The Kronecker Model

The Kronecker model assumes that the spatial correlations at the transmit and receive sides are
separable. Equivalently, the direction of departure (DoD) and directions of arrival (DoA) spectra are
assumed to be separable. The full correlation matrix is:

RH = E Rt⊗ Rr

• The ⊗ symbol represents the Kronecker product.
• Rt is the correlation matrix at the transmit side, Rt = E HHH , and is of size NT-by-NT.

• Rr is the correlation matrix at the receive side, Rr = E HHH , and is of size NR-by-NR.

You can obtain a realization of the MIMO channel matrix as:

H = Rr

1
2 ARt

1
2

A is an NR-by-NT matrix of independent identically distributed complex Gaussian variables with zero
mean and unit variance.

Cutoff Frequency Factor

The cutoff frequency factor, fc, is dependent on the type of Doppler spectrum.

• For any Doppler spectrum type other than Gaussian and bi-Gaussian, fc equals 1.
• For a doppler('Gaussian') spectrum type, fc equals NormalizedStandardDeviation

× 2log2.
• For a doppler('BiGaussian') spectrum type:

• If the PowerGains(1) and NormalizedCenterFrequencies(2) field values are both 0,
then fc equals NormalizedStandardDeviation(1) × 2log2.

• If the PowerGains(2) and NormalizedCenterFrequencies(1) field values are both 0,
then fc equals NormalizedStandardDeviation(2) × 2log2.

• If the NormalizedCenterFrequencies field value is [0,0] and the
NormalizedStandardDeviation field has two identical elements, then fc equals
NormalizedStandardDeviation(1) × 2log2.

• In all other cases, fc equals 1.

Antenna Selection

When the object is in antenna-selection mode, it uses these algorithms to process an input signal.

• All random path gains are always generated and keep evolving for each link, whether or not a
given link is selected. The path gain values output for the nonselected links are populated with
NaN.
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• The spatial correlation applies to only the selected transmit and receive antennas, and the
correlation coefficients are the corresponding entries in the transmit, receive, or combined
correlation matrices. That is, the spatial correlation matrix for the selected transmit or receive
antennas is a submatrix of the transmit, receive, or combined spatial correlation matrix property
value.

• For signal paths that are associated with nonactive antennas, a signal with zero power is
transmitted to the channel filter.

• Channel output normalization happens over the number of selected receive antennas.

Version History
Introduced in R2013b

Updates to channel visualization display

The channel visualization feature now presents:

• Configuration settings in the bottom toolbar on the plot window.
• Plots side-by-side in one window when you select the Impulse and frequency response

channel visualization option.
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[1] Oestges, C., and B. Clerckx. MIMO Wireless Communications: From Real-World Propagation to

Space-Time Code Design. Academic Press, 2007.

[2] Correira, L. M. Mobile Broadband Multimedia Networks: Techniques, Models and Tools for 4G.
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[3] Kermoal, J. P., L. Schumacher, K. I. Pedersen, P. E. Mogensen, and F. Frederiksen. "A stochastic
MIMO radio channel model with experimental validation." IEEE Journal on Selected Areas of
Communications. Vol. 20, Number 6, 2002, pp. 1211–1226.

[4] Jeruchim, M., P. Balaban, and K. S. Shanmugan. Simulation of Communication Systems. Second
Edition. New York: Kluwer Academic/Plenum, 2000.

[5] Pätzold, Matthias, Cheng-Xiang Wang, and Bjorn Olav Hogstand. "Two New Sum-of-Sinusoids-
Based Methods for the Efficient Generation of Multiple Uncorrelated Rayleigh Fading
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C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.
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MLSE Equalizer
Equalize using Viterbi algorithm

Library
Equalizer Block

Description
The MLSE Equalizer block uses the Viterbi algorithm to equalize a linearly modulated signal through
a dispersive channel. The block processes input frames and outputs the maximum likelihood
sequence estimate (MLSE) of the signal, using an estimate of the channel modeled as a finite input
response (FIR) filter.

This block supports single and double data types.

Channel Estimates

The channel estimate takes the form of a column vector containing the coefficients of an FIR filter in
descending order of powers. The length of this vector is the channel memory, which must be a
multiple of the block's Samples per input symbol parameter.

To specify the channel estimate vector, use one of these methods:

• Set Specify channel via to Dialog and enter the vector in the Channel coefficients field.
• Set Specify channel via to Input port and the block displays an additional input port, labeled

Ch, which accepts a column vector input signal.

Signal Constellation

The Signal constellation parameter specifies the constellation for the modulated signal, as
determined by the modulator in your model. Signal constellation is a vector of complex numbers,
where the kth complex number in the vector is the constellation point to which the modulator maps
the integer k-1.

Note The sequence of constellation points must be consistent between the modulator in your model
and the Signal constellation parameter in this block.

For example, to specify the constellation given by the mapping
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0 + 1 + i
1 − 1 + i
2 − 1 − i
3 + 1 − i

set Constellation points to [1+i, -1+i, -1-i, 1-i]. Note that the sequence of numbers in the
vector indicates how the modulator maps integers to the set of constellation points. The labeled
constellation is shown below.

Preamble and Postamble

If your data is accompanied by a preamble (prefix) or postamble (suffix), then configure the block
accordingly:

• If you select Input contains preamble, then the Expected preamble parameter specifies the
preamble that you expect to precede the data in the input signal.

• If you check the Input contains postamble, then the Expected postamble parameter specifies
the postamble that you expect to follow the data in the input signal.

The Expected preamble or Expected postamble parameter must be a vector of integers between 0
and M-1, where M is the number of constellation points. An integer value of k-1 in the vector
corresponds to the kth entry in the Constellation points vector and, consequently, to a modulator
input of k-1.

The preamble or postamble must already be included at the beginning or end, respectively, of the
input signal to this block. If necessary, you can concatenate vectors in Simulink software using the
Matrix Concatenation block.

To learn how the block uses the preamble and postamble, see “"Reset Every Frame" Operation Mode”
on page 5-517 below.

"Reset Every Frame" Operation Mode

One way that the Viterbi algorithm can transition between successive frames is called Reset every
frame mode. You can choose this mode using the Operation mode parameter.
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In Reset every frame mode, the block decodes each frame of data independently, resetting the
state metric at the end of each frame. The traceback decoding always starts at the state with the
minimum state metric.

The initialization of state metrics depends on whether you specify a preamble and/or postamble:

• If you do not specify a preamble, the decoder initializes the metrics of all states to 0 at the
beginning of each frame of data.

• If you specify a preamble, the block uses it to initialize the state metrics at the beginning of each
frame of data. More specifically, the block decodes the preamble and assigns a metric of 0 to the
decoded state. If the preamble does not decode to a unique state -- that is, if the length of the
preamble is less than the channel memory -- the decoder assigns a metric of 0 to all states that
can be represented by the preamble. Whenever you specify a preamble, the traceback path ends
at one of the states represented by the preamble.

• If you do not specify a postamble, the traceback path starts at the state with the smallest metric.
• If you specify a postamble, the traceback path begins at the state represented by the postamble. If

the postamble does not decode to a unique state, the decoder identifies the smallest of all possible
decoded states that are represented by the postamble and begins traceback decoding at that
state.

Note In Reset every frame mode, the input to the MLSE Equalizer block must contain at least
T symbols, not including an optional preamble, where T is the Traceback depth parameter.

Continuous Operation Mode

An alternative way that the Viterbi algorithm can transition between successive frames is called
Continuous with reset option mode. You can choose this mode using the Operation mode
parameter.

In Continuous with reset option mode, the block initializes the metrics of all states to 0 at the
beginning of the simulation. At the end of each frame, the block saves the internal state metric for
use in computing the traceback paths in the next frame.

If you select Enable the reset input port, the block displays another input port, labeled Rst. In this
case, the block resets the state metrics whenever the scalar value at the Rst port is nonzero.

Decoding Delay

The MLSE Equalizer block introduces an output delay equal to the Traceback depth in the
Continuous with reset option mode, and no delay in the Reset every frame mode.

Parameters
Specify channel via

The method for specifying the channel estimate. If you select Input port, the block displays a
second input port that receives the channel estimate. If you select Dialog, you can specify the
channel estimate as a vector of coefficients for an FIR filter in the Channel coefficients field.

Channel coefficients
Vector containing the coefficients of the FIR filter that the block uses for the channel estimate.
This field is visible only if you set Specify channel via to Dialog.
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Signal constellation
Vector of complex numbers that specifies the constellation for the modulation.

Traceback depth
The number of trellis branches (equivalently, the number of symbols) the block uses in the Viterbi
algorithm to construct each traceback path.

Operation mode
The operation mode of the Viterbi decoder. Choices are Continuous with reset option and
Reset every frame.

Input contains preamble
When checked, you can set the preamble in the Expected preamble field. This option appears
only if you set Operation mode to Reset every frame.

Expected preamble
Vector of integers between 0 and M-1 representing the preamble, where M is the size of the
constellation. This field is visible and active only if you set Operation mode to Reset every
frame and then select Input contains preamble.

Input contains postamble
When checked, you can set the postamble in the Expected postamble field. This option appears
only if you set Operation mode to Reset every frame.

Expected postamble
Vector of integers between 0 and M-1 representing the postamble, where M is the size of the
constellation. This field is visible and active only if you set Operation mode to Reset every
frame and then select Input contains postamble.

Samples per input symbol
The number of input samples for each constellation point.

Enable the reset input port
When you check this box, the block has a second input port labeled Rst. Providing a nonzero
input value to this port causes the block to set its internal memory to the initial state before
processing the input data. This option appears only if you set Operation mode to Continuous
with reset option.

References

[1] Proakis, John G., Digital Communications, Fourth edition, New York, McGraw-Hill, 2001.

[2] Steele, Raymond, Ed., Mobile Radio Communications, Chichester, England, Wiley, 1996.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.
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See Also
Blocks
Decision Feedback Equalizer | Linear Equalizer

Functions
mlseeq

Objects
comm.MLSEEqualizer

Topics
“MLSE Equalizers”
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MER Measurement
Measure modulation error ratio in digital modulation applications
Library: Communications Toolbox / Utility Blocks

Description
The MER Measurement block computes a form of signal-to-noise ratio (SNR) measurement that you
can use to assess the ability of a receiver to accurately demodulate a signal. Specifically, it returns
the modulation error ratio (MER), minimum MER, and percentile MER for a received signal. You use
the MER measurements to determine system performance in communications applications. For
example, to determine compliance with applicable DVB-T system radio transmission standards
conformance testing requires accurate MER measurements.

This icon shows the block with all ports enabled.

Ports
Input

Ref — Reference signal
scalar | vector | matrix | 3-D array

Reference signal, specified as a scalar, vector, matrix, or 3-D array. If you specify this input, the object
measures the MER of the Rcv input by using this input as a reference constellation.

The dimensions of this input must match those of the Rcv input. The object uses each element of this
input as the reference symbol for the corresponding element of the Rcv input.

Dependencies

To enable this port, set the Reference signal parameter to Input port.
Data Types: single | double | fixed point
Complex Number Support: Yes

Rcv — Received signal
scalar | vector | matrix | 3-D array

Received signal, specified as a scalar, vector, matrix, or 3-D array.
Data Types: single | double | fixed point
Complex Number Support: Yes
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Output

MS — Percentage MER of received signal
scalar

Percentage MER of the received signal over the configured measurement interval, returned as a
scalar in units of decibels.
Data Types: double

min — Minimum percentage MER
scalar

Minimum percentage MER over the configured measurement interval, returned as a scalar in units of
decibels.

Dependencies

To enable this port, select the Output minimum MER parameter.
Data Types: double

X% — Value below which X% of MER measurements fall
scalar

Value below which X% of MER measurements fall since the last reset, returned as a scalar in units of
decibels. Set the value of X in the X-percentile value (%) parameter.

Dependencies

To enable this port, select the Output X-percentile MER parameter.
Data Types: double

nSym — Number of symbols
positive integer

Number of symbols that the object uses to measure the output, returned as a positive integer.

Dependencies

To enable this port, select the Output X-percentile MER and Output the number of symbols
processed parameters.
Data Types: double

Parameters
Reference signal — Reference signal source

Input port | Estimated from reference constellation

Reference signal source, specified as Input port or Estimated from reference
constellation.

Reference constellation — Reference constellation
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constellation(comm.QPSKModulator) (default) | vector

Reference constellation points, specified as a vector.
Dependencies

To enable this parameter, set the Reference signal parameter to Estimated from reference
constellation.
Data Types: double
Complex Number Support: Yes

Measurement interval — Measurement interval source

Input length (default) | Entire history | Custom | Custom with periodic reset

Measurement interval source for MER and minimum MER measurements, specified as one of these
values.

• Input length — Measure the MER using only the current samples.
• Entire history — Measure the MER for all samples.
• Custom — Measure the MER by using a sliding window over an interval that you specify.
• Custom with periodic reset — Measure the MER over an interval that you specify and reset

the block after measuring over each interval.

Custom measurement interval — Custom measurement interval

100 (default) | positive integer

Custom measurement interval in samples, specified as a positive integer.
Dependencies

To enable this parameter, set the Measurement interval parameter to Custom or Custom with
periodic reset.
Data Types: double

Averaging dimensions — Averaging dimensions

1 (default) | vector of integers in the range [1, 3]

Dimensions over which the block averages the MER measurements, specified as an integer or row
vector of integers in the range [1, 3]. For example, to average across the columns, set this parameter
to 2.

This block supports variable-size inputs of the dimensions across which the averaging takes place.
However, the input size for the nonaveraged dimensions must remain constant. For example, if the
input has size [1000 3 2] and you set this parameter to [1 3], then the output size is [1 3 1]
and the number of elements in the second dimension must remain fixed at 3.
Data Types: double

Output minimum MER — Option to add min port to output minimum MER measurements

Off (default) | On
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Option to add the min port to output minimum MER measurements. To enable minimum MER
measurements, select this parameter.

Output X-percentile MER — Option to add X% port to output X-percentile MER
measurements

Off (default) | On

Option to add the X% port to output X-percentile MER measurements. To enable X-percentile MER
measurements, select this parameter. When you select this parameter, X-percentile MER
measurements persist until you reset the block. The block performs these measurements by using all
of the input frames since the last reset. You can set the value of X in the X-percentile value (%)
parameter.

X-Percentile value (%) — Value below which X% of MER measurements fall

95 (default) | scalar in the range [0, 100]

Value below which X% of MER measurements fall, specified as a scalar in the range [0, 100].

Dependencies

To enable this parameter, select the Output X-percentile MER parameter.
Data Types: double

Output the number of symbols processed — Option to add nSym port to output number
of symbols

Off (default) | On

Option to add the nSym port to output the number of symbols used to measure the X-percentile MER.
To measure the number of symbols used for X-percentile MER measurements, select this parameter.

Dependencies

To enable this parameter, select the Output X-percentile MER parameter.

Simulate using — Type of simulation to run
Interpreted execution (default) | Code generation

Type of simulation to run, specified as Interpreted execution or Code generation.

• Interpreted execution — Simulate the model by using the MATLAB interpreter. This option
requires less startup time than the Code generation option, but the speed of subsequent
simulations is slower. In this mode, you can debug the source code of the block.

• Code generation — Simulate the model by using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations unless the model changes. This option requires additional startup time, but the speed
of the subsequent simulations is faster than Interpreted execution.
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Block Characteristics
Data Types double | fixed point | integer | single
Multidimensional
Signals

no

Variable-Size Signals no

Algorithms
MER is a measure of the SNR in a modulated signal calculated in dB. The MER over a burst
containing N symbols is

MER = 10 × log10

∑
k = 1

N
Ik2 + Qk

2

∑
k = 1

N
ek

dB,

where:

• ek = ek = (Ik− I k)2 + (Qk− Qk)2.

• Ik represents the in-phase component of the kth symbol in the burst.
• Qk represents the quadrature phase component of the kth symbol in the burst.
• Ik and Qk represent ideal reference values.
• I k and Qk represent received symbols.

• N represents the number of symbols in the burst.

The MER for the kth symbol is

MERk = 10 × log10

1
N ∑k = 1

N
Ik2 + Qk

2

ek
dB.

The minimum MER represents the minimum MER value in a burst, or

MERmin = min
k ∈ [1, ..., N]

MERk ,

The algorithm computes the X-percentile MER by creating a histogram of all the incoming MERk
values. The output provides the MER value above which X% of the MER values fall.

Version History
Introduced in R2009b
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References
[1] ESTI TR 101 290. Digital Video Broadcasting (DVB): Measurement guidelines for DVB systems.

June 2020.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

To generate code in a model using this block, you must enable Dynamic Memory Allocation in
MATLAB Functions. For more information, see “Dynamic memory allocation in MATLAB functions”
(Simulink).

See Also
Blocks
EVM Measurement | Power Meter

Functions
powermeter

Objects
comm.MER

Topics
“Measure Modulation Accuracy”
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M-APSK Demodulator Baseband
M-ary amplitude phase shift keying (APSK) demodulation
Library: Communications Toolbox / Modulation / Digital Baseband

Modulation / APM

Description
The M-APSK Demodulator Baseband block demodulates a baseband representation of an M-ary
amplitude phase shift keying (APSK) modulated signal. M is the “Modulation Order for M-APSK” on
page 5-531. For a description of M-APSK demodulation, see “APSK Hard Demodulation” on page 5-
532 and “APSK Soft Demodulation” on page 5-532.

Note M-APSK Demodulator Baseband specifically applies to multiple ring PSK constellations. For a
single ring PSK constellation, use M-PSK Demodulator Baseband.

This icon shows the block with all ports enabled: 

Ports
Input

In — APSK modulated signal
scalar | vector | matrix

APSK modulated signal, specified as a scalar, vector, or matrix. When this input is a matrix, each
column is treated as an independent channel. This port is unnamed until the Var port is enabled.
Data Types: double | single
Complex Number Support: Yes

Var — Noise variance
positive scalar | vector of positive values

Noise variance, specified as a positive scalar or vector of positive values. When the noise variance or
signal power result in computations involving extreme positive or negative magnitudes, see “APSK
Soft Demodulation” on page 5-532 for demodulation decision type considerations.
Dependencies

To enable this port, set Noise variance source to Input port.
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Data Types: double | single

Output

Out — Demodulated signal
scalar | vector | matrix

Demodulated signal, returned as a scalar, vector, or matrix. The data type and dimensions of the
demodulated signal depend on the values specified by the Output type and Decision type parameters.
This port is unnamed on the block.

Output
type

Decision
type

Demodulated Signal
Description

Dimensions of Demodulated Signal

Integer — Demodulated integer values
in the range [0, (M – 1)]

The output signal has the same
dimensions as the input signal.

Bit Hard
decision

Demodulated bits The number of rows in the output signal is
log2(M) times the number of rows in the
input signal. Each demodulated symbol is
mapped to a group of log2(M) elements in
a column, where the first element
represents the MSB and the last element
represents the LSB.

Log-
likelihood
ratio

Log-likelihood ratio value
for each bit

Approximat
e log-
likelihood
ratio

Approximate log-likelihood
ratio value for each bit

M is the “Modulation Order for M-APSK” on page 5-531.

Use Output data type to specify the output data type.
Data Types: single | double

Parameters
Constellation points per circle — Constellation points per PSK ring
[4,12] (default) | vector

Constellation points per PSK ring, specified as a vector with more than one element. Each vector
element indicates the number of constellation points in its corresponding PSK ring. The first element
corresponds to the innermost circle, and so on until the last element, which corresponds to the
outermost circle. The sum of the elements in Constellation points per circle determines the
modulation order. Element values must be multiples of four, and the modulation order must be a
power of two.
Example: [4,12,16] specifies a three PSK ring constellation with a modulation order of 32.

Radius of each circle — Radius per PSK ring
[0.5,1] (default) | vector

Radius per PSK ring, specified as a vector with the same length as Constellation points per circle.
Each vector element indicates the radius of its corresponding PSK ring. The first element
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corresponds to the innermost circle, and so on until the last element, which corresponds to the
outermost circle. These element values must be positive values arranged in increasing order.
Example: [0.5,1,2] defines radii for three constellation PSK rings. The inner ring has a radius of
0.5, the second ring has a radius of 1.0, and the outer ring has a radius of 2.0.

Phase offset of each circle (rad) — Phase offset per PSK ring
[pi/4,pi/12] (default) | scalar | vector

Phase offset per PSK ring in radians, specified as a scalar or vector with the same length as
Constellation points per circle. Each vector element indicates the phase offset of its corresponding
PSK ring. The first element corresponds to the innermost circle, and so on until the last element,
which corresponds to the outermost circle. The Phase offset of each circle (rad) can be a scalar
only if all the elements of Constellation points per circle are the same value.
Example: [pi/4,pi/12,pi/16] defines phase offsets for three constellation PSK rings. The inner
ring has a phase offset of π/4, the second ring has a phase offset of π/12, and the outer ring has a
phase offset of π/16.

Symbol mapping — Symbol mapping
Auto (default) | Contourwise-gray | Gray | User-defined

Symbol mapping, specified as one of the following:

• Contourwise-gray — Uses Gray mapping along the contour in the phase dimension for each
PSK ring.

• Gray — Uses Gray mapping along the contour in both the amplitude and phase dimensions. For
Gray symbol mapping, all elements in Constellation points per circle must be equal, and all
elements in Phase offset of each circle (rad) must be equal. For a description of the Gray mapping
used, see [2].

• User-defined — See Custom symbol mapping.

The default symbol mapping depends on the Constellation points per circle and Phase offset of
each circle (rad) parameters. When all elements in Constellation points per circle are equal, and
all elements in Phase offset of each circle (rad) are equal, the default is Gray. For all other cases,
the default is Contourwise-gray.

Custom symbol mapping — Custom symbol mapping
[0,4,12,8,1,3,2,6,7,5,13,15,14,10,11,9] (default) | integer vector

Custom symbol mapping, specified as an integer vector. This vector must consist of M unique
elements with values in the range [0, (M – 1)], where M is the “Modulation Order for M-APSK” on
page 5-531. The first element in Custom symbol mapping corresponds to the constellation point in
the first quadrant of the innermost circle, with subsequent elements positioned counterclockwise
around the PSK rings.
Example: The default value, [0,4,12,8,1,3,2,6,7,5,13,15,14,10,11,9], specifies
contourwise-gray symbol mapping. The distribution of constellation points is nonuniform on all
contours.
Dependencies

To enable this parameter, set Symbol mapping to User-defined.

 M-APSK Demodulator Baseband

5-529



Output type — Output type
Integer (default) | Bit

Output type, specified as Integer or Bit.
Data Types: char | string

Decision type — Demodulation decision type
Hard decision (default) | Log-likelihood ratio | Approximate log-likelihood ratio

Demodulation decision type, specified as Hard decision, Log-likelihood ratio, or
Approximate log-likelihood ratio. See “APSK Soft Demodulation” on page 5-532 for
algorithm selection considerations.

Dependencies

This parameter applies only when Output type is set to Bit.

Noise variance source — Noise variance source
Property (default) | Input port

Noise variance source, specified as:

• Property — The noise variance is set using the Noise variance parameter.
• Input port — The noise variance is set using the Var input port.

Dependencies

This parameter applies only when Decision type is set to either Log-likelihood ratio or
Approximate log-likelihood ratio.

Noise variance — Noise variance
1 (default) | positive scalar | vector of positive values

Noise variance, specified as a positive scalar or vector of positive values.

• When specified as a scalar, that value is used on all elements in the input signal.
• When specified as a vector, the vector length must be equal to the number of columns in the input

signal. Each noise variance vector element is applied to its corresponding column in the input
signal.

When the noise variance or signal power result in computations involving extreme positive or
negative magnitudes, see “APSK Soft Demodulation” on page 5-532 for Decision type specification
considerations.

Dependencies

This parameter applies only when Noise variance source is set to Property and Decision type is set
to either Log-likelihood ratio or Approximate log-likelihood ratio.
Data Types: double

Output data type — Output data type
double (default) | ...
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Output data type, specified as one of the acceptable values from this table. Acceptable Output data
type values depend on the Output type and Decision type parameter values.

Output type Decision type Output data type Options
Integer Not applicable double, single, int8, uint8, int16, uint16, int32, or

uint32
Bit Hard decision double, single, int8, uint8, int16, uint16, int32,

uint32, or logical
Log-likelihood
ratio or
Approximate
log-likelihood
ratio

The output signal is the same data type as the input signal.

Dependencies

This parameter applies only when Output type is set to Integer or when Output type is set to Bit
and Decision type is set to Hard decision.

Simulate using — Type of simulation to run
Interpreted execution (default) | Code generation

Type of simulation to run, specified as:

• Code generation –– Simulate the model using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations as long as the model does not change. This option requires additional startup time.

• Interpreted execution –– Simulate the model using the MATLAB interpreter. This option
shortens startup time. In Interpreted execution mode, you can debug the source code of the
block.

For information on execution speed, see “Tips” on page 5-533.

Block Characteristics
Data Types Boolean | double | integer | single
Multidimensional
Signals

yes

Variable-Size Signals no

More About
Modulation Order for M-APSK

The modulation order, M, for M-APSK equals the sum of the vector elements in the Constellation
points per circle parameter and is the total number of points in the signal constellation. Element
values in Constellation points per circle must be multiples of four, and M must be a power of two.
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APSK Hard Demodulation

The hard demodulation algorithm applies amplitude phase decoding, as described in [1].

APSK Soft Demodulation

For soft demodulation, two soft-decision log-likelihood ratio (LLR) algorithms are available: exact LLR
and approximate LLR. The exact LLR algorithm is more accurate but has slower execution speed than
the approximate LLR algorithm. For further description of these algorithms, see the “Hard- vs. Soft-
Decision Demodulation” topic.

Note The exact LLR algorithm computes exponentials using finite precision arithmetic. For
computations involving very large positive or negative magnitudes, the exact LLR algorithm yields:

• Inf or -Inf if the noise variance is a very large value
• NaN if the noise variance and signal power are both very small values

The approximate LLR algorithm does not compute exponentials. You can avoid Inf, -Inf, and NaN
results by using the approximate LLR algorithm.
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Tips
• For faster execution of the M-APSK Demodulator Baseband block, set the Simulate using

parameter to:

• Code generation when using hard decision demodulation.
• Interpreted execution when using soft decision demodulation.

Version History
Introduced in R2018b

References
[1] Sebesta, J. “Efficient Method for APSK Demodulation.” Selected Topics on Applied Mathematics,

Circuits, Systems, and Signals (P. Pardalos, N. Mastorakis, V. Mladenov, and Z. Bojkovic, eds.).
Vouliagmeni, Athens, Greece: WSEAS Press, 2009.

[2] Liu, Z., Q. Xie, K. Peng, and Z. Yang. "APSK Constellation with Gray Mapping." IEEE
Communications Letters. Vol. 15, Number 12, December 2011, pp. 1271–1273.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
M-APSK Modulator Baseband | DVBS-APSK Demodulator Baseband | MIL-188 QAM Demodulator
Baseband | M-PSK Demodulator Baseband

Functions
apskdemod

Topics
“Hard- vs. Soft-Decision Demodulation”
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M-APSK Modulator Baseband
M-ary amplitude phase shift keying (APSK) modulation
Library: Communications Toolbox / Modulation / Digital Baseband

Modulation / APM

Description
The M-APSK Modulator Baseband block modulates the input signal using M-ary amplitude phase shift
keying (APSK) modulation. The output is a baseband representation of the modulated signal. M, the
“Modulation Order for M-APSK” on page 5-537, equals the sum of the elements in Constellation
points per circle. For a description of M-APSK modulation, see “Algorithms” on page 5-537.

Note M-APSK Modulator Baseband specifically applies to multiple ring PSK constellations. For a
single ring PSK constellation, use M-PSK Modulator Baseband.

Ports
Input

In — Input signal
scalar | vector | matrix

Input signal, specified as a scalar, vector, or matrix. The input signal must consist of binary values or
integers in the range [0, (M – 1)], where M is the “Modulation Order for M-APSK” on page 5-537.
This port is unnamed on the block.

Note To process the input signal as binary elements, set the Input type parameter value to Bit. For
binary inputs, the number of rows must be an integer multiple of log2(M). Groups of log2(M) bits in a
column are mapped onto a symbol, with the first bit representing the MSB and the last bit
representing the LSB.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean

Output

Out — APSK modulated signal
scalar | vector | matrix

APSK modulated signal, returned as a complex scalar, vector, or matrix. The output signal dimensions
depend on the specified Input type value. This port is unnamed on the block.
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Input type Dimensions of Output Signal
Integer The output signal has the same dimensions as the input signal.
Bit The number of rows in the output signal equals the number of rows in the

input signal divided by log2(M), where M is the “Modulation Order for M-
APSK” on page 5-537.

Use Output data type to specify the output data type.

Parameters
Constellation points per circle — Constellation points per PSK ring
[4,12] (default) | vector

Constellation points per PSK ring, specified as a vector with more than one element. Each vector
element indicates the number of constellation points in its corresponding PSK ring. The first element
corresponds to the innermost circle, and so on until the last element, which corresponds to the
outermost circle. The sum of the elements in Constellation points per circle determines the
modulation order. Element values must be multiples of four, and the modulation order must be a
power of two.
Example: [4,12,16] specifies a three PSK ring constellation with a modulation order of 32.

Radius of each circle — Radius per PSK ring
[0.5,1] (default) | vector

Radius per PSK ring, specified as a vector with the same length as Constellation points per circle.
Each vector element indicates the radius of its corresponding PSK ring. The first element
corresponds to the innermost circle, and so on until the last element, which corresponds to the
outermost circle. These element values must be positive and arranged in increasing order.
Example: [0.5,1,2] defines radii for three constellation PSK rings. The inner ring has a radius of
0.5, the second ring has a radius of 1.0, and the outer ring has a radius of 2.0.

Phase offset of each circle (rad) — Phase offset per PSK ring
[pi/4,pi/12] (default) | scalar | vector

Phase offset per PSK ring in radians, specified as a scalar or vector with the same length as
Constellation points per circle. Each vector element indicates the phase offset of its corresponding
PSK ring. The first element corresponds to the innermost circle, and so on until the last element,
which corresponds to the outermost circle. The Phase offset of each circle (rad) can be a scalar
only if all the elements of Constellation points per circle are the same value.
Example: [pi/4,pi/12,pi/16] defines phase offsets for three constellation PSK rings. The inner
ring has a phase offset of π/4, the second ring has a phase offset of π/12, and the outer ring has a
phase offset of π/16.

Symbol mapping — Symbol mapping
Auto (default) | Contourwise-gray | Gray | User-defined

Symbol mapping, specified as one of the following:
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• Contourwise-gray — Uses Gray mapping along the contour in the phase dimension for each
PSK ring.

• Gray — Uses Gray mapping along the contour in both the amplitude and phase dimensions. For
Gray symbol mapping, all the values for Constellation points per circle must be equal and all the
values for Phase offset of each circle (rad) must be equal. For a description of the Gray mapping
used, see [2].

• User-defined — See Custom symbol mapping.

The default symbol mapping depends on Constellation points per circle and Phase offset of each
circle (rad). When all the elements of Constellation points per circle are equal and all the
elements of Phase offset of each circle (rad) are equal, the default is Gray. For all other cases, the
default is Contourwise-gray.

Custom symbol mapping — Custom symbol mapping
[0,4,12,8,1,3,2,6,7,5,13,15,14,10,11,9] (default) | integer vector

Custom symbol mapping, specified as an integer vector. This vector must consist of M unique
elements with values in the range [0, (M – 1)], where M is the “Modulation Order for M-APSK” on
page 5-537. The first element in Custom symbol mapping corresponds to the constellation point in
the first quadrant of the innermost circle, with subsequent elements positioned counterclockwise
around the PSK rings.
Example: The default value, [0,4,12,8,1,3,2,6,7,5,13,15,14,10,11,9], specifies
contourwise-gray symbol mapping. The distribution of constellation points is nonuniform on all
contours.
Dependencies

To enable this parameter, set Symbol mapping to User-defined.

Input type — Input type
Integer (default) | Bit

Input type, specified as one of these options.

• Integer –– The input signal must consist of integers in the range [0, (M – 1)].
• Bit –– The input signal must contain binary values, and the number of rows must be an integer

multiple of log2(M), where M is the “Modulation Order for M-APSK” on page 5-537. Binary input
signals are assumed to be left-MSB aligned and specified column-wise. Groups of log2(sum(M))
bits in a column are mapped onto a symbol, with the first bit representing the MSB and the last bit
representing the LSB.

Output data type — Output data type
double (default) | single

Output data type, specified as double or single.

View Constellation — Plot reference constellation
button

To plot the reference constellation, click the View Constellation button.
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Tip Click Apply before clicking the View Constellation to view latest parameter values.

Simulate using — Type of simulation to run
Code generation (default) | Interpreted execution

Type of simulation to run, specified as:

• Code generation –– Simulate the model using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations as long as the model does not change. This option requires additional startup time.

• Interpreted execution –– Simulate the model using the MATLAB interpreter. This option
shortens startup time. In Interpreted execution mode, you can debug the source code of the
block.

Block Characteristics
Data Types Boolean | double | integer | single
Multidimensional
Signals

yes

Variable-Size Signals no

More About
Modulation Order for M-APSK

The modulation order, M, for M-APSK is the total number of points in the signal constellation. M
equals the sum of the elements in Constellation points per circle. The element values in
Constellation points per circle must be multiples of four. M must be a power of two.

Algorithms
The block implements a pure APSK constellation.

A pure M-APSK constellation is composed of NC concentric rings or contours, each with uniformly
spaced PSK points. The M-APSK constellation set is

χ =

R1exp j 2π
M1

i + ϕ1 , i = 0, …, M1− 1,

R2exp j 2π
M2

i + ϕ2 , i = 0, …, M2− 1,

⋮ ⋮

RNCexp j 2π
MNC

i + ϕNc , i = 0, …, MNC− 1,

where:

• The modulation order is equal to the sum of all Ml for l = 1, 2, ... , NC.
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• NC is the number of concentric rings. NC ≥ 2.
• Ml is the number of constellation points in the lth ring.
• Rl is the radius of the lth ring.
• ϕl is the phase offset of the lth ring.
• j = −1

Version History
Introduced in R2018b

References
[1] Corazza, Giovanni E. Digital Satellite Communications. New York: Springer Science Business

Media, LLC, 2007.

[2] Liu, Z., Q. Xie, K. Peng, and Z. Yang. "APSK Constellation with Gray Mapping." IEEE
Communications Letters. Vol. 15, Number 12, December 2011, pp. 1271–1273.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
M-APSK Demodulator Baseband | DVBS-APSK Modulator Baseband | MIL-188 QAM Modulator
Baseband | M-PSK Modulator Baseband

Functions
apskmod
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M-PAM Demodulator Baseband
Demodulate PAM-modulated data

Library
AM, in Digital Baseband sublibrary of Modulation

Description
The M-PAM Demodulator Baseband block demodulates a signal that was modulated using M-ary pulse
amplitude modulation. The input is a baseband representation of the modulated signal.

The signal constellation has M points, where M is the M-ary number parameter. M must be an even
integer. The block scales the signal constellation based on how you set the Normalization method
parameter. For details on the constellation and its scaling, see the reference page for the M-PAM
Modulator Baseband block.

This block accepts a scalar or column vector input signal. For information about the data types each
block port supports, see “Supported Data Types” on page 5-544.

Note All values of power assume a nominal impedance of 1 ohm.

Integer-Valued Signals and Binary-Valued Signals

When you set the Output type parameter to Integer, the block outputs integer values between 0
and M-1. M represents the M-ary number block parameter.

When you set the Output type parameter to Bit, the block outputs binary-valued signals that
represent integers. The block represents each integer using a group of K = log2(M) bits, where K
represents the number of bits per symbol. The output vector length must be an integer multiple of K.

The Constellation ordering parameter indicates how the block assigns binary words to points of the
signal constellation. More details are on the reference page for the M-PAM Modulator Baseband
block.

Algorithm
The demodulator algorithm maps received input signal constellation values to M-ary integer symbol
indices between 0 and M-1 and then maps these demodulated symbol indices to formatted output
values.

The integer symbol index computation is performed by first scaling the real part of the input signal
constellation (possibly with noise) by a denormalization factor derived from the Normalization
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method and related parameters. This denormalized value is added to M-1 to translate it into an
approximate range between 0 and 2 x (M-1) plus noise. The resulting value is then rescaled via a
divide-by-two (or, equivalently, a right-shift by one bit for fixed-point operation) to obtain a range
approximately between 0 and M-1 (plus noise). The noisy index value is rounded to the nearest
integer and clipped, via saturation, to the exact range of [0 M-1]. Finally, based on other block
parameters, the integer index is mapped to a symbol value that is formatted and cast to the selected
Output data type.

The following figures contains signal flow diagrams for floating-point and fixed-point algorithm
operation. The floating-point diagrams apply when the input signal data type is double or single.
The fixed-point diagrams apply when the input signal is a signed fixed-point data type. Note that the
diagram is simplified when using normalized constellations (i.e., denormalization factor is 1).

Signal-Flow Diagrams with Denormalization Factor Equal to 1
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Signal-Flow Diagrams with Nonunity Denormalization Factor

Parameters
M-ary number

The number of points in the signal constellation. It must be an even integer.
Output type

Determines whether the output consists of integers or groups of bits. If this parameter is set to
Bit, then the M-ary number parameter must be 2K for some positive integer K.

Constellation ordering
Determines how the block maps each integer to a group of output bits.

Normalization method
Determines how the block scales the signal constellation. Choices are Min. distance between
symbols, Average Power, and Peak Power.
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Minimum distance
The distance between two nearest constellation points. This field appears only when
Normalization method is set to Min. distance between symbols.

Average power, referenced to 1 ohm (watts)
The average power of the symbols in the constellation, referenced to 1 ohm. This field appears
only when Normalization method is set to Average Power.

Peak power, referenced to 1 ohm (watts)
The maximum power of the symbols in the constellation, referenced to 1 ohm. This field appears
only when Normalization method is set to Peak Power.

Output
When the parameter is set to 'Inherit via internal rule' (default setting), the block will
inherit the output data type from the input port. The output data type will be the same as the
input data type if the input is of type single or double. Otherwise, the output data type will be
as if this parameter is set to 'Smallest unsigned integer'.

When the parameter is set to 'Smallest unsigned integer', the output data type is selected
based on the settings used in the Hardware Implementation pane of the Configuration
Parameters dialog box of the model. If ASIC/FPGA is selected in the Hardware Implementation
pane, the output data type is the ideal minimum size, i.e., ufix(1) for bit outputs, and
ufix(ceil(log2(M))) for integer outputs. For all other selections, it is an unsigned integer
with the smallest available word length large enough to fit the ideal minimum size, usually
corresponding to the size of a char (e.g., uint8).
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For integer outputs, this parameter can be set to Smallest unsigned integer, int8, uint8,
int16, uint16, int32, uint32, single, and double. For bit outputs, the options are
Smallest unsigned integer, int8, uint8, int16, uint16, int32, uint32, boolean,
single, or double.

Denormalization factor
This parameter applies when a fixed-point input is not normalized. It can be set to Same word
length as input or Specify word length, in which case a field is enabled for user input. A
best-precision fraction length is always used.

Product output
This parameter only applies when the input is a fixed-point signal and there is a nonunity (not
equal to 1) denormalized factor. It can be set to Inherit via internal rule or Specify
word length, which enables a field for user input.

Setting to Inherit via internal rule computes the full-precision product word length and
fraction length. Internal Rule for Product Data Types in DSP System Toolbox User's Guide
describes the full-precision Product output internal rule.

Setting to Specify word length allows you to define the word length. The block computes a
best-precision fraction length based on the word length specified and the pre-computed worst-
case (min/max) real world value Product output result. The worst-case Product output result is
precomputed by multiplying the denormalized factor with the worst-case (min/max) input signal
range, purely based on the input signal data type.

The block uses the Rounding method when the result of a fixed-point calculation does not map
exactly to a number representable by the data type and scaling storing the result. For more
information, see “Rounding Modes” or “Rounding Mode: Simplest” (Fixed-Point Designer).

Sum
This parameter only applies when the input is a fixed-point signal. It can be set to Inherit via
internal rule, Same as product output, or Specify word length, in which case a field
is enabled for user input

Setting Inherit via internal rule computes the full-precision sum word length and
fraction length, based on the two inputs to the Sum in the fixed-point Hard Decision Algorithm on
page 5-539 signal flow diagram. The rule is the same as the fixed-point inherit rule of the internal
Accumulator data type parameter in the Simulink Sum (Simulink) block.

Setting Specify word length allows you to define the word length. A best precision fraction
length is computed based on the word length specified in the pre-computed maximum range
necessary for the demodulated algorithm to produce accurate results. The signed fixed-point data
type that has the best precision fully contains the values in the range 2 * (M-1) for the specified
word length.

Setting to Same as product output allows the Sum data type to be the same as the Product
output data type (when Product output is used). If the Product output is not used, then this
setting will be ignored and the Inherit via internal rule Sum setting will be used.
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Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
• Signed fixed-point

Output • Double-precision floating point
• Single-precision floating point
• Boolean when Output type is Bit
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers
• ufix(1) in ASIC/FPGA when Output type is Bit
• uf ix log2M  in ASIC/FPGA when Output type is Integer

Pair Block
M-PAM Modulator Baseband

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
M-PAM Modulator Baseband | General QAM Demodulator Baseband
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M-PAM Modulator Baseband
Modulate using M-ary pulse amplitude modulation

Library
AM, in Digital Baseband sublibrary of Modulation

Description
The M-PAM Modulator Baseband block modulates using M-ary pulse amplitude modulation. The
output is a baseband representation of the modulated signal. The M-ary number parameter, M, is
the number of points in the signal constellation. It must be an even integer.

Note All values of power assume a nominal impedance of 1 ohm.

Constellation Size and Scaling

Baseband M-ary pulse amplitude modulation using the block's default signal constellation maps an
integer m between 0 and M-1 to the complex value

2m - M + 1

Note This value is actually a real number. The block's output signal is a complex data-type signal
whose imaginary part is zero.

The block scales the default signal constellation based on how you set the Normalization method
parameter. The following table lists the possible scaling conditions.

Value of Normalization Method Parameter Scaling Condition
Min. distance between symbols The nearest pair of points in the constellation is

separated by the value of the Minimum
distance parameter

Average Power The average power of the symbols in the
constellation is the Average power parameter

Peak Power The maximum power of the symbols in the
constellation is the Peak power parameter

Integer-Valued Signals and Binary-Valued Signals

This block accepts a scalar or column vector input signal.
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When you set the Input type parameter to Integer, the block accepts integer values between 0 and
M-1. M represents the M-ary number block parameter.

When you set the Input type parameter to Bit, the block accepts binary-valued inputs that
represent integers. The block collects binary-valued signals into groups of K = log2(M) bits

where

K represents the number of bits per symbol.

The input vector length must be an integer multiple of K. In this configuration, the block accepts a
group of K bits and maps that group onto a symbol at the block output. The block outputs one
modulated symbol for each group of K bits.

The Constellation ordering parameter indicates how the block assigns binary words to points of the
signal constellation.

• If Constellation ordering is set to Binary, then the block uses a natural binary-coded
constellation.

• If Constellation ordering is set to Gray, then the block uses a Gray-coded constellation.

For details about the Gray coding, see the reference page for the M-PSK Modulator Baseband
block.

Parameters
M-ary number

The number of points in the signal constellation. It must be an even integer.
Input type

Indicates whether the input consists of integers or groups of bits. If this parameter is set to Bit,
then the M-ary number parameter must be 2K for some positive integer K.

Constellation ordering
Determines how the block maps each group of input bits to a corresponding integer.

Normalization method
Determines how the block scales the signal constellation. Choices are Min. distance between
symbols, Average Power, and Peak Power.

Minimum distance
The distance between two nearest constellation points. This field appears only when
Normalization method is set to Min. distance between symbols.

Average power, referenced to 1 ohm (watts)
The average power of the symbols in the constellation, referenced to 1 ohm. This field appears
only when Normalization method is set to Average Power.

Peak power, referenced to 1 ohm (watts)
The maximum power of the symbols in the constellation, referenced to 1 ohm. This field appears
only when Normalization method is set to Peak Power.

Output data type
The output data type can be set to double, single, Fixed-point, User-defined, or Inherit
via back propagation.
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Setting this parameter to Fixed-point or User-defined enables fields in which you can
further specify details. Setting this parameter to Inherit via back propagation, sets the
output data type and scaling to match the following block.

Output word length
Specify the word length, in bits, of the fixed-point output data type. This parameter is only visible
when you select Fixed-point for the Output data type parameter.

User-defined data type
Specify any signed built-in or signed fixed-point data type. You can specify fixed-point data types
using the fixdt function. This parameter is only visible when you select User-defined for the
Output data type parameter.

Set output fraction length to
Specify the scaling of the fixed-point output by either of the following methods:

• Choose Best precision to have the output scaling automatically set such that the output
signal has the best possible precision.

• Choose User-defined to specify the output scaling in the Output fraction length
parameter.

This parameter is only visible when you select Fixed-point for the Output data type
parameter or when you select User-defined and the specified output data type is a fixed-point
data type.

Output fraction length
For fixed-point output data types, specify the number of fractional bits, or bits to the right of the
binary point. This parameter is only visible when you select Fixed-point or User-defined for
the Output data type parameter and User-defined for the Set output fraction length to
parameter.

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
• Boolean when Input type is Bit
• 8-, 16-, 32-bit signed integers
• 8-, 16-, 32-bit unsigned integers
• uf ix log2M  when Input type is Integer

Output • Double-precision floating point
• Single-precision floating point
• Signed fixed-point

Pair Block
M-PAM Demodulator Baseband
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More About
Constellation Visualization

Click View Constellation on the block mask to visualize a signal constellation for the specified block
parameters. Parameter settings must be applied before viewing a constellation. For more information,
see “View Constellation of Modulator Block”.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
M-PAM Demodulator Baseband | General QAM Modulator Baseband

Functions
pammod
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M-PSK Demodulator Baseband
Demodulate PSK-modulated data
Library: Communications Toolbox / Modulation / Digital Baseband

Modulation / PM
Communications Toolbox HDL Support / Modulation / PM

Description
The M-PSK Demodulator Baseband block demodulates a baseband representation of a PSK-modulated
signal. The modulation order, M, is equivalent to the number of points in the signal constellation and
is determined by the M-ary number parameter. The block accepts scalar or column vector input
signals.

Input/Output Ports
Input

Port_1 — Input signal
scalar | vector

Input port accepting a baseband representation of a PSK-modulated signal.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean

Output

Port_1 — Output signal
scalar | vector

Output signal, returned as a scalar or vector. The output is a demodulated version of the PSK-
modulated signal.
Data Types: single | double | fixed point

Parameters
M-ary number — Modulation order of the PSK constellation
8 (default) | scalar

Specify the modulation order as a positive integer power of two.
Example: 2 | 16

Output type — Output signal data type
Integer (default) | Bit
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Specify the elements of the input signal as integers or bits. If Output type is Bit, the number of
samples per frame is an integer multiple of the number of bits per symbol, log2(M).

Decision type — Demodulator output
Hard decision (default) | Log-likelihood ratio | Approximate log-likelihood ratio

Specify the demodulator output to be hard decision, log-likelihood ratio (LLR), or approximate LLR.
The LLR and approximate LLR outputs are used with error decoders that support soft-decision inputs
such as a Viterbi Decoder, to achieve superior performance. This parameter is available when
Output type is Bit.

See “Phase Modulation” for algorithm details. The output values for Log-likelihood ratio and
Approximate log-likelihood ratio decision types are of the same data type as the input
values

Noise variance source — Source of noise variance
Dialog (default) | Port

Specify the source of the noise variance estimate. This parameter is available when Decision type is
Log-likelihood ratio or Approximate log-likelihood ratio.

• To specify the noise variance from the dialog box, select Dialog.
• To input the noise variance from an input port, select Port.

Noise variance — Estimate of noise variance
1 (default) | positive scalar

Specify the estimate of the noise variance as a positive scalar. This parameter is available when
Noise variance source is Dialog.

This parameter is tunable in all simulation modes. If you use the Simulink Coder rapid simulation
(RSIM) target to build an RSIM executable, then you can tune the parameter without recompiling the
model. Avoiding recompilation is useful for Monte Carlo simulations in which you run the simulation
multiple times (perhaps on multiple computers) with different amounts of noise.

Note The exact LLR algorithm computes exponentials using finite precision arithmetic. Computation
of exponentials with very large positive or negative magnitudes might yield:

• Inf or -Inf if the noise variance is a very large value
• NaN if both the noise variance and signal power are very small values

When the output returns any of these values, try using the approximate LLR algorithm because it
does not compute exponentials.

Constellation ordering — Symbol mapping
Gray (default) | Binary | User-defined

Specify how the integer or group of log2(M) bits is mapped to the corresponding symbol.
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• When Constellation ordering is set to Gray, the output symbol is mapped to the input signal
using a Gray-encoded signal constellation.

• When Constellation ordering is set to Binary, the modulated symbol is exp(jϕ+j2πm/M), where
ϕ is the phase offset in radians, m is the integer output such that 0 ≤ m ≤ M – 1, and M is the
modulation order.

• When Constellation ordering is User-defined, specify a vector of size M, which has unique
integer values in the range [0, M–1]. The first element of this vector corresponds to the
constellation point having a value of ejϕ with subsequent elements running counterclockwise.

Example: [0 3 2 1]

Constellation mapping — User-defined symbol mapping
[0:7] (default) | vector

Specify the order in which input integers are mapped to output integers. The parameter is available
when Constellation ordering is User-defined, and must be a row or column vector of size M
having unique integer values in the range [0, M – 1].

The first element of this vector corresponds to the constellation point at 0 + Phase offset angle, with
subsequent elements running counterclockwise. The last element corresponds to the -2π/M + Phase
offset constellation point.

Phase offset (rad) — Phase offset in radians
pi/8 (default) | scalar

Specify, in radians, the phase offset of the initial constellation as a real scalar.
Example: pi/4

Output data type — Output data type
Inherit via internal rule (default) | Smallest unsigned integer | double | single |
int8 | uint8 | int16 | uint16 | int32 | uint32

Specify the data type of the demodulated output signal.

Block Characteristics
Data Types Boolean | double | fixed pointa, b, c | integer | single
Multidimensional
Signals

no

Variable-Size Signals yes
a M = 2, 4, 8 only.
b Fixed-point inputs must be signed.
c When ASIC/FPGA is selected in the Hardware Implementation Pane, output is ufix(1) for bit outputs, and

ufix(ceil(log2(M))) for integer outputs.
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Algorithms
Hard-Decision BPSK Demodulation

The signal preprocessing required for BPSK demodulation depends on the configuration.

This figure shows the hard-decision BPSK demodulation signal diagram for the trivial phase offset
(multiple of π/2) configuration.

This figure shows the hard-decision BPSK demodulation floating-point signal diagram for the
nontrivial phase offset configuration.
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This figure shows the hard-decision BPSK demodulation fixed-point signal diagram for the nontrivial
phase offset configuration.
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Hard-Decision QPSK Demodulation

The signal preprocessing required for QPSK demodulation depends on the configuration.

This figure shows the hard-decision QPSK demodulation signal diagram for the trivial phase offset
(odd multiple of π/4) configuration.
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This figure shows the hard-decision QPSK demodulation floating-point signal diagram for the
nontrivial phase offset configuration.
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This figure shows the hard-decision QPSK demodulation fixed-point signal diagram for the nontrivial
phase offset configuration.

Hard-Decision Higher-Order PSK

The signal preprocessing required for higher order PSK demodulation depends on the configuration.

This figure shows the hard-decision 8-PSK demodulation signal diagram for the trivial phase offset
(odd multiple of π/8) configuration.
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This figure shows the hard-decision 8-PSK demodulation fixed-point signal diagram for trivial phase
offset (odd multiple of π/8) configuration.
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This figure shows the hard-decision M-PSK demodulation floating-point signal diagram for the
nontrivial phase offset configuration.
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For M > 8, to improve speed and implementation costs, no derotation arithmetic is performed for
trivial case (specifically, when phase offset is 0, π/2, π, or 3π/2).

Also, for M > 8, only double and single input types are supported.

Log-Likelihood Ratio and Approximate Log-Likelihood Ratio

The exact LLR and approximate LLR algorithms (soft-decision) are described in “Phase Modulation”.

Version History
Introduced before R2006a

References
[1] Proakis, John G. Digital Communications. 4th ed. New York: McGraw Hill, 2001.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

See Also
M-PSK Modulator Baseband | M-DPSK Demodulator Baseband

Topics
“Phase Modulation”
“Gray-Coded M-PSK Modulation Error Rate in AWGN Channel Using Simulink”
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M-PSK Modulator Baseband
Modulate using M-ary phase shift keying
Library: Communications Toolbox / Modulation / Digital Baseband

Modulation / PM
Communications Toolbox HDL Support / Modulation / PM

Description
The M-PSK Modulator Baseband block modulates an input signal using M-ary phase shift keying
(PSK) and returns a complex baseband output. The modulation order, M, which is equivalent to the
number of points in the signal constellation, is determined by the M-ary number parameter. The
block accepts scalar or column vector input signals.

Input/Output Ports
Input

Port_1 — Input signal
scalar | vector

Specify the input signal as an integer scalar, integer vector, or binary vector.

• When Input type is Integer, specify the input signal elements as integers from 0 to M – 1.
• When Input type is Bit, specify the input signal as a binary vector in which the number of

elements is an integer multiple of the bits per symbol. The bits per symbol is equal to log2(M).

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean

Output

Port_1 — Output signal
scalar | vector

Output signal, returned as a complex scalar or vector. The output is the complex baseband
representation of the PSK-modulated signal.
Data Types: single | double | fixed point

Parameters
M-ary number — Modulation order of the PSK constellation
8 (default) | scalar

Specify the modulation order as a positive integer power of two.
Example: 2 | 16
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Input type — Type of input signal
Integer (default) | Bit

Specify the elements of the input signal as integers or bits. If Input type is Bit, the number of
samples per frame must be an integer multiple of the number of bits per symbol. The number of bits
per symbol is log2(M).

Constellation ordering — Symbol mapping
Gray (default) | Binary | User-defined

Specify how the integer or group of log2(M) bits is mapped to the corresponding symbol.

• When Constellation ordering is set to Gray, the input signal is mapped to the output symbols
using a Gray-encoded signal constellation.

• When Constellation ordering is set to Binary, the modulated symbol is exp(jϕ+j2πm/M), where
ϕ is the phase offset in radians, m is the integer input such that 0 ≤ m ≤ M – 1, and M is the
modulation order.

• When Constellation ordering is User-defined, specify a vector of size M, which has unique
integer values in the range [0, M–1]. The first element of this vector corresponds to the
constellation point having an value of ejϕ with subsequent elements running counterclockwise.

Example: [0 3 2 1]

Constellation mapping — User-defined symbol mapping
[0:7] (default) | vector

Specify the order in which input integers are mapped to output integers. The parameter is available
when Constellation ordering is User-defined, and must be a row or column vector of size M
having unique integer values in the range [0, M – 1].

The first element of this vector corresponds to the constellation point at 0 + Phase offset angle, with
subsequent elements running counterclockwise. The last element corresponds to the -2π/M + Phase
offset constellation point.

Phase offset (rad) — Phase offset in radians
pi/8 (default) | scalar

Specify, in radians, the phase offset of the initial constellation as a real scalar.
Example: pi/4

Output data type — Output data type
double (default) | single | Inherit via back propagation | fixdt(1,16) | fixdt(1,16,0)
| <data type expression>

Specify the data type of the modulated output signal. Set this parameter to one of the fixed point
options or <data type expression> to enable parameters in which you specify additional details.
Set this parameter to Inherit via back propagation, to match the output data type and scaling
to the following block in the model.
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Block Characteristics
Data Types Boolean | double | fixed pointa, b | integer | single
Multidimensional
Signals

no

Variable-Size Signals yes
a ufix(1) at the input if ''input type'' is set to ''bit''. ufix(ceil(log2(M))) at input if ''input type'' is set to ''integer'' for M-ary

modulation.
b Fixed-point outputs must be signed.

More About
Constellation Visualization

Click View Constellation on the block mask to visualize a signal constellation for the specified block
parameters. Parameter settings must be applied before viewing a constellation. For more information,
see “View Constellation of Modulator Block”.

Algorithms
For binary-encoding, the output baseband signal maps input bits or integers to complex symbols
according to:

sn(t) = exp jπ 2n + 1
M ; n ∈ 0, 1, …, M − 1 .

When the input is configured for bits, groups of log2(M) bits represent the complex symbols for the
configured symbol mapping. The mapping can be binary encoded, Gray encoded, or custom encoded.

Gray coding has the advantage that only one bit changes between adjacent constellation points,
which results in better bit error rate performance. This table shows the mapping between the input
and output symbols for 8-PSK modulation with Gray coding.

Input Output
0 0 (000)
1 1 (001)
2 3 (011)
3 2 (010)
4 6 (110)
5 7 (111)
6 5 (101)
7 4 (100)

This constellation diagram shows the corresponding symbols and their binary values.
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Version History
Introduced before R2006a

References
[1] Proakis, John G. Digital Communications. 4th ed. New York: McGraw Hill, 2001.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.
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HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

See Also
Blocks
M-PSK Demodulator Baseband | M-DPSK Modulator Baseband

Objects
comm.PSKModulator

Topics
“Phase Modulation”
“Gray-Coded M-PSK Modulation Error Rate in AWGN Channel Using Simulink”
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M-PSK Phase Recovery
(Removed) Recover carrier phase using M-Power method

Note M-PSK Phase Recovery has been removed. Use the Carrier Synchronizer block instead.

Library
Carrier Phase Recovery sublibrary of Synchronization

Description
The M-PSK Phase Recovery block recovers the carrier phase of the input signal using the M-Power
method. This feedforward, non-data-aided, clock-aided method is suitable for systems that use
baseband phase shift keying (PSK) modulation. It is also suitable for systems that use baseband
quadrature amplitude modulation (QAM), although the results are less accurate than those for
comparable PSK systems. The alphabet size for the modulation must be an even integer.

For PSK signals, the M-ary number parameter represents the alphabet size. For QAM signals, the
M-ary number should be 4 regardless of the alphabet size because the 4-power method is the most
appropriate for QAM signals.

The M-Power method assumes that the carrier phase is constant over a series of consecutive symbols,
and returns an estimate of the carrier phase for the series. The Observation interval parameter is
the number of symbols for which the carrier phase is assumed constant. This number must be an
integer multiple of the input signal's vector length.

Input and Output Signals

This block accepts a scalar or column vector input signal of type double or single. The input signal
represents a baseband signal at the symbol rate, so it must be complex-valued and must contain one
sample per symbol.

The outputs are as follows:

• The output port labeled Sig gives the result of rotating the input signal counterclockwise, where
the amount of rotation equals the carrier phase estimate. The Sig output is thus a corrected
version of the input signal, and has the same sample time and vector size as the input signal.

• The output port labeled Ph outputs the carrier phase estimate, in degrees, for all symbols in the
observation interval. The Ph output is a scalar signal.

Note Because the block internally computes the argument of a complex number, the carrier
phase estimate has an inherent ambiguity. The carrier phase estimate is between -180/M and
180/M degrees and might differ from the actual carrier phase by an integer multiple of 360/M
degrees.
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Delays and Latency

The block's algorithm requires it to collect symbols during a period of length Observation interval
before computing a single estimate of the carrier phase. Therefore, each estimate is delayed by
Observation interval symbols and the corrected signal has a latency of Observation interval
symbols, relative to the input signal.

Parameters
M-ary number

The number of points in the signal constellation of the transmitted PSK signal. This value as an
even integer.

Observation interval
The number of symbols for which the carrier phase is assumed constant. The observation interval
parameter must be an integer multiple of the input signal vector length.

When this parameter is exactly equal to the vector length of the input signal, then the block
always works. When the integer multiple is not equal to 1, on the Simulation tab, select Model
Settings. Then in the Solver > Solver selection section, choose Type: Fixed-step and clear
the Treat each discrete rate as a separate task checkbox.

Algorithm
If the symbols occurring during the observation interval are x(1), x(2), x(3),..., x(L), then the resulting
carrier phase estimate is

1
Marg ∑

k = 1

L
(x(k))M

where the arg function returns values between -180 degrees and 180 degrees.

References

[1] Mengali, Umberto, and Aldo N. D'Andrea, Synchronization Techniques for Digital Receivers, New
York, Plenum Press, 1997.
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See Also
CPM Phase Recovery, M-PSK Modulator Baseband

Version History
Introduced before R2006a

M-PSK Phase Recovery has been removed
Errors starting in R2020a
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M-PSK Phase Recovery has been removed. Use Carrier Synchronizer instead.
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M-PSK TCM Decoder
Decode trellis-coded modulation data, modulated using PSK method

Library
TCM, in Digital Baseband sublibrary of Modulation

Description
The M-PSK TCM Decoder block uses the Viterbi algorithm to decode a trellis-coded modulation
(TCM) signal that was previously modulated using a PSK signal constellation.

The M-ary number parameter represents the number of points in the signal constellation, which also
equals the number of possible output symbols from the convolutional encoder. (That is, log2(M-
ary number) is the number of output bit streams from the convolutional encoder.)

The Trellis structure and M-ary number parameters in this block should match those in the M-PSK
TCM Encoder block, to ensure proper decoding.

Input and Output Signals

This block accepts a column vector input signal containing complex numbers. The input signal must
be double or single. The reset port signal must be double or Boolean. For information about the
data types each block port supports, see “Supported Data Types” on page 5-570.

If the convolutional encoder described by the trellis structure represents a rate k/n code, then the M-
PSK TCM Decoder block's output is a binary column vector whose length is k times the vector length
of the input signal.

Operation Modes

The block has three possible methods for transitioning between successive frames. The Operation
mode parameter controls which method the block uses. This parameter also affects the range of
possible values for the Traceback depth parameter, D.

• In Continuous mode, the block initializes all state metrics to zero at the beginning of the
simulation, waits until it accumulates D symbols, and then uses a sequence of D symbols to
compute each of the traceback paths. D can be any positive integer. At the end of each frame, the
block saves its internal state metric for use with the next frame.

If you select Enable the reset input, the block displays another input port, labeled Rst. This port
receives an integer scalar signal. Whenever the value at the Rst port is nonzero, the block resets
all state metrics to zero and sets the traceback memory to zero.

• In Truncated mode, the block treats each frame independently. The traceback path starts at the
state with the lowest metric. D must be less than or equal to the vector length of the input.
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• In Terminated mode, the block treats each frame independently. The traceback path always
starts at the all-zeros state. D must be less than or equal to the vector length of the input. If you
know that each frame of data typically ends at the all-zeros state, then this mode is an appropriate
choice.

Decoding Delay

If you set Operation mode to Continuous, then this block introduces a decoding delay equal to
Traceback depth*k bits, for a rate k/n convolutional code. The decoding delay is the number of zeros
that precede the first decoded bit in the output.

The block incurs no delay for other values of Operation mode.

Parameters
Trellis structure

MATLAB structure that contains the trellis description of the convolutional encoder.
M-ary number

The number of points in the signal constellation.
Traceback depth

The number of trellis branches (equivalently, the number of symbols) the block uses in the Viterbi
algorithm to construct each traceback path.

Operation mode
The operation mode of the Viterbi decoder. Choices are Continuous, Truncated, and
Terminated.

Enable the reset input port
When you check this box, the block has a second input port labeled Rst. Providing a nonzero
input value to this port causes the block to set its internal memory to the initial state before
processing the input data. This option appears only if you set Operation mode to Continuous.

Output data type
The output type of the block can be specified as a boolean or double. By default, the block sets
this to double.

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
Reset • Double-precision floating point

• Boolean
Output • Double-precision floating point

• Boolean

Pair Block
M-PSK TCM Encoder
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Version History
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M-PSK TCM Encoder
Convolutionally encode binary data and modulate using PSK method

Library
TCM, in Digital Baseband sublibrary of Modulation

Description
The M-PSK TCM Encoder block implements trellis-coded modulation (TCM) by convolutionally
encoding the binary input signal and mapping the result to a PSK signal constellation.

The M-ary number parameter is the number of points in the signal constellation, which also equals
the number of possible output symbols from the convolutional encoder. (That is, log2(M-ary number)
is equal to n for a rate k/n convolutional code.)

Input Signals and Output Signals

If the convolutional encoder described by the trellis structure represents a rate k/n code, then the
block input signal must be a binary column vector with a length of L*k for some positive integer L.

This block accepts a binary-valued input signal. The output signal is a complex column vector of
length L.

Specifying the Encoder

To define the convolutional encoder, use the Trellis structure parameter. This parameter is a
MATLAB structure whose format is described in “Trellis Description of a Convolutional Code”. You
can use this parameter field in two ways:

• If you want to specify the encoder using its constraint length, generator polynomials, and possibly
feedback connection polynomials, then use a poly2trellis command within the Trellis
structure field. For example, to use an encoder with a constraint length of 7, code generator
polynomials of 171 and 133 (in octal numbers), and a feedback connection of 171 (in octal), set the
Trellis structure parameter to

poly2trellis(7,[171 133],171)
• If you have a variable in the MATLAB workspace that contains the trellis structure, then enter its

name as the Trellis structure parameter. This way is faster because it causes Simulink software
to spend less time updating the diagram at the beginning of each simulation, compared to the
usage in the previous bulleted item.

The encoder registers begin in the all-zeros state. You can configure the encoder so that it resets its
registers to the all-zeros state during the course of the simulation. To do this, set the Operation
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mode to Reset on nonzero input via port. The block then opens a second input port, labeled Rst.
The signal at the Rst port is a scalar signal. When it is nonzero, the encoder resets before processing
the data at the first input port.

Signal Constellations

The trellis-coded modulation technique partitions the constellation into subsets called cosets, so as to
maximize the minimum distance between pairs of points in each coset. This block internally forms a
valid partition based on the value you choose for the M-ary number parameter.

The figure below shows the labeled set-partitioned signal constellation that the block uses when M-
ary number is 8. For constellations of other sizes, see [1].

Coding Gains

Coding gains of 3 to 6 decibels, relative to the uncoded case can be achieved in the presence of
AWGN with multiphase trellis codes [3].

Parameters
Trellis structure

MATLAB structure that contains the trellis description of the convolutional encoder.
Operation mode

In Continuous mode (default setting), the block retains the encoder states at the end of each
frame, for use with the next frame.

In Truncated (reset every frame) mode, the block treats each frame independently. I.e.,
the encoder states are reset to all-zeros state at the start of each frame.
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In Terminate trellis by appending bits mode, the block treats each frame
independently. For each input frame, extra bits are used to set the encoder states to all-zeros
state at the end of the frame. The output length is given by y = n ⋅ (x + s)/k, where x is the
number of input bits, and s = constraint length − 1 (or, in the case of multiple constraint lengths,
s =sum(ConstraintLength(i)-1)). The block supports this mode for column vector input
signals.

In Reset on nonzero input via port mode, the block has an additional input port, labeled
Rst. When the Rst input is nonzero, the encoder resets to the all-zeros state.

M-ary number
The number of points in the signal constellation.

Output data type
The output type of the block can be specified as a single or double. By default, the block sets
this to double.

Pair Block
M-PSK TCM Decoder
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MSK Demodulator Baseband
Demodulate differentially encoded MSK-modulated data

Library
CPM, in Digital Baseband sublibrary of Modulation

Description
The MSK Demodulator Baseband block demodulates a signal that was modulated using the
differentially encoded minimum shift keying method. The block expects the input signal to be a
baseband representation of a coherent modulated signal with no precoding. The Phase offset
parameter represents the initial phase of the modulated waveform.

Pulse Shape Filtering

Differentially encoded minimum shift keying modulation uses pulse shaping to smooth the phase
transitions of the modulated signal. The function q(t) is the phase response obtained from the

frequency pulse, g(t), through this relation:q(t) =∫− ∞
t

g(t)dt.

The specified frequency pulse shape corresponds to this rectangular pulse shape expression for g(t).

Pulse Shape Expression
Rectangular

g(t) =
1

2LT , 0 ≤ t ≤ LT

0 otherwise

• L is the main lobe pulse duration in symbol intervals.
• The duration of the pulse, LT, is the pulse length in symbol intervals.

Integer-Valued Signals and Binary-Valued Signals

This block accepts a scalar-valued or column vector input signal with a data type of single or
double. If you set the Output type parameter to Integer, then the block produces values of 1 and
-1. If you set the Output type parameter to Bit, then the block produces values of 0 and 1.

Single-Rate Processing

In single-rate processing mode, the input and output signals have the same port sample time. The
block implicitly implements the rate change by making a size change at the output when compared to
the input. The input width must be an integer multiple of the Samples per symbol parameter value,
and the input can be a column vector.
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• When you set Output type to Bit, the output width is K times the number of input symbols.
• When you set Output type to Integer, the output width is the number of input symbols.

Multirate Processing

In multirate processing mode, the input and output signals have different port sample times. The
input must be a scalar. The output symbol time is the product of the input sample time and the
Samples per symbol parameter value.

• When you set Output type to Bit, the output width equals the number of bits per symbol.
• When you set Output type to Integer, the output is a scalar.

Traceback Depth and Output Delays

Internally, this block creates a trellis description of the modulation scheme and uses the Viterbi
algorithm. The Traceback depth parameter, D, in this block is the number of trellis branches used to
construct each traceback path. D influences the output delay, which is the number of zero symbols
that precede the first meaningful demodulated value in the output.

• When you set the Rate options parameter to Allow multirate processing, and the model
uses a variable-step solver or a fixed-step solver with the Tasking Mode parameter set to
SingleTasking, then the delay consists of D+1 zero symbols.

• When you set the Rate options parameter to Enforce single-rate processing, then the
delay consists of D zero symbols.

The optimal Traceback depth parameter value is dependent on minimum squared Euclidean
distance calculations. Alternatively, a typical value, dependent on the number of states, can be chosen
using the “five-times-the-constraint-length” rule, which corresponds to 5×log2(numStates). The
number of states is determined by the following equation:

numStates =
p ⋅ 2(L− 1), f or even m

2p ⋅ 2(L− 1), f or odd m

where:

• h = m/p is the modulation index proper rational form

• m = numerator of modulation index
• p = denominator of modulation index

• L is the Pulse length

Parameters
Output type

Determines whether the output consists of bipolar or binary values.
Phase offset (rad)

The initial phase of the modulated waveform.
Samples per symbol

The number of input samples that represent each modulated symbol, which must be a positive
integer. For more information, see “Signal Upsampling and Rate Changes”.
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Rate options
Select the rate processing method for the block.

• Enforce single-rate processing — When you select this option, the input and output
signals have the same port sample time. The block implements the rate change by making a
size change at the output when compared to the input. The output width is the number of
symbols (which is given by dividing the input length by the Samples per symbol parameter
value when the Output type parameter is set to Integer).

• Allow multirate processing — When you select this option, the input and output signals
have different port sample times. The output period is the same as the symbol period and
equals the product of the input period and the Samples per symbol parameter value.

For more information, see Single-Rate Processing and Multirate Processing in the Description
section of this page.

Traceback depth
The number of trellis branches that the MSK Demodulator Baseband block uses to construct each
traceback path.

Output data type
The output data type can be boolean, int8, int16, int32, or double.

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
Output • Double-precision floating point

• Boolean (When Output type set to Bit)
• 8-, 16-, and 32-bit signed integers (When Output type set to Integer)

Pair Block
MSK Modulator Baseband

References

[1] Anderson, John B., Tor Aulin, and Carl-Erik Sundberg, Digital Phase Modulation, New York,
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Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.
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See Also
Blocks
MSK Modulator Baseband | CPM Demodulator Baseband | Viterbi Decoder
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MSK Modulator Baseband
Modulate using differentially encoded minimum shift keying method

Library
CPM, in Digital Baseband sublibrary of Modulation

Description
The MSK Modulator Baseband block modulates using the differentially encoded minimum shift keying
method. The output is a baseband representation of the modulated signal.

This block accepts a scalar-valued or column vector input signal. For a column vector input signal,
the width of the output equals the product of the number of symbols and the value for the Samples
per symbol parameter.

Pulse Shape Filtering

Differentially encoded minimum shift keying modulation uses pulse shaping to smooth the phase
transitions of the modulated signal. The function q(t) is the phase response obtained from the

frequency pulse, g(t), through this relation:q(t) =∫− ∞
t

g(t)dt.

The specified frequency pulse shape corresponds to this rectangular pulse shape expression for g(t).

Pulse Shape Expression
Rectangular

g(t) =
1

2LT , 0 ≤ t ≤ LT

0 otherwise

• L is the main lobe pulse duration in symbol intervals.
• The duration of the pulse, LT, is the pulse length in symbol intervals.

Integer-Valued Signals and Binary-Valued Signals

When you set the Input type parameter to Integer, then the block accepts values of 1 and -1.

When you set the Input type parameter to Bit, then the block accepts values of 0 and 1.

For information about the data types each block port supports, see the “Supported Data Types” on
page 5-581 table on this page.

Single-Rate Processing

 MSK Modulator Baseband

5-579



In single-rate processing mode, the input and output signals have the same port sample time. The
block implicitly implements the rate change by making a size change at the output when compared to
the input. In this mode, the input to the block can be multiple symbols.

• When you set Input type to Integer, the input can be a column vector, the length of which is the
number of input symbols.

• When you set Input type to Bit, the input width must be an integer multiple of K, the number of
bits per symbol.

The output width equals the product of the number of input symbols and the Samples per symbol
parameter value.

Multirate Processing

In multirate processing mode, the input and output signals have different port sample times. In this
mode, the input to the block must be one symbol.

• When you set Input type to Integer, the input must be a scalar.
• When you set Input type to Bit, the input width must equal the number of bits per symbol.

The output sample time equals the symbol period divided by the Samples per symbol parameter
value.

Parameters
Input type

Indicates whether the input consists of bipolar or binary values.
Phase offset (rad)

The initial phase of the output waveform, measured in radians.
Samples per symbol

The number of output samples that the block produces for each integer or binary word in the
input, which must be a positive integer. For all non-binary schemes, as defined by the pulse
shapes, this value must be greater than 1.

For more information, see “Signal Upsampling and Rate Changes”.
Rate options

Select the rate processing option for the block.

• Enforce single-rate processing — When you select this option, the input and output
signals have the same port sample time. The block implements the rate change by making a
size change at the output when compared to the input. The output width equals the product of
the number of symbols and the Samples per symbol parameter value.

• Allow multirate processing — When you select this option, the input and output signals
have different port sample times. The output sample time equals the symbol period divided by
the Samples per symbol parameter value.

Output data type
Specify the block output data type as double and single. By default, the block sets this to
double.
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Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Boolean (when Input type set to Bit)
• 8-, 16-, and 32-bit signed integers (when Input type set to Integer)

Output • Double-precision floating point
• Single-precision floating point

Pair Block
MSK Demodulator Baseband

References
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Version History
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C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.
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Blocks
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Topics
“Compare Filtered QPSK and MSK Signals in Simulink”
“Compare GMSK and MSK Signals in Simulink”
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MSK-Type Signal Timing Recovery
Recover symbol timing phase using fourth-order nonlinearity method

Library
Timing Phase Recovery sublibrary of Synchronization

Description
The MSK-Type Signal Timing Recovery block recovers the symbol timing phase of the input signal
using a fourth-order nonlinearity method. This block implements a general non-data-aided feedback
method that is independent of carrier phase recovery but requires prior compensation for the carrier
frequency offset. This block is suitable for systems that use baseband minimum shift keying (MSK)
modulation or Gaussian minimum shift keying (GMSK) modulation.

Inputs

By default, the block has one input port. The input signal could be (but is not required to be) the
output of a receive filter that is matched to the transmitting pulse shape, or the output of a lowpass
filter that limits the amount of noise entering this block.

This block accepts a scalar-valued or column vector input signal. The input uses N samples to
represent each symbol, where N > 1 is the Samples per symbol parameter.

• For a column vector input signal, the block operates in single-rate processing mode. In this mode,
the output signal inherits its sample rate from the input signal. The input length must be a
multiple of N.

• For a scalar input signal, the block operates in multirate processing mode. In this mode, the input
and output signals have different sample rates. The output sample rate equals N multiplied by the
input sample rate.

• This block accepts input signals of type Double or Single

If you set the Reset parameter to On nonzero input via port, then the block has a second input
port, labeled Rst. The Rst input determines when the timing estimation process restarts, and must
be a scalar.

• If the input signal is a scalar value, the sample time of the Rst input equals the symbol period
• If the input signal is a column vector, the sample time of the Rst input equals the input port

sample time
• This block accepts reset signals of type Double or Boolean
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Outputs

The block has two output ports, labeled Sym and Ph:

• The Sym output is the result of applying the estimated phase correction to the input signal. This
output is the signal value for each symbol, which can be used for decision purposes. The values in
the Sym output occur at the symbol rate:

• For a column vector input signal of length N*R, the Sym output is a column vector of length R
having the same sample rate as the input signal.

• For a scalar input signal, the sample rate of the Sym output equals N multiplied by the input
sample rate.

• The Ph output gives the phase estimate for each symbol in the input.

The Ph output contains nonnegative real numbers less than N. Noninteger values for the phase
estimate correspond to interpolated values that lie between two values of the input signal. The
sample time of the Ph output is the same as that of the Sym output.

Note If the Ph output is very close to either zero or Samples per symbol, or if the actual timing
phase offset in your input signal is very close to zero, then the block's accuracy might be
compromised by small amounts of noise or jitter. The block works well when the timing phase
offset is significant rather than very close to zero.

• The output signal inherits its data type from the input signal.

Delays

When the input signal is a vector, this block incurs a delay of two symbols. When the input signal is a
scalar, this block incurs a delay of three symbols.

Parameters
Modulation type

The type of modulation in the system. Choices are MSK and GMSK.
Samples per symbol

The number of samples, N, that represent each symbol in the input signal. This must be greater
than 1.

Error update gain
A positive real number representing the step size that the block uses for updating successive
phase estimates. Typically, this number is less than 1/N, which corresponds to a slowly varying
phase.

This parameter is tunable in normal mode, Accelerator mode and Rapid Accelerator mode. If you
use the Simulink Coder rapid simulation (RSIM) target to build an RSIM executable, then you can
tune the parameter without recompiling the model. For more information, see Tunable
Parameters (Simulink).

Reset
Determines whether and under what circumstances the block restarts the phase estimation
process. Choices are None, Every frame, and On nonzero input via port. The last option
causes the block to have a second input port, labeled Rst.
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Algorithm
This block's algorithm extracts timing information by passing the sampled baseband signal through a
fourth-order nonlinearity followed by a digital differentiator whose output is smoothed to yield an
error signal. The algorithm then uses the error signal to make the sampling adjustments.

More specifically, this block uses a timing error detector whose result for the kth symbol is e(k), given
in [2] by

e(k) = (−Re r2(kT − Ts + dk− 1)r * 2((k− 1)T − Ts + dk− 2)

−(−Re r2(kT + Ts + dk− 1)r * 2((k− 1)T + Ts + dk− 1)

where

• r is the block's input signal
• T is the symbol period
• Ts is the sampling period
• * means complex conjugate
• dk is the phase estimate for the kth symbol
• D is 1 for MSK and 2 for Gaussian MSK modulation

Version History
Introduced before R2006a

References
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York, Plenum Press, 1997.
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Multiband Combiner
Frequency-shift and combine signals
Library: Communications Toolbox / RF Impairments and Components

Description
The Multiband Combiner block interpolates, shifts input signals to the specified frequency bands, and
then combines them into a single signal. For more information, see the “Algorithms” on page 5-587
section.

Ports
Input

In — Input signals
Nsamp-by-Nchan matrix

Input signals, specified as an Nsamp-by-Nchan matrix. Nsamp is the number of input samples per channel
and Nchan is the number of channels.
Data Types: double | single

Output

Out — Output signal
Nout-by-1 vector

Output signal, returned as an Nout-by-1 vector of the same data type as input signal In. Nout is the
number of output samples. The Rate options parameter specifies single-rate or multirate mode. For
more information, see “Algorithms” on page 5-587.

Parameters
Input sample rate (Hz) — Input signal sample rate
1e6 (default) | positive scalar

Input signal sample rate in Hz, specified as a positive scalar.

Frequency offsets (Hz) — Frequency offsets
[0 1e6] (default) | scalar | 1-by-Nchan vector

Frequency offsets in Hz, specified as one of these options.

• Scalar — Each channel of the input signal is frequency-shifted by this scalar value.
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• 1-by-Nchan vector — Each channel of the input signal is frequency-shifted by the corresponding
value in this vector. Nchan is the number of channels in the input signal In.

Rate options — Options for processing rate
Enforce single-rate processing (default) | Allow multirate processing

Options for the processing rate, specified as one of these values.

• Enforce single-rate processing — The output sample rate must be an integer multiple of
the input sample rate. The number of rows in the output is higher than or equal to the number of
rows in the input signal. The output frame rate is equal to the input frame rate.

• Allow multirate processing — The output has the same number of rows as the input. The
output frame rate is higher than or equal to the input frame rate.

For more information, see the “Algorithms” on page 5-587 section.

Output sample rate options — Options for output sample rate
Auto (default) | Specify via property

Options for the output sample rate, specified as one of these values.

• Auto — The block interpolates the input signals to ensure that the resulting sample rate of the
signals is sufficient to avoid distorting the frequency content of the original signals after they are
frequency-shifted to produce the output signal.

• Specify via property — Specify the output sample rate by using the Output sample rate
(Hz) parameter.

Output sample rate (Hz) — Output signal sample rate
3e6 (default) | positive scalar

Output signal sample rate in Hz, specified as a positive scalar.

Tips

To avoid distortion, specify this value to be greater than or equal to the automatically computed
output sample rate. To determine the automatically computed output sample rate, first run the block
with the Output sample rate options parameter set to Auto.

Dependencies

To enable this parameter, set the Output sample rate options parameter to Specify via
property.

Output delay (samples) — Output delay
36 (default) | positive scalar

This property is read-only.

Output delay in samples, specified as a positive scalar.
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Block Characteristics
Data Types double | single
Multidimensional
Signals

no

Variable-Size Signals no

Algorithms
Multiband Combiner

This figure shows how the multiband combiner algorithm processes input signal data.

When the output sample rate is greater than the input sample rate, the input signal is interpolated to
avoid distortion in the frequency-shifted signal. Each column of the input signal is frequency-shifted
by the corresponding value specified in the Frequency offsets (Hz) parameter. The frequency-
shifted signals are then added together into a single channel output signal. Each channel in the input
must have the same number of samples.

The Rate options parameter enables operation of the block in single-rate mode or multirate mode.
For single-rate mode, the output frame rate equals the input frame rate. For multirate mode, the
output frame rate is increased by the ratio of the interpolation and decimation factors (that is, by
L/M). The interpolation and decimation factors are computed as [L,M] = rat(RO/RI).

When the algorithm is configured to automatically compute the output sample rate, the output
sample rate is computed as RO = RI × L/M

• RO is the output sample rate specified in Output sample rate (Hz).
• RI is the input sample rate specified in Input sample rate (Hz).
• L is the interpolation factor and is computed as L = ceil(2 × Bmax/RI).
• M is the decimation factor.
• Bmax is the maximum bandwidth and is computed as Bmax = max(abs(Frequency offsets (Hz))) +

(RI/2).

Multiband Combining Delay

Multiband combining introduces a delay computed as delay = round(length(num)/2). The
numerator coefficients, num, are computed as num = designMultirateFIR(L,M), where L is the
interpolation factor and M is the decimation factor.

Version History
Introduced in R2021b
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Channelizer | Channel Synthesizer | Sample Rate Match

Objects
comm.MultibandCombiner
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Mu-Law Compressor
Implement µ-law compressor for source coding

Library
Source Coding

Description
The Mu-Law Compressor block implements a µ-law compressor for the input signal. The formula for
the µ-law compressor is

y = Vlog(1 + μ x /V)
log(1 + μ) sgn(x)

where µ is the µ-law parameter of the compressor, V is the peak magnitude of x, log is the natural
logarithm, and sgn is the signum function (sign in MATLAB).

The input can have any shape or frame status. This block processes each vector element
independently.

Parameters
mu value

The µ-law parameter of the compressor.
Peak signal magnitude

The peak value of the input signal. This is also the peak value of the output.

Supported Data Type
Port Supported Data Types
In • double
Out • double

Pair Block
Mu-Law Expander
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References

[1] Sklar, Bernard. Digital Communications: Fundamentals and Applications. Englewood Cliffs, N.J.:
Prentice-Hall, 1988.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Mu-Law Expander | A-Law Compressor
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Mu-Law Expander
Implement µ-law expander for source coding

Library
Source Coding

Description
The Mu-Law Expander block recovers data that the Mu-Law Compressor block compressed. The
formula for the µ-law expander, shown below, is the inverse of the compressor function.

x = V
μ e y log(1 + μ)/V − 1 sgn(y)

The input can have any shape or frame status. This block processes each vector element
independently.

Parameters
mu value

The µ-law parameter of the compressor.
Peak signal magnitude

The peak value of the input signal. This is also the peak value of the output.

Supported Data Type
Port Supported Data Types
In • double
Out • double

Pair Block
Mu-Law Compressor

References

[1] Sklar, Bernard. Digital Communications: Fundamentals and Applications. Englewood Cliffs, N.J.:
Prentice-Hall, 1988.
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Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Mu-Law Compressor | A-Law Expander
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OFDM Demodulator Baseband
Demodulate orthogonal frequency division multiplexing modulated data

Library
OFDM, in Digital Baseband sublibrary of Modulation

Description
The OFDM Demodulator Baseband block demodulates an OFDM input signal. The block accepts a
single input and has one or two output ports, depending on the status of Pilot output port.

Signal Dimensions

Pilot Output Port Pilot Carrier
Indices

Signal Input Signal Output Pilot Output

false N/A NCPTotal
+NFFT×Nsym-by-Nr

Ndata-by-Nsym-by-Nr N/A
true 2-D Npilot-by-Nsym-by-Nr

3-D Npilot-by-Nsym-by-Nt-
by-Nr

where

• NCP represents the cyclic prefix length as determined by Cyclic prefix length.
• NCPTotal represents the cyclic prefix length over all the symbols. When NCP is a scalar, NCPTotal = NCP

× Nsym. When NCP is a row vector, NCPTotal = ∑ NCP.
• NFFT represents the number of subcarriers as determined by FFT length.
• Nsym represents the number of symbols as determined by Number of OFDM symbols.
• Nr represents the number of receive antennas as determined by Number of receive antennas.
• Ndata represents the number of data subcarriers. For further information on how Ndata is

determined, see the info reference page.
• Npilot represents the number of pilot symbols determined by the second dimension in the Pilot

subcarrier indices array.
• Nt represents the number of transmit antennas. This parameter is derived from the third

dimension of the Pilot subcarrier indices array.
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Parameters
FFT Length

Specify the FFT length, which is equivalent to the number of subcarriers. The length of the FFT,
NFFT, must be greater than or equal to 8.

Number of guard bands
Assign the number of subcarriers to the left, NleftG, and right, NrightG, guard bands. The input is a
2-by-1 vector. The number of subcarriers must fall within [0,NFFT/2 − 1].

Remove DC carrier
Select to remove the DC subcarrier.

Pilot output port
Select to separate the data from the pilot signal and output the demodulated pilot signal.

Pilot subcarrier indices
Specify the pilot subcarrier indices. This field is available only when the Pilot output port check
box is selected. You can assign the indices can be assigned to the same or different subcarriers
for each symbol. Similarly, the pilot carrier indices can differ across multiple transmit antennas.
Depending on the desired level of control for index assignments, the dimensions of the indices’
array vary from 1 to 3. Valid pilot indices fall in the range

NleftG + 1, NFFT/2 ∪ NFFT/2 + 2, NFFT− NrightG ,

where the index value cannot exceed the number of subcarriers. If the number of transmit
antennas is greater than one, ensure that the indices per symbol are mutually distinct across
antennas to minimize interference.

Cyclic prefix length
Specify the length of the cyclic prefix. If you specify a scalar, the prefix length is the same for all
symbols through all antennas. If you specify a row vector of length Nsym, the prefix length can
vary across symbols but remains the same length through all antennas.

Number of OFDM symbols
Specify the number of OFDM symbols, Nsym, in the time-frequency grid.

Number of receive antennas
Specify the number of receive antennas, Nr, as a positive integer such that Nr ≤ 64.

Simulate using
Select the simulation type from these choices:

• Code generation
• Interpreted execution

Algorithms
This block implements the algorithm, inputs, and outputs described in the OFDM Demodulator
System object reference page. The object properties correspond to the block parameters.
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Supported Data Types
Port Supported Data Types
Input • Double-precision floating point
Pilot
(optional)

• Double-precision floating point

Output • Double-precision floating point

Pair Block
OFDM Modulator Baseband

Version History
Introduced in R2014a

References
[1] Dahlman, E., S. Parkvall, and J. Skold. 4G LTE/LTE-Advanced for Mobile Broadband.London:

Elsevier Ltd., 2011.

[2] Andrews, J. G., A. Ghosh, and R. Muhamed. Fundamentals of WiMAX.Upper Saddle River, NJ:
Prentice Hall, 2007.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
QPSK Demodulator Baseband | Rectangular QAM Demodulator Baseband | OFDM Modulator
Baseband

Objects
comm.OFDMDemodulator

Topics
“IEEE 802.16-2009 WirelessMAN-OFDMA PHY Downlink PUSC”
“Digital Video Broadcasting - Terrestrial”
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OFDM Equalizer
Equalize OFDM modulated signals
Library: Communications Toolbox / Equalizers

Description
The OFDM Equalizer block performs frequency-domain equalization to recover OFDM modulated
symbols transmitted through a channel.

This icon shows the block with all ports enabled.

Ports
Input

in — Input signal
3-D array | 2-D array

Input signal, specified as a 3-D or 2-D array of received OFDM symbols.

• If Data format is set to 3-D, the input signal must be specified as an NSC-by-NSymbols-by-NR array.
NSC represents the number of OFDM subcarriers, NSymbols represents the number of OFDM
symbols, and NR represents the number of receive antennas.

• If Data format is set to 2-D, the input signal must be specified as an NRE-by-NR array. NRE
represents the number of resource elements in an irregular subset of the OFDM subcarrier
symbol grid.

Data Types: double | single
Complex Number Support: Yes

hEst — Channel estimate
3-D array

Channel estimate, specified as a 3-D array.

• If Data format is set to 3-D, the block expects hEst to be an NSC-by-NT-by-NR or an
(NSC×NSymbols)-by-NT-by-NR array.

• If hEst is an NSC-by-NT-by-NR array, all OFDM symbols in the input signal in are equalized by
the same channel estimate. NSC represents the number of OFDM subcarriers, NT represents
the number of transmit antennas, and NR represents the number of receive antennas.
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• If hEst is an (NSC×NSymbols)-by-NT-by-NR array, each OFDM symbol in the input signal in is
equalized by the corresponding entry in hEst. NSymbols represents the number of OFDM
symbols.

• If Data format is set to 2-D, the block expects hEst to be an NRE-by-NT-by-NR array. Each OFDM
symbol in the input signal in is equalized by the corresponding entry in hEst. NRE represents the
number of resource elements in an irregular subset of the OFDM subcarrier symbol grid.

Data Types: double | single
Complex Number Support: Yes

noiseVar — Noise variance
0 (default) | nonnegative scalar

Noise variance estimate for minimum mean squared error (MMSE) equalization, specified as a
nonnegative scalar.

Dependencies

The noise variance input port is used only when you set Noise variance source to Input port and
Algorithm to Minimum mean squared error.
Data Types: double | single

Output

out — Equalized symbols
3-D array | 2-D array

Equalized symbols, returned as a 3-D or 2-D array.

• If Data format is set to 3-D, the block returns an NSC-by-NSymbols-by-NT array. NSC represents the
number of OFDM subcarriers, NSymbols represents the number of OFDM symbols, and NT
represents the number of transmit antennas.

• If Data format is set to 2-D, the block returns an NRE-by-NT array. NRE represents the number of
resource elements in an irregular subset of the OFDM subcarrier symbol grid.

csi — Soft channel state information
matrix

Soft channel state information, returned as a matrix with size(csi,1) = size(hEst,1) and
size(csi,2) = NT = size(hEst,2). NT represents the number of transmit antennas.

Dependencies

To enable this output port, select the Output soft channel state information parameter.

Parameters
Data format — Format of signals
3-D (default) | 2-D

Format of the signals, specified as 3-D or 2-D.

When this parameter is set to 3-D, OFDM subcarriers and OFDM symbols use two separate
dimensions in the representation of in and out.
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• The in input must be an NSC-by-NSymbols-by-NR array.
• The out output is returned as an NSC-by-NSymbols-by-NT array.

When this parameter is set to 2-D, OFDM subcarriers and OFDM symbols use one combined
dimension in the representation of in and out.

• The in input must be an NRE-by-NR array.
• The out output is returned as an NRE-by-NT array.

NSC represents the number of OFDM subcarriers. NSymbols represents the number of symbols. NRE
represents the number of resource elements in an irregular subset of the OFDM subcarrier symbol
grid. NT represents the number of transmit antennas. NR represents the number of receive antennas.

Algorithm — Equalization algorithm

Minimum mean squared error (default) | Zero-forcing

Equalization algorithm, specified as Minimum mean squared error or Zero-forcing.

• When this parameter is set to Minimum mean squared error, the block equalizes using the
MMSE algorithm.

• When this parameter is set to Zero-forcing, the block equalizes using the zero-forcing
algorithm. When using the zero-forcing algorithm, the noiseVar port value is ignored.

Noise variance source — Source of noise variance

Input port (default) | Property

Source of noise variance, specified as one of these values:

• Input port — Specify this value to use the noiseVar input port to specify the noise variance
estimate for MMSE equalization.

• Property — Specify this value to use the Noise variance parameter to specify the noise variance
estimate for MMSE equalization.

Noise variance — Noise variance

0 (default) | nonnegative scalar

Noise variance estimate for MMSE equalization, specified as a nonnegative scalar.

Dependencies

The noise variance setting is used only when you set Noise variance source to Property and
Algorithm to Minimum mean squared error.
Data Types: double | single

Output soft channel state information — Enable soft channel state information output

off (default) | on

Select this parameter to enable output port csi containing the soft channel state information.
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Simulate using — Type of simulation to run
Interpreted execution (default) | Code generation

Type of simulation to run, specified as Interpreted execution or Code generation.

• Interpreted execution — Simulate the model by using the MATLAB interpreter. This option
requires less startup time than the Code generation option, but the speed of subsequent
simulations is slower. In this mode, you can debug the source code of the block.

• Code generation — Simulate the model by using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations unless the model changes. This option requires additional startup time, but the speed
of the subsequent simulations is faster than Interpreted execution.

Block Characteristics
Data Types double | single
Multidimensional
Signals

no

Variable-Size Signals yes

Version History
Introduced in R2022b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
OFDM Modulator Baseband | OFDM Demodulator Baseband | Decision Feedback Equalizer | Linear
Equalizer | MLSE Equalizer

Functions
ofdmEqualize

Topics
“Equalization”
“Adaptive Equalizers”

 OFDM Equalizer

5-599



OFDM Modulator Baseband
Modulate using orthogonal frequency division multiplexing
Library: Communications Toolbox / Modulation / Digital Baseband

Modulation / OFDM

Description
The OFDM Modulator Baseband block applies Orthogonal Frequency Division Multiplexing
modulation to an incoming data signal. The output is a baseband representation of the OFDM
modulated signal.

Ports
Input

In — Input signal
3-D array

Input signal, specified as a 3-D vector. The block accepts one or two inputs depending on the state of
the Pilot input port. The input signal dimensions are :

Pilot Input Port Signal Input Pilot Input
off N data -by-N sym -by-N t N/A
on N pilot -by-N sym -by-N t

where

• Ndata represents the number of data subcarriers. For further information on how Ndata is
determined, see the info reference page.

• Nsym represents the number of symbols determined by Number of OFDM symbols.
• Nt represents the number of transmit antennas determined by Number of transmit antennas.
• Npilot represents the number of pilot symbols determined by the first dimension size in the Pilot

subcarrier indices array.
• NCP represents the cyclic prefix length as determined by Cyclic prefix length.
• NCPTotal represents the cyclic prefix length over all the symbols. When NCP is a scalar, NCPTotal = NCP

× Nsym. When NCP is a row vector, NCPTotal = ∑ NCP.
• NFFT represents the number of subcarriers as determined by FFT length.

Data Types: double
Complex Number Support: Yes
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Output

Out — Baseband modulated signal
2-D array

Baseband modulated signal, returned as a 2-D array. The datatype of the output follows the input
datatype. The output signal has dimension (N CP +N FFT) ×N sym -by-N t.

Parameters
FFT Length — Number of DFT points
64 (default) | positive integer

Number of DFT points, specified as a positive integer. The length of the FFT, NFFT, must be greater
than or equal to 8 and is equivalent to the number of subcarriers.

Number of guard bands — Number of subcarriers to the left and right guard bands
[6;5] (default) | 2-by-1 integer-valued vector

Number of subcarriers allocated to the left and right guard bands, specified as a 2-by-1 integer-
valued vector. The number of subcarriers must fall within [0,⌊NFFT/2⌋ − 1] where you specify the left,
NleftG, and right, NrightG, guard bands independently in a 2-by-1 column vector.

Insert DC null — Option to insert DC null
off (default) | on

Select this parameter to insert a null on the DC subcarrier.

Pilot input port — Option to specify pilot input port
off (default) | on

Select this parameter to allow the specifying of pilot input port.

Pilot subcarrier indices — Pilot subcarrier indices
[12; 26; 40; 54] (default) | column vector

Pilot subcarrier indices, specified as a column vector. This field is available only when the Pilot input
port check box is selected. You can assign the indices to the same or different subcarriers for each
symbol. Similarly, the pilot carrier indices can differ across multiple transmit antennas. Depending on
the desired level of control for index assignments, the dimensions of the indices array vary. Valid pilot
indices fall in the range

NleftG + 1, NFFT/2 ∪ NFFT/2 + 2, NFFT− NrightG ,

where the index value cannot exceed the number of subcarriers. When the pilot indices are the same
for every symbol and transmit antenna, the property has dimensions Npilot-by-1. When the pilot
indices vary across symbols, the property has dimensions of Npilot-by-Nsym. If there is only one symbol
but multiple transmit antennas, the property has dimensions of Npilot-by-1-by-Nt. If the indices vary
across the number of symbols and transmit antennas, the property will have dimensions of Npilot-by-
Nsym-by-Nt. If the number of transmit antennas is greater than one, ensure that the indices per symbol
are mutually distinct across antennas to minimize interference. The default value is [12; 26; 40;
54].

Cyclic prefix length — Length of cyclic prefix
16 (default) | positive scalar | positive vector
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Length of cyclic prefix, specified as a positive integer. If you specify a scalar, the prefix length is the
same for all symbols through all antennas. If you specify a row vector of length Nsym, the prefix length
can vary across symbols but remains the same through all antennas.

Apply raised cosine windowing between OFDM symbols — Option to apply raised cosine
window between OFDM symbols
off (default) | on

Select this parameter to apply raised cosine windowing between OFDM symbols. Windowing is the
process in which the OFDM symbol is multiplied by a raised cosine window before transmission to
reduce the power of out-of-band subcarriers, which serves to reduce spectral regrowth.

Window length — Length of raised cosine window
1 (default) | positive scalar

Length of raised cosine window, specified as a positive scalar. This field is available only when Apply
raised cosine windowing between OFDM symbols is selected. Use positive integers having a
maximum value no greater than the minimum cyclic prefix length. For example, in a configuration in
which there are four symbols with cyclic prefix lengths of [12 16 14 18], the window length
cannot exceed 12.

Number of OFDM symbols — Number of OFDM symbols
1 (default) | positive scalar

Number of OFDM symbols in the time-frequency grid, specified as a positive scalar.

Number of transmit antennas — Number of transmit antennas
1 (default) | positive scalar

Number of transmit antennas, specified as a real positive scalar. Specify the number of transmit
antennas, Nt, as a positive integer such that Nt ≤ 64.

Simulate using — Type of simulation to run
Code generation (default) | Interpreted execution

Type of simulation to run, specified as Code generation or Interpreted execution.

• Code generation — Simulate the model by using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations unless the model changes. This option requires additional startup time, but the speed
of the subsequent simulations is faster than Interpreted execution.

• Interpreted execution — Simulate the model by using the MATLAB interpreter. This option
requires less startup time than the Code generation option, but the speed of subsequent
simulations is slower. In this mode, you can debug the source code of the block.

Block Characteristics
Data Types double
Multidimensional
Signals

yes

Variable-Size Signals no
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More About
Orthogonal Frequency Division Multiplexing

OFDM operation divides a high-rate data stream into lower data rate substreams by decomposing the
transmission frequency band into N contiguous individually modulated subcarriers. Multiple parallel
and orthogonal subcarriers carry the samples with almost the same bandwidth as a wideband
channel. By using narrow orthogonal subcarriers, the OFDM signal gains robustness over a
frequency-selective fading channel and eliminates adjacent subcarrier interference. Intersymbol
interference (ISI) is reduced because the lower data rate substreams have symbol durations larger
than the channel delay spread.

This image shows a frequency domain representation of orthogonal subcarriers in an OFDM
waveform.

The transmitter applies inverse fast Fourier transform (IFFT) to N symbols at a time. Typically, the
output of the IFFT is the sum of the N orthogonal sinusoids:

x(t) = ∑
k = 0

N − 1
Xke j2πkΔf t, 0 ≤ t ≤ T,

where {Xk} are data symbols, and T is the OFDM symbol time. The data symbols Xk are typically
complex and can be from any digital modulation alphabet (for example, QPSK, 16-QAM, 64-QAM, ...).

Note The MATLAB implementation of the discrete Fourier transform normalizes the output of the
IFFT by 1/N. For more information, see “Discrete Fourier Transform of Vector” on the ifft reference
page.
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The subcarrier spacing is Δf = 1/T, ensuring that the subcarriers are orthogonal over each symbol
period, as shown below:

1
T∫0 T

e j2πmΔf t * e j2πnΔf t dt = 1
T∫0 T

e j2π(m− n)Δf t dt = 0 for m ≠ n .

An OFDM modulator consists of a serial-to-parallel conversion followed by a bank of N complex
modulators, individually corresponding to each OFDM subcarrier.

Subcarrier Allocation, Guard Bands and Guard Intervals

Individual OFDM subcarriers are allocated as data, pilot, or null subcarriers.

As shown here, subcarriers are designated as data, DC, pilot, or guard band subcarriers.

• Data subcarriers transmit user data.
• Pilot subcarriers are used for channel estimation.
• Null subcarriers transmit no data. Subcarriers with no data are used to provide a DC null and

serve as buffers between OFDM resource blocks.

• The null DC subcarrier is the center of the frequency band with an index value of (nfft/2 + 1)
if nfft is even, or ((nfft + 1) / 2) if nfft is odd.
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• The guard bands provide buffers between adjacent signals in neighboring bands to reduce
interference caused by spectral leakage.

Null subcarriers enable you to model guard bands and DC subcarrier locations for specific standards,
such as the various 802.11 formats, LTE, WiMAX, or for custom allocations. You can allocate the
location of nulls by assigning a vector of null subcarrier indices.

Similar to guard bands, guard intervals are used in OFDM to protect the integrity of transmitted
signals by reducing intersymbol interference.

Assignment of guard intervals is analogous to the assignment of guard bands. You can model guard
intervals to provide temporal separation between OFDM symbols. The guard intervals help preserve
intersymbol orthogonality after the signal passes through time-dispersive channels. Guard intervals
are created by using cyclic prefixes. Cyclic prefix insertion copies the last part of an OFDM symbol as
the first part of the OFDM symbol.

As long as the span of the time dispersion does not exceed the duration of the cyclic prefix, the
benefit of cyclic prefix insertion is maintained.

Inserting a cyclic prefix results in a fractional reduction of user data throughput because the cyclic
prefix occupies bandwidth that could be used for data transmission.

Raised Cosine Windowing

While the cyclic prefix creates a guard period in time domain to preserve orthogonality, an OFDM
symbol rarely begins with the same amplitude and phase exhibited at the end of the prior OFDM
symbol causing spectral regrowth and therefore, spreading of signal bandwidth due to
intermodulation distortion. To limit this spectral regrowth, it is desired to create a smooth transition
between the last sample of a symbol and the first sample of the next symbol. This can be done by
using a cyclic suffix and raised cosine windowing.

To create the cyclic suffix, the first NWIN samples of a given symbol are appended to the end of that
symbol. However, in order to comply with the 802.11g standard, for example, the length of a symbol
cannot be arbitrarily lengthened. Instead, the cyclic suffix must overlap in time and is effectively
summed with the cyclic prefix of the following symbol. This overlapped segment is where windowing
is applied. Two windows are applied, one of which is the mathematical inverse of the other. The first
raised cosine window is applied to the cyclic suffix of symbol k and decreases from 1 to 0 over its
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duration. The second raised cosine window is applied to the cyclic prefix of symbol k+1 and increases
from 0 to 1 over its duration. This process provides a smooth transition from one symbol to the next.

The raised cosine window, w(t), in the time domain can be expressed as:

w(t) =

1, 0 ≤ t <
T − TW

2
1
2 1 + cos π

TW
t −

T − TW
2 ,

T − TW
2 ≤ t ≤

T + TW
2

0, otherwise

where:

• T is the OFDM symbol duration including the guard interval.
• TW is the duration of the window.

Adjust the length of the cyclic suffix via the window length setting property, with suffix lengths set
between 1 and the minimum cyclic prefix length. While windowing improves spectral regrowth, it
does so at the expense of multipath fading immunity. This occurs because redundancy in the guard
band is reduced because the guard band sample values are compromised by the smoothing.

The following figures display the application of raised cosine windowing.

Version History
Introduced in R2014a
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References
[1] Dahlman, E., S. Parkvall, and J. Skold. 4G LTE/LTE-Advanced for Mobile Broadband .London:

Elsevier Ltd., 2011.

[2] Andrews, J. G., A. Ghosh, and R. Muhamed. Fundamentals of WiMAX .Upper Saddle River, NJ:
Prentice Hall, 2007.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
QPSK Modulator Baseband | Rectangular QAM Modulator Baseband | OFDM Demodulator Baseband

Objects
comm.OFDMModulator
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OQPSK Demodulator Baseband
Demodulation using OQPSK method
Library: Communications Toolbox / Modulation / Digital Baseband

Modulation / PM

Description
The OQPSK Demodulator Baseband block applies pulse shape filtering to the input waveform and
demodulates it using the offset quadrature phase shift keying (OQPSK) method. For more
information, see “Pulse Shaping Filter” on page 5-612. The input is a baseband representation of the
modulated signal.

For information about delays incurred by modulator-demodulator pair processing, see “Modulation
Delays” on page 5-611.

Ports
Input

In — Input baseband waveform
scalar | column vector

Input baseband waveform, specified as a discrete-time complex scalar or column vector.

The block processes the input signal based on the Output type setting.
Data Types: double
Complex Number Support: Yes

Output

Out — Output data
integer column vector | bit column vector

Output data, returned as an integer or bit column vector.

Parameters
Modulation

Output type — Output type

Integer (default) | Bit

Output type, specified as Integer or Bit.
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• When you set Output type to Integer, the block outputs a vector of integer symbols with values
from 0 to 3, the length of which is the number of output symbols.

• When you set Output type to Bit, the block outputs a 2-bit binary representation of integers, in a
binary-valued, even-length vector.

The input period for each integer or bit pair is the Samples per symbol times the output sample
period.

Phase offset (rad) — Phase of zeroth point of signal constellation

0 (default) | scalar

Phase offset from π/4, specified as a scalar in radians. The phase offset is applied to the zeroth point
of the signal constellation before delay of quadrature component. After the OQPSK imaginary-
component delay the signal is normalized with unity power.
Example: Setting Phase offset (rad) to pi/4 aligns the zeroth point of the QPSK signal constellation
point on the axes, {(1,0), (0,j), (-1,0), (0,-j)}.

Symbol mapping — Signal constellation bit mapping
Gray (default) | Binary | custom 4-element numeric vector of integers with values from 0 to 3

Signal constellation bit mapping, specified as Gray, Binary, or a custom 4-element numeric vector of
integers with values from 0 to 3.

Setting Constellation
Mapping for Integers

Constellation
Mapping for Bits

Comment

Gray The signal constellation
mapping is Gray-
encoded.

Binary The signal constellation
mapping for the input
integer m (0 ≤ m ≤ 3) is
the complex value
e(j*(PhaseOffset+π/4) +
j*2*π*m/4).

Custom 4-element
numeric vector of
integers with values
from 0 to 3

Elements [a b c d] must
be composed of the set
of values [0, 1, 2, 3] in
any order.

Filtering

Pulse shape — Filtering pulse shape
Half sine (default) | Normal raised cosine | Root raised cosine | Custom
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Select the filtering pulse shape: Half sine, Normal raised cosine, Root raised cosine, or
Custom.

Rolloff factor — Raised cosine filter rolloff factor
0.2 (default) | scalar

Raised cosine filter rolloff factor, specified as a scalar from 0 to 1.

Dependencies

This property is enabled when Pulse shape is Normal raised cosine or Root raised cosine.
Data Types: double

Filter span (in symbols) — Filter length
10 (default) | scalar

Filter length in symbols, specified as a scalar. An ideal raised cosine filter has an infinite impulse
response. However, to realize a practical implementation of this filter, the object truncates the
impulse response to Filter span (in symbols) symbols.

Dependencies

This property is enabled when Pulse shape is Normal raised cosine or Root raised cosine.
Data Types: double

Filter numerator — FIR filter numerator
[0.7071 0.7071] (default) | row vector

FIR filter numerator, specified as a row vector.

Dependencies

This parameter is enabled when Pulse shape is Custom.
Data Types: double

Samples per symbol — Number of samples per symbol
4 (default) | positive even integer

Number of samples per symbol, specified as a positive even integer.
Data Types: double

Other Parameters

Rate options — Processing rate option

Enforce single-rate processing (default) | Allow multirate processing

• Enforce single-rate processing — Executes the model, ensuring that the input and output
signals have the same port sample time. The block implements the rate change by making a size
change at the output when compared to the input. For integer outputs, the output width equals 1/
Samples per symbol times the input width.

For more information, see Single-Rate Processing with OQPSK Demodulator Block.
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• Allow multirate processing — Executes the model, allowing the input and output signals to
have different port sample times. The output symbol time is Samples per symbol times the input
sample time.

For more information, see Multirate Processing with OQPSK Demodulator Block.

Output data type — Output data type

double (default) | single | uint8

Select the output data type: double, single, or uint8.

Block Characteristics
Data Types Boolean | double | integer | single
Multidimensional
Signals

no

Variable-Size Signals no

More About
OQPSK Signal Flow Diagram

Every Samples per symbol input samples produce one output symbol. In this figure, the dotted line
represents the region comprising the input sample processing.

Modulation Delays

Digital modulation and demodulation blocks incur delays between their inputs and outputs that result
in an offset in the arrival time of the received data. Data that enters a modulation or demodulation
block at time T appears in the output at time T+delay. Take system delays into account when
comparing transmitted data with received data, such as in overlaid plots or when computing error
statistics. As shown here, the OQPSK modulation-demodulation delay varies depending on the pulse
shaping filter, input/output data setting, and simulation configuration.

 OQPSK Demodulator Baseband

5-611



Pulse Shape Rate Options Treat Each
Discrete Rate as
a Separate Task?

Input/Output
Data (*)

End-to-End Delay
Incurred by an
OQPSK
Modulator-
Demodulator
Block Pair (in
samples)

Half sine or
Custom

Enforce
single-rate
operation

N/A Integer 1
Bit 2

Allow
multirate
processing

false (single
tasking)

Integer length(data) + 1 +
1

Bit length(data) + 2 +
2

true
(multitasking)

Integer length(data) + 1 +
2

Bit length(data) + 2 +
4

Normal raised
cosine or Root
raised cosine

Enforce
single-rate
operation

N/A Integer Filter span (in
symbols)

Bit 2*Filter span (in
symbols)

Allow
multirate
processing

false (single
tasking)

Integer length(data) +
Filter span (in
symbols) + 1

Bit length(data) +
2*Filter span (in
symbols) + 2

true
(multitasking)

Integer 2*length(data) +
Filter span (in
symbols) + 2

Bit 2*length(data) +
2*Filter span (in
symbols) + 4

(*) The data type parameter is Input type for modulation and Output type for demodulation.

Pulse Shaping Filter

The OQPSK modulation scheme requires oversampling of two or greater in order to delay (or offset)
the quadrature channel by 90 degrees. This oversampling is achieved through interpolation filtering
implemented by pulse shaping.

Version History
Introduced before R2006a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
OQPSK Modulator Baseband | QPSK Demodulator Baseband

Objects
comm.OQPSKDemodulator

Topics
Phase Modulation
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OQPSK Modulator Baseband
Modulation using OQPSK method
Library: Communications Toolbox / Modulation / Digital Baseband

Modulation / PM

Description
The OQPSK Modulator Baseband block modulates the input signal using the offset quadrature phase
shift keying (OQPSK) method and applies pulse shape filtering to the waveform. For more
information, see “Pulse Shaping Filter” on page 5-618. The output is a baseband representation of
the modulated signal.

For information about delays incurred by modulator-demodulator pair processing, see “Modulation
Delays” on page 5-617.

Ports
Input

In — Input data
integer column vector | bit column vector

Input data, specified as an integer or bit column vector.

The input signal is processed based on the setting selected for Input type.
Data Types: double

Output

Out — Output baseband waveform
column vector

Output baseband waveform, returned as a column vector of complex data.

Parameters
Modulation

Input type — Input type

Integer (default) | Bit

Input type, specified as Integer or Bit.

5 Blocks

5-614



• When you set Input type to Integer, the input can be a scalar value or column vector, the length
of which is the number of input symbols.

• When you set Input type to Bit, the input width must be an integer multiple of two.

The output sample period is the period of each integer or bit pair in the input divided by Samples per
symbol.

Phase offset (rad) — Phase of zeroth point of signal constellation

0 (default) | scalar

Phase offset from π/4, specified as a scalar in radians. The phase offset is applied to the zeroth point
of the signal constellation before delay of quadrature component. After the OQPSK imaginary-
component delay, the signal is normalized with unity power.
Example: Setting Phase offset (rad) to pi/4 aligns the zeroth point of the QPSK signal constellation
point on the axes, {(1,0), (0,j), (-1,0), (0,-j)}.

Symbol mapping — Signal constellation bit mapping
Gray (default) | Binary | custom 4-element numeric vector of integers with values from 0 to 3

Signal constellation bit mapping, specified as Gray, Binary, or a custom 4-element numeric vector of
integers with values from 0 to 3.

Setting Constellation
Mapping for Integers

Constellation
Mapping for Bits

Comment

Gray The signal constellation
mapping is Gray-
encoded.

Binary The signal constellation
mapping for the input
integer m (0 ≤ m ≤ 3) is
the complex value
e(j*(PhaseOffset+π/4) +
j*2*π*m/4).

Custom 4-element
numeric vector of
integers with values
from 0 to 3

Elements [a b c d] must
be composed of the set
of values [0, 1, 2, 3] in
any order.

Filtering

Pulse shape — Filtering pulse shape
Half sine (default) | Normal raised cosine | Root raised cosine | Custom

Select the filtering pulse shape: Half sine, Normal raised cosine, Root raised cosine, or
Custom.
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Rolloff factor — Raised cosine filter rolloff factor
0.2 (default) | scalar

Raised cosine filter rolloff factor, specified as a scalar in the range [0, 1].

Dependencies

This property is enabled when Pulse shape is Normal raised cosine or Root raised cosine.
Data Types: double

Filter span (in symbols) — Filter length
10 (default) | scalar

Filter length in symbols, specified as a scalar. An ideal raised cosine filter has an infinite impulse
response. However, to realize a practical implementation of this filter, the object truncates the
impulse response to Filter span (in symbols) symbols.

Dependencies

This property is enabled when Pulse shape is Normal raised cosine or Root raised cosine.
Data Types: double

Filter numerator — FIR filter numerator
[0.7071 0.7071] (default) | row vector

FIR filter numerator, specified as a row vector.

Dependencies

This parameter is enabled when Pulse shape is Custom.
Data Types: double

Samples per symbol — Number of samples per symbol
4 (default) | positive even integer

Number of samples per symbol, specified as a positive even integer.
Data Types: double

Other Parameters

Rate options — Processing rate option
Enforce single-rate processing (default) | Allow multirate processing

• Enforce single-rate processing — Executes the model, ensuring that the input and output
signals have the same port sample time. The block implements the rate change by making a size
change at the output when compared to the input. For integer inputs, the output width equals
Samples per symbol times the number of symbols.

For more information, see Single-Rate Processing with OQPSK Modulator Block.
• Allow multirate processing — Executes the model, allowing the input and output signals to

have different port sample times. The output sample time equals the symbol period divided by
Samples per symbol.

For more information, see Single-Rate Processing with OQPSK Modulator Block.
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Output data type — Output data type
double (default) | single

Select the output data type: double or single.

Block Characteristics
Data Types Boolean | double | integer | single
Multidimensional
Signals

no

Variable-Size Signals no

More About
Modulation Delays

Digital modulation and demodulation blocks incur delays between their inputs and outputs that result
in an offset in the arrival time of the received data. Data that enters a modulation or demodulation
block at time T appears in the output at time T+delay. Take system delays into account when
comparing transmitted data with received data, such as in overlaid plots or when computing error
statistics. As shown here, the OQPSK modulation-demodulation delay varies depending on the pulse
shaping filter, input/output data setting, and simulation configuration.

Pulse Shape Rate Options Treat Each
Discrete Rate as
a Separate Task?

Input/Output
Data (*)

End-to-End Delay
Incurred by an
OQPSK
Modulator-
Demodulator
Block Pair (in
samples)

Half sine or
Custom

Enforce
single-rate
operation

N/A Integer 1
Bit 2

Allow
multirate
processing

false (single
tasking)

Integer length(data) + 1 +
1

Bit length(data) + 2 +
2

true
(multitasking)

Integer length(data) + 1 +
2

Bit length(data) + 2 +
4

Normal raised
cosine or Root
raised cosine

Enforce
single-rate
operation

N/A Integer Filter span (in
symbols)

Bit 2*Filter span (in
symbols)
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Pulse Shape Rate Options Treat Each
Discrete Rate as
a Separate Task?

Input/Output
Data (*)

End-to-End Delay
Incurred by an
OQPSK
Modulator-
Demodulator
Block Pair (in
samples)

Allow
multirate
processing

false (single
tasking)

Integer length(data) +
Filter span (in
symbols) + 1

Bit length(data) +
2*Filter span (in
symbols) + 2

true
(multitasking)

Integer 2*length(data) +
Filter span (in
symbols) + 2

Bit 2*length(data) +
2*Filter span (in
symbols) + 4

(*) The data type parameter is Input type for modulation and Output type for demodulation.

Pulse Shaping Filter

The OQPSK modulation scheme requires oversampling of two or greater in order to delay (or offset)
the quadrature channel by 90 degrees. This oversampling is achieved through interpolation filtering
implemented by pulse shaping.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
OQPSK Demodulator Baseband | QPSK Modulator Baseband

Objects
comm.OQPSKModulator

Topics
Phase Modulation
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OSTBC Combiner
Combine inputs for received signals and channel estimate according to orthogonal space-time block
code (OSTBC)

Library
MIMO

Description
The OSTBC Combiner block combines the input signal (from all of the receive antennas) and the
channel estimate signal to extract the soft information of the symbols that were encoded using an
OSTBC. The input channel estimate may not be constant during each codeword block transmission
and the combining algorithm uses only the estimate for the first symbol period per codeword block. A
symbol demodulator or decoder would follow the Combiner block in a MIMO communications system.

The block conducts the combining operation for each symbol independently. The combining algorithm
depends on the structure of the OSTBC. For more information, see the OSTBC Combining Algorithms
on page 5-621 section of this help page.

Dimension

Along with the time and spatial domains for OSTBC transmission, the block supports an optional
dimension, over which the combining calculation is independent. This dimension can be thought of as
the frequency domain for OFDM-based applications. The following illustration indicates the
supported dimensions for inputs and output of the OSTBC Combiner block.

The following table describes each variable for the block.

Variable Description
F The additional dimension; typically the frequency dimension. The

combining calculation is independent of this dimension.
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Variable Description
N Number of transmit antennas.
M Number of receive antennas.
T Output symbol sequence length in time domain.
R Symbol rate of the code.

Note On the two inputs, T/R is the symbol sequence length in the time domain.

F can be any positive integers. M can be 1 through 8, indicated by the Number of receive antennas
parameter. N can be 2, 3 or 4, indicated by the Number of transmit antennas parameter. The time
domain length T/R must be a multiple of the codeword block length (2 for Alamouti; 4 for all other
OSTBC). For N = 2, T/R must be a multiple of 2. When N > 2, T/R must be a multiple of 4. R defaults
to 1 for 2 antennas. R can be either 34  or 12  for more than 2 antennas.

The supported dimensions for the block depend upon the values of F and M. For one receive antenna
(M = 1), the received signal input must be a column vector or a full 2–D matrix, depending on the
value for F. The corresponding channel estimate input must be a full 2-D or 3-D matrix.

For more than one receive antenna (M > 1), the received signal input must be a full 2-D or 3-D
matrix, depending on the value for F. Correspondingly, the channel estimate input must be a 3-D or 4-
D matrix, depending on the value for F.

To understand the block's dimension propagation, refer to the following table.

 Input 1 (Received
Signal)

Input 2 (Channel
Estimate)

Output

F = 1 and M = 1 Column vector 2-D Column vector
F = 1 and M > 1 2-D 3-D Column vector
F > 1 and M = 1 2-D 3-D 2-D
F > 1 and M > 1 3-D 4-D 2-D

Data Type

For information about the data types each block port supports, see the “Supported Data Type” on
page 5-624 table on this page. The output signal inherits the data type from the inputs. The block
supports different fixed-point properties for the two inputs. For fixed-point signals, the output word
length and fractional length depend on the block’s mask parameter settings. See Fixed-Point Signals
for more information about fixed-point data propagation of this block.

Frames

The output inherits the frameness of the received signal input. For either column vector or full 2-D
matrix input signal, the input can be either frame-based or sample-based. A 3–D or 4–D matrix input
signal must have sample-based input.
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OSTBC Combining Algorithms

The OSTBC Combiner block supports five different OSTBC combining computation algorithms.
Depending on the selection for Rate and Number of transmit antennas, you can select one of the
algorithms shown in the following table.

Transmit
Antenna

Rate Computational Algorithm per Codeword Block Length

2 1 s 1

s 2
= 1

H 2 ∑j = 1

M h1, j* r 1, j + h2, j r 2, j*

h2,* j r 1, j− h1, j r 2, j*
⋅

3 1/2 s 1

s 2
= 1

H 2 ∑j = 1

M h1, j* r 1, j + h2, j r 2, j* + h3,* j r 3, j

h2,* j r 1, j− h1, j r 2, j* − h3, j r 4, j*
⋅

3 3/4 s 1

s 2

s 3

= 1
H 2 ∑j = 1

M
h1, j* r 1, j + h2, j r 2, j* − h3, j r 3, j*

h2,* j r 1, j− h1, j r 2, j* − h3, j r 4, j*

h3, j* r 1, j + h1, j r 3, j* + h2, j r 4, j*
⋅

4 1/2 s 1

s 2
= 1

H 2 ∑j = 1

M h1, j* r 1, j + h2, j r 2, j* + h3, j* 3, j r 3, j + h4, j r 4, j*

h2,* j r 1, j− h1, j r 2, j* + h4, j* r 3, j− h3, j r 4, j*
⋅

4 3/4 s 1

s 2

s 3

= 1
H 2 ∑j = 1

M
h1, j* r 1, j + h2, j r 2, j* − h3, j r 3, j* − h4*, j r 4 j

h2,* j r 1 j− h1, j r 2, j* + h4*, j r 3, j− h3, j r 4, j*

h3,* j r 1 j + h4, j* r 2, j + h1, j r 3, j* + h2, j r 4, j*
⋅

s k represents the estimated kth symbol in the OSTBC codeword matrix. hij represents the estimate
for the channel from the ith transmit antenna and the jth receive antenna. The values of i and j can
range from 1 to N (the number of transmit antennas) and to M (the number of receive antennas)
respectively. rlj represents the lth symbol at the jth receive antenna per codeword block. The value of
l can range from 1 to the codeword block length. H 2 represents the summation of channel power

per link, i.e., H 2 = ∑
i = 1

N
∑

j = 1

M
hi j

2

Fixed-Point Signals

Use the following formula for s 1 for Alamouti code with 1 receive antenna to highlight the data types
used for fixed-point signals.

s 1 =
h1, 1,* r1, 1 + h2, 1, r 2, 1*

H 2 =
h1, 1,* r1, 1 + h2, 1, r 2, 1*
h1, 1h1, 1,* + h2, 1, h2, 1*
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In this equation, the data types for Product output and Accumulator correspond to the product and
summation in the numerator. Similarly, the types for Energy product output and Energy
accumulator correspond to the product and summation in the denominator.

Signal Flow Diagram for s1 Combining Calculation of Alamouti Code with One Receive
Antenna

The following formula shows the data types used within the OSTBC Combiner block for fixed-point
signals for more than one receive antenna for Alamouti code, where M represents the number of
receive antennas.

s 1 =
h1, 1,* r1, 1 + h2, 1, r 2, 1* + h1, 2* r1, 2 + h2, 2r 2, 2* + ... + h1, M,* r1, M + h2, M r 2, M*
h1, 1h1, 1* + h2, 1h2, 1* + h1, 2h1, 2* + h2, 2h2, 2* + ... + h1, Mh1, M* + h2, M, h2, M*

Signal Flow Diagram for Complex Multiply of a + ib and c + id

For Binary point scaling, you cannot specify WLp and FLp. Instead, the blocks determine these values
implicitly from WLa and FLa

The Internal Rule for Product output and Energy product output are:
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• When you select Inherit via internal rule, the internal rule determines WLp and FLp.
Therefore, WLa = WLp + 1 and FLa = FLp

• For Binary point scaling, you specify WLa and FLa. Therefore, WLp = WLa –1 and FLa = FLp.

For information on how the Internal Rule applies to the Accumulator and Energy Accumulator, see
Inherit via Internal Rule.

Parameters
Number of transmit antennas

Sets the number of transmit antennas. The block supports 2, 3, or 4 transmit antennas. This value
defaults to 2.

Rate
Sets the symbol rate of the code. You can specify either 3/4 or 1/2. This field only appears when
you use more than 2 transmit antennas. This field defaults to 34  for more than 2 transmit
antennas. For 2 transmit antennas, there is no rate option and the implicit (default) rate defaults
to 1.

Number of receive antennas
The number of antennas the block uses to receive signal streams. The block supports from 1 to 8
receive antennas. This value defaults to 1.

Rounding mode
Sets the rounding mode for fixed-point calculations. The block uses the rounding mode if a value
cannot be represented exactly by the specified data type and scaling. When this occurs, the value
is rounded to a representable number. For more information refer to Rounding (Fixed-Point
Designer).

Saturate on integer overflow
Sets the overflow mode for fixed-point calculations. Use this parameter to specify the method to
be used if the magnitude of a fixed-point calculation result does not fit into the range of the data
type and scaling that stores the result. For more information refer to Precision and Range.

Product Output
Complex product in the numerator for the diversity combining. For more information refer to the
Fixed-Point Signals section of this help page.

Accumulator
Summation in the numerator for the diversity combining.

Fixed-point Communications Toolbox blocks that must hold summation results for further
calculation usually allow you to specify the data type and scaling of the accumulator. Most such
blocks cast to the accumulator data type prior to summation:
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Use the Accumulator—Mode parameter to specify how you would like to designate the
accumulator word and fraction lengths:

• When you select Inherit via internal rule, the accumulator output word and fraction
lengths are automatically calculated for you. Refer to Inherit via Internal Rule for more
information.

• When you select Same as product output, these characteristics match those of the
product output.

• When you select Same as input, these characteristics match those of the first input to the
block.

• When you select Binary point scaling, you are able to enter the word length and the
fraction length of the accumulator, in bits.

• When you select Slope and bias scaling, you are able to enter the word length, in bits,
and the slope of the accumulator. The bias of all signals in DSP System Toolbox software is
zero.

Energy product output
Complex product in the denominator for calculating total energy in the MIMO channel .

Energy accumulator
Summation in the denominator for calculating total energy in the MIMO channel.

Division output
Normalized diversity combining by total energy in the MIMO channel.

Supported Data Type
Port Supported Data Types
Rx • Double-precision floating point

• Single-precision floating point
• Signed Fixed-point

cEst • Double-precision floating point
• Single-precision floating point
• Signed Fixed-point
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Port Supported Data Types
Out • Double-precision floating point

• Single-precision floating point
• Signed Fixed-point

Examples
The “OSTBC Over 3-by-2 Rayleigh Fading Channel” example model uses OSTBC Encoder and OSTBC
Combiner blocks configured to model rate ¾ OSTBC for 3 transmit and 2 receive antennas with BPSK
modulation using independent fading links and AWGN

Version History
Introduced in R2009a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
OSTBC Encoder

Topics
“Concatenated OSTBC with TCM in Simulink”
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OSTBC Encoder
Encode input message using orthogonal space-time block code (OSTBC)

Library
MIMO

Description
The OSTBC Encoder block encodes an input symbol sequence using orthogonal space-time block code
(OSTBC). The block maps the input symbols block-wise and concatenates the output codeword
matrices in the time domain. For more information, see the OSTBC Encoding Algorithms on page 5-
627 section of this help page.

Dimension

The block supports time and spatial domains for OSTBC transmission. It also supports an optional
dimension, over which the encoding calculation is independent. This dimension can be thought of as
the frequency domain. The following illustration indicates the supported dimensions for the inputs
and output of the OSTBC Encoder block.

The following table describes the variables.

Variable Description
F The additional dimension; typically the frequency

domain. The encoding does not depend on this
dimension.

T Input symbol sequence length for the time
domain.

R Symbol rate of the code.
N Number of transmit antennas.
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Note On the output, T/R is the symbol sequence length in time domain.

F can be any positive integer. N can be 2, 3 or 4, indicated by Number of transmit antennas. For N
= 2, R must be 1. For N = 3 or 4, R can be 3/4 or 1/2, indicated by Rate. The time domain length T
must be a multiple of the number of symbols in each codeword matrix. Specifically, for N = 2 or R =
1/2, T must be a multiple of 2 and when R = 3/4, T must be a multiple of 3.

To understand the block’s dimension propagation, refer to the following table.

Dimension Input Output
F = 1 Column vector 2-D
F > 1 2-D 3-D

Data Type

For information about the data types each block port supports, see the “Supported Data Type” on
page 5-628 table on this page. The output signal inherits the data type from the input signal. For
fixed-point signals, the complex conjugation may cause overflows which the fixed-point parameter
Saturate on integer overflow must handle.

Frames

The output signal inherits frame type from the input signal. A column vector input requires either
frame-based or sample-based input; otherwise, the input must be sample-based.

OSTBC Encoding Algorithms

The OSTBC Encoder block supports five different OSTBC encoding algorithms. Depending on the
selection for Rate and Number of transmit antennas, the block implements one of the algorithms
in the following table:

Transmit
Antenna

Rate OSTBC Codeword Matrix

2 1 s1 s2

−s2* s1*

3 1/2 s1 s2 0
−s2* s1* 0

0 0 s1

0 0 −s2*

3 3/4 s1 s2 s3

−s2* s1* 0

s3* 0 −s1*

0 s3* −s2*
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Transmit
Antenna

Rate OSTBC Codeword Matrix

4 1/2 s1 s2 0 0
−s2* s1* 0 0

0 0 s1 s2

0 0 −s2* s1*

4 3/4 s1 s2 s3 0
−s2* s1* 0 s3

s3* 0 −s1* s2

0 s3* −s2* −s1

In each matrix, its (l, i) entry indicates the symbol transmitted from the ith antenna in the lth time
slot of the block. The value of i can range from 1 to N (the number of transmit antennas). The value of
l can range from 1 to the codeword block length.

Parameters
Number of transmit antennas

Sets the number of antennas at the transmitter side. The block supports 2, 3, or 4 transmit
antennas. The value defaults to 2.

Rate
Sets the symbol rate of the code. You can specify either 3/4 or 1/2. This field only appears when
using more than 2 transmit antennas. This field defaults to 34  for more than 2 transmit antennas.
For 2 transmit antennas, there is no rate option and the rate defaults to 1.

Saturate on integer overflow
Sets the overflow mode for fixed-point calculations. Use this parameter to specify the method to
be used if the magnitude of a fixed-point calculation result does not fit into the range of the data
type and scaling that stores the result. For more information refer to “Precision and Range”.

Supported Data Type
Port Supported Data Types
In • Double-precision floating point

• Single-precision floating point
• Signed Fixed-point

Out • Double-precision floating point
• Single-precision floating point
• Signed Fixed-point
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Examples
The “OSTBC Over 3-by-2 Rayleigh Fading Channel” example model uses OSTBC Encoder and OSTBC
Combiner blopcks configured to model rate ¾ OSTBC for 3 transmit and 2 receive antennas with
BPSK modulation using independent fading links and AWGN

Version History
Introduced in R2009a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
OSTBC Combiner

Topics
“Concatenated OSTBC with TCM in Simulink”
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OVSF Code Generator
Generate orthogonal variable spreading factor (OVSF) code from set of orthogonal codes

Library
Spreading Codes

Description
The OVSF Code Generator block generates an OVSF code from a set of orthogonal codes. OVSF codes
were first introduced for 3G communication systems. OVSF codes are primarily used to preserve
orthogonality between different channels in a communication system.

OVSF codes are defined as the rows of an N-by-N matrix, CN, which is defined recursively as follows.
First, define C1 = [1]. Next, assume that CN is defined and let CN(k) denote the kth row of CN. Define
C2N by

C2N =

CN(0) CN(0)
CN(0) −CN(0)
CN(1) CN(1)
CN(1) −CN(1)

... ...
CN(N − 1) CN(N − 1)
CN(N − 1) −CN(N − 1)

Note that CN is only defined for N a power of 2. It follows by induction that the rows of CN are
orthogonal.

The OVSF codes can also be defined recursively by a tree structure, as shown in the following figure.
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If [C] is a code length 2r at depth r in the tree, where the root has depth 0, the two branches leading
out of C are labeled by the sequences [C C] and [C -C], which have length 2r+1. The codes at depth r
in the tree are the rows of the matrix CN, where N = 2r.

Note that two OVSF codes are orthogonal if and only if neither code lies on the path from the other
code to the root. Since codes assigned to different users in the same cell must be orthogonal, this
restricts the number of available codes for a given cell. For example, if the code C41 in the tree is
assigned to a user, the codes C10, C20, C82, C83, and so on, cannot be assigned to any other user in the
same cell.

Block Parameters

You specify the code the OVSF Code Generator block outputs by two parameters in the block's dialog:
the Spreading factor, which is the length of the code, and the Code index, which must be an
integer in the range [0, 1, ... , N - 1], where N is the spreading factor. If the code appears at depth r in
the preceding tree, the Spreading factor is 2r. The Code index specifies how far down the column
of the tree at depth r the code appears, counting from 0 to N - 1. For CN, k in the preceding diagram,
N is the Spreading factor and k is the Code index.

You can recover the code from the Spreading factor and the Code index as follows. Convert the
Code index to the corresponding binary number, and then add 0s to the left, if necessary, so that the
resulting binary sequence x1 x2 ... xr has length r, where r is the logarithm base 2 of the Spreading
factor. This sequence describes the path from the root to the code. The path takes the upper branch
from the code at depth i if xi = 0, and the lower branch if xi = 1.
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To reconstruct the code, recursively define a sequence of codes Ci for as follows. Let C0 be the root
[1]. Assuming that Ci has been defined, for i < r, define Ci+1 by

Ci + 1 =
CiCi if xi = 0
Ci( − Ci) if xi = 1

The code CN has the specified Spreading factor and Code index.

For example, to find the code with Spreading factor 16 and Code index 6, do the following:

1 Convert 6 to the binary number 110.
2 Add one 0 to the left to obtain 0110, which has length 4 = log2 16.
3 Construct the sequences Ci according to the following table.

i xi Ci

0 C0 = [1]
1 0 C1 = C0 C0 = [1] [1]
2 1 C2 = C1 -C1 = [1 1] [-1 -1]
3 1 C3 = C2 -C2 = [1 1 -1 -1] [-1 -1 1 1]
4 0 C4 = C3 C3 = [1 1 -1 -1 -1 -1 1 1] [1 1 -1 -1 -1 -1 1 1]

The code C4 has Spreading factor 16 and Code index 6.

Parameters
Spreading factor

Positive integer that is a power of 2, specifying the length of the code.
Code index

Integer in the range [0, 1, ... , N - 1] specifying the code, where N is the Spreading factor.
Sample time

Positive scalars specify the time in seconds between each sample of the output signal. If you set
the Sample time to -1, the output signal inherits the sample time from downstream. For
information on the relationship between the Sample time and Samples per frame parameters,
see “Sample Timing” on page 5-633.

Samples per frame
Samples per frame, specified as a positive integer indicating the number of samples per frame in
one channel of the output data. For information on the relationship between Sample time and
Samples per frame, see “Sample Timing” on page 5-633.

Output data type
The output type of the block can be specified as an int8 or double. By default, the block sets
this to double.

Simulate using
Select the simulation mode.
Code generation

On the first model run, simulate and generate code. If the structure of the block does not
change, subsequent model runs do not regenerate the code.
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If the simulation mode is Code generation, System objects corresponding to the blocks
accept a maximum of nine inputs.

Interpreted execution
Simulate model without generating code. This option results in faster start times but can slow
subsequent simulation performance.

More About
Sample Timing

The time between output updates is equal to the product of the Samples per frame and Sample
time parameter values. For example, if Sample time and Samples per frame each equal 1, the
block outputs a sample every second. If you increase Samples per frame to 10, then the block
outputs a 10-by-1 vector every 10 seconds. This ensures that the equivalent output rate is not
dependent on the Samples per frame parameter.

Version History
Introduced before R2006a

Existing models automatically update this block to current version
Behavior changed in R2020a

Starting in R2020a, Simulink no longer allows you to use the OVSF Code Generator block version
available before R2015b.

Existing models automatically update to load the OVSF Code Generator block version announced in
“Source blocks output frames of contiguous time samples but do not use the frame attribute” in the
R2015b Release Notes. For more information on block forwarding, see “Maintain Compatibility of
Library Blocks Using Forwarding Tables” (Simulink).

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Does not support integer only code generation.

See Also
Blocks
Hadamard Code Generator | Walsh Code Generator
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Phase/Frequency Offset
Apply phase and frequency offsets to complex baseband signal
Library: Communications Toolbox / RF Impairments Correction

Communications Toolbox / RF Impairments

Description
The Phase/Frequency Offset block applies phase and frequency offsets to a complex signal.

This icon shows the block with all ports enabled.

Ports
Input

In — Complex signal
scalar | vector | matrix

Complex signal, specified as a scalar, vector, or matrix. The port is unnamed until you enable the
Frequency offset from port parameter.
Data Types: double | single
Complex Number Support: Yes

Frq — Frequency offset
scalar | vector | matrix

Frequency offset, specified as a scalar, a vector with the same number of rows or columns as the
input signal, or a matrix with the same dimensions as the input signal. For more information, see
“Interdependent Parameter-Port Dimensions” on page 5-635.

Dependencies

To enable this port, select the Frequency offset from port parameter.
Data Types: double | single

Output

Out1 — Output signal
scalar | vector | matrix

Output signal, returned as a scalar, vector, or matrix. This output is the same dimension and data type
as the input signal.
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Parameters
Phase offset (deg) — Phase offset

0 (default) | scalar | vector | matrix

Phase offset in degrees, specified as a scalar, vector, or matrix.

If Phase offset (deg) and Frequency offset (Hz) are both nonscalar, they must be the same size.

Tunable: Yes

Frequency offset from port — Option to add port to set frequency offset

off (default) | on

Select this parameter to add the Frq port.

• When you select this parameter, the Frq port specifies the frequency offset.
• When you clear this parameter, the Frequency offset (Hz) parameter specifies the frequency
offset.

Frequency offset (Hz) — Frequency offset

0 (default) | scalar | vector | matrix

Frequency offset in hertz, specified as a scalar, a vector with the same number of rows or columns as
the input signal, or a matrix with the same dimensions as the input signal. For more information, see
“Interdependent Parameter-Port Dimensions” on page 5-635.

If Phase offset (deg) and Frequency offset (Hz) are both nonscalar, they must be the same size.

Tunable: Yes

Dependencies

To enable this port, clear the Frequency offset from port parameter.

Block Characteristics
Data Types double | single
Multidimensional
Signals

no

Variable-Size Signals no

More About
Interdependent Parameter-Port Dimensions

This table outlines the interdependency of parameter-to-port dimensions.
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Number of
Dimensions

Data I/O
Dimension

Frame
Size

Number of
Channels

Frequency/Phase Offset
Parameter Dimension

Frequency Offset
Input Port Dimension

Any Scalar 1 1 Scalar Scalar
2 M-by-1 M 1 M-by-1

1-by-M

1-by-1

M

M-by-1

1

1-by-1
2 1-by-N 1 N N-by-1

1-by-N

1-by-1

N

1-by-N

1

1-by-1
2 M-by-N M N M-by-N

N-by-1

1-by-N

M-by-1

1-by-M

1-by-1

M-by-N

N

1-by-N

1

1-by-1

M

M-by-1

For example:

• When you specify a scalar offset parameter, the block applies the same offset to all elements of the
input signal

• When you specify a 2-by-1 offset parameter for a 2-by-3 input signal (one offset value per sample),
the block applies the same sample offset across the three channels.

• When you specify a 1-by-3 offset parameter for a 2-by-3 input signal (one offset value per channel),
the same channel offset is applied across the two samples of a channel.

• When you specify a 2-by-3 offset parameter for a 2-by-3 input signal (one offset value per sample
for each channel), the offsets are applied element-wise to the input signal.

Algorithms
If the input signal is u(t), then the output signal is

y(t) = u(t) ⋅ cos 2π∫0 t
f τ dτ + φ(t) + jsin 2π∫0 t

f τ dτ + φ(t) ,

where f(t) is the frequency offset, and φ(t) is the phase offset.

The discrete-time output is given by
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y(0) = u(0) cos φ(0) + jsin φ(0)  and 

y(i) = u(i) cos 2π ∑
n = 0

i− 1
f n Δt + φ(i) + jsin 2π ∑

n = 0

i− 1
f n Δt + φ(i) ,

where i > 0, and Δt is the sample time.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

The Frequency offset (Hz) and Phase offset (deg) parameters are tunable in Normal mode,
Accelerator mode, and Rapid Accelerator mode. If you use the Simulink Coder rapid simulation
(RSIM) target to build an RSIM executable, then you can tune these parameters without recompiling
the model. For more information, see Tunable Parameters (Simulink).

See Also
Blocks
I/Q Imbalance | Free Space Path Loss | Memoryless Nonlinearity | Phase Noise | Receiver Thermal
Noise
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Phase-Locked Loop
(To be removed) Implement phase-locked loop to recover phase of input signal

Note  will be removed in a future release. To design voltage-controlled oscillators (VCOs) and phase-
locked loops (PLLs), use the “Phase-Locked Loops” (Mixed-Signal Blockset) blocks.

Library
Components sublibrary of Synchronization

Description
The Phase-Locked Loop (PLL) block is a feedback control system that automatically adjusts the phase
of a locally generated signal to match the phase of an input signal. This block is most appropriate
when the input is a narrowband signal.

This PLL has these three components:

• A multiplier used as a phase detector.
• A filter. You specify the filter transfer function using the Lowpass filter numerator and Lowpass
filter denominator parameters. Each is a vector that gives the respective polynomial's
coefficients in order of descending powers of s.

To design a filter, you can use functions such as butter, cheby1, and cheby2 in Signal
Processing Toolbox software. The default filter is a Chebyshev type II filter whose transfer
function arises from the command below.

[num, den] = cheby2(3,40,100,'s')
• A voltage-controlled oscillator (VCO). You specify characteristics of the VCO using the VCO

quiescent frequency, VCO initial phase, and VCO output amplitude parameters.

This block accepts a sample-based scalar input signal. The input signal represents the received
signal. The three output ports produce:

• The output of the filter
• The output of the phase detector
• The output of the VCO

For more information, “Phase-Locked Loops”.

Parameters
Lowpass filter numerator

The numerator of the lowpass filter transfer function, represented as a vector that lists the
coefficients in order of descending powers of s.
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Lowpass filter denominator
The denominator of the lowpass filter transfer function, represented as a vector that lists the
coefficients in order of descending powers of s.

VCO input sensitivity (Hz/V)
This value scales the input to the VCO and, consequently, the shift from the VCO quiescent
frequency value. The units of VCO input sensitivity are Hertz per volt.

VCO quiescent frequency (Hz)
The frequency of the VCO signal when the voltage applied to it is zero. This should match the
carrier frequency of the input signal.

VCO initial phase (rad)
The initial phase of the VCO signal.

VCO output amplitude
The amplitude of the VCO signal.

References
For more information about phase-locked loops, see the works listed in “Selected Bibliography for
Synchronization”.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Topics
“Phase-Locked Loops”
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Phase Noise
Apply receiver phase noise to complex baseband signal
Library: Communications Toolbox / RF Impairments

Description
The Phase Noise block adds phase noise to a complex signal. This block emulates impairments
introduced by the local oscillator of a wireless communication transmitter or receiver. The block
generates filtered phase noise according to the specified spectral mask and adds it to the input
signal. For a description of the phase noise modeling, see “Algorithms” on page 5-642.

Ports
Input

In — Input signal
vector | matrix

Input signal, specified as an NS-by-1 numeric vector or NS-by-M numeric matrix. NS represents the
number of samples and M is the number of channels.
Data Types: double | single
Complex Number Support: Yes

Output

Out — Output signal
vector | matrix

Output signal, returned as a complex-valued signal with the same data type and size as the input
signal.

Parameters
Phase noise level (dBc/Hz) — Phase noise level

[-80 -100] (default) | vector of negative scalars

Phase noise level in decibels relative to carrier per hertz (dBc/Hz), specified as a vector of negative
scalars. The Phase noise level (dBc/Hz) and Frequency offset (Hz) parameters must have the
same length.

Tunable: Yes

Frequency offset (Hz) — Frequency offset
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[2000 20000] (default) | vector of positive increasing values

Frequency offset in Hz, specified as a vector of positive increasing values. The maximum frequency
offset value must be less than FS / 2, where FS represents the Sample rate (Hz) parameter value.

The Phase noise level (dBc/Hz) and Frequency offset (Hz) parameters must have the same
length.

Tunable: Yes
Data Types: double

Sample rate (Hz) — Sample rate

1e6 (default) | positive scalar

Sample rate in Hz, specified as a positive scalar greater than two times the maximum value specified
by the Frequency offset (Hz) parameter.

Tunable: Yes
Data Types: double

Initial seed — Initial seed of noise generator

2137 (default) | positive scalar

Initial seed of noise generator, specified as a positive scalar.

This block uses the Random Source block to generate noise. The block generates random numbers
using the Ziggurat method (V5 RANDN algorithm). Every time you rerun the simulation, the block
reuses the same initial seed. That way, the block outputs the same signal each time you run a
simulation.

Tunable: Yes
Data Types: double

View Filter Response — Display magnitude response of filter
button

Display magnitude response of filter defined by the Phase Noise block. The block uses the FVTool
function to display the magnitude response.

Simulate using — Type of simulation to run
Interpreted execution (default) | Code generation

Type of simulation to run, specified as Interpreted execution or Code generation.

• Interpreted execution — Simulate the model by using the MATLAB interpreter. This option
requires less startup time than the Code generation option, but the speed of subsequent
simulations is slower. In this mode, you can debug the source code of the block.

• Code generation — Simulate the model by using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
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simulations unless the model changes. This option requires additional startup time, but the speed
of the subsequent simulations is faster than Interpreted execution.

Block Characteristics
Data Types double | single
Multidimensional
Signals

no

Variable-Size Signals no

Algorithms
The output signal, yk, is related to input sequence xk by yk=xkejφk, where φk is the phase noise. The
phase noise is filtered Gaussian noise such that φk=f(nk), where nk is the noise sequence and f
represents a filtering operation.

To model the phase noise, define the power spectrum density (PSD) mask characteristic by specifying
scalar or vector values for the frequency offset and phase noise level.

• For a scalar frequency offset and phase noise level specification, an IIR digital filter computes the
spectrum mask. The spectrum mask has a 1 / f characteristic that passes through the specified
point. For more information, see “IIR Digital Filter” on page 5-642.

• For a vector frequency offset and phase noise level specification, an FIR filter computes the
spectrum mask. The spectrum mask is interpolated across log10(f). For more information, see
“FIR Filter” on page 5-643.

IIR Digital Filter

For the IIR digital filter, the numerator coefficient is

λ = 2πfof f set10L/10 ,

where foffset is the frequency offset in Hz and L is the phase noise level in dBc/Hz. The denominator
coefficients, γi, are recursively determined as

γi = i− 2.5
γi− 1
i− 1 ,
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where γ1 = 1, i = {1, 2,..., Nt}, and Nt is the number of filter coefficients. Nt is a power of 2 in the
range [27 , 219]. The value of Nt grows as the phase noise offset decreases towards 0 Hz.

FIR Filter

For the FIR filter, the phase noise level is determined through log10(f) interpolation for frequency
offsets over the range [df, fs / 2], where df is the frequency resolution and fs is the sample rate. The
phase noise is flat over the range [0, df] in Hz, and from the largest frequency offset to fs / 2. The
phase noise has 1 / f3 characteristic from df to the smallest frequency offset. The phase noise is
linearly interpolated between the smallest and the largest frequency offset. The frequency resolution
is equal to (fs / 2)(1 / Nt), where Nt is the number of coefficients, and is a power of 2 less than or equal
to 216. If Nt < 28, a time domain FIR filter is used. Otherwise, a frequency domain FIR filter is used.

The algorithm increases Nt until these conditions are met:

• The frequency resolution is less than the minimum value of the frequency offset vector.
• The frequency resolution is less than the minimum difference between two consecutive

frequencies in the frequency offset vector.
• The maximum number of FIR filter taps is 216.

Version History
Introduced before R2006a

References
[1] Kasdin, N. J., "Discrete Simulation of Colored Noise and Stochastic Processes and 1/(f^alpha);

Power Law Noise Generation." The Proceedings of the IEEE. Vol. 83, No. 5, May, 1995, pp
802–827.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Phase/Frequency Offset

Functions
plotPhaseNoiseFilter

Objects
comm.PhaseNoise
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PM Demodulator Passband
Demodulate PM-modulated data

Library
Analog Passband Modulation, in Modulation

Description
The PM Demodulator Passband block demodulates a signal that was modulated using phase
modulation. The input is a passband representation of the modulated signal. Both the input and
output signals are real scalar signals.

For best results, use a carrier frequency which is estimated to be larger than 10% of your input
signal's sample rate. This is due to the implementation of the Hilbert transform by means of a filter.

In the following example, we sample a 10Hz input signal at 8000 samples per second. We then
designate a Hilbert Transform filter of order 100. Below is the response of the Hilbert Transform
filter as returned by fvtool.

Note the bandwidth of the filter's magnitude response. By choosing a carrier frequency larger than
10% (but less than 90%) of the input signal's sample rate (8000 samples per second, in this example)
or equivalently, a carrier frequency larger than 400Hz, we ensure that the Hilbert Transform Filter
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will be operating in the flat section of the filter's magnitude response (shown in blue), and that our
modulated signal will have the desired magnitude and form.

Typically, an appropriate Carrier frequency value is much higher than the highest frequency of the
input signal. By the Nyquist sampling theorem, the reciprocal of the model's sample time (defined by
the model's signal source) must exceed twice the Carrier frequency parameter.

This block works only with real inputs of type double. This block does not work inside a triggered
subsystem.

Parameters
Carrier frequency (Hz)

The frequency of the carrier.
Initial phase (rad)

The initial phase of the carrier in radians.
Phase deviation (rad)

The phase deviation of the carrier frequency in radians. Sometimes it is referred to as the
"variation" in the phase.

Hilbert transform filter order
The length of the FIR filter used to compute the Hilbert transform.

Pair Block
PM Modulator Passband

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
PM Modulator Passband
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PM Modulator Passband
Modulate using phase modulation

Library
Analog Passband Modulation, in Modulation

Description
The PM Modulator Passband block modulates using phase modulation. The output is a passband
representation of the modulated signal. The output signal's frequency varies with the input signal's
amplitude. Both the input and output signals are real scalar signals.

If the input is u(t) as a function of time t, then the output is

cos(2πfct + Kcu(t) + θ)

where

• fc represents the Carrier frequency parameter
• θ represents the Initial phase parameter
• Kc represents the Phase deviation parameter

An appropriate Carrier frequency value is generally much higher than the highest frequency of the
input signal. By the Nyquist sampling theorem, the reciprocal of the model's sample time (defined by
the model's signal source) must exceed twice the Carrier frequency parameter.

This block works only with real inputs of type double. This block does not work inside a triggered
subsystem.

Parameters
Carrier frequency (Hz)

The frequency of the carrier.
Initial phase (rad)

The initial phase of the carrier in radians.
Phase deviation (rad)

The phase deviation of the carrier frequency in radians. This is sometimes referred to as the
variation in the phase.
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Pair Block
PM Demodulator Passband

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
PM Demodulator Passband

Topics
“Analog Passband Modulation”
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PN Sequence Generator
Generate pseudonoise sequence
Library: Communications Toolbox / Comm Sources / Sequence

Generators
Communications Toolbox HDL Support / Comm Sources

Description
The PN Sequence Generator block generates a sequence of pseudorandom binary numbers using a
linear-feedback shift register (LFSR). Pseudonoise sequences are typically used for pseudorandom
scrambling, and in direct-sequence spread-spectrum systems. For more information, see “More
About” on page 5-653.

These icons shows the block with all ports enabled.

Ports
Input

Mask — Output mask
binary vector

Output mask to delay the PN sequence from initial time, specified as a binary vector with N elements.
N is the degree of the generator polynomial.
Dependencies

To enable this port, set Output mask source to Input port.
Data Types: double | uint8 | ufix1

oSiz — Output size
integer

Output size for variable-size output signals, specified as an integer. For information about variable-
size signals, see “Variable-Size Signal Basics” (Simulink).
Dependencies

To enable this port, select Output variable-size signals and set Maximum output size source to
Dialog parameter.
Data Types: double

5 Blocks

5-648



Ref — Reference input
column vector

Reference input, specified as a column vector that determines the maximum and current output
sequence length. The Ref input must be a variable-size signal. For information about variable-size
signals, see “Variable-Size Signal Basics” (Simulink).
Dependencies

To enable this port, select Output variable-size signals and set Maximum output size source to
Inherit from reference input.
Data Types: double

Rst — Reset sequence generator
0 | 1

Reset sequence generator, specified as 0 or 1. For more information, see “Reset Behavior” on page 5-
655.
Dependencies

To enable this port, select Reset on nonzero input.
Data Types: Boolean

Output

Out — Pseudorandom noise sequence
binary vector

PN sequence, returned as a binary vector.

Parameters
Generator polynomial — Generator polynomial

'z^6 + z + 1' (default) | character vector | string scalar | binary row vector

Generator polynomial that determines the feedback connections of the shift register, specified as one
of these options:

• Character vector or string scalar of a polynomial whose constant term is 1. For more information,
see “Representation of Polynomials in Communications Toolbox”.

• Binary-valued row vector that represents the coefficients of the polynomial in order of descending
powers. The length of this vector must be N + 1, where N is the degree of the polynomial. The
first and last entries must be 1, indicating the leading term with degree N and a constant term of
1.

• Integer-valued row vector of elements that represent the exponents for the nonzero terms of the
polynomial in order of descending powers. The last entry must be 0, indicating a constant term of
1.

For more information, see “Simple Shift Register Generator” on page 5-653.
Example: 'z^8 + z^2 + 1', [1 0 0 0 0 0 1 0 1], and [8 2 0] represent the same
polynomial, p(z) = z 8 + z 2 + 1.
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Data Types: double | char

Initial states — Initial shift register states

[0 0 0 0 0 1] (default) | binary row vector

Initial shift register states of the PN sequence generator when the simulation starts, specified as a
binary-valued row vector. The length of the vector must equal the degree of the generator polynomial
specified by the Generator polynomial. For more information, see “Simple Shift Register
Generator” on page 5-653.

Note For the block to generate a nonzero sequence, the Initial states vector must contain at least
one nonzero element.

Data Types: double

Output mask source — Output mask source

Dialog parameter (default) | Input port

Output mask source that indicates how the output mask information is given to the block, specified as
one of these:

• Dialog parameter to use the Output mask vector (or scalar shift value) parameter
setting.

• Input port to add and use the Mask input port.

Output mask vector (or scalar shift value) — Output mask vector or scalar shift
value

0 (default) | integer scalar | binary vector

Output mask vector or scalar shift value, specified as an integer scalar or binary row vector of length
N, where N is the degree of the generator polynomial. This parameter determines the delay of the PN
sequence from the initial time. For more information, see “Shifting PN Sequence Starting Point” on
page 5-654.
Dependencies

To enable this parameter, set Output mask source to Dialog parameter.
Data Types: double

Output variable-size signals — Option to output variable-length signals

off (default) | on

Select this parameter to enable variable-length output sequences during simulation. When you clear
this parameter, the block outputs fixed-length sequences. When you select this parameter, the block
can output variable-length sequences. For information about variable-size signals, see “Variable-Size
Signal Basics” (Simulink).

Maximum output size source — Maximum output size source
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Dialog parameter (default) | Inherit from reference port

Select how to specify the maximum sequence output size.

• Dialog parameter — Select this value to configure the block to use the Maximum output size
parameter setting as the maximum permitted output sequence length. The oSiz input port
specifies the current size of the output signal, and the block output inherits the sample time from
the input signal. The input value of oSiz must be less than or equal to the Maximum output size
parameter.

• Inherit from reference port — Select this value to enable the Ref input port and configure
the block to inherit the sample time, maximum size, and current output size from the variable-
sized signal at the Ref input port. These set the maximum permitted output sequence length.

Dependencies

To enable this parameter, select Output variable-size signals.

Maximum output size — Maximum output size

[10 1] (default) | vector of the form [n 1]

Specify the maximum output size for the block. n is a positive scalar.
Example: [10 1] specifies a 10-by-1 maximum size for the output signal.

Dependencies

To enable this parameter, select Output variable-size signals and set Maximum output size
source to Dialog parameter.
Data Types: double

Sample time — Output sample time

1 (default) | -1 | positive scalar

Positive scalars specify the time in seconds between each sample of the output signal. If you set the
Sample time to -1, the output signal inherits the sample time from downstream. For information on
the relationship between the Sample time and Samples per frame parameters, see “Sample
Timing” on page 5-656.
Example: 1 specifies a sample time of 1 second.

Dependencies

To enable this parameter, clear Output variable-size signals.
Data Types: double

Samples per frame — Samples per frame

1 (default) | positive integer

Samples per frame in one channel of the output signal, specified as a positive integer. For information
on the relationship between Sample time and Samples per frame, see “Sample Timing” on page 5-
656.
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Dependencies

To enable this parameter, clear Output variable-size signals.
Data Types: double

Reset on nonzero input — Reset on nonzero input

off (default) | on

Select this parameter to add the Rst input port. For more information, see “Reset Behavior” on page
5-655.

Enable bit-packed outputs — Enable bit-packed outputs

off (default) | on

Select this parameter to make the Number of packed bits and Interpret bit-packed values as
signed parameters available.

When this parameter is selected, the object outputs a column vector of length M, which contains
most-significant-bit (MSB) first integer representations of bit words of length P. M is the number of
samples per frame specified in the Samples per frame parameter. P is the size of the bit-packed
words specified in the Number of packed bits parameter.

Note The first bit from the left in the bit-packed word contains the most significant bit for the integer
representation.

Number of packed bits — Number of packed bits
8 (default) | integer in the range [1, 32]

Number of packed bits, specified as an integer in the range [1, 32].

Dependencies

To enable this parameter, select Enable bit-packed outputs.
Data Types: double

Interpret bit-packed values as signed — Interpret bit-packed values as signed
off (default) | on

Interpret bit-packed values as signed integer data values when selected or unsigned integer data
values when cleared. When selected, a 1 in the most significant bit (sign bit) indicates a negative
value.

Dependencies

To enable this parameter, select Enable bit-packed outputs.

Output data type — Output data type
double (default) | boolean | Smallest unsigned integer

Output data type, specified as double, boolean, or Smallest unsigned integer.
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• When Enable bit-packed outputs is cleared, the output data type can be specified as a double,
boolean, or Smallest unsigned integer. When the Output data type parameter is set to
Smallest unsigned integer, the output data type is selected based on the settings used in
the Hardware Implementation pane of the Configuration Parameters dialog box of the model. If
ASIC/FPGA is selected in the Hardware Implementation pane, the output data type ufix(1) =
ideal minimum one-bit size. For all other selections, it is an unsigned integer with the smallest
available word length large enough to fit one bit, usually corresponding to the size of a char (for
example, uint8).

• When Enable bit-packed outputs is selected, the output data type can be specified as double or
Smallest unsigned integer. When the Output data type parameter is set to Smallest
unsigned integer, the output data type is selected based on the Interpret bit-packed values
as signed and Number of packed bits parameters, and the settings used in the Hardware
Implementation pane of the Configuration Parameters dialog box of the model. If ASIC/FPGA is
selected in the Hardware Implementation pane, the output data type is the ideal minimum n-bit
size, such as sfix(n) or ufix(n), based on the Interpret bit-packed values as signed
parameter. For all other selections, it is a signed or unsigned integer with the smallest available
word length large enough to fit n bits.

Block Characteristics
Data Types Boolean | double | fixed point
Multidimensional
Signals

no

Variable-Size Signals yes

More About
Simple Shift Register Generator

A linear-feedback shift register (LFSR), implemented as a simple shift register generator (SSRG), is
used to generate PN sequences. This type of shift register is also known as a Fibonacci
implementation. For an example, see “Model PN Sequence Generation with Linear Feedback Shift
Register”.
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The Generator Polynomial parameter determines the feedback connections of the shift register. It is
a primitive binary polynomial in z, grzr+gr–1zr–1+gr–2zr–2+...+g0. For the coefficient, gk=0 to r, the
coefficient gk is 1 if there is a connection from the kth register to the adder. The leading term, gr, and
the constant term, g0, of the Generator Polynomial parameter must be 1 because the polynomial
must be primitive. The Initial states parameter specifies the initial values of the registers. For
example, the following table indicates two sets of parameter values that correspond to a generator
polynomial of p(z) = z8 + z2 + 1.

Quantity Example 1 Example 2
Generator
polynomial

g1 = [1 0 0 0 0 0 1 0 1] g2 = [8 2 0]

Degree of generator
polynomial

8, which is length(g1)-1 8

Initial states [1 0 0 0 0 0 1 0] [1 0 0 0 0 0 1 0]

At each time step, all r registers in the generator update their values according to the value of the
incoming arrow to the shift register. The adders perform addition modulo 2. The output of the LFSR
reflects the sum of all connections in the m mask vector.

The Output mask vector (or scalar shift value) parameter, m, determines the shift of the PN
sequence starting point. For more information, see “Shifting PN Sequence Starting Point” on page 5-
654.

Shifting PN Sequence Starting Point

To shift the starting point of the PN sequence, specify the Output mask vector (or scalar shift
value) parameter as:

• An integer representing the length of the shift.

The default Output mask vector (or scalar shift value) setting of 0 corresponds to no shift. As
illustrated in the LFSR shift register diagram in “Simple Shift Register Generator” on page 5-653,
there is no shift when the only connection is along the arrow labeled m0.
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This table shows the shift that occurs when you set Output mask vector (or scalar shift value)
to 0 versus a positive integer d.

T = 0 T = 1 T = 2 ... T = d T = d+1
Shift = 0 x0 x1 x2 ... xd xd+1

Shift = d xd xd+1 xd+2 ... x2d x2d+1

• A binary vector whose length is equal to the degree of the generator polynomial. The LFSR shift
register diagram in “Simple Shift Register Generator” on page 5-653 shows Output mask vector
(or scalar shift value) specified as a mask vector, m. The binary vector must have N elements,
where N is the degree of the generator polynomial. To calculate the mask vector, use the
shift2mask function.

The binary vector corresponds to a polynomial in z, mr–1zr–1 + mr–2zr–2 + ... + m1z + m0, of degree
at most r–1. The mask vector that correspond to a shift of d is the vector that represents m(z) = zd

modulo g(z), where g(z) is the generator polynomial.

For example, if the degree of the generator polynomial is 4, then the mask vector that corresponds
to d = 2 is [0 1 0 0], which represents the polynomial m(z) = z2.

Reset Behavior

Before you can reset the generator sequence, you must select the Reset on nonzero input
parameter to enable the Rst input port. Suppose that the PN Sequence Generator block outputs [1 0
0 1 1 0 1 1] when no reset exists. This table shows the effect on the PN Sequence Generator
block output for the parameter values indicated.

Reset Signal Reset Signal
Settings

PN Sequence
Generator block

Reset Signal and Output
Signal

No reset • Sample time is
1

• Samples per
frame is 1

• Rst is [0 0 0 0
0 0 0 0]

• Sample time is
1

• Samples per
frame is 1

• Out is [1 0 0
1 1 0 1 1]

Scalar reset signal • Sample time is
1

• Samples per
frame is 1

• Rst is [0 0 0 1
0 0 0 0]

• Sample time =
1

• Samples per
frame is 1

Vector reset signal • Sample time is
1

• Samples per
frame is 8

• Rst is [0 0 0 1
0 0 0 0]

• Sample time is
1

• Samples per
frame is 8

For the no-reset case, the block outputs the sequence without resetting it. For the scalar and vector
reset signal cases, the block inputs the reset signal [0 0 0 1 0 0 0 0] to the Rst port. Because
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the fourth bit of the reset signal is a 1 and Sample time is 1, the block resets the sequence output at
the fourth bit.

For variable-sized outputs, the block supports only scalar reset signal inputs.

Sequences of Maximum Length

To generate a maximum length sequence for a generator polynomial that has the degree r, set
Generator polynomial to a value from the following table. The maximum sequence length is 2r – 1.

r Generator
Polynomial

r Generator
Polynomial

r Generator
Polynomial

r Generator
Polynomial

2 [2 1 0] 15 [15 14 0] 28 [28 25 0] 41 [41 3 0]
3 [3 2 0] 16 [16 15 13 4 0] 29 [29 27 0] 42 [42 23 22 1 0]
4 [4 3 0] 17 [17 14 0] 30 [30 29 28 7 0] 43 [43 6 4 3 0]
5 [5 3 0] 18 [18 11 0] 31 [31 28 0] 44 [44 6 5 2 0]
6 [6 5 0] 19 [19 18 17 14

0]
32 [32 31 30 10

0]
45 [45 4 3 1 0]

7 [7 6 0] 20 [20 17 0] 33 [33 20 0] 46 [46 21 10 1 0]
8 [8 6 5 4 0] 21 [21 19 0] 34 [34 15 14 1 0] 47 [47 14 0]
9 [9 5 0] 22 [22 21 0] 35 [35 2 0] 48 [48 28 27 1 0]
10 [10 7 0] 23 [23 18 0] 36 [36 11 0] 49 [49 9 0]
11 [11 9 0] 24 [24 23 22 17

0]
37 [37 12 10 2 0] 50 [50 4 3 2 0]

12 [12 11 8 6 0] 25 [25 22 0] 38 [38 6 5 1 0] 51 [51 6 3 1 0]
13 [13 12 10 9 0] 26 [26 25 24 20

0]
39 [39 8 0] 52 [52 3 0]

14 [14 13 8 4 0] 27 [27 26 25 22
0]

40 [40 5 4 3 0] 53 [53 6 2 1 0]

For more information about the shift-register configurations that these polynomials represent, see
Digital Communications by John Proakis.[1].

Sample Timing

The time between output updates is equal to the product of the Samples per frame and Sample
time parameter values. For example, if Sample time and Samples per frame each equal 1, the
block outputs a sample every second. If you increase Samples per frame to 10, then the block
outputs a 10-by-1 vector every 10 seconds. This ensures that the equivalent output rate is not
dependent on the Samples per frame parameter.

Version History
Introduced before R2006a

Existing models automatically update this block to current version
Behavior changed in R2020a
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Starting in R2020a, Simulink no longer allows you to use the PN Sequence Generator block version
available before R2015b.

Existing models automatically update to load the PN Sequence Generator block version announced in
“Source blocks output frames of contiguous time samples but do not use the frame attribute” in the
R2015b Release Notes. For more information on block forwarding, see “Maintain Compatibility of
Library Blocks Using Forwarding Tables” (Simulink).

References
[1] Proakis, John G. Digital Communications. 5th ed. New York: McGraw Hill, 2007.

[2] Lee, J. S., and L. E. Miller. CDMA Systems Engineering Handbook. Boston and London. Artech
House, 1998.

[3] Golomb, S.W. Shift Register Sequences. Laguna Hills. Aegean Park Press, 1967.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Restrictions

• You can select Input port as the Output mask source on the block. In this case, the Mask
input signal must be a vector of data type ufix1.
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• If you select Reset on nonzero input, the input to the Rst port must have data type Boolean.
• Outputs of type double are not supported for HDL code generation. All other output types

(including bit-packed outputs) are supported.
• You cannot generate HDL for this block inside a Resettable Synchronous Subsystem.
• You cannot generate HDL for this block inside a Triggered Subsystem if the Use trigger signal

as clock option is selected. See “Using Triggered Subsystems for HDL Code Generation” (HDL
Coder).

See Also
Blocks
Gold Sequence Generator | Hadamard Code Generator | Kasami Sequence Generator | Scrambler

Objects
comm.PNSequence

Topics
“Spreading Sequences”
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Poisson Integer Generator
Generate Poisson-distributed random integers

Library
Random Data Sources sublibrary of Comm Sources

Description
The Poisson Integer Generator block generates random integers using a Poisson distribution. The
probability of generating a nonnegative integer k is

λkexp( − λ)/(k!)

where λ is a positive number known as the Poisson parameter.

You can use the Poisson Integer Generator to generate noise in a binary transmission channel. In this
case, the Poisson parameter Lambda should be less than 1, usually much less.

Attributes of Output Signal

The output signal can be a column or row vector, a two-dimensional matrix, or a scalar. The number
of rows in the output signal corresponds to the number of samples in one frame and is determined by
the Samples per frame parameter. The number of columns in the output signal corresponds to the
number of channels and is determined by the number of elements in the Lambda parameter. See
“Sources and Sinks” in Communications Toolbox User's Guide for more details.

Parameters
Lambda

The Poisson parameter λ. Specify λ as a scalar or row vector whose elements are real numbers. If
Lambda is a scalar, then every element in the output vector shares the same Poisson parameter.
If Lambda is a row vector, then the number of elements correspond to the number of
independent channels output from the block.

Source of initial seed
The source of the initial seed for the random number generator. Specify the source as either Auto
or Parameter. When set to Auto, the block uses the global random number stream.

Note When Source of initial seed is Auto in Code generation mode, the random number
generator uses an initial seed of zero. Therefore, the block generates the same random numbers
each time it is started. Use Interpreted execution to ensure that the model uses different
initial seeds. If Interpreted execution is run in Rapid accelerator mode, then it behaves
the same as Code generation mode.
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Initial seed
The initial seed value for the random number generator. Specify the seed as a nonnegative
integer scalar. Initial seed is available when the Source of initial seed parameter is set to
Parameter.

Sample time
Positive scalars specify the time in seconds between each sample of the output signal. If you set
the Sample time to -1, the output signal inherits the sample time from downstream. For
information on the relationship between the Sample time and Samples per frame parameters,
see “Sample Timing” on page 5-660.

Samples per frame
Samples per frame, specified as a positive integer indicating the number of samples per frame in
one channel of the output data. For information on the relationship between Sample time and
Samples per frame, see “Sample Timing” on page 5-660.

Output data type
The output type of the block can be specified as a boolean, uint8, uint16, uint32, single, or
double. The default is double.

Simulate using
Select the simulation mode.
Code generation

On the first model run, simulate and generate code. If the structure of the block does not
change, subsequent model runs do not regenerate the code.

If the simulation mode is Code generation, System objects corresponding to the blocks
accept a maximum of nine inputs.

Interpreted execution
Simulate model without generating code. This option results in faster start times but can slow
subsequent simulation performance.

More About
Sample Timing

The time between output updates is equal to the product of the Samples per frame and Sample
time parameter values. For example, if Sample time and Samples per frame each equal 1, the
block outputs a sample every second. If you increase Samples per frame to 10, then the block
outputs a 10-by-1 vector every 10 seconds. This ensures that the equivalent output rate is not
dependent on the Samples per frame parameter.

Version History
Introduced before R2006a

Existing models automatically update this block to current version
Behavior changed in R2020a

Starting in R2020a, Simulink no longer allows you to use the Poisson Integer Generator block version
available before R2015b.
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• Existing models automatically update to load the Poisson Integer Generator block version
announced in R2015b. For more information on block forwarding, see “Maintain Compatibility of
Library Blocks Using Forwarding Tables” (Simulink).

• Behavior of the random number generator is changed. The statistics are improved. For more
information, see “Source blocks output frames of contiguous time samples but do not use the
frame attribute” in the R2015b Release Notes.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Random Integer Generator

Functions
poissrnd
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Preamble Detector
Detect preamble in data packet
Library: Communications Toolbox / Synchronization

Description
The Preamble Detector block detects the end of preambles in data packets. A preamble is a set of
symbols or bits used in packet-based communications systems to indicate the start of a packet.
Packets consist of preamble data and user data. The length of the user data portion of the packet can
vary during a simulation run.

This icon shows the block with all ports enabled: 

Input/Output Ports
Input

In — Input data
scalar | column vector

Input data of symbols or bits, specified as a scalar or column vector. The input data can contain
multiple packets. This port is unnamed on the block.
Data Types: single | double | Boolean | int8 | uint8

Output

Idx — Index of last preamble symbol
scalar | column vector

Index of the last preamble symbol, returned as a scalar or column vector of the same size and data
type as the input data.

• When the Detections parameter is set to All, Idx outputs the index corresponding to the last
element of each detected preamble.

• When the Detections parameter is set to First, Idx outputs the index corresponding to the last
element of the first detected preamble.

This port is unnamed until the DtMt port is enabled.

DtMt — Detection metric
scalar | column vector
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Detection metric, returned as a scalar or column vector of the same size and data type as the input
data packet.

• If either the preamble or input data is complex, the detection metric is the absolute value of the
cross-correlation of the preamble and the input data.

• If both the preamble and input data are real, the detection metric is the cross-correlation of the
preamble and the input data.

Dependencies

To enable this port, set the Input parameter to Symbol, and select the Output detection metric
parameter.

Parameters
Input — Input type
Symbol (default) | Bit

Input type, specified as Symbol or Bit.

• For binary inputs, set this parameter to Bit.
• For all other inputs, set this parameter to Symbol.

For information on execution speed, see “Tips” on page 5-664.

Preamble — Preamble sequence
[1 + 1i; 1 - 1i] (default) | column vector

Preamble sequence, specified as a column vector.

• If the Input parameter is set to Bit, the preamble must be binary.
• If the Input parameter is set to Symbol, the preamble can be any real or complex sequence.

Detection threshold — Detection threshold
3 (default) | nonnegative scalar

Detection threshold, specified as a nonnegative scalar. When the detection metric is greater than or
equal to the threshold, the block detects the preamble and updates Idx.

Tunable: Yes
Dependencies

To enable this parameter, set the Input parameter to Symbol.

Output detection metric — Option to output detection metric
off (default) | on

Select this parameter to output the detection metric and enable the DtMt output port.
Dependencies

To enable this parameter, set the Input parameter to Symbol.

Detections — Detections returned
All (default) | First

 Preamble Detector

5-663



Detections returned, specified as All or First. Specifying All returns all detected preambles.
Specifying First returns only the first detected preamble.

Tunable: Yes

Simulate using — Type of simulation to run
Code generation (default) | Interpreted execution

Type of simulation to run, specified as:

• Code generation –– Simulate the model using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations as long as the model does not change. This option requires additional startup time.

• Interpreted execution –– Simulate the model using the MATLAB interpreter. This option
shortens startup time. In Interpreted execution mode, you can debug the source code of the
block.

For information on execution speed, see “Tips” on page 5-664.

Block Characteristics
Data Types Boolean | double | integer | single
Multidimensional
Signals

no

Variable-Size Signals yes

Tips
• For faster execution of the Preamble Detector block, set the Simulate using parameter to:

• Code generation when the Input parameter is set to Symbol
• Interpreted execution when the Input parameter is set to Bit

Algorithms
Bit Inputs

When the input data is composed of bits, the preamble detector uses an exact pattern match.

Symbol Inputs

When the input data is composed of symbols, the preamble detector uses a cross-correlation
algorithm. A finite impulse response (FIR) filter, in which the coefficients are specified from the
preamble, computes the cross-correlation between the input data and the preamble. When a
sequence of input samples match the preamble, the filter output reaches its peak. The index of the
peak corresponds to the end of the preamble sequence in the input data. See Discrete FIR Filter for
further information on the FIR filter algorithm.

The cross-correlation values that are greater than or equal to the specified threshold are reported as
peaks.
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• If the detection threshold is too low, the algorithm will detect false peaks, or, in the extreme case,
detect as many detected peaks as there are input samples.

• If the detection threshold is too high, the algorithm will miss detecting peaks, or, in the extreme
case, detect no peaks.

Consequently, the selection of the detection threshold is critical.

Version History
Introduced in R2016b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Carrier Synchronizer | Symbol Synchronizer | Coarse Frequency Compensator

Objects
comm.PreambleDetector
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Puncture
Output elements that correspond to 1s in binary puncture vector
Library: Communications Toolbox / Sequence Operations

Description
The Puncture block creates an output vector by removing selected elements of the input vector and
preserving others. The block determines which elements to remove and preserve by using the binary
Puncture vector parameter. The block repeats the puncturing pattern, as necessary, to include all
input elements. The preserved elements appear in the output vector in the same order in which they
appear in the input vector.

Ports
Input

In — Input signal
column vector

Input signal, specified as a column vector. The input length must be an integer multiple of the
Puncture vector parameter length.
Data Types: double | single

Output

Out — Output signal
column vector

Output signal, returned as a column vector. The length of the output vector is an integer multiple of
the number of 1s in the Puncture vector parameter. The output signal contains only elements from
the input signal that align with integer multiples of the element location of 1s in the Puncture
vector.

Parameters
Puncture vector — Puncture pattern

[1 1 0 1 0 1]' (default) | column vector of binary values

Puncture pattern, specified as a column vector of binary values. The input signal length must be an
integer multiple of the Puncture vector parameter length. The block repeats the puncturing pattern,
as necessary, to include all input elements.

• The element locations of 0s in Puncture vector indicate which elements are removed from the
input signal to construct the output signal.
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• The element locations of 1s in Puncture vector indicate which elements are preserved from the
input signal to construct the output signal.

Block Characteristics
Data Types Boolean | double | enumerated | fixed point | integer | single
Multidimensional
Signals

no

Variable-Size Signals no

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Convolutional Encoder | BCH Encoder | Binary-Input RS Encoder | Integer-Input RS Encoder
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QPSK Demodulator Baseband
Demodulate QPSK-modulated data

Library
PM, in Digital Baseband sublibrary of Modulation

Description
The QPSK Demodulator Baseband block demodulates a signal that was modulated using the
quadrature phase shift keying method. The input is a baseband representation of the modulated
signal.

The input must be a complex signal. This block accepts a scalar or column vector input signal. For
information about the data types each block port supports, see “Supported Data Types” on page 5-
675.

Algorithm

Hard-Decision QPSK Demodulator Signal Diagram for Trivial Phase Offset (odd multiple of
π/4)
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Hard-Decision QPSK Demodulator Floating-Point Signal Diagram for Nontrivial Phase Offset
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Hard-Decision QPSK Demodulator Fixed-Point Signal Diagram for Nontrivial Phase Offset

For a description of the exact LLR and approximate LLR cases (soft-decision), see “Hard- vs. Soft-
Decision Demodulation”.
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Dialog Box

Phase offset (rad)
The phase of the zeroth point of the signal constellation.

Constellation ordering
Determines how the block maps each integer to a pair of output bits.

Output type
Determines whether the output consists of integers or bits.

If the Output type parameter is set to Integer and Constellation ordering is set to Binary,
then the block maps the point

exp(jθ + jπm/2)

to m, where θ is the Phase offset parameter and m is 0, 1, 2, or 3.

The reference page for the QPSK Modulator Baseband block shows the signal constellations for
the cases when Constellation ordering is set to either Binary or Gray.

If the Output type is set to Bit, then the output contains pairs of binary values if Decision type
is set to Hard decision. The most significant bit (i.e. the left-most bit in the vector), is the first
bit the block outputs.

If the Decision type is set to Log-likelihood ratio or Approximate log-likelihood
ratio, then the output contains bitwise LLR or approximate LLR values, respectively.

Decision type
Specifies the use of hard decision, LLR, or approximate LLR during demodulation. This parameter
appears when you select Bit from the Output type drop-down list. The output values for Log-
likelihood ratio and Approximate log-likelihood ratio decision types are of the same data type as
the input values. For integer output, the block always performs Hard decision demodulation.

For more information, see “Hard- vs. Soft-Decision Demodulation”.

 QPSK Demodulator Baseband

5-671



Noise variance source
This field appears when Approximate log-likelihood ratio or Log-likelihood ratio
is selected for Decision type.

When set to Dialog, the noise variance can be specified in the Noise variance field. When set to
Port, a port appears on the block through which the noise variance can be input.

Noise variance
This parameter appears when the Noise variance source is set to Dialog and specifies the
noise variance in the input signal. This parameter is tunable in normal mode, Accelerator mode
and Rapid Accelerator mode.

If you use the Simulink Coder rapid simulation (RSIM) target to build an RSIM executable, then
you can tune the parameter without recompiling the model. This is useful for Monte Carlo
simulations in which you run the simulation multiple times (perhaps on multiple computers) with
different amounts of noise.

The exact LLR algorithm computes exponentials using finite precision arithmetic. For
computations involving very large positive or negative magnitudes, the exact LLR algorithm
yields:

• Inf or -Inf if the noise variance is a very large value
• NaN if the noise variance and signal power are both very small values

The approximate LLR algorithm does not compute exponentials. You can avoid Inf, -Inf, and
NaN results by using the approximate LLR algorithm.

Data Types Pane for Hard-Decision

Output
For bit outputs, when Decision type is set to Hard decision, the output data type can be set to
'Inherit via internal rule', 'Smallest unsigned integer', double, single, int8,
uint8, int16, uint16, int32, uint32, or boolean.
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For integer outputs, the output data type can be set to 'Inherit via internal rule',
'Smallest unsigned integer', double, single, int8, uint8, int16, uint16, int32, or
uint32.

When this parameter is set to 'Inherit via internal rule' (default setting), the block will
inherit the output data type from the input port. The output data type will be the same as the
input data type if the input is a floating-point type (single or double). If the input data type is
fixed-point, the output data type will work as if this parameter is set to 'Smallest unsigned
integer'.

When this parameter is set to 'Smallest unsigned integer', the output data type is
selected based on the settings used in the Hardware Implementation pane of the Configuration
Parameters dialog box of the model.

If ASIC/FPGA is selected in the Hardware Implementation pane, and Output type is Bit, the
output data type is the ideal minimum one-bit size, i.e., ufix(1). For all other selections, it is an
unsigned integer with the smallest available word length large enough to fit one bit, usually
corresponding to the size of a char (e.g., uint8).

If ASIC/FPGA is selected in the Hardware Implementation pane, and Output type is Integer,
the output data type is the ideal minimum two-bit size, i.e., ufix(2). For all other selections, it is
an unsigned integer with the smallest available word length large enough to fit two bits, usually
corresponding to the size of a char (e.g., uint8).

Derotate factor
This parameter only applies when the input is fixed-point and Phase offset is not an even
multiple of π/4.

You can select Same word length as input or Specify word length, in which case you
define the word length using an input field.
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Data Types Pane for Soft-Decision

For bit outputs, when Decision type is set to Log-likelihood ratio or Approximate log-
likelihood ratio, the output data type is inherited from the input (e.g., if the input is of data type
double, the output is also of data type double).

Examples

Demodulate Noisy QPSK Signal

Modulate and demodulate a noisy QPSK signal.

Use the Open model button to open the QPSK demodulation model.

Run the simulation. The results are saved to the base workspace, where the variable ErrorVec is a
1-by-3 row vector. The BER is found in the first element.

Display the error statistics. For the Eb/No provided, 4.3 dB, the resultant BER is approximately 0.01.
Your results may vary slightly.
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ans =

    0.0112

Increase the Eb/No to 7 dB. Rerun the simulation, and observe that the BER has decreased.

ans =

   1.0000e-03

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
• Signed fixed-point when:

• Output type is Integer
• Output type is Bit and Decision type is Hard-decision

Var • Double-precision floating point
• Single-precision floating point

Output • Double-precision floating point
• Single-precision floating point
• Boolean when Output type is Bit and Decision type is Hard-decision
• 8-, 16-, 32- bit signed integers
• 8-, 16-, 32- bit unsigned integers
• ufix(1) in ASIC/FPGA when Output type is Bit
• ufix(2) in ASIC/FPGA when Output type is Integer

Pair Block
QPSK Modulator Baseband

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.
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HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

See Also
Blocks
DQPSK Demodulator Baseband | BPSK Demodulator Baseband | M-PSK Demodulator Baseband |
QPSK Modulator Baseband

Topics
“Digital Baseband Modulation”
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QPSK Modulator Baseband
Modulate using quadrature phase shift keying method

Library
PM in Digital Baseband sublibrary of Modulation

Description
The QPSK Modulator Baseband block modulates using the quadrature phase shift keying method. The
output is a baseband representation of the modulated signal.

Integer-Valued Signals and Binary-Valued Signals

If you set the Input type parameter to Integer, then valid input values are 0, 1, 2, and 3. When you
set Constellation ordering to Binary for input m the output symbol is

exp(jθ + jπm/2)

where θ represents the Phase offset parameter (see the following figure for Gray constellation
ordering). In this case, the block accepts a scalar or column vector signal.

If you set the Input type parameter to Bit, then the input contains pairs of binary values. For this
configuration, the block accepts column vectors with even lengths. When you set the Phase offset
parameter to Π4 , then the block uses one of the signal constellations in the following figure,
depending on whether you set the Constellation ordering parameter to Binary or Gray.

In the previous figure, the most significant bit (i.e. the left-most bit), is the first bit input to the block.
For additional information about Gray mapping, see the M-PSK Modulator Baseband help page.
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Dialog Box

Phase offset (rad)
The phase of the zeroth point of the signal constellation.

Constellation ordering
Determines how the block maps each pair of input bits or input integers to constellation symbols.

Input type
Indicates whether the input consists of integers or pairs of bits.

Output data type
The output data type can be set to double, single, Fixed-point, User-defined, or Inherit
via back propagation.

Setting this parameter to Fixed-point or User-defined enables fields in which you can
further specify details. Setting this parameter to Inherit via back propagation, sets the
output data type and scaling to match the following block.

Output word length
Specify the word length, in bits, of the fixed-point output data type. This parameter is only visible
when you select Fixed-point for the Output data type parameter.

Set output fraction length to
Specify the scaling of the fixed-point output by either of the following methods:

• Choose Best precision to have the output scaling automatically set such that the output
signal has the best possible precision.

• Choose User-defined to specify the output scaling in the Output fraction length
parameter.

This parameter is only visible when you select Fixed-point for the Output data type
parameter or when you select User-defined and the specified output data type is a fixed-point
data type.
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User-defined data type
Specify any signed built-in or signed fixed-point data type. You can specify fixed-point data types
using the fixdt function. This parameter is only visible when you select User-defined for the
Output data type parameter.

Output fraction length
For fixed-point output data types, specify the number of fractional bits or bits to the right of the
binary point. This parameter is only visible when you select Fixed-point or User-defined for
the Output data type parameter and User-defined for the Set output fraction length to
parameter.

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
• Boolean when Input type is Bit
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers
• ufix(1) when Input type is Bit
• ufix(2) when Input type is Integer

Output • Double-precision floating point
• Single-precision floating point
• Signed fixed point

Pair Block
QPSK Demodulator Baseband

More About
Constellation Visualization

Click View Constellation on the block mask to visualize a signal constellation for the specified block
parameters. Parameter settings must be applied before viewing a constellation. For more information,
see “View Constellation of Modulator Block”.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.
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HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

See Also
Blocks
M-PSK Modulator Baseband | BPSK Modulator Baseband | DQPSK Modulator Baseband | QPSK
Demodulator Baseband

Objects
comm.QPSKModulator

Topics
“Plot Noisy QPSK Constellation”
“Compare Filtered QPSK and MSK Signals in Simulink”
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Quantizing Decoder
Decode quantization index according to codebook

Library
Source Coding

Description
The Quantizing Decoder block converts quantization indices to the corresponding codebook values.
The Quantization codebook parameter, a vector of length N, prescribes the possible output values.
If the input is an integer k between 0 and N-1, then the output is the (k+1)st element of
Quantization codebook.

The input must be a discrete-time signal. This block processes each vector element independently.
For information about the data types each block port supports, see the “Supported Data Type” on
page 5-681 table on this page.

Note The Quantizing Encoder block also uses a Quantization codebook parameter. The first output
of that block corresponds to the input of Quantizing Decoder, while the second output of that block
corresponds to the output of Quantizing Decoder.

Parameters
Quantization codebook

A real vector that prescribes the output value corresponding to each nonnegative integer of the
input.

Quantized output data type
Select the output data type.

Supported Data Type
Port Supported Data Types
Idx • Double-precision floating point

• Single-precision floating point
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers
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Port Supported Data Types
Q(U) • Double-precision floating point

• Single-precision floating point

Pair Block
Quantizing Encoder

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Quantizing Encoder | Scalar Quantizer Decoder
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Quantizing Encoder
Quantize signal using partition and codebook

Library
Source Coding

Description
The Quantizing Encoder block quantizes the input signal according to the Partition vector and
encodes the input signal according to the Codebook vector. This block processes each vector
element independently. The input must be a discrete-time signal. This block processes each vector
element independently. For information about the data types each block port supports, see the
“Supported Data Type” on page 5-684 table on this page.

The first output is the quantization index. The second output is the quantized signal. The values for
the quantized signal are taken from the Codebook vector.

The Quantization partition parameter, P, is a real vector of length n whose entries are in strictly
ascending order. The quantization index (second output signal value) corresponding to an input value
of x is

• 0 if x ≤ P(1)
• m if P(m) < x ≤ P(m+1)
• n if P(n) < x

The Quantization codebook parameter, whose length is n+1, prescribes a value for each partition
in the quantization. The first element of Quantization codebook is the value for the interval
between negative infinity and the first element of P. The second output signal from this block
contains the quantization of the input signal based on the quantization indices and prescribed values.

Use the lloyds function with a representative sample of your data as training data, to obtain
appropriate partition and codebook parameters.

Parameters
Quantization partition

The vector of endpoints of the partition intervals.
Quantization codebook

The vector of output values assigned to each partition.
Index output data type

Select the output data type.
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Supported Data Type
Port Supported Data Types
U • Double-precision floating point

• Single-precision floating point
• Signed fixed-point

Idx • Double-precision floating point
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Q(U) • Double-precision floating point
• Single-precision floating point
• Signed fixed-point

Pair Block
Quantizing Decoder

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Quantizing Decoder | Scalar Quantizer Encoder

Functions
lloyds

5 Blocks

5-684



Raised Cosine Receive Filter
Apply pulse shaping by downsampling signal using raised cosine FIR filter

Library
Comm Filters

Description
The Raised Cosine Receive Filter block filters the input signal using a normal raised cosine FIR filter
or a square root raised cosine FIR filter. It also downsamples the filtered signal if you set the Output
mode parameter to Downsampling. The FIR Decimation block implements this functionality. The
block icon shows the impulse response of the filter.

Characteristics of the Filter

Characteristics of the raised cosine filter are the same as in the Raised Cosine Transmit Filter block,
except that the length of the filter's input response has a slightly different expression:  L * Filter
span in symbols + 1, where L is the value of the Input samples per symbol parameter (not the
Output samples per symbol parameter, as in the case of the Raised Cosine Transmit Filter block).

The block normalizes the filter coefficients to unit energy. If you specify a Linear amplitude filter
gain other than 1, then the block scales the normalized filter coefficients using the gain value you
specify.

Decimating the Filtered Signal

To have the block decimate the filtered signal, set the Decimation factor parameter to a value
greater than 1.

If K represents the Decimation factor parameter value, then the block retains 1/K of the samples,
choosing them as follows:

• If the Decimation offset parameter is zero, then the block selects the samples of the filtered
signal indexed by 1, K+1, 2*K+1, 3*K+1, etc.

• If the Decimation offset parameter is a positive integer less than M, then the block initially
discards that number of samples from the filtered signal and downsamples the remaining data as
in the previous case.

To preserve the entire filtered signal and avoid decimation, set Decimation factor to 1. This setting
is appropriate, for example, when the output from the filter block forms the input to a timing phase
recovery block such as Symbol Synchronizer. The timing phase recovery block performs the
downsampling in that case.
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Input Signals and Output Signals

This block accepts a column vector or matrix input signal. For information about the data types each
block port supports, see the “Supported Data Type” on page 5-689 table on this page.

If you set Decimation factor to 1, then the input and output signals share the same sampling mode,
sample time, and vector length.

If you set Decimation factor to K, which is greater than 1, then K and the input sampling mode
determine characteristics of the output signal:

Single-Rate Processing

When you set the Rate options parameter to Enforce single-rate processing, the input and
output of the block have the same sample rate. To generate the output while maintaining the input
sample rate, the block resamples the data in each column of the input such that the frame size of the
output (Mo) is 1/K times that of the input (Mo = Mi/K), In this mode, the input frame size, Mi, must be
a multiple of K.

Multirate Processing

When you set the Rate options parameter to Allow multirate processing, the input and output
of the block are the same size, but the sample rate of the output is K times slower than that of the
input. When the block is in multirate processing mode, you must also specify a value for the Input
processing parameter:

• When you set the Input processing parameter to Elements as channels (sample based),
the block treats an M-by-N matrix input as M*N independent channels, and processes each
channel over time. The output sample period (Tso) is K times longer than the input sample period
(Tso = K*Tsi), and the input and output sizes are identical.

• When you set the Input processing parameter to Columns as channels (frame based), the
block treats an Mi-by-N matrix input as N independent channels. The block processes each column
of the input over time by keeping the frame size constant (Mi=Mo), and making the output frame
period (Tfo) K times longer than the input frame period (Tfo = K*Tfi).

Exporting Filter Coefficients to the MATLAB Workspace

To examine or manipulate the coefficients of the filter that this block designs, select Export filter
coefficients to workspace. Then set the Coefficient variable name parameter to the name of a
variable that you want the block to create in the MATLAB workspace. Running the simulation causes
the block to create the variable, overwriting any previous contents in case the variable already exists.

Latency

For information pertaining to the latency of the block, see details in FIR Decimation.

Parameters
Filter shape

Specify the filter shape as Square root or Normal.
Rolloff factor

Specify the rolloff factor of the filter. Use a real number between 0 and 1.
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Filter span in symbols
Specify the number of symbols the filter spans as an even, integer-valued positive scalar. The
default is 10. Because the ideal raised cosine filter has an infinite impulse response, the block
truncates the impulse response to the number of symbols that this parameter specifies.

Input samples per symbol
An integer greater than 1 representing the number of samples that represent one symbol in the
input signal.

Decimation factor
Specify the decimation factor the block applies to the input signal. The output samples per
symbol equals the value of the input samples per symbol divided by the decimation factor. If the
decimation factor is one, then the block only applies filtering. There is no decimation.

Decimation offset
Specify the decimation offset in samples. Use a value between 0 and Decimation factor -1.

Linear amplitude filter gain
Specify a positive scalar value that the block uses to scale the filter coefficients. By default, the
block normalizes filter coefficients to provide unit energy gain. If you specify a gain other than 1,
the block scales the normalized filter coefficients using the gain value you specify.

Input processing
Specify how the block processes the input signal. You can set this parameter to one of the
following options:

• Columns as channels (frame based) — When you select this option, the block treats
each column of the input as a separate channel.

• Elements as channels (sample based) — When you select this option, the block treats
each element of the input as a separate channel.

Rate options
Specify the method by which the block should filter and downsample the input signal. You can
select one of the following options:

• Enforce single-rate processing — When you select this option, the block maintains the
input sample rate and processes the signal by decreasing the output frame size by a factor of
K. To select this option, you must set the Input processing parameter to Columns as
channels (frame based).

• Allow multirate processing — When you select this option, the block processes the
signal such that the output sample rate is K times slower than the input sample rate.

Export filter coefficients to workspace
Select this check box to create a variable in the MATLAB workspace that contains the filter
coefficients.

Coefficient variable name
The name of the variable to create in the MATLAB workspace. This field appears only if Export
filter coefficients to workspace is selected.

Visualize filter with FVTool
If you click this button, then MATLAB launches the Filter Visualization Tool, fvtool, to analyze
the raised cosine filter whenever you apply any changes to the block's parameters. If you launch
fvtool for the filter, and subsequently change parameters in the mask, fvtool will not update.
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You will need to launch a new fvtool in order to see the new filter characteristics. Also note that
if you have launched fvtool, then it will remain open even after the model is closed.

Rounding mode
Select the rounding mode for fixed-point operations. The block uses the Rounding mode when
the result of a fixed-point calculation does not map exactly to a number representable by the data
type and scaling storing the result. The filter coefficients do not obey this parameter; they always
round to Nearest. For more information, see Rounding Modes or “Rounding Mode: Simplest”
(Fixed-Point Designer).

Saturate on integer overflow
Select the overflow mode for fixed-point operations. The filter coefficients do not obey this
parameter; they are always saturated.

Coefficients
Choose how you specify the word length and the fraction length of the filter coefficients
(numerator and/or denominator).

See the Coefficients section of the FIR Decimation help page and “Filter Structure Diagrams” for
illustrations depicting the use of the coefficient data types in this block:

See the Coefficients subsection of the Digital Filter help page for descriptions of parameter
settings.

• When you select Same word length as input, the word length of the filter coefficients
match that of the input to the block. In this mode, the fraction length of the coefficients is
automatically set to the binary-point only scaling that provides you with the best precision
possible given the value and word length of the coefficients.

• When you select Specify word length, you are able to enter the word length of the
coefficients, in bits. In this mode, the fraction length of the coefficients is automatically set to
the binary-point only scaling that provides you with the best precision possible given the value
and word length of the coefficients.

• When you select Binary point scaling, you are able to enter the word length and the
fraction length of the coefficients, in bits. If applicable, you are able to enter separate fraction
lengths for the numerator and denominator coefficients.

• When you select Slope and bias scaling, you are able to enter the word length, in bits,
and the slope of the coefficients. If applicable, you are able to enter separate slopes for the
numerator and denominator coefficients. This block requires power-of-two slope and a bias of
zero.

• The filter coefficients do not obey the Rounding mode and the Saturate on integer
overflow parameters; they are always saturated and rounded to Nearest.

Product output
Use this parameter to specify how you would like to designate the product output word and
fraction lengths. See “Filter Structure Diagrams” and “Multiplication Data Types” for illustrations
depicting the use of the product output data type in this block:

• When you select Same as input, these characteristics match those of the input to the block.
• When you select Binary point scaling, you are able to enter the word length and the

fraction length of the product output, in bits.
• When you select Slope and bias scaling, you are able to enter the word length, in bits,

and the slope of the product output. This block requires power-of-two slope and a bias of zero.
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Accumulator
Use this parameter to specify how you would like to designate the accumulator word and fraction
lengths. See “Filter Structure Diagrams” and “Multiplication Data Types” for illustrations
depicting the use of the accumulator data type in this block:

• When you select Same as input, these characteristics match those of the input to the block.
• When you select Same as product output, these characteristics match those of the

product output.
• When you select Binary point scaling, you are able to enter the word length and the

fraction length of the accumulator, in bits.
• When you select Slope and bias scaling, you are able to enter the word length, in bits,

and the slope of the accumulator. This block requires power-of-two slope and a bias of zero.

Output
Choose how you specify the output word length and fraction length:

• When you select Same as input, these characteristics match those of the input to the block.
• When you select Same as accumulator, these characteristics match those of the

accumulator.
• When you select Binary point scaling, you are able to enter the word length and the

fraction length of the output, in bits.
• When you select Slope and bias scaling, you are able to enter the word length, in bits,

and the slope of the output. This block requires power-of-two slope and a bias of zero.

Lock data type settings against changes by the fixed-point tools
Select this parameter to prevent any fixed-point scaling you specify in this block mask from being
overridden by the autoscaling tool in the Fixed-Point Tool.

Supported Data Type
Port Supported Data Types
In • Double-precision floating point

• Single-precision floating point
• Signed fixed-point

Out • Double-precision floating point
• Single-precision floating point
• Signed fixed-point

Pair Block
Raised Cosine Transmit Filter

Version History
Introduced before R2006a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

This block supports SIMD code generation using Intel AVX2 technology under these conditions:

• Input processing is set to Columns as channels (frame based).
• Rate options is set to Enforce single-rate processing.
• Input signal is real-valued with real filter coefficients.
• Input signal is complex-valued with real or complex filter coefficients.
• Input signal has a data type of single or double.

The SIMD technology significantly improves the performance of the generated code. For details, see
“Generate SIMD Code from Simulink Blocks” (Embedded Coder).

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

This block is a subsystem that contains a FIR Decimation block. You can set HDL Properties on the
subsystem, or you can look under the mask and set HDL Properties on the filter block. See the "HDL
Code Generation" section of the Subsystem, Atomic Subsystem, CodeReuse Subsystem and FIR
Decimation block reference pages for a list of properties.

To save setting changes under the mask, you must break the library link. To break the library link,
select the Raised Cosine Receive Filter block and execute this command.

set_param(gcb,'LinkStatus','inactive')

See Also
Blocks
Raised Cosine Transmit Filter | Symbol Synchronizer

Objects
comm.RaisedCosineTransmitFilter

Functions
rcosdesign
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Raised Cosine Transmit Filter
Apply pulse shaping by upsampling signal using raised cosine FIR filter

Library
Comm Filters

Description
The Raised Cosine Transmit Filter block upsamples and filters the input signal using a normal raised
cosine FIR filter or a square root raised cosine FIR filter. The block icon shows the impulse response
of the filter.

Characteristics of the Filter

The Filter shape parameter determines which type of filter the block uses; choices are Normal and
Square root.

The impulse response of a normal raised cosine filter with rolloff factor R and symbol period T is

h(t) = sin(πt/T)
(πt/T) ⋅ cos(πRt/T)

(1 − 4R2t2/T2)

The impulse response of a square root raised cosine filter with rolloff factor R is

h(t) = 4R
cos (1 + R)πt/T + sin (1 − R)πt/T

(4Rt/T)

π T 1 − (4Rt/T)2

The impulse response of a square root raised cosine filter convolved with itself is approximately equal
to the impulse response of a normal raised cosine filter.

Because the ideal raised cosine filter has an infinite impulse response, the block truncates the
impulse response to the number of symbols that the Filter span in symbols parameter specifies.
The Filter span in symbols, N, and the Output samples per symbol, L, determine the length of
the filter's impulse response, which is L * Filter span in symbols  + 1.

The Rolloff factor parameter is the filter's rolloff factor. It must be a real number between 0 and 1.
The rolloff factor determines the excess bandwidth of the filter. For example, a rolloff factor of .5
means that the bandwidth of the filter is 1.5 times the input sampling frequency.

The block normalizes the filter coefficients to unit energy. If you specify a Linear amplitude filter
gain other than 1, then the block scales the normalized filter coefficients using the gain value you
specify.
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Input Signals and Output Signals

The input must be a discrete-time signal. This block accepts a column vector or matrix input signal.
For information about the data types each block port supports, see the “Supported Data Type” on
page 5-695 table on this page.

The Rate options method and the value of the Output samples per symbol, L, parameter
determine the characteristics of the output signal:

Single-Rate Processing

When you set the Rate options parameter to Enforce single-rate processing, the input and
output of the block have the same sample rate. To generate the output while maintaining the input
sample rate, the block resamples the data in each column of the input such that the frame size of the
output (Mo) is L times larger than that of the input (Mo = Mi*L), where L represents the value of the
Output samples per symbol parameter.

Multirate Processing

When you set the Rate options parameter to Allow multirate processing, the input and output
of the block are the same size. However, the sample rate of the output is L times faster than that of
the input (i.e. the output sample time is 1/L times the input sample time). When the block is in
multirate processing mode, you must also specify a value for the Input processing parameter:

• When you set the Input processing parameter to Elements as channels (sample based),
the block treats an M-by-L matrix input as M*N independent channels, and processes each
channel over time. The output sample period (Tso) is L times shorter than the input sample period
(Tso = Tsi/L), while the input and output sizes remain identical.

• When you set the Input processing parameter to Columns as channels (frame based), the
block treats an Mi-by-N matrix input as N independent channels. The block processes each column
of the input over time by keeping the frame size constant (Mi=Mo), while making the output frame
period (Tfo) L times shorter than the input frame period (Tfo = Tfi/L).

Exporting Filter Coefficients to the MATLAB Workspace

To examine or manipulate the coefficients of the filter that this block designs, select Export filter
coefficients to workspace. Then set the Coefficient variable name parameter to the name of a
variable that you want the block to create in the MATLAB workspace. Running the simulation causes
the block to create the variable, overwriting any previous contents in case the variable already exists.

Parameters
Filter shape

Specify the filter shape as Square root or Normal.
Rolloff factor

Specify the rolloff factor of the filter. Use a real number between 0 and 1.
Filter span in symbols

Specify the number of symbols the filter spans as an even, integer-valued positive scalar. The
default is 10. Because the ideal raised cosine filter has an infinite impulse response, the block
truncates the impulse response to the number of symbols that this parameter specifies.
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Output samples per symbol
Specify the number of output samples for each input symbol. The default is 8. This property
accepts an integer-valued, positive scalar. The number of taps for the raised cosine filter equals
the value of this parameter multiplied by the value of the Filter span in symbols parameter.

Linear amplitude filter gain
Specify a positive scalar value that the block uses to scale the filter coefficients. By default, the
block normalizes filter coefficients to provide unit energy gain. If you specify a gain other than 1,
the block scales the normalized filter coefficients using the gain value you specify.

Input processing
Specify how the block processes the input signal. You can set this parameter to one of the
following options:

• Columns as channels (frame based) — When you select this option, the block treats
each column of the input as a separate channel.

• Elements as channels (sample based) — When you select this option, the block treats
each element of the input as a separate channel.

Rate options
Specify the method by which the block should upsample and filter the input signal. You can select
one of the following options:

• Enforce single-rate processing — When you select this option, the block maintains the
input sample rate, and processes the signal by increasing the output frame size by a factor of
N. To select this option, you must set the Input processing parameter to Columns as
channels (frame based).

• Allow multirate processing — When you select this option, the block processes the
signal such that the output sample rate is N times faster than the input sample rate.

Export filter coefficients to workspace
Select this check box to create a variable in the MATLAB workspace that contains the filter
coefficients.

Visualize filter with FVTool
If you click this button, then MATLAB launches the Filter Visualization Tool, fvtool, to analyze
the raised cosine filter whenever you apply any changes to the block's parameters. If you launch
fvtool for the filter, and subsequently change parameters in the mask, fvtool will not update.
You will need to launch a new fvtool in order to see the new filter characteristics. Also note that
if you have launched fvtool, then it will remain open even after the model is closed.

Rounding mode
Select the rounding mode for fixed-point operations. The block uses the Rounding mode when
the result of a fixed-point calculation does not map exactly to a number representable by the data
type and scaling storing the result. The filter coefficients do not obey this parameter; they always
round to Nearest. For more information, see Rounding Modes or “Rounding Mode: Simplest”
(Fixed-Point Designer).

Saturate on integer overflow
Select the overflow mode for fixed-point operations. The filter coefficients do not obey this
parameter; they are always saturated.
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Coefficients
Choose how you specify the word length and the fraction length of the filter coefficients
(numerator and/or denominator). See “Filter Structure Diagrams” for illustrations depicting the
use of the coefficient data types in this block:

• When you select Same word length as input, the word length of the filter coefficients
match that of the input to the block. In this mode, the fraction length of the coefficients is
automatically set to the binary-point only scaling that provides you with the best precision
possible given the value and word length of the coefficients.

• When you select Specify word length, you are able to enter the word length of the
coefficients, in bits. In this mode, the fraction length of the coefficients is automatically set to
the binary-point only scaling that provides you with the best precision possible given the value
and word length of the coefficients.

• When you select Binary point scaling, you are able to enter the word length and the
fraction length of the coefficients, in bits. If applicable, you are able to enter separate fraction
lengths for the numerator and denominator coefficients.

• When you select Slope and bias scaling, you are able to enter the word length, in bits,
and the slope of the coefficients. If applicable, you are able to enter separate slopes for the
numerator and denominator coefficients. This block requires power-of-two slope and a bias of
zero.

• The filter coefficients do not obey the Rounding mode and the Saturate on integer
overflow parameters; they are always saturated and rounded to Nearest.

Product output
Use this parameter to specify how you would like to designate the product output word and
fraction lengths. See “Filter Structure Diagrams” and “Multiplication Data Types” for illustrations
depicting the use of the product output data type in this block:

• When you select Same as input, these characteristics match those of the input to the block.
• When you select Binary point scaling, you are able to enter the word length and the

fraction length of the product output, in bits.
• When you select Slope and bias scaling, you are able to enter the word length, in bits,

and the slope of the product output. This block requires power-of-two slope and a bias of zero.

Accumulator
Use this parameter to specify how you would like to designate the accumulator word and fraction
lengths. See “Filter Structure Diagrams” and “Multiplication Data Types” for illustrations
depicting the use of the accumulator data type in this block:

• When you select Same as input, these characteristics match those of the input to the block.
• When you select Same as product output, these characteristics match those of the

product output.
• When you select Binary point scaling, you are able to enter the word length and the

fraction length of the accumulator, in bits.
• When you select Slope and bias scaling, you are able to enter the word length, in bits,

and the slope of the accumulator. This block requires power-of-two slope and a bias of zero.

Output
Choose how you specify the output word length and fraction length:
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• When you select Same as input, these characteristics match those of the input to the block.
• When you select Same as accumulator, these characteristics match those of the

accumulator.
• When you select Binary point scaling, you are able to enter the word length and the

fraction length of the output, in bits.
• When you select Slope and bias scaling, you are able to enter the word length, in bits,

and the slope of the output. This block requires power-of-two slope and a bias of zero.

Lock data type settings against changes by the fixed-point tools
Select this parameter to prevent any fixed-point scaling you specify in this block mask from being
overridden by the autoscaling tool in the Fixed-Point Tool.

Supported Data Type
Port Supported Data Types
In • Double-precision floating point

• Single-precision floating point
• Signed fixed-point

Out • Double-precision floating point
• Single-precision floating point
• Signed fixed-point

Pair Block
Raised Cosine Receive Filter

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code relies on memcpy or memset functions (string.h) under certain conditions.

This block supports SIMD code generation using Intel AVX2 technology under these conditions:

• Input processing is set to Columns as channels (frame based).
• Rate options is set to Enforce single-rate processing.
• Input signal is real-valued with real filter coefficients.
• Input signal is complex-valued with real or complex filter coefficients.
• Input signal has a data type of single or double.

The SIMD technology significantly improves the performance of the generated code. For details, see
“Generate SIMD Code from Simulink Blocks” (Embedded Coder).
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HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

This block is a subsystem that contains a FIR Interpolation block. You can set HDL Properties on the
subsystem, or you can look under the mask and set HDL Properties on the filter block. See the "HDL
Code Generation" section of the Subsystem, Atomic Subsystem, CodeReuse Subsystem and FIR
Interpolation block reference pages for a list of properties.

To save setting changes under the mask, you must break the library link. To break the library link,
select the Raised Cosine Transmit Filter block and execute this command.

set_param(gcb,'LinkStatus','inactive')

See Also
Blocks
Raised Cosine Receive Filter

Objects
comm.RaisedCosineReceiveFilter

Functions
rcosdesign
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Random Deinterleaver
Restore ordering of input symbols using random permutation

Library
Block sublibrary of Interleaving

Description
The Random Deinterleaver block rearranges the elements of its input vector using a random
permutation. The Initial seed parameter initializes the random number generator that the block uses
to determine the permutation. If this block and the Random Interleaver block have the same value for
Initial seed, then the two blocks are inverses of each other.

This block accepts a column vector input signal. The Number of elements parameter indicates how
many numbers are in the input vector.

The block accepts the following data types int8, uint8, int16, uint16, int32, uint32, boolean,
single, double, and fixed-point. The output signal inherits its data type from the input signal.

Parameters
Number of elements

The number of elements in the input vector.
Initial seed

The initial seed value for the random number generator.

Pair Block
Random Interleaver

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.
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See Also
Blocks
General Block Deinterleaver | Random Interleaver
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Random Integer Generator
Generate integers randomly distributed in specified range
Library: Communications Toolbox / Comm Sources / Random Data

Sources

Description
The Random Integer Generator block generates uniformly distributed random integers in the range
[0, M-1], where M is specified by the Set size parameter. Use this block to generate random binary-
valued or integer-valued data.

To ensure that the model uses different initial seeds, set the Simulate using parameter to
Interpreted execution, and run the simulation in Normal or Accelerator mode. For more
information, see “Limitations” on page 5-699.

Limitations
• In Rapid Accelerator simulation mode, when you set Simulate using to Interpreted execution

and Source of initial seed to Auto, the block generates the same numbers every time the
simulation runs. This behavior is equivalent to setting Source of initial seed to Parameter and
setting Initial seed to 0.

• In all simulation modes (Normal, Accelerator, and Rapid Accelerator), when you set Simulate
using to Code generation and Source of initial seed to Auto, the block generates the same
numbers every time the simulation runs. This behavior is equivalent to setting Source of initial
seed to Parameter and Initial seed to 0.

For more information, see “Choosing a Simulation Mode” (Simulink).

Ports
Output

Out — Random integer output
scalar | vector | matrix

Random integer output, returned as a scalar, vector, or matrix. This port is unnamed on the block.
The data type is set using the Output data type parameter.

The number of rows in the output data equals the value of the Samples per frame parameter and
corresponds to the number of samples in one frame. The number of columns in the output data equals
the number of elements in the Set size parameter and corresponds to the number of channels.
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Parameters
Set size — Set size

8 (default) | positive integer | row vector of positive integers

Set size,M, specified as a positive integer or row vector of positive integers. The block generates
integers in the range [0, (M – 1)]. The number of elements in Set size corresponds to the number of
independent channels output from the block.

• If Set size is a scalar, then all output random variables are independent and identically distributed
(i.i.d.).

• If Set size is a vector, then the length of the vector determines the number of output channels.
The channels can have differing output ranges.

Source of initial seed — Source of initial seed

Auto (default) | Parameter

Source of the initial seed for the random number generator, specified as either:

• Auto –– the block uses the global random number stream
• Parameter –– the block sets the random number generator seed to Initial seed

Initial seed — Initial seed value

0 (default) | nonnegative integer

Initial seed value for the random number generator, specified as a nonnegative integer. If the Initial
seed parameter is a constant, then the resulting sequence is repeatable.

Dependencies

To enable this parameter, set the Source of initial seed parameter to Parameter.

Sample time — Sample time

1 (default) | -1 | positive scalar

Positive scalars specify the time in seconds between each sample of the output signal. If you set the
Sample time to -1, the output signal inherits the sample time from downstream. For information on
the relationship between the Sample time and Samples per frame parameters, see “Sample
Timing” on page 5-701.

Samples per frame — Samples per frame

1 (default) | positive integer

Samples per frame, specified as a positive integer indicating the number of samples per frame in one
channel of the output data. For information on the relationship between Sample time and Samples
per frame, see “Sample Timing” on page 5-701.

Output data type — Output data type
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double (default) | single | uint8 | uint16 | uint32 | boolean

Output data type, specified as double, single, uint8, uint16, uint32, or boolean. If this
parameter is set to boolean, you must set the Set size parameter to 2.

Simulate using — Type of simulation to run

Interpreted execution (default) | Code generation

Type of simulation to run, specified as:

• Code generation –– Simulate the model using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations as long as the model does not change. This option requires additional startup time.

• Interpreted execution –– Simulate the model using the MATLAB interpreter. This option
shortens startup time. In Interpreted execution mode, you can debug the source code of the
block.

Block Characteristics
Data Types Boolean | double | integer | single
Multidimensional
Signals

no

Variable-Size Signals no

More About
Sample Timing

The time between output updates is equal to the product of the Samples per frame and Sample
time parameter values. For example, if Sample time and Samples per frame each equal 1, the
block outputs a sample every second. If you increase Samples per frame to 10, then the block
outputs a 10-by-1 vector every 10 seconds. This ensures that the equivalent output rate is not
dependent on the Samples per frame parameter.

Version History
Introduced before R2006a

Random Integer Generator block update supported in Upgrade Advisor
Behavior changed in R2020a

Starting in R2020a, Random Integer Generator block allows you to use the Upgrade Advisor. You can
update to the block version announced in R2015b or keep the block version available before R2015b.

• Use the Upgrade Advisor to update existing models that include the Random Integer Generator
block.

• Behavior of the random number generator is changed. The statistics are improved. For more
information, see “Source blocks output frames of contiguous time samples but do not use the
frame attribute” in the R2015b Release Notes.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Functions
randi

Topics
“Sources and Sinks”
“Choosing a Simulation Mode” (Simulink)
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Random Interleaver
Reorder input symbols using random permutation

Library
Block sublibrary of Interleaving

Description
The Random Interleaver block rearranges the elements of its input vector using a random
permutation. This block accepts a column vector input signal. The Number of elements parameter
indicates how many numbers are in the input vector.

The block accepts the following data types: int8, uint8, int16, uint16, int32, uint32, boolean,
single, double, and fixed-point. The output signal inherits its data type from the input signal.

The Initial seed parameter initializes the random number generator that the block uses to determine
the permutation. The block is predictable for a given seed, but different seeds produce different
permutations.

Parameters
Number of elements

The number of elements in the input vector.
Initial seed

The initial seed value for the random number generator.

Pair Block
Random Deinterleaver

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.
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See Also
Blocks
General Block Interleaver | Random Deinterleaver
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Receiver Thermal Noise
Apply receiver thermal noise to complex signal
Library: Communications Toolbox / RF Impairments

Description
The Receiver Thermal Noise block applies receiver thermal noise to a complex signal. The block
simulates the effects of thermal noise on a complex signal. The Specification method parameter
enables specification of the thermal noise based on the noise temperature, noise figure, or noise
factor.

Ports
Input

In1 — Complex signal
scalar | column vector

Complex signal, specified as a scalar or column vector.
Data Types: double | single
Complex Number Support: Yes

Output

Out1 — Output signal
scalar | column vector

Output signal, returned as a scalar or column vector. This output is the same dimension and data type
as the input signal.

Parameters
Specification method — Thermal noise specification method

Noise temperature (default) | Noise figure | Noise factor

Thermal noise specification method, specified as one of these options.

• Noise temperature specifies the noise in kelvins.
• Noise figure specifies the added receiver noise in dB relative to an input noise temperature of

290 K. The noise figure is the decibel equivalent of the noise factor.
• Noise factor specifies the added receiver noise relative to an input noise temperature of 290 K.

The noise factor is the linear equivalent of the noise figure.
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Noise temperature (K) — Noise temperature

290 (default) | scalar

Noise temperature in kelvins, specified as a scalar.

Tunable: Yes
Dependencies

To enable this parameter, set the Specification method parameter to Noise temperature.

Noise figure (dB) — Receiver noise figure

3.0103 (default) | scalar

Receiver noise figure in dB relative to a noise temperature of 290 K, specified as a scalar.

Note This parameter specifies the noise contribution of the receiver circuitry only. To add the effects
of antenna noise, select the Add 290K antenna noise parameter.

Tunable: Yes
Dependencies

To enable this parameter, set the Specification method parameter to Noise figure.

Noise factor — Receiver noise factor

2 (default) | scalar

Receiver noise factor relative to a noise temperature of 290 K, specified as a scalar.

Note This parameter specifies the noise contribution of the receiver circuitry only. To add the effects
of antenna noise, select the Add 290K antenna noise parameter.

Tunable: Yes
Dependencies

To enable this parameter, set the Specification method parameter to Noise factor.

Add 290K antenna noise — Option to add 290 K antenna noise
off (default) | on

Select this parameter to add 290 K antenna noise to the signal.
Dependencies

To enable this parameter, set the Specification method parameter to Noise factor or Noise
figure.

Reference load (ohm) — Reference load
1 (default) | scalar
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Reference load value in ohms, specified as a scalar. This value is used to compute the voltage levels
based on the signal and noise power levels.

Tunable: Yes

Initial seed — Initial seed value

67987 (default) | scalar

Initial seed value for the random number generator, specified as a scalar.

Block Characteristics
Data Types double | single
Multidimensional
Signals

no

Variable-Size Signals no

Algorithms
Wireless receiver performance is often expressed as a noise factor or figure. The noise factor is
defined as the ratio of the input signal-to-noise ratio, Si/Ni to the output signal-to-noise ratio, So/No,
such that

F =
Si/Ni
So/No

.

Given the receiver gain G and receiver noise power Nckt, the noise factor can be expressed as

F =
Si/Ni

GSi/ Nckt + GNi

=
Nckt + GNi

GNi
.

The IEEE defines the noise factor assuming that noise temperature at the input is T0, where T0 = 290
K. The noise factor is then

F =
Nckt + GNi

GNi

=
GkBTckt + GkBT0

GkBT0

=
Tckt + T0

T0
.

Tckt is the equivalent input noise temperature of the receiver and is expressed as

Tckt = T0(F − 1) .

The overall noise temperature of an antenna and receiver Tsys is

Tsys = Tant + Tckt ,
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where Tant is the antenna noise temperature.

The noise figure NF is the dB equivalent of the noise factor and can be expressed as

NF = 10log10(F) .

The noise power can be expressed as

N = kTB = V2/R,

where V is the noise voltage expressed as

V2 = kTBR,

and R is the reference load.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
I/Q Imbalance | Free Space Path Loss | Memoryless Nonlinearity | Phase Noise | Phase/Frequency
Offset

Objects
comm.ThermalNoise
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Rectangular QAM Demodulator Baseband
Demodulate rectangular-QAM-modulated data

Library
AM, in Digital Baseband sublibrary of Modulation

Description
The Rectangular QAM Demodulator Baseband block demodulates a signal that was modulated using
quadrature amplitude modulation with a constellation on a rectangular lattice.

Note All values of power assume a nominal impedance of 1 ohm.

The signal constellation has M points, where M is the M-ary number parameter. M must have the
form 2K for some positive integer K. The block scales the signal constellation based on how you set
the Normalization method parameter. For details, see the reference page for the Rectangular QAM
Modulator Baseband block.

This block accepts a scalar or column vector input signal. For information about the data types each
block port supports, see the “Supported Data Types” on page 5-716 table on this page.

Hard Decision Algorithm
The demodulator algorithm maps received input signal constellation values to M-ary integer I and Q
symbol indices between 0 and M − 1 and then maps these demodulated symbol indices to formatted
output values.

The integer symbol index computation is performed by first derotating and scaling the complex input
signal constellation (possibly with noise) by a derotate factor and denormalization factor, respectively.
These factors are derived from the Phase offset, Normalization method, and related parameters.
These derotated and denormalized values are added to M − 1 to translate them into an approximate
range between 0 and 2 × ( M − 1) (plus noise). The resulting values are then rescaled via a divide-by-
two (or, equivalently, a right-shift by one bit for fixed-point operation) to obtain a range approximately
between 0 and M − 1 (plus noise) for I and Q. The noisy index values are rounded to the nearest
integer and clipped, via saturation, and mapped to integer symbol values in the range [0 M-1]. Finally,
based on other block parameters, the integer index is mapped to a symbol value that is formatted and
cast to the selected Output data type.

The following figures contains signal flow diagrams for floating-point and fixed-point algorithm
operation. The floating-point diagrams apply when the input signal data type is double or single.
The fixed-point diagrams apply when the input signal is a signed fixed-point data type. Note that the
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diagram is simplified when Phase offset is a multiple of π/2, and/or the derived denormalization
factor is 1.

Signal-Flow Diagrams with Trivial Phase Offset and Denormalization Factor Equal to 1
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Signal-Flow Diagrams with Nontrivial Phase Offset and Nonunity Denormalization Factor

Parameters
M-ary number

The number of points in the signal constellation. It must have the form 2K for some positive
integer K.

Normalization method
Determines how the block scales the signal constellation. Choices are Min. distance between
symbols, Average Power, and Peak Power.
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Minimum distance
This parameter appears when Normalization method is set to Min. distance between
symbols.

The distance between two nearest constellation points.
Average power, referenced to 1 ohm (watts)

The average power of the symbols in the constellation, referenced to 1 ohm. This field appears
only when Normalization method is set to Average Power.

Peak power, referenced to 1 ohm (watts)
The maximum power of the symbols in the constellation, referenced to 1 ohm. This field appears
only when Normalization method is set to Peak Power.

Phase offset (rad)
The rotation of the signal constellation, in radians.

Constellation ordering
Determines how the block assigns binary words to points of the signal constellation. More details
are on the reference page for the Rectangular QAM Modulator Baseband block.

Selecting User-defined displays the field Constellation mapping, allowing for user-specified
mapping.

Constellation mapping
This parameter appears when User-defined is selected in the pull-down list Constellation
ordering.

This is a row or column vector of size M and must have unique integer values in the range [0,
M-1]. The values must be of data type double.

The first element of this vector corresponds to the top-leftmost point of the constellation, with
subsequent elements running down column-wise, from left to right. The last element corresponds
to the bottom-rightmost point.

Output type
Determines whether the block produces integers or binary representations of integers.

If set to Integer, the block produces integers.

If set to Bit, the block produces a group of K bits, called a binary word, for each symbol, when
Decision type is set to Hard decision. If Decision type is set to Log-likelihood ratio or
Approximate log-likelihood ratio, the block outputs bitwise LLR and approximate LLR,
respectively.

Decision type
This parameter appears when Bit is selected in the pull-down list Output type.

Specifies the use of hard decision, LLR, or approximate LLR during demodulation. For more
information, see “Hard- vs. Soft-Decision Demodulation”.

Noise variance source
This parameter appears when Approximate log-likelihood ratio or Log-likelihood
ratio is selected for Decision type.
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When set to Dialog, the noise variance can be specified in the Noise variance field. When set to
Port, a port appears on the block through which the noise variance can be input.

Noise variance
This parameter appears when the Noise variance source is set to Dialog and specifies the
noise variance in the input signal. This parameter is tunable in normal mode, Accelerator mode
and Rapid Accelerator mode.

If you use the Simulink Coder rapid simulation (RSIM) target to build an RSIM executable, then
you can tune the parameter without recompiling the model. This is useful for Monte Carlo
simulations in which you run the simulation multiple times (perhaps on multiple computers) with
different amounts of noise.

The exact LLR algorithm computes exponentials using finite precision arithmetic. For
computations involving very large positive or negative magnitudes, the exact LLR algorithm
yields:

• Inf or -Inf if the noise variance is a very large value
• NaN if the noise variance and signal power are both very small values

The approximate LLR algorithm does not compute exponentials. You can avoid Inf, -Inf, and
NaN results by using the approximate LLR algorithm.

Output
When the parameter is set to 'Inherit via internal rule' (default setting), the block will
inherit the output data type from the input port. The output data type will be the same as the
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input data type if the input is of type single or double. Otherwise, the output data type will be
as if this parameter is set to 'Smallest unsigned integer'.

When the parameter is set to 'Smallest unsigned integer', the output data type is selected
based on the settings used in the Hardware Implementation pane of the Configuration
Parameters dialog box of the model. If ASIC/FPGA is selected in the Hardware Implementation
pane, the output data type is the ideal minimum size, i.e., ufix(1) for bit outputs, and
ufix(ceil(log2(M))) for integer outputs. For all other selections, it is an unsigned integer
with the smallest available word length large enough to fit the ideal minimum size, usually
corresponding to the size of a char (e.g., uint8).

For integer outputs, this parameter can be set to Smallest unsigned integer, int8, uint8,
int16, uint16, int32, uint32, single, and double. For bit outputs, the options are
Smallest unsigned integer, int8, uint8, int16, uint16, int32, uint32, boolean,
single, or double.

Derotate factor
This parameter only applies when the input is fixed-point and Phase offset is not a multiple of
π/2.

This can be set to Same word length as input or Specify word length, in which case a
field is enabled for user input.

Denormalization factor
This parameter only applies when the input is fixed-point and the derived denormalization factor
is nonunity (not equal to 1). This scaling factor is derived from Normalization method and other
parameter values in the block dialog.

This can be set to Same word length as input or Specify word length, in which case a
field is enabled for user input. A best-precision fraction length is always used.

Product output
This parameter only applies when the input is a fixed-point signal and there is a nonunity (not
equal to 1) denormalized factor. It can be set to Inherit via internal rule or Specify
word length, which enables a field for user input.

Setting to Inherit via internal rule computes the full-precision product word length and
fraction length. For information about the full-precision Product output internal rule, see
Internal Rule for Product Data Types.

Setting to Specify word length allows you to define the word length. The block computes a
best-precision fraction length based on the word length specified and the pre-computed worst-
case (min/max) real world value Product output result. The worst-case Product output result is
precomputed by multiplying the denormalized factor with the worst-case (min/max) input signal
range, purely based on the input signal data type.

The block uses the Rounding mode when the result of a fixed-point calculation does not map
exactly to a number representable by the data type and scaling storing the result. For more
information, see “Rounding Modes” or “Rounding Mode: Simplest” (Fixed-Point Designer).

Sum
This parameter only applies when the input is a fixed-point signal. It can be set to Inherit via
internal rule, Same as product output, or Specify word length, in which case a field
is enabled for user input
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Setting to Inherit via internal rule computes the full-precision sum word length and
fraction length, based on the two inputs to the Sum in the fixed-point Hard Decision Algorithm on
page 5-709 signal flow diagram. The rule is the same as the fixed-point inherit rule of the internal
Accumulator data type parameter in the Simulink Sum (Simulink) block.

Setting to Specify word length allows you to define the word length. A best precision fraction
length is computed based on the word length specified in the pre-computed maximum range
necessary for the demodulated algorithm to produce accurate results. The signed fixed-point data
type that has the best precision fully contains the values in the range 2 * ( M − 1) for the
specified word length.

Setting to Same as product output allows the Sum data type to be the same as the Product
output data type (when Product output is used). If the Product output is not used, then this
setting will be ignored and the Inherit via internal rule Sum setting will be used.

Examples

Demodulate Noisy QAM Signal

Modulate and demodulate a noisy QAM signal.

Use the Open model button to open the QAM demodulation model.

Run the simulation. The results are saved to the base workspace, where the variable ErrorVec is a
1-by-3 row vector. The BER is found in the first element.

Display the error statistics. For the Eb/No provided, 2 dB, the resultant BER is approximately 0.1.
Your results may vary slightly.

ans =

    0.0948

Increase the Eb/No to 4 dB. Rerun the simulation, and observe that the BER has decreased.

ans =
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    0.0167

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
• Signed fixed–point when M-ary number is an even power of 2 and:

• Output type is Integer
• Output type is Bit and Decision type is Hard-decision

Var • Double-precision floating point
• Single-precision floating point

Output • Double-precision floating point
• Single-precision floating point
• Boolean when Output type is Bit
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers
• ufix(1) in ASIC/FPGA when Output type is Bit
• uf ix log2M  in ASIC/FPGA when Output type is Integer

Pair Block
Rectangular QAM Modulator Baseband

References

[1] Smith, Joel G., “Odd-Bit Quadrature Amplitude-Shift Keying,” IEEE Transactions on
Communications, Vol. COM-23, March 1975, 385–389.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.
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HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Restrictions

• The block does not support single or double data types for HDL code generation.
• HDL Coder supports the following Output type options:

• Integer
• Bit is supported only if the Decision Type is Hard decision.

• You must set Normalization Method to Minimum Distance Between Symbols, with a
Minimum distance of 2.

• You must set Phase offset (rad) to a value that is a multiple of pi/4.

See Also
Blocks
Rectangular QAM Modulator Baseband | General QAM Demodulator Baseband

Topics
“Digital Baseband Modulation”
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Rectangular QAM Modulator Baseband
Modulate using rectangular quadrature amplitude modulation

Library
AM, in Digital Baseband sublibrary of Modulation

Description
The Rectangular QAM Modulator Baseband block modulates using M-ary quadrature amplitude
modulation with a constellation on a rectangular lattice. The output is a baseband representation of
the modulated signal. This block accepts a scalar or column vector input signal. For information
about the data types each block port supports, see “Supported Data Types” on page 5-722.

Note All values of power assume a nominal impedance of 1 ohm.

Integer-Valued Signals and Binary-Valued Signals

When you set the Input type parameter to Integer, the block accepts integer values between 0 and
M-1. M represents the M-ary number block parameter.

When you set the Input type parameter to Bit, the block accepts binary-valued inputs that
represent integers. The block collects binary-valued signals into groups of K = log2(M) bits

where

K represents the number of bits per symbol.

The input vector length must be an integer multiple of K. In this configuration, the block accepts a
group of K bits and maps that group onto a symbol at the block output. The block outputs one
modulated symbol for each group of K bits.

The Constellation ordering parameter indicates how the block assigns binary words to points of the
signal constellation. Such assignments apply independently to the in-phase and quadrature
components of the input:

• If Constellation ordering is set to Binary, the block uses a natural binary-coded constellation.
• If Constellation ordering is set to Gray and K is even, the block uses a Gray-coded constellation.
• If Constellation ordering is set to Gray and K is odd, the block codes the constellation so that

pairs of nearest points differ in one or two bits. The constellation is cross-shaped, and the
schematic below indicates which pairs of points differ in two bits. The schematic uses M = 128,
but suggests the general case.
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For details about the Gray coding, see the reference page for the M-PSK Modulator Baseband block
and the paper listed in References on page 5-722. Because the in-phase and quadrature components
are assigned independently, the Gray and binary orderings coincide when M = 4.

Constellation Size and Scaling

The signal constellation has M points, where M is the M-ary number parameter. M must have the
form 2K for some positive integer K. The block scales the signal constellation based on how you set
the Normalization method parameter. The following table lists the possible scaling conditions.

Value of Normalization Method Parameter Scaling Condition
Min. distance between symbols The nearest pair of points in the constellation is

separated by the value of the Minimum
distance parameter

Average Power The average power of the symbols in the
constellation is the Average power parameter

Peak Power The maximum power of the symbols in the
constellation is the Peak power parameter

Parameters
M-ary number

The number of points in the signal constellation. It must have the form 2K for some positive
integer K.

Input type
Indicates whether the input consists of integers or groups of bits.

Constellation ordering
Determines how the block maps each symbol to a group of output bits or integer.

Selecting User-defined displays the field Constellation mapping, which allows for user-
specified mapping.

Constellation mapping
This parameter is a row or column vector of size M and must have unique integer values in the
range [0, M-1]. The values must be of data type double.

The first element of this vector corresponds to the top-leftmost point of the constellation, with
subsequent elements running down column-wise, from left to right. The last element corresponds
to the bottom-rightmost point.
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This field appears when User-defined is selected in the drop-down list Constellation
ordering.

Normalization method
Determines how the block scales the signal constellation. Choices are Min. distance between
symbols, Average Power, and Peak Power.

Minimum distance
The distance between two nearest constellation points. This field appears only when
Normalization method is set to Min. distance between symbols.

Average power, referenced to 1 ohm (watts)
The average power of the symbols in the constellation, referenced to 1 ohm. This field appears
only when Normalization method is set to Average Power.

Peak power, referenced to 1 ohm (watts)
The maximum power of the symbols in the constellation, referenced to 1 ohm. This field appears
only when Normalization method is set to Peak Power.

Phase offset (rad)
The rotation of the signal constellation, in radians.

Output data type
The output data type can be set to double, single, Fixed-point, User-defined, or Inherit
via back propagation.

Setting this parameter to Fixed-point or User-defined enables fields in which you can
further specify details. Setting this parameter to Inherit via back propagation, sets the
output data type and scaling to match the following block.

Output word length
Specify the word length, in bits, of the fixed-point output data type. This parameter is only visible
when you select Fixed-point for the Output data type parameter.

User-defined data type
Specify any signed built-in or signed fixed-point data type. You can specify fixed-point data types
using the fixdt function. This parameter is only visible when you select User-defined for the
Output data type parameter.

Set output fraction length to
Specify the scaling of the fixed-point output by either of the following methods:

• Choose Best precision to have the output scaling automatically set such that the output
signal has the best possible precision.

• Choose User-defined to specify the output scaling in the Output fraction length
parameter.

This parameter is only visible when you select Fixed-point for the Output data type
parameter or when you select User-defined and the specified output data type is a fixed-point
data type.

Output fraction length
For fixed-point output data types, specify the number of fractional bits, or bits to the right of the
binary point. This parameter is only visible when you select Fixed-point or User-defined for
the Output data type parameter and User-defined for the Set output fraction length to
parameter.
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Examples

Plot Noisy 16-QAM Constellation in Simulink

The doc_qam_mod model uses the Rectangular QAM Modulator Baseband block to modulate random
data and applies noise to the signal by using the AWGN Channel block. After passing the symbols
through a noisy channel, the model produces a constellation diagram of the noisy data. When the
noise level is increased, the constellation points show increased signal distortion.

A Random Integer Generator block generates integers in the range [0,15] for a modulator configured
to apply 16-QAM. The modulated signal passes through an AWGN channel, and a constellation
diagram displays the resulting symbols.

Run the model with Eb/N0 set to 20 dB in the AWGN channel.

Change the Eb/No from 20 dB to 10 dB. Observe the increase in the noise.
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Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
• Boolean when Input type is Bit
• 8-, 16-, 32-bit signed integers
• 8-, 16-, 32-bit unsigned integers
• uf ix log2M  when Input type is Integer

Output • Double-precision floating point
• Single-precision floating point
• Signed fixed-point

Pair Block
Rectangular QAM Demodulator Baseband

References
[1] Smith, Joel G., “Odd-Bit Quadrature Amplitude-Shift Keying,” IEEE Transactions on

Communications, Vol. COM-23, March 1975, 385–389.
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More About
Constellation Visualization

Click View Constellation on the block mask to visualize a signal constellation for the specified block
parameters. Parameter settings must be applied before viewing a constellation. For more information,
see “View Constellation of Modulator Block”.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Restrictions

• The block does not support single or double data types for HDL code generation.
• When Input Type is set to Bit, the block does not support HDL code generation for input types

other than boolean or ufix1.

When the input type is set to Bit, but the block input is actually multibit (uint16, for example), the
Rectangular QAM Modulator Baseband block does not support HDL code generation.
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See Also
Blocks
Rectangular QAM Demodulator Baseband | General QAM Modulator Baseband

Functions
qammod
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Rectangular QAM TCM Decoder
Decode trellis-coded modulation data, modulated using QAM method

Library
TCM, in Digital Baseband sublibrary of Modulation

Description
The Rectangular QAM TCM Decoder block uses the Viterbi algorithm to decode a trellis-coded
modulation (TCM) signal that was previously modulated using a QAM signal constellation.

The M-ary number parameter represents the number of points in the signal constellation, which also
equals the number of possible output symbols from the convolutional encoder. (That is, log2(M-
ary number) is the number of output bit streams from the convolutional encoder.)

The Trellis structure and M-ary number parameters in this block should match those in the
Rectangular QAM TCM Encoder block, to ensure proper decoding.

Input and Output Signals

This block accepts a column vector input signal containing complex numbers. For information about
the data types each block port supports, see “Supported Data Types” on page 5-726.

If the convolutional encoder described by the trellis structure represents a rate k/n code, then the
Rectangular QAM TCM Decoder block's output is a binary column vector with a length of k times the
vector length of the input signal.

Operation Modes

The block has three possible methods for transitioning between successive frames. The Operation
mode parameter controls which method the block uses. This parameter also affects the range of
possible values for the Traceback depth parameter, D.

• In Continuous mode, the block initializes all state metrics to zero at the beginning of the
simulation, waits until it accumulates D symbols, and then uses a sequence of D symbols to
compute each of the traceback paths. D can be any positive integer. At the end of each frame, the
block saves its internal state metric for use with the next frame.

If you select Enable the reset input, the block displays another input port, labeled Rst. This port
receives an integer scalar signal. Whenever the value at the Rst port is nonzero, the block resets
all state metrics to zero and sets the traceback memory to zero.

• In Truncated mode, the block treats each frame independently. The traceback path starts at the
state with the lowest metric. D must be less than or equal to the vector length of the input.
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• In Terminated mode, the block treats each frame independently. The traceback path always
starts at the all-zeros state. D must be less than or equal to the vector length of the input. If you
know that each frame of data typically ends at the all-zeros state, then this mode is an appropriate
choice.

Decoding Delay

If you set Operation mode to Continuous, then this block introduces a decoding delay equal to
Traceback depth*k bits, for a rate k/n convolutional code. The decoding delay is the number of zeros
that precede the first decoded bit in the output.

The block incurs no delay for other values of Operation mode.

Parameters
Trellis structure

MATLAB structure that contains the trellis description of the convolutional encoder.
M-ary number

The number of points in the signal constellation.
Traceback depth

The number of trellis branches (equivalently, the number of symbols) the block uses in the Viterbi
algorithm to construct each traceback path.

Operation mode
The operation mode of the Viterbi decoder. Choices are Continuous, Truncated, and
Terminated.

Enable the reset input port
When you select this check box, the block has a second input port labeled Rst. Providing a
nonzero input value to this port causes the block to set its internal memory to the initial state
before processing the input data. This option appears only if you set Operation mode to
Continuous.

Output data type
Select the data type for the block output signal as boolean or single. By default, the block sets
this to double.

Supported Data Types
Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
Reset • Double-precision floating point

• Boolean
Output • Double-precision floating point

• Boolean
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Pair Block
Rectangular QAM TCM Encoder

References

[1] Biglieri, E., D. Divsalar, P. J. McLane and M. K. Simon, Introduction to Trellis-Coded Modulation
with Applications, New York, Macmillan, 1991.

[2] Proakis, John G., Digital Communications, Fourth edition, New York, McGraw-Hill, 2001.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Rectangular QAM TCM Encoder | General TCM Decoder

Functions
poly2trellis
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Rectangular QAM TCM Encoder
Convolutionally encode binary data and modulate using QAM method

Library
TCM, in Digital Baseband sublibrary of Modulation

Description
The Rectangular QAM TCM Encoder block implements trellis-coded modulation (TCM) by
convolutionally encoding the binary input signal and mapping the result to a QAM signal
constellation.

The M-ary number parameter is the number of points in the signal constellation, which also equals
the number of possible output symbols from the convolutional encoder. (That is, log2(M-ary number)
is equal to n for a rate k/n convolutional code.)

Input Signals and Output Signals

If the convolutional encoder described by the trellis structure represents a rate k/n code, then the
Rectangular QAM TCM Encoder block's input must be a binary column vector with a length of L*k for
some positive integer L.

The output from the Rectangular QAM TCM Encoder block is a complex column vector of length L.

Specifying the Encoder

To define the convolutional encoder, use the Trellis structure parameter. This parameter is a
MATLAB structure whose format is described in “Trellis Description of a Convolutional Code”. You
can use this parameter field in two ways:

• If you want to specify the encoder using its constraint length, generator polynomials, and possibly
feedback connection polynomials, then use a poly2trellis command within the Trellis
structure field. For example, to use an encoder with a constraint length of 7, code generator
polynomials of 171 and 133 (in octal numbers), and a feedback connection of 171 (in octal), set the
Trellis structure parameter to

poly2trellis(7,[171 133],171)
• If you have a variable in the MATLAB workspace that contains the trellis structure, then enter its

name as the Trellis structure parameter. This way is faster because it causes Simulink to spend
less time updating the diagram at the beginning of each simulation, compared to the usage in the
previous bulleted item.

The encoder registers begin in the all-zeros state. You can configure the encoder so that it resets its
registers to the all-zeros state during the course of the simulation. To do this, set the Operation
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mode to Reset on nonzero input via port. The block then opens a second input port, labeled Rst.
The signal at the Rst port is a scalar signal. When it is nonzero, the encoder resets before processing
the data at the first input port.

Signal Constellations

The trellis-coded modulation technique partitions the constellation into subsets called cosets, so as to
maximize the minimum distance between pairs of points in each coset. This block internally forms a
valid partition based on the value you choose for the M-ary number parameter.

The figures below show the labeled set-partitioned signal constellations that the block uses when M-
ary number is 16, 32, and 64. For constellations of other sizes, see Biglieri, E., D. Divsalar, P. J.
McLane and M. K. Simon, Introduction to Trellis-Coded Modulation with Applications, New York,
Macmillan, 1991.
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Coding Gains

Coding gains of 3 to 6 decibels, relative to the uncoded case can be achieved in the presence of
AWGN with multiphase trellis codes. For more information, see Biglieri, E., D. Divsalar, P. J. McLane

5 Blocks

5-730



and M. K. Simon, Introduction to Trellis-Coded Modulation with Applications, New York, Macmillan,
1991.

Parameters
Trellis structure

MATLAB structure that contains the trellis description of the convolutional encoder.
Operation mode

In Continuous mode (default setting), the block retains the encoder states at the end of each
frame, for use with the next frame.

In Truncated (reset every frame) mode, the block treats each frame independently. I.e.,
the encoder states are reset to all-zeros state at the start of each frame.

In Terminate trellis by appending bits mode, the block treats each frame
independently. For each input frame, extra bits are used to set the encoder states to all-zeros
state at the end of the frame. The output length is given by y = n ⋅ (x + s)/k, where x is the
number of input bits, and s = constraint length − 1 (or, in the case of multiple constraint lengths,
s =sum(ConstraintLength(i)-1)). The block supports this mode for column vector input
signals.

In Reset on nonzero input via port mode, the block has an additional input port, labeled
Rst. When the Rst input is nonzero, the encoder resets to the all-zeros state.

M-ary number
The number of points in the signal constellation.

Output data type
The output type of the block can be specified as a single or double. By default, the block sets
this to double.

Pair Block
Rectangular QAM TCM Decoder

References

[1] Biglieri, E., D. Divsalar, P. J. McLane and M. K. Simon, Introduction to Trellis-Coded Modulation
with Applications, New York, Macmillan, 1991.

[2] Proakis, John G., Digital Communications, Fourth edition, New York, McGraw-Hill, 2001

[3] Ungerboeck, G., “Channel Coding with Multilevel/Phase Signals”, IEEE Trans. on Information
Theory, Vol IT28, Jan. 1982, pp. 55–67.

Version History
Introduced before R2006a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Rectangular QAM TCM Decoder | General TCM Encoder

Functions
poly2trellis
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Sample-Rate Match
Upsample two signals to common rate
Library: Communications Toolbox / RF Impairments and Components

Description
The Sample-Rate Match block upsamples the input signals, as needed, to a common output sample
rate. This block introduces delays to your simulation. Use the srmdelay function to compute the
delay that will be introduced.

Ports
Input

In1 — First input signal
column vector | matrix

First input signal, specified as a column vector or a K1-by-Nchan1 matrix. K1 is the number of rows and
Nchan1 is the number of channels in the input signal matrix.
Data Types: single | double
Complex Number Support: Yes

In2 — Second input signal
column vector | matrix

Second input signal, specified as a column vector or a K2-by-Nchan2 matrix. K2 is the number of rows
and Nchan2 is the number of channels in the input signal matrix.
Data Types: single | double
Complex Number Support: Yes

Output

Out — Output signal
matrix

Output signal, returned as a P-by-(Nchan1+Nchan2) matrix of the same data type as the input signals. P
is the Output samples per frame parameter value.
Data Types: single | double
Complex Number Support: Yes

Parameters
Input sample rate (Hz) — Sample rate of each input signal
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[1 2]*1e6 (default) | 2-element vector

Sample rate of each input signal in Hz, specified as a 2-element vector of positive values.

Output samples per frame — Number of samples output per frame

1000 (default) | positive integer

Number of samples output per frame, specified as a positive integer.

Output sample rate options — Options for output sample rate

Auto (default) | Specify via property

Options for the output sample rate, specified as either Auto or Specify via property.

• Auto — The output sample rate is set to the highest value in the Input sample rate (Hz)
parameter.

• Specify via property — Specify the output sample rate value using the Output sample
rate (Hz) parameter.

Output sample rate (Hz) — Output signal sample rate

2e6 (default) | positive scalar

Output signal sample rate in Hz, specified as a positive scalar. The value must be greater than or
equal to the Input sample rate (Hz) parameter values.

Dependencies

To enable this parameter, set the Output sample rate options parameter to Specify via
property.

Block Characteristics
Data Types double | single
Multidimensional
Signals

no

Variable-Size Signals no

Algorithms
This figure illustrates the algorithm processing of input signal data for the sample rate match.

The input signals are first buffered to a common length specified by the Output samples per
frame parameter. The buffered signals are interpolated to match their sample rates to the output
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sample rate. The two interpolated signals are then concatenated to produce the matrix output. The
interpolation and decimation factors of the interpolation operation are computed as [L,M] =
rat(RO/RI, 0), where:

• RO is the output sample rate, which is either automatically computed or specified in Output
sample rate (Hz).

• RI is the input sample rate specified in Input sample rate (Hz).
• L is the interpolation factor.
• M is the decimation factor.

Version History
Introduced in R2022b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Multiband Combiner | FIR Rate Conversion

Functions
srmdelay
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Sample Rate Offset
Apply sample rate offset to input signal
Library: Communications Toolbox / RF Impairments and Components

Description
The Sample Rate Offset block applies a sample rate offset to the input signal. Applying a sample rate
offset is equivalent to changing the ADC clock rate.

Ports
Input

In — Input signal
scalar | vector | matrix

Input signal, specified as a scalar, an NS element column vector, or an NS-by-NC matrix. NS is the
number of time samples. NC is the number of channels. For matrix input signals, the sample rate
offset is applied independently to each column.
Data Types: double | single
Complex Number Support: Yes

Output

Out — Output signal
scalar | vector | matrix

Output signal, returned as a scalar, vector, or matrix. This output is the same data type as the input
signal.

Parameters
sample rate offset — Sample rate offset

10 (default) | scalar

Sample rate offset in parts per million (ppm), specified as a scalar greater than –1e6.
Data Types: double

Simulate using — Type of simulation to run

Interpreted execution (default) | Code generation

Type of simulation to run, specified as Interpreted execution or Code generation.
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• Interpreted execution –– Simulate the model by using the MATLAB interpreter. This option
requires less startup time than the Code generation option, but the speed of subsequent
simulations is slower. In this mode, you can debug the source code of the block.

• Code generation –– Simulate the model by using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations unless the model changes. This option requires additional startup time, but the speed
of the subsequent simulations is faster than Interpreted execution.

Block Characteristics
Data Types double | single
Multidimensional
Signals

no

Variable-Size Signals yes

Version History
Introduced in R2022b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Phase/Frequency Offset

Objects
comm.SampleRateOffset
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Scrambler
Scramble input signal
Library: Communications Toolbox / Sequence Operations

Description
The Scrambler block applies multiplicative scrambling to input data.

One purpose of scrambling is to reduce the length of consecutive 0s or 1s in a transmitted signal.
Long sequences of 0s or 1s can cause transmission synchronization problems. This schematic shows
the scrambler operation. All adders perform addition modulo N, where N is the value specified by the
Calculation base parameter.

At each time step, the input causes the contents of the registers to shift sequentially. Using the
Scramble polynomial parameter, you specify the on or off state for each switch in the scrambler.

To achieve repeatable initial scrambler conditions, you can use one of these optional input ports:

• Select the Reset on nonzero input via port parameter and reset the scrambler with Rst.
• Set the Initial states source parameter to Input port and provide the initial states with

ISt.

This block can accept input sequences that vary in length during simulation. For more information
about sequences that vary in length, see Variable-Size Signal Basics (Simulink).

Note To apply additive scrambling to input data, you can use the PN Sequence Generator block and
the Logical Operator block configured as an XOR logical operator. For an example, see “Additive
Scrambling of Input Data in Simulink”.
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Ports
Input

in — Input data signal
vector

Input data signal, specified as an NS-by-1 vector. NS represents the number of samples in the input
signal. The input values must be integers from 0 to Calculation base – 1.
Data Types: double

Rst — Reset scrambler
scalar

Reset scrambler, specified as a scalar. The scrambler is reset if a nonzero input is applied to the port.

Dependencies

To enable this port, set Initial states source to Dialog Parameter and select Reset on
nonzero input via port.

ISt — Initial states
vector

Initial states of the scrambler registers when the simulation starts, specified as a nonnegative integer
vector. The length of ISt must equal the order of the Scramble polynomial parameter. The vector
element values must be integers from 0 to Calculation base – 1.

Dependencies

To enable this port, set Initial states source to Input port.

Output

Out1 — Output scrambled data
vector

Output scrambled data, returned as an NS-by-1 vector. NS equals the number of samples in the input
signal.
Data Types: double

Parameters
Calculation base — Calculation base
4 (default) | nonnegative integer

Calculation base used in the scrambler for modulo operations, specified as a nonnegative integer. The
input and output of this block are integers from 0 to Calculation base – 1.

Scramble polynomial — Polynomial that defines connections in scrambler
'1 + x^-1 + x^-2 + x^-4' (default) | character vector | integer vector | binary vector
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Polynomial that defines the connections in the scrambler, specified as a character vector, integer
vector, or binary vector. The Scramble polynomial parameter defines if each switch in the
scrambler is on or off. Specify the polynomial as:

• A character vector, such as '1 + x^-6 + x^-8'. For more details on specifying polynomials in
this way, see “Representation of Polynomials in Communications Toolbox”.

• An integer vector, such as [0 -6 -8], listing the descrambler coefficients in order of descending
powers of x-1, where p(x-1) = 1 + p1x-1 + p2x-2 + ...

• A binary vector, such as [1 0 0 0 0 0 1 0 1], listing the powers of x that appear in the
polynomial that has a coefficient of 1. In this case, the order of the scramble polynomial is one less
than the binary vector length.

Example: '1 + x^-6 + x^-8', [0 -6 -8], and [1 0 0 0 0 0 1 0 1] all represent this
polynomial:

p(x-1) = 1 + x-6 + x-8

Initial states source — Set the source for scrambler initial states
Dialog Parameter (default) | Input port

• Dialog Parameter – Specify scrambler initial states by using the Initial states parameter.
• Input port – Specify scrambler initial states by using the ISt port.

Initial states — Initial states of scrambler registers
[0 1 2 3] (default) | nonnegative integer vector

Initial states of scrambler registers when the simulation starts, specified as a nonnegative integer
vector. The length of Initial states must equal the order of the Scramble polynomial parameter.
The vector element values must be integers from 0 to Calculation base – 1.
Dependencies

This parameter is available when Initial states source is set to Dialog Parameter.

Reset on nonzero input via port — Reset scrambler via input port
off (default) | on

Select this parameter to reset the Scrambler block via input port Rst.
Dependencies

This parameter is available when Initial states source is set to Dialog Parameter.

Block Characteristics
Data Types Boolean | double | integer
Multidimensional
Signals

no

Variable-Size Signals no

Version History
Introduced before R2006a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Descrambler | PN Sequence Generator

Objects
comm.Scrambler
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SISO Fading Channel
Filter input signal through SISO multipath fading channel
Library: Communications Toolbox / Channels

Description
The SISO Fading Channel block filters an input signal using a single-input/single-output (SISO)
multipath fading channel. This block models both Rayleigh and Rician fading. For processing details,
see the Algorithms on page 5-747 section.

Ports
Input

in — Input data signal
vector

Input data signal, specified as an NS-by-1 vector. NS represents the number of samples in the input
signal.
Data Types: double | single
Complex Number Support: Yes

Output

Out1 — Output data signal for fading channel
vector

Output data signal for the fading channel, returned as an NS-by-1 vector. NS represents the number of
samples in the input signal.

Gain — Discrete path gains
matrix

Discrete path gains of the underlying fading process, returned as an NS-by-NP matrix.

• NS represents the number of samples in the input signal.
• NP represents the number of channel paths.

Dependencies

To enable this port, on the Main tab, select Output channel path gains.

Delay — Channel filter delay
scalar
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Channel filter delay, returned as a scalar.

Dependencies

To enable this port, on the Main tab, select Output channel filter delay.

Parameters
Main Tab

Multipath parameters (frequency selectivity)

Inherit sample rate from input — Option to inherit the sample rate from input

on (default) | off

Select this parameter to use the sample rate of the input signal when processing. When Inherit
sample rate from input is selected, the sample rate is NS/TS, where NS is the number of input
samples, and TS is the model sample time.

Sample rate (Hz) — Input signal sample rate

1 (default) | positive scalar

Input signal sample rate in hertz, specified as a positive scalar. To match the model settings, set the
sample rate to NS/TS, where NS is the number of input samples, and TS is the model sample time.

Dependencies

This parameter appears when Inherit sample rate from input is not selected.
Data Types: double

Discrete path delays (s) — Delays for each discrete path

0 (default) | nonnegative scalar | row vector

Delays for each discrete path in seconds, specified as a nonnegative scalar or row vector.

• When you set Discrete path delays (s) to a scalar, the SISO channel is frequency flat.
• When you set Discrete path delays (s) to a vector, the SISO channel is frequency selective.

Data Types: double

Average path gains (dB) — Average gain for each discrete path

0 (default) | scalar | row vector

Average gain for each discrete path in decibels, specified as a scalar or row vector. Average path
gains (dB) must have the same size as Discrete path delays (s).
Data Types: double

Normalize average path gains to 0 dB — Option to normalize average path gains to 0
dB
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on (default) | off

Select this parameter to normalize the fading processes so that the total power of the path gains,
averaged over time, is 0 dB.

Fading distribution — Fading distribution of channel

Rayleigh (default) | Rician

Select the fading distribution of the channel, either Rayleigh or Rician.

K-factors — K-factor of Rician fading channel

3 (default) | positive scalar | row vector of nonnegative values

K-factor of a Rician fading channel, specified as a positive scalar or a 1-by-NP vector of nonnegative
values. NP equals the value of the Discrete path delays (s) parameter.

• If you set K-factors to a scalar, the first discrete path is a Rician fading process with a Rician K-
factor of K-factors. Any remaining discrete paths are independent Rayleigh fading processes.

• If you set K-factors to a row vector, the discrete path corresponding to a positive element of the
K-factors vector is a Rician fading process with a Rician K-factor specified by that element. The
discrete path corresponding to any zero-valued elements of the K-factors vector are Rayleigh
fading processes. At least one element value must be nonzero.

Dependencies

This parameter appears when Fading distribution is Rician.
Data Types: double

LOS path Doppler shifts (Hz) — Doppler shifts for line-of-sight components

0 (default) | scalar | row vector

Doppler shifts for the line-of-sight components of the Rician fading channel in hertz, specified as a
scalar or row vector. This parameter must have the same size as K-factors.

• If you set LOS path Doppler shifts (Hz) to a scalar, it represents the line-of-sight component
Doppler shift of the first discrete path that is a Rician fading process.

• If you set LOS path Doppler shifts (Hz) to a row vector, the discrete path that is a Rician fading
process has its line-of-sight component Doppler shift specified by the elements of LOS path
Doppler shifts (Hz) that correspond to positive elements in the K-factors vector.

Dependencies

This parameter appears when Fading distribution is Rician.
Data Types: double

LOS path initial phases (rad) — Initial phases for line-of-sight components

0 (default) | scalar | row vector

Initial phases for the line-of-sight component of the Rician fading channel in radians, specified as a
scalar or row vector. This parameter must have the same size as K-factors.
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• If you set LOS path initial phases (rad) to a scalar, it is the line-of-sight component initial phase
of the first discrete path that is a Rician fading process.

• If you set LOS path initial phases (rad) to a row vector, the discrete path that is a Rician fading
process has its line-of-sight component initial phase specified by the elements of LOS path initial
phases (rad) that correspond to positive elements in the K-factors vector.

Dependencies

This parameter appears when Fading distribution is Rician.
Data Types: double

Doppler parameters (time dispersion)

Maximum Doppler shift (Hz) — Maximum Doppler shift for all channel paths

0.001 (default) | nonnegative scalar

Maximum Doppler shift for all channel paths in hertz, specified as a nonnegative scalar.

Maximum Doppler shift (Hz) must be smaller than (fs/10)/fc for each path. fs is the sampling rate at
the input to the SISO Fading Channel block. fc is the cutoff frequency factor of the path. For more
information, see Cutoff Frequency Factor on page 5-513.
Data Types: double

Doppler spectrum — Doppler spectrum shape for all channel paths

doppler('Jakes') (default) | doppler('Flat') | doppler('Rounded', ...) |
doppler('Bell', ...) | doppler('Asymmetric Jakes', ...) | doppler('Restricted
Jakes', ...) | doppler('Gaussian', ...) | doppler('BiGaussian', ...)

Doppler spectrum shape for all channel paths, specified as a single Doppler spectrum structure
returned from the doppler function or a 1-by-NP cell array of such structures. The default value of
this parameter is the Jakes Doppler spectrum (doppler('Jakes')).

• If you assign a single call to doppler, all paths have the same specified Doppler spectrum.
• If you assign a 1-by-NP cell array of calls to doppler using any of the specified syntaxes, each

path has the Doppler spectrum specified by the corresponding Doppler spectrum structure in the
array. In this case, NP equals the value of the Discrete path delays (s) parameter.

Dependencies

This parameter applies when Maximum Doppler shift (Hz) is greater than zero.

Other parameters

Initial seed — Random number generator initial seed

73 (default) | nonnegative integer

Random number generator initial seed for this block, specified as a nonnegative integer.

Output channel path gains — Option to output channel path gains

off (default) | on
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Select this parameter to add the Gain output port to the block and output the channel path gains of
the underlying fading process.

Output channel filter delay — Option to output channel filter delay

off (default) | on

Select this parameter to add the Delay output port to the block and output the channel filter delay of
the underlying fading process.

Simulate using — Compilation type

Interpreted execution (default) | Code generation

Compilation type, specified as Interpreted execution or Code generation.

• Interpreted execution — Simulate model using the MATLAB interpreter. This option shortens
startup time but has slower simulation speed than Code generation.

• Code generation — Simulate model using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations, as long as the model does not change. This option requires additional startup time
but provides faster simulation speed than Interpreted execution.

Visualization Tab

Channel visualization — Select the channel visualization

Off (default) | Impulse response | Frequency response | Doppler spectrum | Impulse and
frequency responses

Select the channel visualization: Off, Impulse response, Frequency response, Doppler
spectrum, or Impulse and frequency responses. When visualization is on, the selected
channel characteristics, such as impulse response or Doppler spectrum, display in a separate window.
For more information, see Channel Visualization.

Percentage of samples to display — Percentage of samples to display

25% (default) | 10% | 50% | 100%

Select the percentage of samples to display: 10%, 25%, 50%, or 100%. Increasing the percentage
improves display accuracy at the expense of simulation speed.

Dependencies

This parameter appears when Channel visualization is Impulse response, Frequency response,
or Impulse and frequency responses.

Path for Doppler spectrum display — Path for which Doppler spectrum is displayed

1 (default) | positive integer

Path for which the Doppler spectrum is displayed, specified as a positive integer from 1 to NP, where
NP equals the value of the Discrete path delays (s) parameter.
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Dependencies

This parameter appears when Channel visualization is Doppler spectrum.

Block Characteristics
Data Types double | single
Multidimensional
Signals

yes

Variable-Size Signals yes

Algorithms
The fading process for the SISO channel is described in Methodology for Simulating Multipath Fading
Channels.

Cutoff Frequency Factor

The cutoff frequency factor, fc, is dependent on the type of Doppler spectrum.

• For any Doppler spectrum type other than Gaussian and bi-Gaussian, fc equals 1.
• For a doppler('Gaussian') spectrum type, fc equals NormalizedStandardDeviation

× 2log2.
• For a doppler('BiGaussian') spectrum type:

• If the PowerGains(1) and NormalizedCenterFrequencies(2) field values are both 0,
then fc equals NormalizedStandardDeviation(1) × 2log2.

• If the PowerGains(2) and NormalizedCenterFrequencies(1) field values are both 0,
then fc equals NormalizedStandardDeviation(2) × 2log2.

• If the NormalizedCenterFrequencies field value is [0,0] and the
NormalizedStandardDeviation field has two identical elements, then fc equals
NormalizedStandardDeviation(1) × 2log2.

• In all other cases, fc equals 1.

Version History
Introduced in R2017b

Updates to channel visualization display

The channel visualization feature now presents:

• Configuration settings in the bottom toolbar on the plot window.
• Plots side-by-side in one window when you select the Impulse and frequency response

channel visualization option.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
AWGN Channel | MIMO Fading Channel

Functions
doppler

Objects
comm.MIMOChannel | comm.RayleighChannel | comm.RayTracingChannel |
comm.RicianChannel

Topics
Channel Visualization
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Sphere Decoder
Decode input using a sphere decoder

Library
MIMO

Description
This block decodes the symbols sent over Nt antennas using the sphere decoding algorithm.

Data Type

For information about the data types each block port supports, see the “Supported Data Type” on
page 5-750 table on this page. The output signal inherits the data type from the inputs.

Algorithm

This block implements the algorithm, inputs, and outputs described on the comm.SphereDecoder
System object block reference page. The object properties correspond to the block parameters.

Parameters
Signal constellation

Specify the number of points in the signal constellation to which the bits are mapped. This value
must be a complex column vector. The length of the vector must be a power of two. The block
uses the same constellation for each transmit antenna. The default setting is a QPSK constellation
with an average power of 1.

Bit mapping per constellation point
Specify the bit mapping that the block uses for each constellation point. This value must be a
numerical matrix. he matrix size must be [ConstellationLength bitsPerSymbol], where
ConstellationLength represents the length of the Signal constellation parameter value and
bitsPerSymbol represents the number of bits that each symbol encodes. The default matrix size is
[0 0; 0 1; 1 0; 1 1], which matches the default value of the Signal constellation property.

Initial search radius
Specify the initial search radius for the decoding algorithm as Infinity or ZF solution.

When you select Infinity, the block sets the initial search radius to Inf. When you select ZF
solution, the block 'sets the initial search radius to the zero-forcing solution. The zero-forcing
solution is calculated by the pseudo-inverse of the input channel when decoding. Large
constellations and/or antenna counts can benefit from the initial reduction in the search radius. In
most cases, however, the extra computation of the ZF Solution will not provide a benefit.
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Decision method
Specify the decoding decision method as Soft or Hard. When you select Soft the block outputs
log-likelihood ratios (LLRs), or soft bits. When you select set to Hard, the block converts the soft
LLRs to bits. The hard decision output logical array follows the mapping of a 0 for a negative LLR
and 1 for all other values.

Simulation using
Specify if the block simulates using Code generation or Interpreted execution. The
default is Interpreted execution.

Supported Data Type
Port Supported Data Types
Rx • Double-precision floating point
cEst • Double-precision floating point
Output • Double-precision floating point

• Boolean (Hard-decision method)

Limitations
• The output LLR values are not scaled by the noise variance. For coded links employing iterative

coding (LDPC or turbo) or MIMO OFDM with Viterbi decoding, the output LLR values should be
scaled by the channel state information to achieve better performance.

Algorithms
This block implements the algorithm, inputs, and outputs described on the Sphere Decoder System
object reference page. The object properties correspond to the block parameters.

Version History
Introduced in R2013b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
OSTBC Combiner | OSTBC Encoder

Objects
comm.SphereDecoder
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SSB AM Demodulator Passband
Demodulate SSB-AM-modulated data

Library
Analog Passband Modulation, in Modulation

Description
The SSB AM Demodulator Passband block demodulates a signal that was modulated using single-
sideband amplitude modulation. The input is a passband representation of the modulated signal. Both
the input and output signals are real scalar signals.

This block works only with real inputs of type double. This block does not work inside a triggered
subsystem.

Parameters
Carrier frequency (Hz)

The carrier frequency in the corresponding SSB AM Modulator Passband block.
Initial phase (rad)

The phase offset, θ, of the modulated signal.
Lowpass filter design method

The method used to generate the filter. Available methods are Butterworth, Chebyshev type I,
Chebyshev type II, and Elliptic.

Filter order
The order of the lowpass digital filter specified in the Lowpass filter design method field .

Cutoff frequency
The cutoff frequency of the lowpass digital filter specified in the Lowpass filter design method
field in Hertz.

Passband ripple
Applies to Chebyshev type I and Elliptic filters only. This is peak-to-peak ripple in the passband in
dB.

Stopband ripple
Applies to Chebyshev type II and Elliptic filters only. This is the peak-to-peak ripple in the
stopband in dB.
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Pair Block
SSB AM Modulator Passband

Version History
Introduced before R2006a

See Also
Blocks
SSB AM Modulator Passband | DSB AM Demodulator Passband | DSBSC AM Demodulator Passband
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SSB AM Modulator Passband
Modulate using single-sideband amplitude modulation

Library
Analog Passband Modulation, in Modulation

Description
The SSB AM Modulator Passband block modulates using single-sideband amplitude modulation with a
Hilbert transform filter. The output is a passband representation of the modulated signal. Both the
input and output signals are real scalar signals.

SSB AM Modulator Passband transmits either the lower or upper sideband signal, but not both. To
control which sideband it transmits, use the Sideband to modulate parameter.

If the input is u(t) as a function of time t, then the output is

u(t)cos(fct + θ) ∓ u (t)sin(fct + θ)

where:

• fc is the Carrier frequency parameter.
• θ is the Initial phase parameter.
• û(t)is the Hilbert transform of the input u(t).
• The minus sign indicates the upper sideband and the plus sign indicates the lower sideband.

Hilbert Transform Filter

This block uses the Analytic Signal block from the DSP System Toolbox Transforms block library.

The Analytic Signal block computes the complex analytic signal corresponding to each channel of the
real M-by-N input, u

y = u + jΗ u

where j = −1 and Η denotes the Hilbert transform. The real part of the output in each channel is
a replica of the real input in that channel; the imaginary part is the Hilbert transform of the input. In
the frequency domain, the analytic signal retains the positive frequency content of the original signal
while zeroing-out negative frequencies and doubling the DC component.

The block computes the Hilbert transform using an equiripple FIR filter with the order specified by
the Filter order parameter, n. The linear phase filter is designed using the Remez exchange
algorithm, and imposes a delay of n/2 on the input samples.
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For best results, use a carrier frequency which is estimated to be larger than 10% of your input
signal's sample rate. This is due to the implementation of the Hilbert transform by means of a filter.

In the following example, we sample a 10Hz input signal at 8000 samples per second. We then
designate a Hilbert Transform filter of order 100. Below is the response of the Hilbert Transform
filter as returned by fvtool.

Note the bandwidth of the filter's magnitude response. By choosing a carrier frequency larger than
10% (but less than 90%) of the input signal's sample time (8000 samples per second, in this example)
or equivalently, a carrier frequency larger than 400Hz, we ensure that the Hilbert Transform Filter
will be operating in the flat section of the filter's magnitude response (shown in blue), and that our
modulated signal will have the desired magnitude and form.

Typically, an appropriate Carrier frequency value is much higher than the highest frequency of the
input signal. By the Nyquist sampling theorem, the reciprocal of the model's sample time (defined by
the model's signal source) must exceed twice the Carrier frequency parameter.

This block works only with real inputs of type double. This block does not work inside a triggered
subsystem.

Parameters
Carrier frequency (Hz)

The frequency of the carrier.
Initial phase (rad)

The phase offset, θ, of the modulated signal.
Sideband to modulate

This parameter specifies whether to transmit the upper or lower sideband.
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Hilbert Transform filter order
The length of the FIR filter used to compute the Hilbert transform.

Pair Block
SSB AM Demodulator Passband

References

[1] Peebles, Peyton Z, Jr. Communication System Principles. Reading, Mass.: Addison-Wesley, 1976.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
SSB AM Demodulator Passband | DSB AM Modulator Passband | DSBSC AM Modulator Passband
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Symbol Synchronizer
Correct symbol timing clock skew
Library: Communications Toolbox / Synchronization

Description
The Symbol Synchronizer block corrects symbol timing clock skew for PAM, PSK, QAM, or OQPSK
modulation schemes between a single-carrier transmitter and receiver. For more information, see
“Symbol Synchronization Overview” on page 5-758.

Note The input signal operates on a sample rate basis, while the output signal operates on a symbol
rate basis.

Ports
Input

samples — Input samples
scalar (default) | column vector

Input samples, specified as a scalar or column vector of a PAM, PSK, QAM, or OQPSK modulated
single-carrier signal. This port in unnamed on the block.
Data Types: double | single
Complex Number Support: Yes

Output

Sym — Output signal symbols
scalar | column vector

Output signal symbols, returned as a variable-size scalar or column vector that has the same data
type as the input. For an input with dimensions of Nsamp-by-1, the output at Sym has dimensions of
Nsym-by-1. Nsym is approximately equal to Nsamp divided by the Nsps. Nsps is equal to the Samples per
symbol parameter value. The output length is truncated if it exceeds the maximum output size of
Nsamp
Nsps

× 1.1 .

This port is unnamed when Normalized timing error output port is not selected.

Err — Estimated timing error
scalar | column vector
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Estimated timing error for each input sample, returned as a scalar or column vector with values in
the range [0, 1]. The estimated timing error is normalized by the input sample time. Err has the same
data type and size as the input signal.

Dependencies

To enable this port, select Normalized timing error output port.

Parameters
Modulation type — Modulation type

PAM/PSK/QAM (default) | OQPSK

Modulation type, specified as PAM/PSK/QAM, or OQPSK.

Timing error detector — Type of timing error detector

Zero-Crossing (decision-directed) (default) | Gardner (non-data-aided) | Early-Late
(non-data-aided) | Mueller-Muller (decision-directed)

Type of timing error detector, specified as Zero-Crossing (decision-directed), Gardner
(non-data-aided), Early-Late (non-data-aided), or Mueller-Muller (decision-
directed). This parameter assigns the timing error detection scheme used in the synchronizer.

For more information, see “Timing Error Detection (TED)” on page 5-759.

Samples per symbol — Samples per symbol

2 (default) | positive integer greater than 1

Samples per symbol, specified as a positive integer greater than 1. For more information, see Nsps in
“Loop Filter” on page 5-762.
Data Types: double

Damping factor — Damping factor of the loop filter

1 (default) | positive scalar

Damping factor of the loop filter, specified as a positive scalar. For more information, see ζ in “Loop
Filter” on page 5-762.

Tunable: Yes
Data Types: double | single

Normalized loop bandwidth — Normalized bandwidth of loop filter

0.01 (default) | positive scalar less than 1

Normalized bandwidth of the loop filter, specified as a positive scalar less than 1. The loop bandwidth
is normalized by the sample rate of the input signal. For more information, see BnTs in “Loop Filter”
on page 5-762.
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Note To ensure that the symbol synchronizer locks, set the Normalized loop bandwidth parameter
to a value less than 0.1.

Tunable: Yes
Data Types: double | single

Detector gain — Phase detector gain

2.7 (default) | positive scalar

Phase detector gain, specified as a positive scalar. For more information, see Kp in “Loop Filter” on
page 5-762.

Tunable: Yes
Data Types: double | single

Normalized timing error output port — Enable normalized timing error output port

on (default) | off

Select this parameter to output normalized timing error data at the output port Err.

Simulate using — Type of simulation to run
Code generation (default) | Interpreted execution

Type of simulation to run, specified as Code generation or Interpreted execution.

• Code generation — Simulate the model by using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations unless the model changes. This option requires additional startup time, but the speed
of the subsequent simulations is faster than Interpreted execution.

• Interpreted execution — Simulate the model by using the MATLAB interpreter. This option
requires less startup time than the Code generation option, but the speed of subsequent
simulations is slower. In this mode, you can debug the source code of the block.

Block Characteristics
Data Types double | single
Multidimensional
Signals

no

Variable-Size Signals yes

More About
Symbol Synchronization Overview

The symbol timing synchronizer algorithm is based on a phased lock loop (PLL) algorithm that
consists of four components:
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• Timing error detector (TED)
• Interpolator
• Interpolation controller
• Loop filter

For OQPSK modulation, the in-phase and quadrature signal components are first aligned (as in QPSK
modulation) using a state buffer to cache the last half symbol of the previous input. After initial
alignment, the remaining synchronization process is the same as for QPSK modulation.

This block diagram shows an example of a timing synchronizer. In the figure, the symbol timing PLL
operates on x(t), the received sample signal after matched filtering. The symbol timing PLL outputs
the symbol signal, x(kTs + τ ), after correcting for the clock skew between the transmitter and
receiver.

Timing Error Detection (TED)

The symbol timing synchronizer supports non-data-aided TED and decision-directed TED methods.
This table shows the timing estimate expressions for the TED method options.

TED
Method

Expression

Zero-
crossing
(decision-
directed)

e(k) = x (k− 1/2)Ts + τ a 0(k− 1) − a 0(k) + y (k− 1/2)Ts + τ a 1(k− 1) − a 1(k)

Gardner
(non-data-
aided)

e(k) = x (k− 1/2)Ts + τ x (k− 1)Ts + τ − x(kTs + τ )
+ y (k− 1/2)Ts + τ y (k− 1)Ts + τ − y(kTs + τ )

Early-late
(non-data-
aided)

e(k) = x(kTs + τ ) x (k + 1/2)Ts + τ − x (k− 1/2)Ts + τ + y(kTs + τ
) y (k + 1/2)Ts + τ − y (k− 1/2)Ts + τ
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TED
Method

Expression

Mueller-
Muller
(decision-
directed)

e(k) = a 0(k− 1)x(kTs + τ ) − a 0(k)x (k− 1)Ts + τ + a 1(k− 1)y(kTs + τ ) − a 1(k)y (k− 1)Ts + τ

The non-data-aided TED (Gardner and early-late) methods use received samples without any
knowledge of the transmitted signal or the results of the channel estimation. Non-data-aided TED is
used to estimate the timing error for signals with modulation schemes that have constellation points
aligned with the in-phase or quadrature axis. Examples of signals suitable for the Gardner or early-
late methods include QPSK-modulated signals with a zero phase offset that has points at {1+0i, 0+1i,
-1+0i, 0−1i} and BPSK-modulated signals with a zero phase offset.

The early-late method is similar to the Gardner method but the Gardner method performs better in
systems with high SNR values because it has lower self noise than the early-late method.

• Gardner method — The Gardner method is a non-data-aided feedback method that is
independent of carrier phase recovery. It is used for baseband systems and modulated carrier
systems. More specifically, this method is used for systems that use a linear modulation type with
Nyquist pulses that have an excess bandwidth between approximately 40% and 100%. Examples
include systems that use PAM, PSK, QAM, or OQPSK modulation and that shape the signal using
raised cosine filters whose rolloff factor is between 0.4 and 1. In the presence of noise, the
performance of this timing recovery method improves as the excess bandwidth increases (or
rolloff factor increases in the case of a raised cosine filter). The Gardner method is similar to the
early-late gate method.

• Early-late method — The early-late method is a non-data-aided feedback method. It is used for
systems that use a linear modulation type such as PAM, PSK, QAM, or OQPSK modulation. For
example, systems using a raised cosine filter with Nyquist pulses. In the presence of noise, the
performance of this timing recovery method improves as the excess bandwidth of the pulse
increases (or rolloff factor increases in the case of a raised cosine filter).

The decision-directed TED (zero-crossing and Mueller-Muller) methods use the sign function to
estimate the in-phase and quadrature components of received samples, which results in lower
computational complexity than the non-data-aided TED methods.

• Zero-crossing method — The zero-crossing method is a decision-directed technique that
requires 2 samples per symbol at the input to the synchronizer. It is used in low-SNR conditions
for all values of excess bandwidth and in moderate-SNR conditions for moderate excess bandwidth
factors in the approximate range [0.4, 0.6].

• Mueller-Muller method — The Mueller-Muller method is a decision-directed feedback method
that requires prior recovery of the carrier phase. When the input signal has Nyquist pulses (for
example, when using a raised cosine filter), the Mueller-Muller method has no self noise. For
narrowband signaling in the presence of noise, the performance of the Mueller-Muller method
improves as the excess bandwidth factor of the pulse decreases.

Because the decision-directed methods (zero-crossing and Mueller-Muller) estimate timing error
based on the sign of the in-phase and quadrature components of signals passed to the synchronizer,
they are not recommended for constellations that have points with either a zero in-phase or a
quadrature component. x(kTs + τ ) and y(kTs + τ ) are the in-phase and quadrature components of the
input signals to the timing error detector, where τ  is the estimated timing error. The Mueller-Muller
method coefficients a 0(k) and a 1(k) are the estimates of x(kTs + τ ) and y(kTs + τ ). The timing
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estimates are made by applying the sign function to the in-phase and quadrature components and
are used for only the decision-directed TED methods.

Interpolator

The time delay is estimated from the fixed-rate samples of the matched filter, which are asynchronous
with the symbol rate. Because the resulting samples are not aligned with the symbol boundaries, an
interpolator is used to "move" the samples. Because the time delay is unknown, the interpolator must
be adaptive. Moreover, because the interpolant is a linear combination of the available samples, it can
be thought of as the output of a filter.

The interpolator uses a piecewise parabolic interpolator with a Farrow structure and coefficient α set
to 1/2 (see Rice, Michael, Digital Communications: A Discrete-Time Approach).

Interpolation Control

Interpolation control provides the interpolator with the basepoint index and fractional interval. The
basepoint index is the sample index nearest to the interpolant. The fractional interval is the ratio of
the time between the interpolant and its basepoint index and the interpolation interval.

 Symbol Synchronizer

5-761



Interpolation is performed for every sample, and a strobe signal is used to determine if the
interpolant is output. The synchronizer uses a modulo-1 counter interpolation control to provide the
strobe and the fractional interval for use with the interpolator.

Loop Filter

The synchronizer uses a proportional-plus integrator (PI) loop filter. The proportional gain, K1, and
the integrator gain, K2, are calculated by

K1 = −4ζθ
1 + 2ζθ + θ2 Kp

and

K2 = −4θ2

1 + 2ζθ + θ2 Kp
.

The interim term, θ, is given by

θ =

BnTs
Nsps

ζ + 1
4ζ

,

where:

• Nsps is the number of samples per symbol.
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• ζ is the damping factor.
• BnTs is the normalized loop bandwidth.
• Kp is the detector gain.

Version History
Introduced in R2015a

References
[1] Rice, Michael. Digital Communications: A Discrete-Time Approach. Upper Saddle River, NJ:
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TPC Decoder
Turbo product code (TPC) decoder
Library: Communications Toolbox / Error Detection and Correction /

Block

Description
The TPC Decoder block performs 2-D turbo product code (TPC) decoding of the soft input LLRs
corresponding to the product code iteratively, using Chase-Pyndiah algorithm. The product code is a
2-D concatenation of linear block codes. The linear block code can be a parity check code, a
Hamming code, or a BCH code capable of correcting two errors. Extended and shortened codes can
be applied independently on each dimension. For a description of 2-D TPC decoding, see “Turbo
Product Code Decoding” on page 5-769.

For information about valid code pairs and the error-correcting capability for each valid code pair, see
“Component Code Pairs” on page 5-768.

Ports
Input

In — Log likelihood ratios
column vector

Log likelihood ratios, specified as a column vector.

• For full-length input messages, the length of the column vector is the product of Number of rows
in code, Nr and Number of columns in code, Nc.

• For shortened input messages, the length of the column vector is the product of (NR–KR+SR) and
(NC–KC+SC), where:

• NR is the value of Number of rows in code, Nr.
• KR is the value of Number of rows in message, Kr.
• SR is the value of Number of rows in shortened message, Sr.
• NC is the value of Number of columns in code, Nc.
• KC is the value of Number of columns in message, Kc.
• SC is the value of Number of columns in shortened message, Sc.

Data Types: double | single

Output

Out — TPC decoded message
column vector
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TPC decoded message, returned as a column vector of binary values.

• For full-length input messages, the length of the column vector is the product of Number of rows
in message, Kr and Number of columns in message, Kc.

• For shortened input messages, the length of the column vector is the product of Number of rows
in shortened message, Sr and Number of columns in shortened message, Sc.

Data Types: Boolean

Iter — Actual number of decoding iterations
positive integer

Actual number of decoding iterations, returned as a positive integer.

Dependencies

To enable this port, select Output number of itereations executed.
Data Types: double

Parameters
Row TPC parameters

Extended codes — Extended codes indicator for TPC row parameters
on (default) | off

• When Extended codes is selected, the lists for Number of rows in code, Nr and Number of rows in
message, Kr contain the valid values for extended individual code pairs (NR,KR).

• When Extended codes is cleared, the lists for Number of rows in code, Nr and Number of rows in
message, Kr contain the valid values for nonextended individual code pairs (NR,KR).

Number of rows in code, Nr — Number of rows in product code matrix
16 (default) | integer

Number of rows in the product code matrix, NR. The list of integer values varies depending on the
setting for Extended codes.

Number of rows in message, Kr — Number of rows in message matrix
11 (default) | integer

Number of rows in the message matrix, KR. The list of integer values varies depending on the setting
for Extended codes and Number of rows in code, Nr.

Specify shortened message length — Specify shortened message length for rows
off (default) | on

Select Specify shortened message length to specify a value for Number of rows in shortened
message, Sr.
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Number of rows in shortened message, Sr — Number of rows in shortened message
matrix
9 (default) | integer

Number of rows in the shortened message matrix, SR, specified as an integer less than or equal to KR.
When you specify this parameter, provide full-length NR and KR values to specify the (NR,KR) code
pair. This code pair is then shortened to the (NR–KR+SR,SR) code pair, where:

• NR is the value of Number of rows in code, Nr.
• KR is the value of Number of rows in message, Kr.
• SR is the value of Number of rows in shortened message, Sr.

Dependencies

To enable this parameter, select Specify shortened message length.
Data Types: double

Column TPC parameters

Extended codes — Extended codes indicator for TPC column parameters
on (default) | off

• When Extended codes is selected, the lists for Number of columns in code, Nc and Number of
columns in message, Kc contain the valid values for extended individual code pairs (NC,KC).

• When Extended codes is cleared, the lists for Number of columns in code, Nc and Number of
columns in message, Kc contain the valid values for nonextended individual code pairs (NC,KC).

Number of columns in code, Nc — Number of columns in product code matrix
32 (default) | integer

Number of columns in the product code matrix, NC. The list of integer values varies depending on the
setting for Extended codes.

Number of columns in message, Kc — Number of columns in message matrix
26 (default) | integer

Number of columns in the message matrix, KC. The list of integer values varies depending on the
setting for Extended codes and Number of columns in code, Nc.

Specify shortened message length — Specify shortened message length for columns
off (default) | on

Select Specify shortened message length to specify a value for Number of columns in shortened
message, Sc.

Number of columns in shortened message, Sc — Number of columns in shortened
message matrix
22 (default) | integer
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Number of columns in the shortened message matrix, SC, specified as an integer. When you specify
this parameter, provide full-length NC and KC values to specify the (NC,KC) code pair. This code pair is
then shortened to the (NC–KC+SC, SC) code pair, where:

• NC is the value of Number of columns in code, Nc.
• KC is the value of Number of columns in message, Kc.
• SC is the value of Number of columns in shortened message, Sc.

Dependencies

To enable this parameter, select Specify shortened message length.
Data Types: double

Maximum number of iterations — Maximum number of decoding iterations
4 (default) | positive integer

Maximum number of decoding iterations, specified as a positive integer.
Data Types: double

Stop iterating when code converges — Stop decoding based on the calculated
syndrome or parity-check of the component code
on (default) | off

Select Stop iterating when code converges to terminate decoding early if the calculated syndrome
or parity-check of the component code evaluates to zero before Maximum number of iterations.

Output number of iterations executed — Output number of iterations executed
off (default) | on

Select this parameter to add the Iter output port and output the actual number of TPC decoding
iterations performed.

Simulate using — Type of simulation to run
Code generation (default) | Interpreted execution

Type of simulation to run, specified as Code generation or Interpreted execution.

• Code generation — Simulate the model by using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations unless the model changes. This option requires additional startup time, but the speed
of the subsequent simulations is faster than Interpreted execution.

• Interpreted execution — Simulate the model by using the MATLAB interpreter. This option
requires less startup time than the Code generation option, but the speed of subsequent
simulations is slower. In this mode, you can debug the source code of the block.
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Block Characteristics
Data Types Boolean | double | single
Multidimensional
Signals

no

Variable-Size Signals no

More About
Component Code Pairs

This table lists the supported component code pairs for the row (NR,KR) and column (NC,KC)
parameters.

• NR and KR represent the number of rows in the product code matrix and message matrix,
respectively.

• NC and KC represent the number of columns in the product code matrix and message matrix,
respectively.

Within each code type, any two component code pairs can form a 2-D TPC code. The table also
includes the error-correction capability for each code pair.

Code type Component Code Pairs(NR,KR)
and (NC,KC)

Error-Correction Capability
(T)

Hamming code (255,247) 1
(127,120) 1
(63,57) 1
(31,26) 1
(15,11) 1
(7,4) 1

Extended Hamming code (256,247) 1
(128,120) 1
(64,57) 1
(32,26) 1
(16,11) 1
(8,4) 1

BCH code (255,239) 2
(127,113) 2
(63,51) 2
(31,21) 2
(15,7) 2

Extended BCH code (256,239) 2
(128,113) 2
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(64,51) 2
(32,21) 2
(16,7) 2

Parity check code (256,255) -
(128,127) -
(64,63) -
(32,31) -
(16,15) -
(8,7) -
(4,3) -

Turbo Product Code Decoding

Turbo product codes (TPC) are a form of concatenated codes used as forward error correcting (FEC)
codes. Two or more component block codes, such as systematic linear block codes, are used to
construct TPCs. The TPC decoder achieves near-optimum decoding of product codes using Chase
decoding and the Pyndiah algorithm to perform iterative soft input, soft output decoding. For a
detailed description, see [1] and [2]. This decoder implements an iterative soft input, soft output 2-D
product code decoding, as described in [2], using two “Linear Block Codes”. The decoder expects the
soft bit log likelihood ratios (LLRs) obtained from digital demodulation as the input signal.

The TPC decoder accepts either full-length or shortened codes.

TPC Decoding Full-Length Messages

TPC encoded full-length input messages are decoded using specified 2-D TPC code pairs. Row-wise
decoding uses the (NC,KC) code pair and column-wise decoding uses the (NR,KR) code pair. The input
vector length must be NR × NC. To perform the 2-D TPC decoding, the column vector of the input
LLRs, composed of the message and parity bits, is arranged into an NR-by-NC matrix.

The TPC decoder achieves near-optimum decoding of product codes using Chase decoding and the
Pyndiah algorithm to perform iterative soft input, soft output decoding. Chase decoding forms a set of
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possible codewords for each row or column. The Pyndiah algorithm calculates soft information
required for the next decoding step.

Iterative Soft Input, Soft Output Decoder

The iterative soft input, soft output decoding, as shown in the block diagram, carries out two
decoding steps for each iteration.

The soft inputs for decoding are R(m) = R + α(m)W(m).

• Iteration loop counter i increments from i = 1 to the specified number of iterations.
• m = 2i – 1 is the decoding step index.
• R is the received LLR matrix.
• R(m) is the soft input for the mth decoding step.
• W(m) is the input extrinsic information for the mth decoding step.
• α(m) = [0,0.2,0.3,0.5,0.7,0.9,1,1, ...], where α is a weighting factor applied based on the decoding

step index. For higher decoding steps, α = 1.
• β(m) = [0.2,0.4,0.6,0.8,1,1, ...], where β is a reliability factor applied based on the decoding step

index. For higher decoding steps, β = 1.
• D contains the decoded message bits. The output message bits are formed from D by mapping –1

to 0 and +1 to 1, then reshaping the message block into a column vector.

The output message bits are formed after iterating through the specified number of iterations, or, if
early termination is enabled, after code convergence.

Early Termination of TPC Decoding

If early termination is enabled, a code convergence check is performed on the hard decision of the
soft input in each row-wise and column-wise decoding step. Early termination can be triggered after
either the row-wise decoding or column-wise decoding converges.
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The code is converged if, for all rows or all columns,

• The syndrome evaluates to zero in the codes (Hamming codes, Extended Hamming codes, BCH
codes, or Extended BCH codes).

• The parity check is evaluated to zero in parity check codes.

The reported number of iterations evaluates to the iteration value that is currently in progress. For
example, if the code convergence check is satisfied after row-wise decoding in the third iteration
(after 2.5 decoding steps), then the number of iteration returned is 3.

TPC Decoding Shortened Messages

TPC encoded shortened input messages are decoded using specified 2-D TPC code pairs. Row-wise
decoding uses the (NC – KC + SC, SC) code pair and column-wise decoding uses the (NR – KR + SR, SR)
code pair. The input vector length must be (NR – KR + SR) × (NC– KC + SC). To perform the 2-D TPC
decoding of shortened messages, the column vector of the input LLRs, composed of the shortened
message and parity bits, is arranged into an (NR – KR + SR)-by-(NC – KC + SC) matrix.

The TPC decoder processes the received shortened message LLRs similar to full length codes, with
these exceptions:

• The shortened bit positions in the received codeword are set to –1.
• The Chase algorithm does not consider the shortened bit positions while choosing the least

reliable bits.
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TPC Encoder
Turbo product code (TPC) encoder
Library: Communications Toolbox / Error Detection and Correction /

Block

Description
The TPC Encoder block performs 2-D turbo product code (TPC) encoding of an input message. The
product code is a 2-D concatenation of linear block codes. The linear block codes can be a parity
check code, a Hamming code, or a BCH code capable of correcting two errors. Extended and
shortened codes can be applied independently on each dimension. For a description of 2-D TPC
encoding, see “Turbo Product Code Construction” on page 5-777.

For information about valid code pairs and the error-correcting capability for each valid code pair, see
“Component Code Pairs” on page 5-776.

Ports
Input

In — Message to encode
column vector

Input message bits to encode, specified as a column vector.

• For full-length input messages, the length of the column vector must be the product of Number of
rows in message, Kr and Number of columns in message, Kc.

• For shortened input messages, the length of the column vector must be the product of Number of
rows in shortened message, Sr and Number of columns in shortened message, Sc.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean

Output

Out — TPC-encoded message
column vector

TPC-encoded message, returned as a column vector with the same data type as the input signal.

• For full-length input messages, the length of the column vector is the product of Number of rows
in code, Nr and Number of columns in code, Nc.

• For shortened input messages, the length of the column vector is the product of (NR–KR+SR) and
(NC–KC+SC), where:

• NR is the value of Number of rows in code, Nr.
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• KR is the value of Number of rows in message, Kr.
• SR is the value of Number of rows in shortened message, Sr.
• NC is the value of Number of columns in code, Nc.
• KC is the value of Number of columns in message, Kc.
• SC is the value of Number of columns in shortened message, Sc.

Parameters
Row TPC parameters

Extended codes — Extended codes indicator for TPC row parameters
on (default) | off

• When Extended codes is selected, the lists for Number of rows in code, Nr and Number of rows in
message, Kr contain the valid values for extended individual code pairs (NR,KR).

• When Extended codes is cleared, the lists for Number of rows in code, Nr and Number of rows in
message, Kr contain the valid values for nonextended individual code pairs (NR,KR).

Number of rows in code, Nr — Number of rows in product code matrix
16 (default) | integer

Number of rows in the product code matrix, NR. The list of integer values varies depending on the
setting for Extended codes.

Number of rows in message, Kr — Number of rows in message matrix
11 (default) | integer

Number of rows in the message matrix, KR. The list of integer values varies depending on the setting
for Extended codes and Number of rows in code, Nr.

Specify shortened message length — Specify shortened message length for rows
off (default) | on

Select Specify shortened message length to specify a value for Number of rows in shortened
message, Sr.

Number of rows in shortened message, Sr — Number of rows in shortened message
matrix
9 (default) | integer

Number of rows in the shortened message matrix, SR, specified as an integer less than or equal to KR.
When you specify this parameter, provide full-length NR and KR values to specify the (NR,KR) code
pair. This code pair is then shortened to the (NR–KR+SR,SR) code pair, where:

• NR is the value of Number of rows in code, Nr.
• KR is the value of Number of rows in message, Kr.
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• SR is the value of Number of rows in shortened message, Sr.

Dependencies

To enable this parameter, select Specify shortened message length.
Data Types: double

Column TPC parameters

Extended codes — Extended codes indicator for TPC column parameters
on (default) | off

• When Extended codes is selected, the lists for Number of columns in code, Nc and Number of
columns in message, Kc contain the valid values for extended individual code pairs (NC,KC).

• When Extended codes is cleared, the lists for Number of columns in code, Nc and Number of
columns in message, Kc contain the valid values for nonextended individual code pairs (NC,KC).

Number of columns in code, Nc — Number of columns in product code matrix
32 (default) | integer

Number of columns in the product code matrix, NC. The list of integer values varies depending on the
setting for Extended codes.

Number of columns in message, Kc — Number of columns in message matrix
26 (default) | integer

Number of columns in the message matrix, KC. The list of integer values varies depending on the
setting for Extended codes and Number of columns in code, Nc.

Specify shortened message length — Specify shortened message length for columns
off (default) | on

Select Specify shortened message length to specify a value for Number of columns in shortened
message, Sc.

Number of columns in shortened message, Sc — Number of columns in shortened
message matrix
22 (default) | integer

Number of columns in the shortened message matrix, SC, specified as an integer. When you specify
this parameter, provide full-length NC and KC values to specify the (NC,KC) code pair. This code pair is
then shortened to the (NC–KC+SC, SC) code pair, where:

• NC is the value of Number of columns in code, Nc.
• KC is the value of Number of columns in message, Kc.
• SC is the value of Number of columns in shortened message, Sc.

Dependencies

To enable this parameter, select Specify shortened message length.
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Data Types: double

Simulate using — Type of simulation to run
Code generation (default) | Interpreted execution

Type of simulation to run, specified as Code generation or Interpreted execution.

• Code generation — Simulate the model by using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations unless the model changes. This option requires additional startup time, but the speed
of the subsequent simulations is faster than Interpreted execution.

• Interpreted execution — Simulate the model by using the MATLAB interpreter. This option
requires less startup time than the Code generation option, but the speed of subsequent
simulations is slower. In this mode, you can debug the source code of the block.

Block Characteristics
Data Types Boolean | double | integer | single
Multidimensional
Signals

no

Variable-Size Signals no

More About
Component Code Pairs

This table lists the supported component code pairs for the row (NR,KR) and column (NC,KC)
parameters.

• NR and KR represent the number of rows in the product code matrix and message matrix,
respectively.

• NC and KC represent the number of columns in the product code matrix and message matrix,
respectively.

Within each code type, any two component code pairs can form a 2-D TPC code. The table also
includes the error-correction capability for each code pair.

Code type Component Code Pairs(NR,KR)
and (NC,KC)

Error-Correction Capability
(T)

Hamming code (255,247) 1
(127,120) 1
(63,57) 1
(31,26) 1
(15,11) 1
(7,4) 1

Extended Hamming code (256,247) 1
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(128,120) 1
(64,57) 1
(32,26) 1
(16,11) 1
(8,4) 1

BCH code (255,239) 2
(127,113) 2
(63,51) 2
(31,21) 2
(15,7) 2

Extended BCH code (256,239) 2
(128,113) 2
(64,51) 2
(32,21) 2
(16,7) 2

Parity check code (256,255) -
(128,127) -
(64,63) -
(32,31) -
(16,15) -
(8,7) -
(4,3) -

Turbo Product Code Construction

Turbo product codes (TPC) are a form of concatenated codes used as forward error-correcting (FEC)
codes. Two or more component block codes, such as systematic linear block codes, are used to
construct TPCs. This encoder implements 2-D product code encoding, as described in [1], using two
“Linear Block Codes”.

The TPC encoder accepts either full-length or shortened messages.

Construction of Full-Length Message Product Codes

Full-length input messages are encoded using specified 2-D TPC code pairs. Row-wise encoding uses
the (NC,KC) code pair and column-wise encoding uses the (NR,KR) code pair. The input vector length
must be KR · KC. The input message bits vector is arranged into a KR-by-KC matrix.
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Row-wise encoding uses an (NC,KC) systematic linear block encoder with KC bits per row. The row-
wise encoding results in a KR-by-NC matrix that includes parity bits added to each row.

Next, column-wise encoding uses an (NR,KR) systematic linear block encoder on each of the NC
columns. Applying this 2-D TPC encoding to the initial KR-by-KC matrix results in an NR-by-NC matrix
that includes parity bits added to each row and column.
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The 2-D TPC full-code matrix is reshaped into a column vector of length NR · NC and returned as the
TPC-encoded output.

Construction of Shortened Message Product Codes

Shortened input messages are encoded using specified 2-D TPC code pairs. Row-wise encoding uses
the (NC,KC) code pair and column-wise encoding uses an (NR,KR) code pair. The input vector length
must be SR · SC. The input shortened message bits vector is arranged into an SR-by-SC matrix. The
shortened message matrix prepends two dimensions by padding the beginning of the message matrix
with zeros. The resulting matrix is a KR-by-KC matrix.

Row-wise encoding uses an (NC,KC) systematic linear block encoder with KC bits per row. The row-
wise encoding results in a KR-by-NC matrix that includes parity bits added to each row.

Next, the column-wise encoding uses an (NR,KR) systematic linear block encoder on each of the NC
columns.
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Applying this 2-D TPC encoding to the initial KR-by-KC matrix and excluding the zero-padded bits from
the output results in an (NR–KR+SR)-by-(NC–KC+SC) matrix. This matrix includes parity bits added to
each row and column.

The 2-D TPC shortened-code matrix is reshaped into a column vector of length (NR–KR+SR) · (NC–KC
+SC) and returned as the TPC-encoded output.

Version History
Introduced in R2018b

References
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Turbo Decoder
Decode input signal using parallel concatenated decoding scheme
Library: Communications Toolbox / Error Detection and Correction /

Convolutional

Description
The Turbo Decoder block decodes the input signal using a parallel concatenated decoding scheme.
The iterative decoding scheme uses the a posteriori probability (APP) decoder as the constituent
decoder, an interleaver, and a deinterleaver. The two constituent decoders use the same trellis
structure and decoding algorithm. For more information, see “Parallel Concatenated Convolutional
Decoding Scheme” on page 5-786 and “APP Decoder” on page 5-787.

This icon shows the block with all ports enabled.

Ports
Input

In — Parallel concatenated codeword
column vector

Parallel concatenated codeword, specified as a column vector of length M, where M is the length of
the parallel concatenated codeword.
Data Types: double | single

IntrInd — Interleaver indices
column vector of integers

Interleaver indices, specified as a column vector of integers. The vector must be of length L. Each
element of the vector must be an integer in the range [1, L] and must be unique. L is the length of the
decoded binary output message, Out. The interleaver indices define the mapping used to permute the
input bits at the decoder.

Dependencies

To enable this port, set the Source of interleaver indices parameter to Input port.
Data Types: double
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InInd — Input indices
column vector of integers

Input indices for the bit ordering and puncturing used on the fully encoded data, specified as a
column vector of integers. The length of the InInd vector must equal the length of the input data
vector In. Element values in the vector must be relative to the fully encoded data for the coding
scheme, including the tail bits for all streams.

Dependencies

To enable this port, set the Source of input indices parameter to Input port.
Data Types: double

Output

Out — Decoded message
binary column vector

Decoded message, returned as a binary column vector of length L, where L is the length of the
decoded binary output message. This output inherits its data type from the In input.

Parameters
Trellis structure — Trellis description of constituent convolutional code

poly2trellis(4,[13 15],13) (default) | structure

Specify the trellis as a MATLAB structure that contains the trellis description for a rate K ∕ N
constituent convolutional code. K is the number of input bit streams, and N is the number of output
bit streams.

Note K must be 1 for the turbo coder. For more information, see “Coding Rate” on page 5-787.

You can either use the poly2trellis function to create the trellis structure or create it manually.
For more about this structure, see “Trellis Description of a Convolutional Code” and the istrellis
function.

The trellis structure contains these fields.

numInputSymbols — Number of symbols input to encoder
2K

Number of symbols input to the encoder, specified as an integer equal to 2K, where K is the number of
input bit streams.
Data Types: double

numOutputSymbols — Number of symbols output from encoder
2N

Number of symbols output from the encoder, specified as an integer equal to 2N, where N is the
number of output bit streams.
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Data Types: double

numStates — Number of states in encoder
power of 2

Number of states in the encoder, specified as a power of 2.
Data Types: double

nextStates — Next states
matrix of integers

Next states for all combinations of current states and current inputs, specified as a matrix of integers.
The matrix size must be numStates by 2K.
Data Types: double

outputs — Outputs
matrix of octal numbers

Outputs for all combinations of current states and current inputs, specified as a matrix of octal
numbers. The matrix size must be numStates by 2K.
Data Types: double

Source of interleaver indices — Source of interleaver indices

Property (default) | Input port

Specify the source of the interleaver indices as Property or Input port.

• When you set this parameter to Property, the block uses the Interleaver indices parameter to
specify the interleaver indices.

• When you set this parameter to Input port, the block uses the IntrInd input port to specify
the interleaver indices.

Interleaver indices — Interleaver indices

(64:-1:1).' (default) | column vector of integers

Specify the interleaver indices that define the mapping used to permute codeword bits input to the
decoder as a column vector of integers. The vector must be of length L. Each element of the vector
must be an integer in the range [1, L] and must be unique. L is the length of the decoded binary
output message.
Dependencies

To enable this parameter, set the Source of interleaver indices parameter to Property.

Source of input indices — Source of input indices

Auto | Property | Input port

Specify the source of the input indices as Auto, Property, or Input port.

• When you set this parameter to Auto, the block computes input indices that assume the second
systematic stream is punctured and all tail bits are included in the input.
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• When you set this parameter to Property, the block uses the input indices that you specify for
the Input indices parameter.

• When you set this parameter to Input port, the block uses the InInd input port to specify the
input indices. The vector length and values for the input indices and coded input signal can
change with each execution of the block.

Input indices — Input indices

getTurboIOIndices(64,2,3) (default) | column vector of integers

Specify the input indices for the bit ordering and puncturing used on the fully encoded data as a
column vector of integers. The vector length of this parameter must equal the length of the input data
vector In.

Dependencies

To enable this parameter, set the Source of input indices parameter to Property.

Decoding algorithm — Decoding algorithm

True APP (default) | Max* | Max

Specify the decoding algorithm that the constituent APP decoders use to decode the input signal as
True APP, Max*, Max. When you set this parameter to True APP the block implements true a
posteriori probability decoding. When you set this parameter to Max* or Max the block uses
approximations to increase the speed of the computations. For more information, see “APP Decoder”
on page 5-787.

Number of scaling bits — Number of scaling bits

3 (default) | integer in the range [0, 8]

Specify the number of bits which the constituent APP decoders must use to scale the input data to
avoid losing precision during computations as an integer in the range [0, 8]. The constituent decoders
multiply the input by 2k and divide the pre-output by the same factor. k is the value of the Number of
scaling bits parameter. For more information, see “APP Decoder” on page 5-787.

Dependencies

This enable this parameter, set the Decoding algorithm parameter to Max*.

Number of decoding iterations — Number of decoding iterations

6 (default) | positive integer

Specify the number of decoding iterations the block uses as a positive integer. The block iterates and
provides updates to the log-likelihood ratios (LLR) of the uncoded output bits. The output of the block
is the hard-decision output of the final LLR update.

Simulate using — Type of simulation to run
Interpreted execution (default) | Code generation

Type of simulation to run, specified as Interpreted execution or Code generation.
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• Interpreted execution — Simulate the model by using the MATLAB interpreter. This option
requires less startup time than the Code generation option, but the speed of subsequent
simulations is slower. In this mode, you can debug the source code of the block.

• Code generation — Simulate the model by using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations unless the model changes. This option requires additional startup time, but the speed
of the subsequent simulations is faster than Interpreted execution.

Block Characteristics
Data Types double | single
Multidimensional
Signals

no

Variable-Size Signals yes

More About
Parallel Concatenated Convolutional Decoding Scheme

The turbo decoder uses a parallel concatenated convolutional decoding scheme to decode a coded
input signal. The parallel concatenated decoding scheme uses an iterative “APP Decoder” on page 5-
787 with two constituent decoders, an interleaver, and a deinterleaver. This figure shows the
decoding scheme. Typically, the decoder input data comes from the demodulator output.

The two constituent decoders use the same trellis structure and decoding algorithm. The soft-input
soft-output APP decoders (SISO 1 and SISO 2) output an updated sequence of log-likelihoods of the
encoder input bits, π(u;O).The sequence is based on the received sequence of log-likelihoods of the
channel (coded) bits, π(c;I), and code parameters.

The decoder iteratively updates these likelihoods for a fixed number of decoding iterations and then
outputs the decision bits. The interleaver used in the decoder is identical to the interleaver used in
the encoder. The deinterleaver performs the inverse permutation with respect to the interleaver. The
decoder does not assume knowledge of the tail bits and excludes these bits from the iterations.

For more information, see “Coding Rate” on page 5-787.
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APP Decoder

The Turbo Decoder block implements the soft-input-soft-output APP decoding algorithm according to
[1] and [2].

The True APP option of the Decoding algorithm parameter implements APP decoding as per
equations 20–23 in section V of [1]. To gain speed, the Max* and Max values of the Decoding
algorithm parameter approximate expressions like log∑

i
exp(ai) by other quantities. The Max option

uses max(ai) as the approximation. The Max* option uses max(ai) plus a correction term given by the
expression ln(1 + exp( − ai− 1− ai )).

Setting the Decoding algorithm parameter to Max* enables the Number of scaling bits
parameter of this block. This parameter denotes the number of bits by which this block scales the
data it processes (multiplies the input by 2k and divides the pre-output by the same factor, where k is
the value of Number of scaling bits). Use this parameter to avoid losing precision during
computations.

Coding Rate

In general, the coding rate of a constituent convolutional code is represented as a rate K ∕ N code. K
is the number of input bit streams. N is the number of output bit streams.

Note K must be 1 to use the Turbo Encoder and Turbo Decoder blocks. Alternatively, the “High Rate
Convolutional Codes for Turbo Coding” example performs turbo coding for K greater than 1 by using
the comm.ConvolutionalEncoder and comm.APPDecoder System objects in MATLAB.

The decoder accepts an M-element column vector input signal and returns an L-element column
vector containing the decoded binary output message. L is the interleaver block length. M is the
length of the parallel concatenated codeword.

For a given input trellis, when you set the Source of input indices parameter to Auto, M and L are
related by L = (M – 2 × numTails) ∕ (2 × N – 1) , where:

• numTails = log2(trellis.numStates) × N
• N = log2(trellis.numOutputSymbols). For a rate 1 ∕ 2 trellis, N = 2.

For more information about trellis structures, see the poly2trellis function. For more information
about the constituent decoders, see “Parallel Concatenated Convolutional Decoding Scheme” on page
5-786.

Version History
Introduced in R2011b
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Turbo Encoder
Encode binary data using parallel concatenated encoding scheme
Library: Communications Toolbox / Error Detection and Correction /

Convolutional

Description
The Turbo Encoder block encodes a binary input signal using a parallel concatenated coding scheme.
This coding scheme employs two identical convolutional encoders and one internal interleaver. Each
constituent encoder is independently terminated by tail bits. For more information about the
constituent encoders, see “Parallel Concatenated Convolutional Encoding Scheme” on page 5-792.

This icon shows the block with all ports enabled.

Ports
Input

In — Input message
binary column vector

Input message, specified as a binary column vector of length L, where L is the length of the uncoded
input message.
Data Types: double | int8 | fi(data,0,1)

IntrInd — Interleaver indices
column vector of integers

Interleaver indices, specified as a column vector of integers. The vector must be of length L, where L
is the length of the binary input message. Each element of the vector must be an integer in the range
[1, L] and must be unique. The interleaver indices define the mapping used to permute the input bits
at the encoder.
Dependencies

To enable this port, set the Source of interleaver indices property to Input port.
Data Types: double

OutInd — Output indices
column vector of integers
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Output indices for the bit ordering and puncturing used on the fully encoded data, specified as a
column vector of integers. Element values in the vector must be relative to the fully encoded data for
the coding scheme, including the tail bits for all streams.

Tunable: Yes

Dependencies

To enable this port, set the Source of output indices property to Input port.
Data Types: double

Output

Out — Parallel concatenated codeword
binary column vector

Parallel concatenated codeword, returned as a binary column vector of length M, where M is the
number of bits in the parallel concatenated codeword. This output inherits its data type from the In
input.
Data Types: double | int8 | fi(data,0,1)

Parameters
Trellis structure — Trellis description of constituent convolutional code

poly2trellis(4,[13 15],13) (default) | structure

Specify the trellis as a MATLAB structure that contains the trellis description for a rate K ∕ N
constituent convolutional code. K is the number of input bit streams, and N is the number of output
bit streams.

Note K must be 1 for the turbo coder. For more information, see “Coding Rate” on page 5-793.

You can either use the poly2trellis function to create the trellis structure or create it manually.
For more about this structure, see the “Trellis Description of a Convolutional Code” topic and the
istrellis function.

The trellis structure contains these fields.

numInputSymbols — Number of symbols input to encoder
2K

Number of symbols input to the encoder, specified as an integer equal to 2K, where K is the number of
input bit streams.
Data Types: double

numOutputSymbols — Number of symbols output from encoder
2N

Number of symbols output from the encoder, specified as an integer equal to 2N, where N is the
number of output bit streams.

5 Blocks

5-790



Data Types: double

numStates — Number of states in encoder
power of 2

Number of states in the encoder, specified as a power of 2.
Data Types: double

nextStates — Next states
matrix of integers

Next states for all combinations of current states and current inputs, specified as a matrix of integers.
The matrix size must be numStates by 2K.
Data Types: double

outputs — Outputs
matrix of octal numbers

Outputs for all combinations of current states and current inputs, specified as a matrix of octal
numbers. The matrix size must be numStates by 2K.
Data Types: double

Source of interleaver indices — Source of interleaver indices

Property (default) | Input port

Specify the source of the interleaver indices as Property or Input port.

• When you set this parameter to Property, the block uses the Interleaver indices parameter to
specify the interleaver indices.

• When you set this parameter to Input port, the block uses the IntrInd input port to specify
the interleaver indices.

Interleaver indices — Interleaver indices

(64:-1:1).' (default) | column vector of integers

Specify the interleaver indices as a column vector of integers. The vector must be of length L, where
L is the length of the binary input message. Each element of the vector must be an integer in the
range [1, L] and must be unique. The interleaver indices define the mapping used to permute the
input bits at the encoder.
Dependencies

To enable this parameter, set the Source of interleaver indices parameter to Property.

Source of output indices — Source of output indices

Auto | Property | Input port

Specify the source of the output indices as Auto, Property, or Input port.

• When you set this parameter to Auto, the block computes output indices that puncture the second
systematic stream and include all tail bits.
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• When you set this parameter to Property, the block uses the output indices that you specify for
the Output indices parameter.

• When you set this parameter to Input port, the block uses the OutInd input port to specify the
output indices. The vector length and values for the output indices and coded output signal can
change with each execution of the block.

Output indices — Output indices

getTurboIOIndices(64,2,3) (default) | column vector of integers

Specify the output indices for the bit ordering and puncturing used on the fully encoded data as a
column vector of integers. The number of bits output from the encoder is equal to the length of this
parameter. The maximum length must not exceed the fully encoded length of (L+mLen) × N × 2),
where L is the input vector length, mLen is the memory length, and N is the number of constituent
coder encoded streams.

Dependencies

To enable this parameter, set the Source of output indices parameter to Property.

Simulate using — Type of simulation to run
Interpreted execution (default) | Code generation

Type of simulation to run, specified as Interpreted execution or Code generation.

• Interpreted execution — Simulate the model by using the MATLAB interpreter. This option
requires less startup time than the Code generation option, but the speed of subsequent
simulations is slower. In this mode, you can debug the source code of the block.

• Code generation — Simulate the model by using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations unless the model changes. This option requires additional startup time, but the speed
of the subsequent simulations is faster than Interpreted execution.

Block Characteristics
Data Types Boolean | double | fixed pointa | integer | single
Multidimensional
Signals

no

Variable-Size Signals yes
a ufix(1) only.

More About
Parallel Concatenated Convolutional Encoding Scheme

The turbo encoder uses a parallel concatenated convolutional encoding scheme to encode a binary
input signal. The coding scheme uses two constituent encoders and one internal interleaver as shown
in this figure. Each constituent encoder is terminated independently by tail bits.
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The Source of output indices parameter specifies the source for the output indices used for symbol
puncturing and repetition.

• When you set the Source of output indices parameter to Auto, the block computes the output
indices. In this case, the constituent encoders have a rate 1 ∕ N code, and the number of bits
output from the turbo encoder is L × (2 × N – 1) + (2 × numTails). L is the input vector length,
and numTails is given by log2(TrellisStructure.numStates) × N. The tail bits due to the
termination are appended at the end after the encoded input bits.

The coding scheme uses two identical constituent encoders and one internal interleaver. Each
constituent encoder is terminated independently by tail bits. The output of the turbo encoder
consists of the systematic (X) and parity (Z) bit streams of the first encoder and only the parity (Z’)
bit streams of the second encoder. Tail bits are appended at the end for all streams.

• When you set the Source of output indices parameter to Input port or Property, you specify
the output indices with the OutInd input port or the Output indices parameter, respectively. In
this case, the object runs using the output indices you specify. The output indices are specified
relative to the fully encoded output for all streams.

The output of the turbo encoder consists of the systematic (X and X’) and parity (Z and Z’) bit
streams of first and second constituent encoders. The number of bits output equals the vector
length of the output indices you provide.

For more information, see “Coding Rate” on page 5-793 and “Tail bits” on page 5-794.

Coding Rate

In general, the coding rate of a constituent convolutional code is represented as a rate K ∕ N code. K
is the number of input bit streams. N is the number of output bit streams.

Note K must be 1 to use the Turbo Encoder and Turbo Decoder blocks. Alternatively, the “High Rate
Convolutional Codes for Turbo Coding” example performs turbo coding for K greater than 1 by using
the comm.ConvolutionalEncoder and comm.APPDecoder System objects.
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The encoder accepts an L-element column vector input signal and returns an M-element column
vector output signal. The effective code rate of the turbo encoder is L ∕ M. L is the length of the
binary input message, and M is the number of bits output in the parallel concatenated codeword.

• When you set the Source of output indices parameter to Auto, systematic bits from the second
encoder (X’, shown in the figure found in “Parallel Concatenated Convolutional Encoding Scheme”
on page 5-792) are not output to the parallel concatenated codeword. For a given trellis, M and L
are related by M = L × (2 × N – 1) + 2 × numTails, where numTails is the number of tail bits. For
more information, see “Tail bits” on page 3-1389.

• When you set the Source of output indices parameter is to Input port or Property, M
equals the length of the output indices vector specified by the OutInd input port or the Output
indices parameter, respectively.

Tail bits

The turbo encoder treats each input independently. For each input message, extra bits are used to set
the encoder states to an all-zeros state. Each constituent encoder is terminated independently by tail
bits. The turbo encoder output consists of the interlaced systematic and parity streams, with the tail
bits multiplexed to the end of the encoded data streams.

The number of tail bits, numTails, output by each constituent encoder depends on values in the trellis
structure used by each coder.

• numTails = log2(trellis.numStates) × N
• N = log2(trellis.numOutputSymbols). For a rate 1 ∕ 2 trellis, N = 2.

For more information about trellis structures, see the poly2trellis function. For more information
about the constituent encoders, see “Parallel Concatenated Convolutional Encoding Scheme” on page
5-792.

Encoder Schematic for Rate 1/3 Turbo Code Example

This figure shows the encoder configuration for a trellis specified by the default value of the Trellis
structure parameter, poly2trellis(4,[13 15],13).
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For an input vector length of 64 bits, the output of the encoder block is 204 bits. The first 192 bits
correspond to the three 64 bit streams (systematic (X) and parity (Z) bit streams from the first
encoder and the parity (Z’) bit stream of the second encoder), interlaced as per X, Z, and Z’. The last
12 bits correspond to the tail bits from the two encoders when the switches are in the lower position
corresponding to the dashed lines. The first group of six bits (three systematic bits and three parity
bits) are the output tail bits from the first constituent encoder. The second group of six bits (three
systematic bits and three parity bits) are the output tail bits from the second constituent encoder.

Due to the tail bits, the encoder output code rate is slightly less than 1/3.

Version History
Introduced in R2011b
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Unipolar to Bipolar Converter
Map unipolar signal in range [0, M-1] into bipolar signal

Library
Utility Blocks

Description
The Unipolar to Bipolar Converter block maps the unipolar input signal to a bipolar output signal. If
the input consists of integers between 0 and M-1, where M is the M-ary number parameter, then the
output consists of integers between -(M-1) and M-1. If M is even, then the output is odd. If M is odd,
then the output is even. This block is only designed to work when the input value is within the set
{0,1,2...(M-1)}, where M is the M-ary number parameter. If the input value is outside of this set of
integers the output may not be valid.

The table below shows how the block's mapping depends on the Polarity parameter.

Polarity Parameter Value Output Corresponding to Input Value of k
Positive 2k-(M-1)
Negative -2k+(M-1)

Parameters
M-ary number

The number of symbols in the bipolar or unipolar alphabet.
Polarity

A value of Positive causes the block to maintain the relative ordering of symbols in the
alphabets. A value of Negative causes the block to reverse the relative ordering of symbols in
the alphabets.

Output Data Type
The type of bipolar signal produced at the block's output.

The block supports the following output data types:

• Inherit via internal rule
• Same as input
• double
• int8
• int16
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• int32

When the parameter is set to its default setting, Inherit via internal rule, the block
determines the output data type based on the input data type.

• If the input signal is floating-point (either single or double), the output data type is the
same as the input data type.

• If the input data type is not floating-point:

• Based on the M-ary number parameter, an ideal signed integer output word length
required to contain the range [-(M-1)M-1] is computed as follows:

ideal word length = ceil(log2(M))+1

Note The +1 is associated with the need for the sign bit.
• The block sets the output data type to be a signed integer, based on the smallest word

length (in bits) that can fit best the computed ideal word length.

Note The selections in the “Hardware Implementation Pane” (Simulink) pertaining to word
length constraints do not affect how this block determines output data types.

Examples
If the input is [0; 1; 2; 3], the M-ary number parameter is 4, and the Polarity parameter is
Positive, then the output is [-3; -1; 1; 3]. Changing the Polarity parameter to Negative changes
the output to [3; 1; -1; -3].

If the value for the M-ary number is 27 the block gives an output of int8.

If the value for the M-ary number is 27+1 the block gives an output of int16.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Bipolar to Unipolar Converter
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Viterbi Decoder
Decode convolutionally encoded data using Viterbi algorithm
Library: Communications Toolbox / Error Detection and Correction /

Convolutional
Communications Toolbox HDL Support / Error Detection and
Correction / Convolutional

Description
The Viterbi Decoder block decodes convolutionally encoded input symbols to produce binary output
symbols by using the Viterbi algorithm. A trellis structure specifies the convolutional encoding
scheme. For more information, see “Trellis Description of a Convolutional Code”.

This block can process several symbols at a time for faster performance and can accept inputs that
vary in length during simulation. For more information about variable-size signals, see “Variable-Size
Signal Basics” (Simulink).

This icon shows all the optional block ports enabled.

Ports
Input

In — Convolutionally encoded codeword
column vector

Convolutionally encoded codeword, specified as a column vector. If the decoder takes N input bit
streams (that is, it can receive 2N possible input symbols), the block input vector length is L×N for
some positive integer L. For more information, see “Input and Output Sizes” on page 5-805, “Input
Values and Decision Types” on page 5-806, and the Operation mode parameter.

This port is unnamed until a second input port is enabled.
Data Types: double | single | Boolean | int8 | int16 | int32 | uint8 | uint16 | uint32 | ufixn

Era — Erasure bits in codeword
binary-valued vector

Erasure bits in the codeword, specified as a binary-valued vector. Values of 1 in the vector correspond
to erased bits, and values of 0 correspond to nonerased bits.
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For these erasures in the incoming data stream, the decoder does not update the branch metric. The
widths and the sample times of the erasure and the input data ports must be the same.

Dependencies

To enable this port, select Enable erasures input port.
Data Types: double | Boolean

Rst — Option to reset state of decoder registers
scalar

Option to reset the state of decoder registers, specified as scalar value. When this port receives a
nonzero input value, the block sets its internal memory to the initial state before processing the input
data. Resetting the decoder registers to the initial state sets:

• The all-zeros state metric to zero
• All other state metrics to the maximum value
• The traceback memory to zero

Using the reset port on this block is analogous to setting Operation mode for the Convolutional
Encoder block to Reset on nonzero input via port.

Dependencies

To enable this port, set the Operation mode parameter to Continuous and select Enable reset
input port.
Data Types: double | Boolean

Output

Out — Output message
binary column vector

Output message, returned as a binary column vector. If the decoder produces K output bit streams
(that is, it can produce 2K possible output symbols), the block output vector length is L×K for some
positive integer L. For more information, see “Input and Output Sizes” on page 5-805.

This port is unnamed on the block icon.
Data Types: double | single | Boolean | int8 | int16 | int32 | uint8 | uint16 | uint32 | ufix1

Parameters
Main

Trellis structure — Trellis description of convolutional code

poly2trellis(7,[171 133]) (default)

Trellis description of the convolutional code, specified as a structure that contains the trellis
description for a rate K ∕ N code. K is the number of input bit streams, and N is the number of output
bit streams.
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You can either use the poly2trellis function to create the trellis structure or create it manually.
For more about this structure, see “Trellis Description of a Convolutional Code” and the istrellis
function.

The trellis structure contains these fields.

numInputSymbols — Number of symbols input to encoder
2K

Number of symbols input to the encoder, specified as an integer equal to 2K, where K is the number of
input bit streams.
Data Types: double

numOutputSymbols — Number of symbols output from encoder
2N

Number of symbols output from the encoder, specified as an integer equal to 2N, where N is the
number of output bit streams.
Data Types: double

numStates — Number of states in encoder
power of 2

Number of states in the encoder, specified as a power of 2.
Data Types: double

nextStates — Next states
matrix of integers

Next states for all combinations of current states and current inputs, specified as a matrix of integers.
The matrix size must be numStates by 2K.
Data Types: double

outputs — Outputs
matrix of octal numbers

Outputs for all combinations of current states and current inputs, specified as a matrix of octal
numbers. The matrix size must be numStates by 2K.
Data Types: double

Punctured code — Option to enable specification of code puncturing

off (default) | on

Select this parameter to view and enable the Puncture vector parameter.

Puncture vector — Puncture pattern vector

[1; 1; 0; 1; 0; 1] (default) | column vector

Puncture pattern vector to puncture the decoded data, specified as a column vector. The vector must
contain 1s and 0s, where 0 indicates the position of the punctured bits. This puncture pattern must
match the puncture pattern used by the convolutional encoder.
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For some commonly used puncture patterns for specific rates and polynomials, see the Yasuda [4],
Haccoun [5], and Begin [6] references.
Dependencies

This parameter appears only when you select the Punctured code parameter.

Enable erasures input port — Option to enable erasures input port

off (default) | on

Select this parameter to add the Era input port to the block.

Decision type — Decoder decision type

Unquantized (default) | Hard decision | Soft decision

Decoder decision type, specified as Unquantized, Hard decision, or Soft Decision.

• Unquantized — The decoder uses the Euclidean distance to calculate the branch metrics. The
input data must be a real-valued vector of double- or single-precision soft values that are
unquantized. The object maps positive values to logical 1s and negative values to logical 0s

• Hard decision — The decoder uses Hamming distance to calculate the branch metrics. The
input must be a vector of hard decision values, which are 0s or 1s. The data type of the inputs
must be double precision, single precision, logical, or numeric.

• Soft Decision — The decoder uses Hamming distance to calculate the branch metrics. The
input requires a vector of quantized soft values that are represented as integers between 0 and
2SoftInputWordLength – 1. The data type of the inputs must be double precision, single precision, logical,
or numeric. Alternatively, you can specify the data type as an unsigned and unscaled fixed-point
object using the fi object with a word length (SoftInputWordLength) equal to the word length
that you specify for the Number of soft decision bits parameter. 0 is considered as most
confident 0 and 2SoftInputWordLength – 1 as the most confident 1.

Number of soft decision bits — Soft input word length

4 (default) | positive integer

Soft input word length that represents the number of bits for each quantized soft input value,
specified as an integer.
Dependencies

This parameter appears only when you set the Decision type parameter to Soft decision.

Error if quantized input values are out of range — Option to error if quantized
input values are out of range

off (default) | on

Select this parameter to error if the quantized input values are out of range. If you do not select this
parameter, out of range input values are ignored.
Dependencies

This parameter appears only when you set the Decision type parameter to Hard decision or Soft
decision.
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Traceback depth — Traceback depth

34 (default) | positive integer

Traceback depth, specified as an integer that indicates the number of trellis branches used to
construct each traceback path.

The traceback depth influences the decoding delay. The decoding delay is the number of zero symbols
that precede the first decoded symbol in the output.

• For the continuous operating mode, the decoding delay is equal to the number of traceback depth
symbols.

• For the truncated or terminated operating mode, the decoding delay is zero. In this case, the
traceback depth must be less than or equal to the number of symbols in each input.

As a general estimate, a typical traceback depth value is approximately two to three times
(ConstraintLength – 1) / (1 – coderate). The constraint length of the code, ConstraintLength, is equal
to (log2(trellis.numStates) + 1). The coderate is equal to (K / N) × (length(PuncturePattern) /
sum(PuncturePattern).

K is the number of input symbols, N is the number of output symbols, and PuncturePattern is the
puncture pattern vector.

For example, applying this general estimate, results in these approximate traceback depths.

• A rate 1/2 code has a traceback depth of 5(ConstraintLength – 1).
• A rate 2/3 code has a traceback depth of 7.5(ConstraintLength – 1).
• A rate 3/4 code has a traceback depth of 10(ConstraintLength – 1).
• A rate 5/6 code has a traceback depth of 15(ConstraintLength – 1).

For more information, see [7].

Operation mode — Termination method of encoded frame

Continuous (default) | Truncated | Terminated

Method for transitioning between successive input frames, specified as one of these mode values.

• Continuous — The block saves its internal state metric at the end of each input, for use with the
next frame. Each traceback path is treated independently. This mode results in a decoding delay of
Traceback depth×K zero bits for a rate K/N convolutional code. K is the number of message
symbols, and N is the number of coded symbols. If the Enable reset input port is selected, the
decoder states are reset if the Rst port receives a nonzero value.

• Truncated — The block treats each input independently. The traceback path starts at the state
with the best metric and always ends in all-zeros state. This mode is appropriate when the
corresponding Convolutional Encoder block has its Operation mode set to Truncated (reset
every frame). There is no output delay for this mode.

• Terminated — The block treats each input independently, and the traceback path always starts
and ends in all-zeros state. This mode is appropriate when the uncoded message signal (that is,
the input to the corresponding Convolutional Encoder block) has enough zeros at the end of each
input to fill all memory registers of the feed-forward encoder. Specifically, there are at least
k*max(constr-1) zeros at the end of the input, for an encoder that has k input streams and
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constraint length vector constr (using the polynomial description). For feedback encoders, this
mode is appropriate if the corresponding Convolutional Encoder block has Operation mode set
to Terminate trellis by appending bits.

Note The decoder states reset at every input time step when the block outputs sequences that vary
in length during simulation and you set the Operation mode to Truncated or Terminated.

When the input signal contains only one symbol, use the Continuous operation mode .

Enable reset input port — Option to add reset input port

off (default) | on

Select this parameter to add the Rst input port.

Dependencies

This parameter appears only when you set the Operation mode parameter to Continuous.

Delay reset action to next time step — Option to delay reset action until next time
step

off (default) | on

Select this parameter to delay reset of the decoder until after computing the encoded data received
in the current time step. You must enable this option for HDL support. Generating HDL code requires
HDL Coder software.

Dependencies

This parameter appears only when you set the Operation mode parameter to Continuous and
select Enable reset input port.

Data Types

State metric word length — State metric word length

16 (default) | positive integer

State metric word length, specified as a positive integer.

Output data type — Output data type

Inherit via internal rule (default) | Smallest unsigned integer | double | single |
int8 | uint8 | int16 | uint16 | int32 | uint32 | boolean

Output data type, specified as double, single, boolean, int8, uint8, int16, uint16, int32, or
uint32, or set to 'Inherit via internal rule' or 'Smallest unsigned integer'.

• When set to 'Smallest unsigned integer', the output data type is selected based on the
settings used in the Hardware Implementation pane of the Configuration Parameters dialog box
of the model. If ASIC/FPGA is selected in the Hardware Implementation pane, the output data
type is ufix(1). For all other selections, it is an unsigned integer with the smallest specified
word length corresponding to the char value (for example, uint8).
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• When set to 'Inherit via internal rule', the block:

• Outputs data type double for double inputs
• Outputs data type single for single inputs
• Behaves similar to the 'Smallest unsigned integer' option for all other data type inputs

Block Characteristics
Data Types Boolean | double | fixed pointa | integer | single
Multidimensional
Signals

no

Variable-Size Signals yes
a Input can be ufix(1) for hard decision, and ufix(N) for soft decision; output can be ufix(1) only.

More About
Input and Output Sizes

If the convolutional code uses an alphabet of 2N possible symbols, the input vector length must be
L×N for some positive integer L. Similarly, if the decoded data uses an alphabet of 2K possible output
symbols, the output vector length is L×K.

This block accepts a column vector input signal with any positive integer value for L. For variable-size
inputs, L can vary during simulation. The operation of the block is governed by the operation mode
parameter.

This table shows the data types supported for the input and output ports.

Port Supported Data Types
Input • Double-precision floating point

• Single-precision floating point
• Boolean for Hard decision mode
• 8-, 16-, and 32-bit signed integers (for Hard decision and Soft decision

modes)
• 8-, 16-, and 32-bit unsigned integers (for Hard decision and Soft decision

modes)
• ufix(n), where n represents the Number of soft decision bits

Output • Double-precision floating point
• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers
• ufix(1) for ASIC/FPGA mode
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Input Values and Decision Types

The entries of the input vector are either bipolar real, binary, or integer data, depending on the
Decision type parameter.

Decision type
Parameter

Possible Entries in
Decoder Input

Interpretation of
Values

Branch metric
calculation

Unquantized Real numbers

Input values outside of
the range [–1012, 1012]
are clipped to –1012 and
1012, respectively.

Positive real: logical
zero

Negative real: logical
one

Euclidean distance

Hard Decision 0, 1 0: logical zero

1: logical one

Hamming distance

Soft Decision Integers between 0 and
2 b -1, where b is the
Number of soft
decision bits
parameter.

0: most confident
decision for logical zero

2b-1: most confident
decision for logical one

Other values represent
less confident decisions.

Hamming distance

To illustrate the soft decision situation more explicitly, the following table lists interpretations of
values for 3-bit soft decisions.

Input Value Interpretation
0 Most confident zero
1 Second most confident zero
2 Third most confident zero
3 Least confident zero
4 Least confident one
5 Third most confident one
6 Second most confident one
7 Most confident one

Fixed-Point Signal Flow Diagram

There are three main components to the Viterbi decoding algorithm. They are branch metric
computation (BMC), add-compare and select (ACS), and traceback decoding (TBD). This diagram
illustrates the signal flow for a k/n rate code.

5 Blocks

5-806



This diagram illustrates the BMC for a 1/2 rate, nsdec = 3 signal flow.

WL = nsdec + n− 1
n = 2 WL = 4

This diagram illustrates an ACS component cycle, where WL2 is specified on the mask by the user.
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In these flow diagrams, inNT, bMetNT , stMetNT, and outNT are numerictype (Fixed-Point
Designer) objects, and bMetFIMATH and stMetFIMATH, are fimath (Fixed-Point Designer)
objects.

Version History
Introduced before R2006a

Version History
Behavior changed in R2022b

Unquantized input values outside of the range [–1012, 1012] are clipped to –1012 and 1012, respectively.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

Note For decoding data encoded with truncated or terminated modes, or punctured codes, use the
Viterbi Decoder block from Wireless HDL Toolbox™.

HDL Coder supports the following features of the Viterbi Decoder block:

• Non-recursive encoder/decoder with feed-forward trellis and simple shift register generation
configuration

• Continuous mode
• Sample-based input
• Decoder rates from 1/2 to 1/7
• Constraint length from 3 to 9

When you set Decision type to Soft decision, HDL code generation is supported for fixed-point
input and output data types. The input fixed-point data type must be ufixN. N is the number of soft-
decision bits. HDL code generation is not supported for signed built-in data types (int8, int16,
int32).

When you set Decision type to Hard decision, HDL code generation is supported for input with
data types ufix1 and Boolean. HDL code generation is not supported for double and single input
data types.

The Viterbi Decoder block decodes every bit by tracing back through a traceback depth that you
define for the block. The block implements a complete traceback for each decision bit, using registers
to store the minimum state index and branch decision in the traceback decoding unit. There are two
methods to optimize the traceback logic: a pipelined register-based implementation or a RAM-based
architecture. See the “HDL Code Generation for Viterbi Decoder” example.
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Register-Based Traceback

You can specify that the traceback decoding unit be pipelined to improve the speed of the generated
circuit. You can add pipeline registers to the traceback unit by specifying the number of traceback
stages per pipeline register.

Using the TracebackStagesPerPipeline implementation parameter, you can balance the circuit
performance based on system requirements. A smaller parameter value indicates the requirement to
add more registers to increase the speed of the traceback circuit. Increasing the parameter value
results in fewer registers along with a decrease in the circuit speed.

RAM-Based Traceback

Instead of using registers, you can choose to use RAMs to save the survivor branch information. The
coder does not support Enable reset input port when using RAM-based traceback.

1 Right-click the block and open HDL Code > HDL Block Properties. Set the Architecture
property to RAM-based Traceback.

2 Double-click the block and set the Traceback depth on the Viterbi Decoder block mask.

RAM-based traceback and register-based traceback differ in the following ways:

• The RAM-based implementation traces back through one set of data to find the initial state to
decode the previous set of data. The register-based implementation combines the traceback and
decode operations into one step. It uses the best state found from the minimum operation as the
decoding initial state.

• RAM-based implementation traces back through M samples, decodes the previous M bits in
reverse order, and releases one bit in order at each clock cycle. The register-based
implementation decodes one bit after a complete traceback.

Because of the differences in the two traceback algorithms, the RAM-based implementation produces
different numerical results than the register-based traceback. A longer traceback depth, for example,
10 times the constraint length, is recommended in the RAM-based traceback. This depth achieves a
similar bit error rate (BER) as the register-based implementation. The size of RAM required for the
implementation depends on the trellis and the traceback depth.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

TracebackStagesPerPi
peline

See “Register-Based Traceback” on page 5-810.
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Restrictions

• Punctured code: Do not select this option. Punctured code requires frame-based input, which
HDL Coder does not support.

• Decision type: The coder does not support the Unquantized decision type.
• Error if quantized input values are out of range: The coder does not support this option.
• Operation mode: The coder supports only the Continuous mode.
• Enable reset input port: When you enable both Enable reset input port and Delay reset

action to next time step, HDL support is provided. You must select Continuous operation
mode, and use register-based traceback.

• You cannot use the Viterbi Decoder block inside a Resettable Synchronous Subsystem.

See Also
Blocks
Convolutional Encoder | APP Decoder

Functions
vitdec | poly2trellis | istrellis

Objects
comm.ViterbiDecoder

Topics
“Convolutional Codes”
“Trellis Description of a Convolutional Code”
“HDL Code Generation for Viterbi Decoder”
“Variable-Size Signal Basics” (Simulink)
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Walsh Code Generator
Generate Walsh code from orthogonal set of codes

Library
Sequence Generators sublibrary of Comm Sources

Description
Walsh codes are defined as a set of N codes, denoted Wj, for j = 0, 1, ... , N - 1, which have the
following properties:

• Wj takes on the values +1 and -1.
• Wj[0] = 1 for all j.
• Wj has exactly j zero crossings, for j = 0, 1, ... , N - 1.
•

W jWk
T =

0 j ≠ k
N j = k

• Each code Wj is either even or odd with respect to its midpoint.

Walsh codes are defined using a Hadamard matrix of order N. The Walsh Code Generator block
outputs a row of the Hadamard matrix specified by the Walsh code index, which must be an integer
in the range [0, ..., N - 1]. If you set Walsh code index equal to an integer j, the output code has
exactly j zero crossings, for j = 0, 1, ... , N - 1.

Note, however, that the indexing in the Walsh Code Generator block is different than the indexing in
the Hadamard Code Generator block. If you set the Walsh code index in the Walsh Code Generator
block and the Code index parameter in the Hadamard Code Generator block, the two blocks output
different codes.

Parameters
Code length

Integer scalar that is a power of 2 specifying the length of the output code.
Code index

Integer scalar in the range [0, 1, ... , N - 1], where N is the Code length, specifying the number
of zero crossings in the output code.

Sample time
Positive scalars specify the time in seconds between each sample of the output signal. If you set
the Sample time to -1, the output signal inherits the sample time from downstream. For
information on the relationship between the Sample time and Samples per frame parameters,
see “Sample Timing” on page 5-813.
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Samples per frame
Samples per frame, specified as a positive integer indicating the number of samples per frame in
one channel of the output data. If Samples per frame is greater than the Code length, the code
is cyclically repeated. For information on the relationship between Sample time and Samples
per frame, see “Sample Timing” on page 5-813.

Output data type
The output type of the block can be specified as an int8 or double. By default, the block sets
this to double.

More About
Sample Timing

The time between output updates is equal to the product of the Samples per frame and Sample
time parameter values. For example, if Sample time and Samples per frame each equal 1, the
block outputs a sample every second. If you increase Samples per frame to 10, then the block
outputs a 10-by-1 vector every 10 seconds. This ensures that the equivalent output rate is not
dependent on the Samples per frame parameter.

Version History
Introduced before R2006a

Existing models automatically update this block to current version
Behavior changed in R2020a

Starting in R2020a, Simulink no longer allows you to use the Walsh Code Generator block version
available before R2015b.

Existing models automatically update to load the Walsh Code Generator block version announced in
“Source blocks output frames of contiguous time samples but do not use the frame attribute” in the
R2015b Release Notes. For more information on block forwarding, see “Maintain Compatibility of
Library Blocks Using Forwarding Tables” (Simulink).

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Does not support integer only code generation.

See Also
Blocks
OVSF Code Generator | Hadamard Code Generator
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Windowed Integrator
Integrate over time window of fixed length

Library
Comm Filters

Description
The Windowed Integrator block creates cumulative sums of the input signal values over a sliding time
window of fixed length. If the Integration period parameter is N and the input samples are denoted
by x(1), x(2), x(3),..., then the nth output sample is the sum of the x(k) values for k between n-N+1
and n. In cases where n-N+1 is less than 1, the block uses an initial condition of 0 to represent those
samples.

Input and Output Signals

This block accepts scalar, column vector, and M-by-N matrix input signals. The block filters an M-by-N
input matrix as follows:

• When you set the Input processing parameter to Columns as channels (frame based), the
block treats each column as a separate channel. In this mode, the block creates N instances of the
same filter, each with its own independent state buffer. Each of the N filters process M input
samples at every Simulink time step.

• When you set the Input processing parameter to Elements as channels (sample based),
the block treats each element as a separate channel. In this mode, the block creates M*N
instances of the same filter, each with its own independent state buffer. Each filter processes one
input sample at every Simulink time step.

The output dimensions always equal those of the input signal. For information about the data types
each block port supports, see the “Supported Data Type” on page 5-816 table on this page.

Parameters
Integration period

The length of the interval of integration, measured in samples.
Input processing

Specify how the block processes the input signal. You can set this parameter to one of the
following options:

• Columns as channels (frame based) — When you select this option, the block treats
each column of the input as a separate channel.
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• Elements as channels (sample based) — When you select this option, the block treats
each element of the input as a separate channel.

Rounding mode
Select the rounding mode for fixed-point operations. The block uses the Rounding mode when
the result of a fixed-point calculation does not map exactly to a number representable by the data
type and scaling storing the result. The filter coefficients do not obey this parameter; they always
round to Nearest. For more information, see “Rounding Modes” or “Rounding Mode: Simplest”
(Fixed-Point Designer).

Saturate on integer overflow
Select the overflow mode for fixed-point operations. The filter coefficients do not obey this
parameter; they are always saturated.

Coefficients
The block implementation uses a Direct-Form FIR filter with all tap weights set to one. The
Coefficients parameter controls which data type represents the taps (i.e. ones) when the input
data is a fixed-point signal.

Choose how you specify the word length and the fraction length of the filter coefficients
(numerator and/or denominator). See “Filter Structure Diagrams” for illustrations depicting the
use of the coefficient data types in this block:

• When you select Same word length as input, the word length of the filter coefficients
match that of the input to the block. In this mode, the fraction length of the coefficients is
automatically set to the binary-point only scaling that provides you with the best precision
possible given the value and word length of the coefficients.

• When you select Specify word length, you are able to enter the word length of the
coefficients, in bits. In this mode, the fraction length of the coefficients is automatically set to
the binary-point only scaling that provides you with the best precision possible given the value
and word length of the coefficients.

• When you select Binary point scaling, you are able to enter the word length and the
fraction length of the coefficients, in bits. If applicable, you are able to enter separate fraction
lengths for the numerator and denominator coefficients.

• When you select Slope and bias scaling, you are able to enter the word length, in bits,
and the slope of the coefficients. If applicable, you are able to enter separate slopes for the
numerator and denominator coefficients. This block requires power-of-two slope and a bias of
zero.

• The filter coefficients do not obey the Rounding mode and the Saturate on integer
overflow parameters; they are always saturated and rounded to Nearest.

Product output
Use this parameter to specify how you would like to designate the product output word and
fraction lengths. See “Filter Structure Diagrams” and “Multiplication Data Types” for illustrations
depicting the use of the product output data type in this block:

• When you select Same as input, these characteristics match those of the input to the block.
• When you select Binary point scaling, you are able to enter the word length and the

fraction length of the product output, in bits.
• When you select Slope and bias scaling, you are able to enter the word length, in bits,

and the slope of the product output. This block requires power-of-two slope and a bias of zero.
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Accumulator
Use this parameter to specify how you would like to designate the accumulator word and fraction
lengths. See “Filter Structure Diagrams” and “Multiplication Data Types” for illustrations
depicting the use of the accumulator data type in this block:

• When you select Same as input, these characteristics match those of the input to the block.
• When you select Same as product output, these characteristics match those of the

product output.
• When you select Binary point scaling, you are able to enter the word length and the

fraction length of the accumulator, in bits.
• When you select Slope and bias scaling, you are able to enter the word length, in bits,

and the slope of the accumulator. This block requires power-of-two slope and a bias of zero.

Output
Choose how you specify the output word length and fraction length:

• When you select Same as input, these characteristics match those of the input to the block.
• When you select Same as accumulator, these characteristics match those of the

accumulator.
• When you select Binary point scaling, you are able to enter the word length and the

fraction length of the output, in bits.
• When you select Slope and bias scaling, you are able to enter the word length, in bits,

and the slope of the output. This block requires power-of-two slope and a bias of zero.

Lock scaling against changes by the autoscaling tool
Select this parameter to prevent any fixed-point scaling you specify in this block mask from being
overridden by the autoscaling tool in the Fixed-Point Tool.

Supported Data Type
Port Supported Data Types
In • Double-precision floating point

• Single-precision floating point
• Signed Fixed-point

Out • Double-precision floating point
• Single-precision floating point
• Signed fixed-point

Examples
If Integration period is 3 and the input signal is a ramp (1, 2, 3, 4,...), then some of the sums that
form the output of this block are as follows:

• 0+0+1 = 1
• 0+1+2 = 3
• 1+2+3 = 6
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• 2+3+4 = 9
• 3+4+5 = 12
• 4+5+6 = 15
• etc.

The zeros in the first few sums represent initial conditions. With the Input processing parameter set
to Elements as channels, then the values 1, 3, 6,... are successive values of the scalar output
signal. With the Input processing parameter set to Columns as channels, the values 1, 3, 6,...
are organized into output frames that have the same vector length as the input signal.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Integrate and Dump | Discrete-Time Integrator

Functions
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Waveform From Wireless Waveform Generator App
Wireless waveform source exported to Simulink
Library: None

Description
The Waveform From Wireless Waveform Generator App block is generated using the Wireless
Waveform Generator app. You can use the generated block as a wireless waveform source in a
Simulink model.

Note The actual block name and output waveform depend on the waveform that you configure in the
app before generating the block.

For an overview of the waveform types that you can export to Simulink, see the Wireless Waveform
Generator app.

To generate a block:

1 On the app toolstrip, in the Waveform Type section, click the waveform that you want to
configure and export to Simulink.

2 Set the parameters of the selected waveform.
3 On the app toolstrip, in the Export section, click Export and select Export to Simulink.

The Code tab of the Mask Editor window contains the MATLAB code that the block executes to
output the configured waveform. To access read-only block parameters and waveform configuration
parameters, use the UserData common block property, which is a structure with these fields.

• WaveformConfig — Waveform configuration parameters
• WaveformLength — Waveform length
• Fs — Waveform sample rate

For more information on how to use the generated block, see “Generate Wireless Waveform in
Simulink Using App-Generated Block”.

Limitations
With the exception of blocks that are generated for 5G NR waveforms, blocks that are generated
using random user-defined signal data for the waveform do not support rapid accelerator mode. To
enable rapid accelerator mode in these blocks when you set the Bit-source app parameter to User-
defined, use pseudo-noise (PN) data as the data source.
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Ports
Output

wf — Time-domain wireless waveform
complex matrix

Time-domain wireless waveform, returned as a complex matrix. The number of matrix columns
corresponds to the number of transmit antennas. The waveform type you select in the app determines
the output waveform type. To access waveform configuration parameters, use the WaveformConfig
structure field of the UserData common block property.
Data Types: double

Parameters
Read-Only Waveform Parameters

The block automatically updates these parameters based on the waveform configuration in the Code
tab.

Waveform sample rate (Fs) — Waveform sample rate
numeric scalar

This parameter is read-only.

To access this parameter, use the Fs structure field of the UserData common block property. Units of
the Fs structure field are in Hz.

Waveform length — Waveform length
positive integer

This parameter is read-only.

To access this parameter, use the WaveformLength structure field of the UserData common block
property. Units of the WaveformLength structure field are in samples.

Simulation Parameters

These parameters control how the block outputs the waveform during simulation.

Samples per frame — Samples per frame
1 (default) | positive integer

This parameter specifies the number of samples to buffer into each output frame.

Form output after final data value by — Output values after last waveform sample
Cyclic repetition (default) | Setting to zero

This parameter specifies the output values after the block has output all available waveform samples.

• When you select Cyclic Repetition, the block repeats the waveform from the beginning after
reaching the last sample in the waveform.

• When you select Setting To Zero, the block generates zero-valued outputs for the duration of
the simulation after generating the last frame of the waveform.
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Version History
Introduced in R2021b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Apps
Wireless Waveform Generator
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Amplifier
Complex baseband model of amplifier with noise and nonlinearities
Library: RF Blockset / Idealized Baseband

Description
The Amplifier block generates a complex baseband model of an amplifier with thermal noise. This
block provides four nonlinearity models and three options to specify noise representation.

Ports
Input

Port_1 — Input baseband signal
real scalar | real column | complex scalar | complex column

Input baseband signal, specified as a real scalar, real column, complex scalar, or complex column.
Data Types: double | single

Output

Port_1 — Output baseband signal
real scalar | real column | complex scalar | complex column

Output baseband signal, specified as a real scalar, real column, complex scalar, or complex column.
The output port mimics the properties of the input port. For example, if the input baseband signal is
specified as a real scalar with a data type double, then the output baseband signal is also specified as
a real signal with the data type double.
Data Types: double | single

Parameters
Main Tab

Model — Amplifier nonlinearity model
Cubic polynomial (default) | AM/AM - AM/PM | Modified Rapp | Saleh

Specify the amplifier nonlinearity model as one of the following:

• Cubic polynomial
• AM/AM - AM/PM
• Modified Rapp
• Saleh

For more information, see “Nonlinearity Models in Idealized Amplifier Block” (RF Blockset).
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Linear power gain (dB) — Linear gain of amplifier
0 (default) | real scalar

Linear gain, specified as a scalar in dB.

Type of Non-Linearity — Third - order nonlinearity type
IIP3 (default) | OIP3 | IP1dB | OP1dB | IPsat | OPsat

Third order nonlinearity type, specified as IIP3, OIP3, IP1dB, OP1dB, IPsat, or OPsat.

IIP3 (dBm) — Input third-order intercept point
Inf (default) | real positive number

Input third-order intercept point, specified as a real positive number in dBm.

Dependencies

To enable this parameter, set Model to Cubic polynomial and Type of Non-Linearity to IIP3.

OIP3 (dBm) — Output third-order intercept point
Inf (default) | real positive number

Output third-order intercept point, specified as a real positive number in dBm.

Dependencies

To enable this parameter, set Model to Cubic polynomial and Type of Non-Linearity to OIP3.

IP1dB (dBm) — Input 1 dB compression point
Inf (default) | real positive number

Input 1 dB compression point, specified as a real positive number in dBm.

Dependencies

To enable this parameter, set Model to Cubic polynomial and Type of Non-Linearity to IP1dB.

OP1dB (dBm) — Output 1 dB compression point
Inf (default) | real positive number

Output 1 dB compression point, specified as a real positive number in dBm.

Dependencies

To enable this parameter, set Model to Cubic polynomial and Type of Non-Linearity to OP1dB.

IPsat (dBm) — Input saturation point
Inf (default) | real positive number

Input saturation point, specified as a real positive number in dBm.

Dependencies

To enable this parameter, set Model to Cubic polynomial and Type of Non-Linearity to IPsat.

OPsat (dBm) — Output saturation point
Inf (default) | real positive number
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Output saturation point, specified as a positive real number in dBm.

Dependencies

To enable this parameter, set Model to Cubic polynomial and Type of Non-Linearity to OPsat.

Reference load (ohm) — Reference load
1 (default) | positive scalar

Reference load value in ohms, specified as a positive scalar. This value is used to convert between the
voltage levels and the signal and noise power levels.

Tunable: Yes

Simulate using — Specify type of simulation to run
Code generation (default) | Interpreted execution

• Code generation – Simulate model using generated C code. The first time you run a simulation,
Simulink generates C code for the block. The C code is reused for subsequent simulations, as long
as the model does not change. This option requires additional startup time, but the speed of the
subsequent simulations is faster than Interpreted execution.

• Interpreted execution – Simulate model using the MATLAB interpreter. This option shortens
startup time speed, but the speed of the subsequent simulations is slower than Code
generation. In this mode, you can debug the source code of the block.

Plot power characteristics — Plot power characteristics
button (default)

This button plots the power characteristics based on the parameters specified on the Main tab.

For more information, see “Plot Power Characteristics” (RF Blockset).

Lookup table (Pin(dBm), Pout(dBm), deg) — Lookup table
[ -25, 5, -1; -10, 20, -2; 0, 27, 5; 5, 28, 12 ] (default) | M-by-3 real matrix

Table lookup entries specified as a real M-by-3 matrix. This table expresses the model output power
dBm level in matrix column 2 and the model phase change in degrees in matrix column 3 as related to
the absolute value of the input signal power of matrix column 1 for the AM/AM - AM/PM model. The
column 1 input power must increase monotonically.

Dependencies

To enable this parameter, set Model to AM/AM - AM/PM .

Output saturation level (V) — Output saturation level
1 (default) | real positive number

Voltage output saturation level, specified as a real positive number in dBm.

Dependencies

To enable this parameter, set Model to Modified Rapp.

Magnitude smoothness factor — Magnitude smoothness factor
2 (default) | real positive number
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Magnitude smoothness factor for the Modified Rapp amplifier model AM/AM calculations, specified
as a positive real number.
Dependencies

To enable this parameter, set Model to Modified Rapp.

Phase gain (rad) — Phase gain
-0.45 (default) | real scalar

Phase gain for the Modified Rapp amplifier model AM/PM calculations, specified as a real scalar in
radians.
Dependencies

To enable this parameter, set Model to Modified Rapp.

Phase saturation — Phase saturation
0.88 (default) | real positive number

Phase saturation for the Modified Rapp amplifier model AM/PM calculations, specified as a positive
real number.
Dependencies

To enable this parameter, set Model to Modified Rapp.

Phase smoothness factor — Phase smoothness factor
3.43 (default) | real positive number

Phase smoothness factor for the Modified Rapp amplifier model AM/PM calculations, specified as a
positive real number.
Dependencies

To enable this parameter, set Model to Modified Rapp.

Input scaling (dB) — Scaling factor for input signal level
0 (default) | nonnegative real number

Scaling factor for input signal level for the Saleh amplifier model, specified as a nonnegative real
number in dB.
Dependencies

To enable this parameter, set Model to Saleh.

AM / AM parameters [alpha beta] — AM/AM conversion parameters
[ 2.1587, 1.1517 ] (default) | two-element vector

AM/AM two-tuple conversion parameters for Saleh amplifier model, specified as a two-element
vector of nonnegative real numbers.
Dependencies

To enable this parameter, set Model to Saleh.

AM / PM parameters [alpha beta] — AM/PM conversion parameters
[ 4.0033, 9.1040 ] (default) | two-element vector
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AM/PM two-tuple conversion parameters for Saleh amplifier model, specified as a two-element vector
of nonnegative real numbers.
Dependencies

To enable this parameter, set Model to Saleh.

Output scaling (dB) — Scaling factor for output signal level
0 (default) | nonnegative real number

Scaling factor for output signal level for Saleh amplifier model, specified as nonnegative real number
in dB.
Dependencies

To enable this parameter, set Model to Saleh.

Noise Tab

Include Noise — Add noise to system
off (default) | on

Select this parameter to add system noise to the input signal. Once you select this parameter, the
parameters associated with the Noise tab are displayed.

Specify noise type — Noise representation
Noise temperature (default) | Noise figure | Noise factor

Noise descriptive type, specified as Noise temperature, Noise figure, or Noise factor.

For more information, see “Thermal Noise Simulations in Idealized Amplifier Block” (RF Blockset).
Dependencies

To enable this parameter, select Include Noise.

Noise temperature (K) — Noise temperature to model noises in amplifier
290 (default) | nonnegative real number

Noise temperature to model noise in the amplifier, specified as a nonnegative real number in degrees
(K).
Dependencies

To enable this parameter, select Include Noise and set Specify noise type to Noise
temperature.

Noise figure (dB) — Noise figure to model noise in amplifier
10 * log10( 2 ) (default) | nonnegative real number

Noise figure to model noise in the amplifier, specified as a nonnegative real number in dB.
Dependencies

To enable this parameter, select Include Noise and set Specify noise type to Noise figure.

Noise factor — Noise factor to model noise in amplifier
2 (default) | positive integer scalar greater than or equal to 1
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Noise factor to model noise in the amplifier, specified as a positive integer scalar greater than or
equal to 1.
Dependencies

To enable this parameter, select Include Noise and set Specify noise type to Noise factor.

Seed source — Source of initial seed
Auto (default) | User specified

Source of initial seed used to prepare the Gaussian random number noise generator, specified as one
of the following:

• Auto - When Seed source is set to Auto, seeds for each amplifier instance are generated using a
random number generator. The reset method of the instance has no effect.

• User specified - When Seed source is set to User specified, the value provided in the
Seed is used to initialize the random number generator and the reset method resets the random
number generator using the Seed property value.

Seed — Seed for random number generator
67987 (default) | nonnegative integer

Seed for the random number generator, specified as a nonnegative integer less than 232. Use this
value to initialize the random number generator.
Dependencies

To enable this parameter, click Include Noise check box and choose User specified in the Seed
source parameter.

Version History
Introduced in R2020a

Reference load parameter added to the block

You can now specify load resistance in ohms using the Reference load parameter.

References
[1] Razavi, Behzad. “Basic Concepts “ in RF Microelectronics, 2nd edition, Prentice Hall, 2012.

[2] Rapp, C., “Effects of HPA-Nonlinearity on a 4-DPSK/OFDM-Signal for a Digital Sound
Broadcasting System.” Proceedings of the Second European Conference on Satellite
Communications, Liege, Belgium, Oct. 22-24, 1991, pp. 179-184.

[3] Saleh, A.A.M., “Frequency-independent and frequency-dependent nonlinear models of TWT
amplifiers.” IEEE Trans. Communications, vol. COM-29, pp.1715-1720, November 1981.

[4] IEEE 802.11-09/0296r16. “TGad Evaluation Methodology.“ Institute of Electrical and Electronics
Engineers.https://www.ieee.org/

[5] Kundert, Ken.“ Accurate and Rapid Measurement of IP2 and IP3,“ The Designer Guide Community,
May 22, 2002.

5 Blocks

5-826

https://www.ieee.org/


Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Objects
comm.MemorylessNonlinearity

Topics
“Nonlinearities and Noise in Idealized Baseband Amplifier Block” (RF Blockset)
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